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LP-Based Algorithms for Capacitated Facility Location
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Abstract

Linear programming has played a key role in the study of algorithms for combinatorial optimization
problems. In the field of approximation algorithms, this is well illustrated by the uncapacitated facility
location problem. A variety of algorithmic methodologies,such as LP-rounding and primal-dual method,
have been applied to and evolved from algorithms for this problem. Unfortunately, this collection of
powerful algorithmic techniques had not yet been applicable to the more general capacitated facility
location problem. In fact, all of the known algorithms with good performance guarantees were based
on a single technique, local search, and no linear programming relaxation was known to efficiently
approximate the problem.

In this paper, we present a linear programming relaxation with constant integrality gap for capac-
itated facility location. We demonstrate that the fundamental theories of multi-commodity flows and
matchings provide key insights that lead to the strong relaxation. Our algorithmic proof of integrality
gap is obtained by finally accessing the rich toolbox of LP-based methodologies: we present a constant
factor approximation algorithm based on LP-rounding.
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1 Introduction

We consider the metric capacitated facility location (CFL) problem which together with the metric uncapac-
itated facility location (UFL) problem is the most classical and widely studied variant offacility location.
In CFL, we are given a single metric on the set offacilities andclients, and every facility has an associated
opening costandcapacity. The problem asks us to choose a subset of facilities to open and assign every
client to one of these open facilities, while ensuring that no facility is assigned more clients than its capacity.
Our aim is then to find a set of open facilities and an assignment that minimize the cost, where the cost
is defined as the sum of opening costs of each open facility andthe distance between each client and the
facility it is assigned to. UFL is the special case of CFL obtained by dropping the capacity constraints, or
equivalently setting each capacity to∞.

In spite of the similarities in the problem definitions of UFL and CFL, current techniques give a con-
siderably better understanding of the uncapacitated version. One prominent reason for this discrepancy is
that a standard linear programming (LP) relaxation gives close-to-tight bounds for UFL, whereas no good
relaxation was known in the presence of capacities. For UFL, on the one hand, the standard LP formulation
has been used in combination with most LP-based techniques,such as filtering [27], randomized round-
ing [10, 32], primal-dual framework [18], and dual fitting [16, 17], to obtain a fine-grained understanding of
the problem resulting in a nearly tight approximation ratio[25].

For CFL, on the other hand, it has remained a major open problem to finda relaxation based algorithms
with anyconstant performance guarantee, also highlighted as Open Problem 5 in the list of ten open prob-
lems selected by the recent textbook on approximation algorithms of Williamson and Shmoys [33]. This
question is especially intriguing as there exist constant factor approximation algorithms for CFL based on
the local search paradigm (see e.g. [3, 5, 11, 20, 22, 30] and Section1.2 for further discussion of this ap-
proach). Compared to such methods, there are several advantages of algorithms based on relaxations. First,
as alluded to above, there is a large toolbox of LP-based techniques that one can tap into once a strong
relaxation is known for a problem. Second, LP-based algorithms give a strongerper instanceguarantee:
that is, the rounded solution is compared to the found LP solution and the gap is often smaller than the worst
case. This is in contrast to local search heuristics that only guarantees that the cost is no worse than the
provena priori performance guarantee assures. Finally, LP-based techniques are often flexible and allow
for generalizations to related problems. This has indeed been the case for the uncapacitated versions where
algorithms for UFL are used in the design of approximation algorithms for otherrelated problems, see for
example [7, 18, 21, 26].

In this pursuit of LP-based approximation algorithms for capacitated facility location problems, the cen-
tral question lies in devising a strong LP relaxation that isalgorithmically amenable. In fact, any combinato-
rial problem has a relaxation with constant integrality gap: the exact formulation, which is the convex hull of
integral solutions, has indeed an integrality gap of 1. However, such formulations for NP-hard optimization
problems usually have insufficient structure to give enoughinsights for designing efficient approximation
algorithms. The challenge, therefore, is to instead devisean LP-relaxation that is sufficiently strong while
featuring enough structure so as to guide the development ofefficient approximation algorithms using LP-
based techniques, such as LP-rounding or primal-dual. However, formulating one for the capacitated facility
location problem has turned out to be non-trivial. Aardal etal. [1] made a comprehensive study of valid in-
equalities for capacitated facility location problem and proposed further generalizations; the strength of the
obtained formulations was left as an open problem. Many of these formulations were, however, recently
proven to be insufficient for obtaining a constant integrality gap by Kolliopoulos and Moysoglou [19]. In
the same paper it is also shown that applying the Sherali-Adams hierarchy to the standard LP formulation
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will not close the integrality gap.

1.1 Our Contributions

Our main contribution is a strong linear programming relaxation which has a constant integrality gap for the
capacitated facility location problem. We prove its constant integrality gap by presenting a polynomial time
approximation algorithm which rounds the LP solution.

Theorem 1.1. There is a linear programming relaxation (MFN-LP given in Figure3) for the capacitated
facility location problem that has a constant integrality gap. Moreover, there exists a polynomial-time
algorithm that finds a solution to the capacitated facility location problem whose cost is no more than a
constant factor times the LP optimum.

This result resolves Open Problem 5 in the list of ten open problems selected by the textbook of Williamson
and Shmoys [33].

Our relaxation is formulated based on multi-commodity flows. We will discuss in this section why the
multi-commodity flow is a natural tool of choice in designingstrong LP relaxations for our problem, and
also how it plays a key role, together with the matching theory, in achieving a constant factor LP-rounding
algorithm.

One natural question that arises is characterizing the exact integrality gap of our relaxation. While we
prioritized ease of reading over a better ratio in the choiceof parameters for this presentation of our algo-
rithm, it appears that the current analysis is not likely to give any approximation ratio better than5, the best
ratio given by the local search algorithms [5]. On the other hand, the best lower bound known on the inte-
grality gap of our relaxation is2, and the question remains open whether we can obtain an approximation
algorithm with a ratio smaller than5 based on our relaxation.

Open Question.Determine the integrality gap of the LP relaxation MFN-LP.

High-level description of MFN-LP. The minimum knapsack problem is a special case of capacitated
facility location: given a target value and a set of items with different values and costs, the problem is to
find a minimum-cost subset of items whose total value is no less than the given target. Carr et al. [8] showed
that flow-cover inequalities [34, 8] yield an LP with a constant integrality gap for this problem; in fact,
another aspect of our relaxation shares a similar spirit as these inequalities. The flow-cover inequalities for
the minimum knapsack problem say that, when any subset of items is given for “free” to be part of the
solution, the LP solution should be feasible to the residualproblem. In this residual problem, the target
value is decreased by the total target value of the free items; hence, constraints of the residual problem can
be strengthened by updating the values of all items to be at most the new target value.

In order to have a similar notion of residual sub-problems inthe facility location problem, it is tempting
to formulate a sub-problem for each subset of facilities which are open for free. Indeed the knapsack problem
suggests exactly this sub-problem, since in the reduction from the knapsack problem to the facility location
problem, items correspond to facilities. However, we take adifferent approach. Observe that there are two
types of decisions to be made in the facility location problem: which facilities to open, and how to assign the
clients to these open facilities; we focus on the latter. We contemplate an assignment of a subset of clients
to some facilities, and insist that this assignment should be a part of the solution. We formulate the residual
problem on unassigned clients, update the capacity of each facility and reduce it by the number of clients
assigned for free to this facility. We now require that any feasible solution to the problem must contain a
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(a) A feasible integral solution.
Both facilities are open, and lines
show the assignment.

i1 i2

j

(b) A partial assignment. Clientj
is unassigned.

i1 i2

j

(c) Original solution, augmented
with partial assignment edges
marked as dashed lines. Thick lines
represent alternating path forj.

i1 i2

j

Figure 1: Example of partial assignment. Squares representfacilities of capacity 6; circles clients.

feasible solution to the residual problem. We call the assignment of clients for free apartial assignment, as
they assign only a subset of clients.

While the residual instance would be again an instance of thecapacitated facility location, with fewer
clients and facilities with reduced capacities, it is not clear whether restricting a feasible solution of the
original problem forms a feasible solution to the residual problem. In fact, it does not. The partial assignment
reduces capacities at facilities which the feasible solution might have used for clients remaining in the
residual instance. To be concrete, consider a feasible integral solution depicted in Figure1a and a partial
assignment in Figure1b. Note that clientj was not assigned by the partial assignment, but in the residual
instance, it cannot be assigned to facilityi2 as the original solution indicates. The partial assignmenthas
already assigned enough clients to reduce the capacity of facility i2 to zero in the residual instance. But
observe that the fact that clientj could not claim its original place means that some other client has taken its
place; therefore, that client must have left behind its space somewhere else (at facilityi1 in this example).
Thus we would want to assign clientj to facility i1 in the example. But how can we enable such an
assignment in general? Our relaxation allows additional edges to be used for assignments in the residual
instance. In particular, we make edges corresponding to thepartial assignment available to be used to
“undo” the partial assignment; observe that what we are now looking for is not a direct assignment of
clients to facilities butalternating pathsstarting at each client in the residual instance to a facility with spare
reduced capacity. We model this problem as amulti-commodity flowproblem where every unassigned client
demands a unit flow to be routed to a facility with residual capacity. In fact, it is crucial for obtaining a
strong LP to use multi-commodity flows to model these assignments, as we will see in Section2.

For the interested reader, we further relate our relaxationto previous works by demonstrating in Sec-
tion 2.3 how it automatically embraces two interesting special cases, including the flow-cover inequalities
for the knapsack problem. In addition, we show how our relaxation deals with a specific instance, for which
the standard LP has an unbounded integrality gap.

LP-rounding algorithm. In Section3, we give an algorithmic proof of constant integrality gap bypre-
senting a polynomial-time LP-rounding algorithm. An interesting feature of this algorithm is that it does not
solve the LP to optimality. Instead, we will give a rounding procedure that either rounds a given fractional
solution within a constant factor, or identifies a violated inequality. This approach has been previously used,
see for example, Carr et al. [8] and Levi et al. [23].

As is the case for flow-cover inequalities, we do not know whether our relaxation can be separated in
polynomial time. However, our rounding algorithm establishes that it suffices to separate it over a given
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partial assignment in order to obtain a constant approximation algorithm: in a sense, such limited separation
is already enough to extract the power of our strong relaxation within a constant factor. That said, it remains
an interesting open question whether our relaxation can be separated in polynomial time. Another interesting
open question would be whether there exists a different LP relaxation that can be solved in polynomial time
and used to design a constant approximation algorithm.

Given a fractional solution consisting ofopening variablesandassignment variables, the first step our
rounding algorithm takes is very natural: we decide to open all the facilities whose opening variables are
large, say, at least12 . The cost of opening these facilities is no more than twice the cost paid by the fractional
solution. Now, we find an assignment ofmaximumnumber of clients to these facilities while maintaining that
the assignment cost does not exceed twice the cost of fractional solution. If we manage to assign all clients
to the integrally opened facilities, we are done since both the connection cost and facility opening cost can be
bounded within a constant factor of the linear programming solution. Else, we obtain a partial assignment
of clients to the opened facilities. We use this partial assignment to formulate the multi-commodity flow
problem described earlier. Recall, in the multi-commodityflow problem, each unassigned client has a flow
commodity which it needs to sink at the facilities using alternating paths. Assume for simplicity, that in the
partial assignment all facilities that we opened in the firststep are saturated. Now, in the multi-commodity
flow problem, a client can only sink flow at facilities with small fractional value because the facilities
with large fractional value have zero capacity since they are saturated by the partial assignment. Thus, the
flow solution naturally gives us a fractional assignment of remaining unassigned clients to facilities which
are open to a small fractional value. In the last step of the algorithm, we round this fractional solution
obtained via the flow problem. But why is this problem any easier than the one we started with? Since each
facility opening variable is at most12 , the fractional solution can use at most half the capacity ofany facility
in the residual instance. Thus the capacity constraints arenot stringent and we can appeal to known soft-
capacitated approximation algorithms which approximate cost while violating capacity to a small factor (two
suffices for us). Indeed, such algorithms can be obtained by rounding the standard linear program and we use
the result of Abrams et al. [2]. This also implies that an immediate improvement to the approximation ratio
of our algorithm would be possible by providing an improved algorithm for the soft-capacitated problem.

In summary, we have used techniques from the theory of multi-commodity flows and matchings to for-
mulate the first linear programming relaxation for the capacitated facility location problem that efficiently
approximates the optimum value within a constant. Our proposed LP-rounding algorithm exploits the prop-
erties of the multi-commodity flows obtained by solving the linear program and we give a constant factor
approximation algorithm for the problem. Our results further open up the possibility to approach the ca-
pacitated facility location problem and other related problems using the large family of known powerful
LP-based techniques.

1.2 Further Related Work

Uncapacitated facility location. Since the first constant factor approximation algorithm forUFL was
given by Shmoys, Tardos and Aardal [32], several techniques have been developed around this problem.
Currently, the best approximation guarantee of1.488 is due to Li [25]; see also [6, 17]. On the hardness
side, Guha and Khuller [14] shows that it is hard to approximate UFL within a factor of 1.463.

Local search heuristics for capacitated facility location. All previously known constant factor approxi-
mation algorithms for CFL are based on the local search paradigm. The first constant factor approximation
algorithm was obtained in the special case of uniform capacities (all capacities being equal) by Korupolu
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et al. [20] who analyzed a simple local search heuristic proposed by Kuehn and Hamburger [22]. Their
analysis was then improved by Chudak and Williamson [11] and the current best3-approximation algorithm
for this special case is a local search by Aggarwal et al. [3]. For the general problem (CFL), Pál et al [30]
gave the first constant factor approximation algorithm. Since then more and more sophisticated local search
heuristics have been proposed, the current best being a recent local search by Bansal et al. [5] which yields
a5-approximation algorithm.

Relaxed notions of capacity constraints. Several special cases or relaxations of the capacitated facility
location problem have been studied. One popular relaxationis the soft-capacitated problems where the
capacity constraints are relaxed in various ways. The standard linear program still gives a good bound for
many of these relaxed problems. Shmoys et al. [32] gives the first constant factor approximation algorithm
where a facility is allowed to be open multiple times, later improved by Jain and Vazirani [18]. Mahdian
et al. [28] gives the current best approximation ratio of2, which is tight with respect to the standard LP.
Abrams et al. [2] studies a variant where a facility can be open at most once, but the capacity can be violated
by a constant factor. We also mention that in our approximation algorithm, we use this variant of relaxed
capacities as a subproblem. Finally, another special case for which the standard LP has been amenable to is
the case of uniform opening costs, i.e., when all facilitieshave the same opening cost. For that case, Levi et
al. [24] gives a5-approximation algorithm.

We also mention that LP-based approximation algorithms which do not solve the linear program to
optimality have been used in the works of Carr et. al [8] and Levi et. al. [23]. In a similar spirit, many primal-
dual algorithms do not solve linear programs to optimality (see e.g. [4, 12]), while finding approximate
solutions whose guarantee is given by comparison to a feasible dual solution.

Finally, we note that Chakrabarti, Chuzhoy and Khanna [9] used a collection of flow problems to obtain
improved approximation algorithms for the max-min allocation problem.

2 Multi-commodity Flow Relaxation

We present our new relaxation for the capacitated facility location problem in this section. Let us first define
some notation to be used in the rest of this paper. LetF be the set of facilities andD be the set of clients.
Each facilityi ∈ F has opening costoi, and cannot be assigned more number of clients than its capacity Ui.
We are also given a metric costc onF ∪ D as a part of the input:cij denotes the distance betweeni ∈ F
andj ∈ D.

The variables of our relaxation is the pair(x,y) where we refer tox ∈ [0, 1]F×D as theassignment
variables and toy ∈ [0, 1]F as theopening variables. These variables naturally encode the decisions
to which facility a client is connected and which facilitiesthat are opened. Indeed, the intended integral
solution is thatxij = 1 if client j is connected to facilityi andxij = 0 otherwise;yi = 1 if facility i is
opened andyi = 0 otherwise. The idea of our relaxation is that every partial assignment of clients to facilities
should be extendable to a complete assignment while only using the assignments ofx and openings ofy.
To this end let us first describe the partial assignments thatwe shall consider. We then define the constraints
of our linear program which will be feasibility constraintsof multi-commodity flows.

A partial fractional assignmentg = {gij}i∈F ,j∈D of clients to facilities isvalid if

∀j ∈ D :
∑

i∈F

gij ≤ 1, ∀i ∈ F :
∑

j∈D

gij ≤ Ui and ∀i ∈ F , j ∈ D : gij ≥ 0.
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js2
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jsn

demanddj1 = 1−
∑

i∈F
gij1

i1

i2
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i′1

i′2
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i′m

jt1

jt2

...

jtn

capacityxi1j1

capacitygimjn

capacity
yi1 · (Ui1 −

∑

j∈D
gi1j)

capacityyi1dj1

Figure 2: A depiction of the multi-commodity flow networkMFN(g,x,y).

The first condition says that each client should be fractionally assigned at most once and the second condition
says that no facility should receive more clients than its capacity. We emphasize that we allow clients to be
fractionally assigned, i.e.,g is not assumed to be integral. As we shall see later (see Lemma2.3), this does
not change the strength of our relaxation but it will be convenient in the analysis of our rounding algorithm
in Section3. We also remark that the above inequalities are exactly theb-matching polytope of the complete
bipartite graph consisting of the clients on the one side andthe facilities on the other side; each client can
be matched to at most one facility and each facilityi can be matched to at mostUi clients.

The constraints of our relaxation will be that, no matter howwe partially assign the clients according
to a validg, the solution(x,y) should support a multi-commodity flow where each clientj becomes the
source of its own commodityj, and the demand of this commodity is equal to the amount by whichj is “not
assigned” byg, 1−

∑

i∈F gij . The flow network, whose arc capacities are given as a function of g and the
solution(x,y), is defined as follows (see also Figure2):

Definition 2.1 (Multi-commodity flow network). For a valid partial assignmentg, assignment variables
x = {xij}i∈F ,j∈D, and opening variablesy = {yi}i∈F , let MFN(g,x,y) be a multi-commodity flow
network with|D| commodities, defined as follows. Note that some arcs may havezero capacities.

(a) Each clientj ∈ D is associated with commodityj of demanddj := 1 −
∑

i∈F gij , and its source-sink
pair is (js, jt).

(b) Each facilityi ∈ F has two nodesi andi′ with an arc(i, i′) of capacityyi · (Ui −
∑

j∈D gij).

(c) For each clientj and facility i, there is an arc(js, i) of capacityxij, an arc(i, js) of capacitygij , and
an arc(i′, jt) of capacityyidj .

Remark 2.2. Intuitively, the bipartite subgraph induced by{js}j∈D ∪ {i}i∈F , marked with a shaded box
in Figure 2, is the interesting part of the flow network.{i′}i∈F and {jt}j∈D are added to this bipartite
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graph purely in order to state thati is a sink with “double” capacities: a commodity-oblivious capacity
yi · (Ui −

∑

j∈D gij) and a commodity-specific capacityyidj for each clientj ∈ D.

Let us give some intuition on the definition ofMFN(g,x,y). As already noted, the demanddj =
1 −

∑

i∈F gij of a clientj equals the amount by whichj is not assigned by the partial assignmentg. This
demand should only be assigned to opened facilities. Therefore, facility i can accept at mostyidj of j’s
demand which is eitherdj or 0 in an integral solution. Observe that such a constraint, foreach client and
facility, cannot be imposed by a single-commodity flow problem. Multi-commodity flow problems, on the
other hand, allows us to express this constraint as a commodity-specific capacity ofyidj , as denoted by arc
(i′, jt) in Figure2.

Now consider thecommodity-obliviouscapacities of the facilities. Thetotal demand an opened facility
i can accept is its capacity minus the amount of clients assigned to it in the partial assignmentg; and
a closed facility can accept no demand. Therefore, the totaldemand a facilityi can accept is at most
yi(Ui −

∑

j∈D gij). The arc capacityxij of an arc(j, i) says that clientj should be connected to facility
i only if xij = 1. The reason for having arcs of the form(i, j) of capacitygij is discussed in Section1.1:
these allow the alternating paths for routing the remainingdemand and are necessary for the formulation to
be a relaxation.

We are now ready to formally state our relaxation MFN-LP of the capacitated facility location problem
in Figure3. Note that the only variables of our relaxation are the assignment variablesx and the opening
variablesy. While it is natural to formulate each of the multi-commodity flow problem using auxiliary
variables denoting the flow, our algorithm will utilize the equivalent formulation obtained via projecting
out the flow variables. This projected formulation is a relaxation where the only variables are assignment
variablesx and the opening variablesy.

minimize c(x,y) :=
∑

i∈F

oi · yi +
∑

i∈F ,j∈D

cij · xij,

subject to MFN(g,x,y) is feasible ∀g valid;

x ∈ [0, 1]F×D ,y ∈ [0, 1]F .

Figure 3: Our relaxation of CFL.

In Lemma2.3we show that the constraints of MFN-LP can equivalently be formulated over the subset
of valid partial assignments that are integral. MFN-LP can therefore be seen as the intersection of the feasi-
ble regions of finitely many multi-commodity flow linear programs and is therefore itself a linear program.
At first sight, however, it may not be clear that MFN-LP is a relaxation, or how we can separate it. We will
answer these questions in the rest of this section.

2.1 Integral Partial Assignments and Separation

We first present a useful lemma that allows us to consider onlythe valid assignmentsg that are integral, i.e.,
{0, 1}-matrices. This lemma follows from the integrality of theb-matching polytope.

Lemma 2.3. For any(x,y), MFN(g,x,y) is feasible for all validg if and only ifMFN(ĝ,x,y) is feasible
for all valid ĝ that are integral.
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Proof. It is clear that if the flow network is feasible for all validg then it is also feasible for the subset that
are integral. We show the harder side. SupposeMFN(ĝ,x,y) is feasible for all validĝ that are integral
and consider an arbitrary valid assignmentg that may be fractional. We will show thatMFN(g,x,y) is
feasible.

Construct a complete bipartite graph with verticesF ∪D and interpretg as the weights on the edges of
this complete bipartite graph. Asg is valid, we have

∑

j∈D gij ≤ Ui for eachi ∈ F and
∑

i∈F gij ≤ 1 for
eachj ∈ D. In other words,g is a fractional solution to theb-matching polytope. By the integrality of the
b-matching polytope (see e.g. [31]), we can writeg as a convex combination of valid integral assignments
ĝ1, ĝ2, . . . , ĝr, i.e., there existλ1, λ2, . . . , λr ≥ 0 such that

∑r
k=1 λk = 1 andg =

∑r
k=1 λkĝ

k.
Now, let fk denote the feasible flow forMFN(ĝk,x,y), and choosef =

∑

k λkf
k. Observe thatf

is a feasible solution toMFN(g,x,y), since all the capacities and demands ofMFN(·,x,y) are given as
linear functions ofg.

A natural question is whether MFN-LP can be separated in polynomial time. While we currently do not
know if this is the case, we will establish in this paper that the feasibility constraint ofMFN(g,x,y) can be
separated for any fixedg, and that this is sufficient to find a fractional solution whose cost is within a constant
factor from the optimum: in a sense, this oracle enables us toextract the power of our strong relaxation
within a constant factor. The following lemma states the oracle. It follows from known characterizations
using LP-duality of multi-commodity flows and its proof can be found in AppendixA.

Lemma 2.4. Giveng⋆ in addition to (x⋆,y⋆) such thatMFN(g⋆,x⋆,y⋆) is infeasible, we can find in
polynomial time a violated inequality, i.e., an inequalitythat is valid forMFN-LP but violated by(x⋆,y⋆).
Moreover, the number of bits needed to represent each coefficient of this inequality is polynomial in|F|,
|D|, andlogU , whereU := maxi∈F Ui.

2.2 MFN-LP is a Relaxation of the Capacitated Facility Location Problem

We show in this subsection that MFN-LP is indeed a relaxation.

Lemma 2.5. MFN-LP is a relaxation of the capacitated facility location problem.

Proof. Consider an arbitrary integral solution(x⋆,y⋆) to the facility location problem. By Lemma2.3
we only need to verify thatMFN(g,x⋆,y⋆) is feasible for each valid integral assignmentg. Let ĝ be an
arbitrary valid integral assignment.

Now we consider a directed bipartite graphG = (V,A), of which one side of the vertex set isD, and on
the other side, each facilityi ∈ F appears iny⋆i ·Ui duplicate copies. Consider the following two matchings
M1 andM2 on these vertices.

• For each clientj, M1 has an edge betweenj and (a copy of)i for whichx⋆ij = 1. There will always
be a copy ofi sincey⋆i ≥ x⋆ij = 1. We will also ensure that a single copy of a facility does not have
more than one incident edge: this is possible due to the capacity constraints on(x⋆, y⋆).

• For each(i, j) such that̂gij = 1 andy⋆i = 1, M2 has an edge between a copy of facilityi and client
j. Note that no client will have more than one incident edge since

∑

i∈F ĝij ≤ 1. We will also ensure
that a single copy of a facility does not have more than one incident edge. This is possible since
∑

j∈D ĝij ≤ Ui.
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Now we orient every edge inM1 from clients to facilities; edges inM2 are oriented in the opposite direction.
A is defined as the union of these two directed matchings. SincebothM1 andM2 are matchings, every vertex
in G has indegree of at most one and outdegree of at most one. Hence, we can decomposeA into a set of
maximal paths and cycles. Moreover, sinceM1 matches every client, none of these maximal paths will end
at a client. Reinterpret these paths as paths onD andF , instead of on the duplicate copies of facilities. Let
P denote the set of these (nonempty) paths.

We will now construct a feasible multi-commodity flow onMFN(ĝ,x⋆,y⋆). We consider eachP ∈ P.
If P starts from a facility, ignore it; otherwise letj be the starting point ofP and i the ending point:
P = (j, i1, j2, i2, . . . , jk, i). If dj = 0, we ignoreP ; otherwise, we push one unit of flow of commodityj
alongP , staying within the shaded area of Figure2: i.e., the flow is pushed along(js, i1, js2 , i2, . . . , j

s
k, i).

When we arrive ati, further push this flow along(i, i′, jt), draining the flow atjt: this is legal since the flow
is of commodityj. We repeat this until we have considered all paths inP. We claim that this procedure
yields a feasible multi-commodity flow.

First, note that each arc inA maps to an edge of capacity 1 inMFN(ĝ,x⋆,y⋆). SinceP is a decompo-
sition of (a subset of)A, capacity constraints on(js, i) and(i, js) are satisfied from the construction. Now
consider the capacity of(i, i′). Each time we encounter a pathP ∈ P that starts at some client and ends at
i, one unit of additional flow is sent over this arc. Ify⋆i = 0, there will be no such path inP. If y⋆i = 1, there
are at mostUi −

∑

j∈D ĝij paths inP ending ati, sinceM2 matches exactly
∑

j∈D ĝij copies ofi out ofUi

in total. This verifies that the capacity constraint on(i, i′) is also satisfied. Finally, arc(i′, jt) is used only
when we processP ∈ P that starts fromj and ends ati. This is true for at most one path inP since there is
at most one path starting from each client (note that there are no duplicate copies of clients inG); moreover,
P can end ati only if y⋆i = 1 (otherwise, there are no copies ofi in G). The capacity constraint on(i′, jt) is
therefore also satisfied.

Demand constraints are also satisfied: supposedj = 1 for somej ∈ D. This meanŝg does not assignj
to any facility, and thereforeM2 does not matchj. Hencej has indegree of zero and outdegree of one inG,
and thusP contains exactly one path that starts fromj.

Intuitively, the above proof can also be interpreted as follows: given an arbitrary partial assignment and
integral solution, consider the shaded area of Figure2. By saturating every arc in this area, we obtain a
feasible single-commodity flow where every client generates a unit flow either at its original position or at
the facility it is assigned to byg. While this flow satisifies every commodity-oblivious capacity, it may
not be immediately clear why it also satisfies the commodity-specific capacities; here we can appeal to
the integrality ofy⋆, because in this case every facility with nonzero commodity-oblivious capacity will
automatically have the full commodity-specific capacity of1. Such an argument, however, would not extend
to a fractional solution (to the standard LP for example), which illustrates the strength of our relaxation.

2.3 Comparing MFN-LP to Standard LP and Knapsack-Cover Inequalities

In order to facilitate our understanding of the new relaxation, we demonstrate how it relates to other formu-
lations for the capacitated facility location problem.

Standard LP. We shall show that the constraint thatMFN(g,x,y) is feasible forg = 0 already is
sufficient to see that our relaxation is no worse than the standard LP relaxation. The standard LP relaxation
uses the same variables(x,y) as MFN-LP and is formulated as follows:
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minimize
∑

i∈I

oi · yi +
∑

i∈F ,j∈D

cij · xij,

subject to xij ≤ yi ∀i ∈ F , j ∈ D; (1)
∑

i∈F

xij = 1 ∀j ∈ D; (2)

∑

j∈D

xij ≤ yiUi ∀i ∈ F ; (3)

0 ≤ x,y ≤ 1 (4)

Consider arbitrary(x⋆,y⋆) that makesMFN(0,x⋆,y⋆) feasible. Sinceg = 0, the support ofMFN(g,x⋆,y⋆)
is acyclic and the flow of each commodity can be decomposed into paths with no cycles. In particular, every
path for commodityj ∈ D will be in the form ofjs − i− i′ − jt for somei ∈ F . Observe that this implies
that the only commodity that has nonzero flow on(js, i) is j; let this flow bex̄ij . Now we claim that(x̄,y⋆)
is a feasible solution to the standard LP: (2) follows from dj = 1; (1) follows from the capacity constraint
on (i′, jt). Finally,

∑

j∈D x̄ij equals the total (regardless the commodity) incoming flow toi; this in turn is
bounded from above byy⋆iUi from the capacity constraint on(i, i′). This shows that(x̄,y⋆) is feasible to
the standard assignment LP. Observe thatx⋆ dominates̄x and therefore the lower bound on the optimum
given by MFN-LP is always no worse than the standard assignment LP.

Knapsack-cover inequalities. Consider a special case where the metric onF andD is constantly zero:
i.e., every facility and every client are “on the same spot”.As there is no connection cost, the problem
reduces to simply selecting a set of facilities that as a whole has enough capacity while minimizing the total
cost: this is the minimum knapsack problem. Each facilityi corresponds to an item with weightUi and cost
oi; |D| corresponds to the demand of the knapsack problem. Using thenotation of the capacitated facility
location problem, the knapsack cover inequalities due to Carr et al. [8] are written as follows:

∑

i∈F\A

min(Ui, |D| −
∑

i∈A Ui) · yi ≥ |D| −
∑

i∈A Ui, ∀A ⊂ F such that
∑

i∈A Ui ≤ |D|.

Now each of these inequalities are implied by our relaxation. Let S be a set of any
∑

i∈A Ui clients
andR := D \ S. Considerg that fully assigns every client inS to the facilities inA, thereby saturating
those facilities, and does not assign any clients inR. Note thatdj will be zero for everyj ∈ S and one
for everyj ∈ R. Now we choose a feasible solution(z, ℓ) to (8)-(9) as follows: for each facilityi ∈ A, if
Ui > |D| −

∑

i∈A Ui, setl(i′,jt) := 1 for all j ∈ R; if Ui ≤ |D| −
∑

i∈A Ui, setℓ(i,i′) := 1. All other ℓ’s are
set to zero.zj := 1 for all j ∈ R; zj := 0 for all j ∈ S. Now (10) implies the knapsack cover inequalities.

Example. We give a simple integrality gap example for the standard LP and show how our linear program
strengthens the linear program tocut off the fractional solution. Consider the following instance of the
capacitated facility location problem. Here we have two facilities i1 andi2 each with capacityn and opening
costs are0 and1 respectively. There aren + 1 clientsj1, . . . , jn+1. The distance between any two points,
either facility or client, is zero. Thus all facilities and clients sit at the same point. Consider the following
fractional solution(x∗,y∗) where we havey⋆i1 = 1 andy⋆i2 = 1

n
, x⋆i1jr = n

n+1 for each1 ≤ r ≤ n+ 1 and
x⋆i2jr = 1

n+1 for each1 ≤ r ≤ n + 1. It is quite simple to verify that(x⋆,y⋆) is a feasible solution to the
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standard LP and costs1
n+1 while the cost of the optimal solution is1 giving us an unbounded integrality gap

for largen. We now show how this fractional solution can becut off using our stronger LP. We also note
that, for this instance, the knapsack cover inequalities are enough to obtain a good approximation.

Consider the partial assignmentg⋆ defined as follows. We letg⋆i1jr = 1 for each1 ≤ r ≤ n. Thus we
have assignedn clients to facilityi1 and saturating it. The only facility that can serve the unassigned client
is i2. Consider the flow network defined by this instance. The capacity of arc (i′2, j

t
n+1) is yi2 and demand

of client jn+1 is 1−
∑

i∈F g⋆ijn+1
= 1. Since all flow reachingjt must go on this arc, we must haveyi2 ≥ 1.

Thus the fractional solution must cost at least one.

3 Approximation Algorithm

In this section, we describe our approximation algorithm and prove Theorem1.1: 1

Theorem 1.1 (restated). There exists a 288-approximation algorithm for the capacitated facility location
problem. The cost of its output is no more than 288 times the optimal cost ofMFN-LP.

The algorithm is based on rounding a given fractional “solution” to MFN-LP. However, as we do not
know how to solve MFN-LP exactly, we give arelaxedseparation oracle that either outputs a violated
inequality or returns an integral solution obtained from the fractional solution by increasing the cost only by
a constant factor. A similar approach has previously been used by Carr et al. [8] and later by Levi et al. [23].

Algorithm overview. Our algorithm first guesses the cost of the optimal solution to MFN-LP using a
binary search2. For each guess, sayγ, we run an ellipsoid algorithm. At each step of the ellipsoidalgorithm,
we obtain a fractional solution(x⋆,y⋆), possibly infeasible. We then first verify the boundary constraints
0 ≤ x⋆,y⋆ ≤ 1 and the objective constraintc(x⋆,y⋆) ≤ γ. If (x⋆,y⋆) violates one of these inequalities,
we output it and continue to the next iteration of the ellipsoid algorithm. Otherwise, we either construct
a so-called semi-integral solution (defined below) or output a violated inequality showing infeasibility of
the flow networkMFN(g⋆,x⋆,y⋆) for someg⋆. In the final step, our algorithm rounds this semi-integral
solution into an integral solution by increasing the cost bya constant factor.

We remark that the main step of our algorithm exploiting the strength of MFN-LP is the step for finding
a semi-integral solution or outputting a violated inequality (summarized in Theorem3.3). An interesting
detail is that our rounding algorithm only needs that the multi-commodity flow network is feasible for a
singleg⋆ in order to output a semi-integral solution. Once we have a semi-integral solution, the rounding
is fairly straightforward using previous algorithms for soft-capacitated versions. We now first define semi-
integral solutions and describe the rounding to integral solutions in Section3.1. We then continue with the
proof of Theorem3.3which is the main technical contribution of this section.

3.1 Semi-Integral Solutions: Definition and Rounding

The idea of semi-integral solutions is that they partition the facilities into two sets: the setI of integrally
opened facilities and the setS of facilities of small opening. Clients may be fractionallyassigned to both

1The cost function includes two components, facility opening costs and connection costs. Optimizing the parameters to obtain
the same worst case performance for both components will lead to significant improvements in the constant obtained above. But
such methods will not lead to improvement over5-approximation due to local search [5].

2We remark that the relaxed separation oracle can also simplybe used with the standard optimization version of the ellipsoid
method, which would not involve a binary search.
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facilities in I andS. However, there is an important constraint regarding the assignment to facilities in
S (condition (iii ) in the definition below). For each clientj, it says that at most ayi fraction of j’s total
assignment to facilities inS can be assigned toi ∈ S. This will allow us to round semi-integral solutions by
using techniques developed for the standard LP relaxation.

Definition 3.1. A solution(x̂, ŷ) is semi-integralif it satisfies the following conditions.

(i) (x̂, ŷ) satisfies the assignment constraints, i.e., for eachj ∈ D,
∑

i∈F x̂ij = 1 and for eachi ∈ F ,
∑

j∈D x̂ij ≤ ŷiUi.

(ii) For eachi ∈ F , ŷi = 1 or ŷi ≤ 1
2 . LetI = {i : ŷi = 1} andS = F \ I.

(iii) For each j ∈ D, let d̂j =
∑

i∈S x̂ij. Then we havêxij ≤ ŷid̂j for eachi ∈ S andj ∈ D.

We now describe the procedure for rounding the semi-integral solution to an integral solution. All
facilities inI, whose opening variables are set to one in the semi-integralinstance, are opened. Consider the
residual instance where each client has a residual demandd̂j , amount to which it is not assigned to facilities
in I. This residual demand is satisfied by facilities inS, each of which is open to a fraction of at most1

2
by the semi-integral solution. Conditions (i) and (iii ) of the semi-integral solution imply that the residual
solution is a feasible solution to the standard LP for the residual instance. Since the opening variables are set
to a small fraction in the residual instance, we can use an approximation algorithm for the soft-capacitated
facility location problem which rounds the standard LP. An(α, β)-approximation algorithm for the soft-
capacitated facility location problem returns a solution whose cost is no more thanα times the cost of the
optimal fractional solution and violates the capacity of any open facility by a factor of at mostβ. We give
the algorithm our residual instance as input where we scale down the capacities by a factor ofβ but scale
up the opening variables by the same factor. Observe that as long as eacĥyi ≤ 1

β
for each facilityi ∈ S,

we obtain a feasible solution to the standard LP. Here we use the(18, 2)-bicriteria approximation algorithm
due to Abrams et al. [2] to complete our rounding to an integral solution.

Lemma 3.2. Given a semi-integral solution(x̂, ŷ), we can in polynomial time find an integral solution
(x̄, ȳ) whose cost is at most36c(x̂, ŷ).

We give the formal proof of Lemma3.2in AppendixB.

3.2 Finding a Semi-Integral Solution or a Violated Inequality

We are now ready to describe and prove the main ingredient of our rounding algorithm.

Theorem 3.3. There is a polynomial time algorithm that, given(x⋆,y⋆), either

• shows that(x⋆,y⋆) is infeasible forMFN-LP and returns a violating inequality, or

• returns a solution(x̂, ŷ) such that(x̂, ŷ) is semi-integral andc(x̂, ŷ) ≤ 8c(x⋆,y⋆).

Note that the above theorem together with Lemma3.2 implies Theorem1.1 with the claimed approxi-
mation guarantee8 · 36 = 288.

We prove the theorem by describing the algorithm together with its properties. For an overview of the
algorithm, see also Figure4. The algorithm consists of several steps. First, we round upthe large opening
variables ofy⋆ to obtain modified opening variablesy′. We define

y′i :=

{

1, if y⋆i ≥ 1
4 ;

y⋆i , otherwise.
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Let I be the set of facilities that are fully open byy′: I := {i ∈ F : y′i = 1}. S denotes the set of facilities
that are open by a small fraction:S := F \ I.

Given that our algorithm is going to open all the facilities in I, we will try to find a partial assignment
g⋆ that assigns as many clients to these facilities as possible, while at the same time ensuringg⋆ does not
become too costly compared tox∗. To this end, we will deriveg⋆ from a maximumb-matching in a bipartite
graph onF andD whose edges are capacitated by2x∗. LetG = (D, I, E) be the complete bipartite graph
whose bipartition is given by the clientsD and the opened facilitiesI. An arc(j, i) wherej ∈ D andi ∈ I
is given a capacity of2x⋆ij . This is to ensure that the cost of the matching is within a factor of 2 compared to
the original assignment cost. Every clientj has a capacity of one and each facilityi ∈ I is given a capacity
of Ui. Let z denote a maximum fractionalb-matching ofG. Note that the matching may not be integral
because of the capacities on the edges. Asz is a maximum fractional matching, its residual networkH with
arc set{(j, i) : zij < 2x⋆ij}∪{(i, j) : zij > 0} has useful properties that we describe below. In particular, if
we consider anunsaturatedclientj, i.e.,

∑

i∈I zij < 1, thenj has no path inH to a facility i with remaining
capacity, as that would contradict thatz is a maximum matching.

We shall now formalize these properties. Let us call a clientj ∈ D saturatedif
∑

i∈F zij = 1, and
unsaturatedotherwise; define

IH := {i ∈ I : i is reachable inH from some clientk that was unsaturated};

DH := {j ∈ D : j is reachable inH from some clientk that was unsaturated}.

Similar to clients, a facilityi ∈ I is calledsaturatedif
∑

j∈D zij = Ui andunsaturatedotherwise. The
following lemma summarizes three useful observations onz andH.

Lemma 3.4. The following must hold.

(a) Any facilityi ∈ IH is saturated, i.e.,
∑

j∈D zij = Ui.

(b) If i ∈ I \ IH andj ∈ DH , zij = 2x⋆ij .

(c) If i ∈ IH andj ∈ D \DH , zij = 0.

Proof. We first prove (a). Suppose toward contradiction that there exists a facility i ∈ IH that is not
saturated. By the definition ofIH there exists a clientk that is unsaturated andi is reachable fromk in H.
Therefore there exists an alternating path fromk to i which contradicts that the chosen fractional matching
z was maximum.

We now prove (b). By the definition ofDH , there exists an unsaturated clientk such thatj is reachable
from k in H. Therefore, any facilityi such thatzij < 2x⋆ij is also reachable fromk and therefore part ofIH .
The proof of (c) follows from the fact that(i, j) /∈ H sincei is reachable from an unsaturated client andj is
not. Therefore,zij = 0.

Now the valid partial assignmentg⋆ is constructed as follows:

g⋆ij =























zij if i ∈ IH

zij if i ∈ I \ IH , j ∈ D \DH

0 if i ∈ I \ IH , j ∈ DH

0 if i ∈ S.

(5)
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Note thatg⋆ is defined in terms ofz. This will allow us to analyze the flow network using the properties of
z described in Lemma3.4.

Once we have this partial assignment, the algorithm verifiesif MFN(g⋆,x⋆,y⋆) is feasible. If not, we
invoke Lemma2.4to find a violated inequality and Theorem3.3holds. Otherwise, the algorithm proceeds to
construct a semi-integral solution using this partial assignment. For the rest of this section, we will assume
thatMFN(g⋆,x⋆,y⋆) is feasible. Note that the feasibility ofMFN(g⋆,x⋆,y⋆) guarantees the feasibility of
MFN(g⋆,x⋆,y′) sincey′ ≥ y⋆.

Claim 3.5. If MFN(g⋆,x⋆,y⋆) is feasible andy′ ≥ y⋆, MFN(g⋆,x⋆,y′) is feasible.

Proof. Consider a feasible flow forMFN(g⋆,x⋆,y⋆). Observe that it is feasible forMFN(g⋆,x⋆,y′) as
well, since the arc capacities ofMFN(g⋆,x⋆,y) is nondecreasing iny while the demands remain the same
since they depend ong⋆.

We have now made our choice ofg⋆ that satisfies the following three key properties which helpus round
(x⋆,y⋆):

1. g⋆ ≤ z ≤ 2x⋆ and thereforec(g⋆) ≤ 2c(x⋆);

2. g⋆ assigns clients only to the fully open facilities, i.e., facilities in I;

3. g⋆ satisfies the property formalized by Lemma3.6. (Note that Lemma3.6 is proven for our carefully
constructed partial assignment. It does not hold in generalfor arbitrary partial assignments.)

Let f denote the flow certifying the feasibility ofMFN(g⋆,x⋆,y′). We decomposef into flow paths where
we letPij denote the set of flow paths carrying non-zero flow fromjs to jt that use the arc(i, i′). That is,
these are the paths which take flow fromj and sink it ati. Let f(P ) denote the flow on a pathP ∈ Pij .
For eachi ∈ F andj ∈ D, we leth(i, j) =

∑

P∈Pij
f(P ) denote the amount of flow that clientj sinks at

facility i. For any subsetX ⊆ F andj ∈ D, let alsoh(X, j) :=
∑

i∈X h(i, j), i.e., the total amount of flow
that clientj sinks at facilities inX.

Lemma 3.6. There exists a feasible flow to the multi-commodity flow problemMFN(g⋆,x⋆,y′) such that

each clientj ∈ D sends at least half its demand to facilities inS, i.e.,h(S, j) ≥ dj
2 = 1

2 (1−
∑

i∈F g⋆ij).

The proof of this lemma can be found in Section3.2.1.
Observe that the flow satisfying the conditions in Lemma3.6 can be obtained in polynomial time by

adding additional linear constraints to the multi-commodity flow linear program forMFN(g⋆,x⋆,y′). Let
f denote such a flow. The algorithm now proceeds by using this flow to define a semi-integral solution
(x̂, ŷ). Lemma3.6guaranteesh(S, j) ≥ dj/2; hence we define the semi-integral solution by scaling up this
assignment by a factor of at most2. This ensures that each client assigns all its demanddj toS and that it is
a semi-integral solution. Formally, we construct the semi-integral solution(x̂, ŷ) as follows:

ŷi =

{

1, if i ∈ I;

2y⋆i , if i ∈ S;
x̂ij =

{

g⋆ij , if i ∈ I, j ∈ D;

dj
h(i,j)
h(S,j) , if i ∈ S, j ∈ D;

where we defineh(i,j)
h(S,j) to be0 if h(S, j) = 0. Fori ∈ S andj ∈ D, we havêxij = h(i, j) ·

dj
h(S,j) ≤ 2h(i, j)

from Lemma3.6. This allows us to bound the total cost of solution(x̂, ŷ).

Lemma 3.7. The solution(x̂, ŷ) is semi-integral andc(x̂, ŷ) ≤ 8c(x⋆,y⋆).

The above lemma finishes the proof of Theorem3.3. Its proof is fairly straightforward calculations and
can be found in Section3.2.2.
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3.2.1 Proof of Lemma3.6: Existence of a Nice Multi-Commodity Flow

In this section, we prove Lemma3.6, i.e., we show there is always a flowf as a solution toMFN(g⋆,x⋆,y′)
satisfying the conditions of the lemma.

By definition, any clientj ∈ D \DH is saturated. Moreover,
∑

i∈F g⋆ij =
∑

i∈I zij = 1. Thus, every
client j whose demand is non-zero inMFN(g⋆,x⋆,y′), i.e.,dj := 1 −

∑

i∈F g⋆ij > 0, is in DH . On the
other hand, for eachi ∈ IH we have

∑

j∈D g⋆ij =
∑

j∈D zij = Ui where the last equality follows from
property (a) of Lemma3.4. Thus the commodity-oblivious capacity ofi, i.e., the arc capacity of(i, i′), is
y′i(Ui −

∑

j∈D g⋆ij) = 0. In summary, every clientj with nonzero demand is inDH , and drains its flow at
facilities in I \ IH or at facilities inS. Now for anyj ∈ DH , we have

dj = 1−
∑

i∈F

g⋆ij = 1−
∑

i∈IH

zij ≥
∑

i∈I\IH

zij =
∑

i∈I\IH

2x⋆ij (6)

where the second equality follows from the definition ofg⋆, the inequality follows from the fact thatz is a
fractionalb-matching satisfying capacity one atj and last equality follows from Condition (b) of Lemma3.4.

Consider a feasible flowf to MFN(g⋆,x⋆,y′), decomposed into paths and cycles. We will call these
paths and cyclesflow pathsandflow cycles, respectively. Without loss of generality, we can assume that
there exist no flow cycles, and every flow path sends nonzero flow on it. The following claim simplifies our
proof by letting us ignore the less interesting part of the flow network.

Claim 3.8. We can assume without loss of generality that no flow path contains nodeks for k ∈ D \DH .

Proof. For an arbitrary clientk in D\DH , consider nodeks in the flow network. Among its incoming arcs,
every arc(i, ks) coming fromi ∈ IH has zero capacity, sinceg⋆ij = 0 from Property (c) of Lemma3.4.
Arcs from i ∈ S also have zero capacities (see (5)). Thus, the only incoming arcs toks that have nonzero
capacity are arcs(i, ks) wherei ∈ I \ IH .

Now we examine each flow path one by one and modify them, thereby defining a new flow. Suppose a
flow pathP starts atjs and ends atjt. We truncate this path at the first facility inI \ IH on the path, say
i0, and then send the flow directly to the sinkjt by appending(i0)− i′0 − jt at the end. If the path does not
contain anyi ∈ I \ IH , we do nothing. We are making no other changes to the flow paths, including the
commodity and the amount of flow on them. Once this modification has been applied to all the paths, no
flow path uses any arc of form(i, ks) wherei ∈ I \ IH ; the flow paths, therefore, cannot encounter anyks

such thatk ∈ D \DH . Recall thatk ∈ D \DH has zero demand and henceks cannot become the first (or
last forkt) node in a flow path.

We claim that this modification maintains feasibility. Observe that the demand of each client is still
satisfied since we have only rerouted the flow on a different path from js to jt. The arcs on which the flow
may have increased are the arcs(i, i′) wherei ∈ I \ IH and the arcs(i′, jt) wherei ∈ I \ IH andj ∈ DH .
It is easy to verify that an arc of the latter type, say(i′, jt), has its capacity constraint satisfied: the arc’s
capacity isy′idj = dj and clientj pushes at mostdj units of flow. Let us now consider an arc of the first
type, (i, i′) for i ∈ I \ IH . Note that, after the truncations, the only incoming arcs itreceives flow on are
the ones fromj ∈ DH . The total incoming flow toi can therefore be bounded by the total capacity of these
arcs, which is

∑

j∈DH

x⋆ij ≤
∑

j∈DH

2x⋆ij =
∑

j∈DH

z⋆ij ≤ Ui −
∑

j∈D\DH

z⋆ij = Ui −
∑

j∈D\DH

g⋆ij , (7)

where we use the fact thatz⋆ij = 2x⋆ij if i ∈ I \ IH andj ∈ DH from Lemma3.4 for the first equality,
the fact thatz is a fractional matching with boundUi at facility i for the second inequality, and for the last
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equalityg⋆ij = z⋆ij if i ∈ I \ IH andj ∈ D \DH . The feasibility of the truncated flow now follows from that
the capacity of arc(i, i′) is y′i(Ui −

∑

j∈D g⋆ij) = Ui −
∑

j∈D\DH
g⋆ij .

We proceed to prove that there is a flow ofMFN(g⋆,x⋆,y′) satisfying the properties of Lemma3.6.
If no client has positive demand, there is nothing to prove. For anyX ⊆ D, let d(X) :=

∑

j∈X dj
denote the total demand of clients inX. ConsiderJ ⊆ D defined as the set of clients that have nonzero
demand and send the smallest fraction of their demand to sinks inS. Formally, let

α = min
j:dj>0

h(S, j)/dj and J = {j ∈ D : h(S, j)/dj = α, dj > 0}.

We shall show that ifα < 1/2 then we can modifyf so that we either decrease the cardinality ofJ or
increaseα. A flow that minimizes the lexicographic order of(−α, |J |) must therefore haveα ≥ 1/2 which
proves the lemma. We remark that here we are only consideringflows consistent with Claim3.8, i.e., no
flow path passes through a nodeks with k ∈ D \ DH . Also note that a minimumα exists becauseα is a
continuous function of flow, and the set of feasible flows forMFN(g⋆,x⋆,y′) is compact.

Now suppose thatα < 1/2. Note thatJ ⊂ DH sincedj > 0 impliesj ∈ DH . Then, by the definition
of J ,

∑

j∈J

h(I \ IH , j) = (1− α)d(J) > d(J)/2 ≥
∑

i∈I\IH ,j∈J

x⋆ij,

where the last inequality follows from (6). In other words, the total flow
∑

j∈J h(I \ IH , j) from clients in
J to facilities inI \ IH is strictly greater than the sum of capacities

∑

i∈I\IH ,j∈J x
⋆
ij of the arcs from clients

in J to facilities inI \ IH .
Therefore, not all the flow paths originating fromJ can enterI \ IH directly fromJ . That is, for some

j ∈ J , k /∈ J , andi ∈ I \ IH , there exists a flow pathP that starts fromjs but entersi via ks. LetP1 denote
the subpath betweenjs andks, and we haveP = js − P1 − ks − i− i′ − jt.

By Claim 3.8, we havek ∈ DH \ J and the demand ofdk is positive by (6) and the fact thatxik > 0
sinceP carried non-zero flow. This together withk /∈ J , implies thatk sends strictly more thanα fraction
of its demand to sinks inS. Let v1, v2, . . . , vℓ be the sinks inS to whichk sends nonzero flows. Sincek can
send at mostdky′v flow to a facility v ∈ S, we have

ℓ
∑

i=1

dky
′
vi
> αdk =⇒

ℓ
∑

i=1

y′vi > α.

Moreover, asj sendsαdj units of flow toS, it sends at mostαdj units to{v1, . . . , vℓ} ⊂ S; therefore, there
exists some sinkv ∈ {v1, . . . , vℓ} to whichj sends strictly less thany′vdj units of flow. LetQ be a flow path
along whichk sends flow tov, written asQ = ks −Q1 − v − v′ − kt for some subpathQ1.

Now we “exchange” the suffixes ofP andQ by a small amount. To be precise, we choose a sufficiently
smallǫ > 0, and decrease the flow onP andQ each byǫ, but increase the flow onP ′ = js−P1−ks−Q1−
v−v′−jt andQ′ = ks−i−i′−kt by ǫ. P ′ andQ′ will be introduced as new flow paths if they do not already
exist. Note that this satisfies the demand constraints, since we have only changed the intermediate vertices
between the same pair of source and sink. We further claim that we can choose a positiveǫ that satisfies
the capacity constraints. Observe that every arc inP ′ andQ′ was used inP andQ, except for(v′, jt) and
(i′, kt). For other arcs, the exchange only changes commodity types and capacities remain honored. Recall
that j sends strictly less thany′vdj units of flow tov, and therefore(v′, jt) was not previously saturated: if
we choose a sufficiently smallǫ, its capacity will not be violated. For(i′, kt), its capacity isy′idk = dk since
i ∈ I \ IH ; hence its capacity constraint cannot be violated as long aswe satisfy the demand constraints.
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Note that this change letsj sendǫ more flow toS while decreasing the total amount of flowk sends to
S by ǫ. Sincek was sending strictly more thanαdk units of flow toS, we can chooseǫ > 0 so that both
j andk will send strictly more thanα fraction of their demands toS after this modification. This either
decreases|J | by 1, or increasesα. Finally, observe that our modification did not introduce any nodesjs for
j ∈ D \DH back and therefore Claim3.8can still be assumed.

3.2.2 Proof of Lemma3.7: Bounding the Cost of the Semi-integral Solution

In this section, we prove Lemma3.7. First, we verify that(x̂, ŷ) is semi-integral. Let us first verify Condi-
tions (ii ) and (iii ) of semi-integrality. We havêyi = 1 for eachi ∈ I andŷi ≤ 1

2 for eachi ∈ S = F \ I.
For anyj ∈ D, we have

d̂j =
∑

i∈S

x̂ij =
∑

i∈S

dj · h(i, j)

h(S, j)
= dj .

Note thath(S, j) = 0 impliesdj = 0. For eachj ∈ D andi ∈ S, we have

x̂ij =
dj · h(i, j)

h(S, j)
≤ 2h(i, j) = 2

∑

P∈Pij

f(P ) ≤ 2y′idj = ŷidj = ŷid̂j

where the first inequality follows from Lemma3.6 and the last inequality follows from the fact that the
capacity of arc(i′, jt) is y′idj and all paths inPij contain this arc.

Now, let us verify the assignment constraints. For everyj ∈ D, we have

∑

i∈F

x̂ij =
∑

i∈I

g⋆ij +
∑

i∈S

dj · h(i, j)

h(S, j)
=

∑

i∈I

g⋆ij + dj = 1

where the last equality follows from the definition ofdj . For everyi ∈ I, we have

∑

j∈D

x̂ij =
∑

j∈D

g⋆ij ≤ Ui = Uiŷi

where the inequality follows from the fact thatg⋆ is a fractional matching with boundUi at facility i. For
eachi ∈ S,

∑

j∈D

x̂ij =
∑

j∈D

dj
h(i, j)

h(S, j)
≤

∑

j∈D

2h(i, j) = 2
∑

j∈D

∑

P∈Pij

f(P ) ≤ 2y⋆i Ui = ŷiUi

where the first inequality again follows from the fact thath(S, j) ≥
dj
2 and the next inequality follows from

the fact all the paths in the sum use the arc(i, i′) which has capacityy′iUi andy′i = y⋆i for eachi ∈ S.
Now it remains to verify the cost of(x̂, ŷ). First we haveŷi ≤ 4y⋆i for eachi ∈ I and ŷi = 2y⋆i for

eachi ∈ S. Thus we have
∑

i∈F oiŷi ≤ 4
∑

i∈F oiy
⋆
i . Now we bound the assignment cost of assignmentx̂.

Firstly, the assignment cost to facilities inI can be bounded by the cost ofg⋆ which is smaller than cost of
2x⋆. To bound the assignment cost to facilities inS, let us consider the flow problem and assign costcij to
each arc(js, i) and(i, js), and zero to all other arcs. Observe that this together with the triangle inequality
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implies that every pathP ∈ Pij has costc(P ) ≥ cij . Thus we have,

∑

i∈S,j∈D

cij x̂ij ≤
∑

i∈S,j∈D

cij2h(i, j) ≤ 2
∑

i∈S,j∈D

∑

P∈Pij

cijf(P ) ≤ 2
∑

i∈S,j∈D

∑

P∈Pij

c(P )f(P )

≤ 2
∑

i∈F ,j∈D

cij





∑

P :(js,i)∈P

f(P ) +
∑

P :(i,js)∈P

f(P )



 ≤ 2
∑

i∈F ,j∈D

cij(x
⋆
ij + 2x⋆ij) = 6

∑

i∈F ,j∈D

cijx
⋆
ij

where the last inequality follows the fact the capacity of arc (js, i) is x⋆ij and the capacity of arc(i, js) is
g⋆ij ≤ 2x⋆ij . Thus the total assignment cost is at most8

∑

i∈F ,j∈D cijx
⋆
ij. Thus we havec(x̂, ŷ) ≤ 8c(x⋆,y⋆)

and Lemma3.7holds.
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Input: Fractional solution(x⋆,y′).
Output: Either a violating constraint or a semi-integral solution(x̂, ŷ).

1. LetG = (D, I, E) be the complete bipartite graph whose bipartition is given by D andI. An arc
(j, i) wherej ∈ D andi ∈ I is given a capacity of2x⋆ij . Every clientj has a capacity of one and each
facility i ∈ I is given a capacity ofUi.

2. Letz denote the maximum fractional capacitatedb-matching on the capacitated bipartite graphG.

3. Let H denote the support of the residual network of the fractionalmatchingz. In other words,
H = {(j, i) : zij < 2x⋆ij} ∪ {(i, j) : zij > 0}.

4. Let a clientj ∈ D be calledsaturatedif
∑

i∈I zij = 1 andunsaturatedotherwise. Let

IH = {i ∈ I : i is reachable inH from some clientk that was unsaturated};

DH = {j ∈ D : j is reachable inH from some clientk that was unsaturated}.

5. For eachi ∈ F andj ∈ D, we let

g⋆ij =























zij if i ∈ IH

zij if i ∈ I \ IH , j ∈ D \DH

0 if i ∈ I \ IH , j ∈ DH

0 if i ∈ S

6. SolveMFN(g⋆,x⋆,y⋆) using Lemma2.4.

• If Lemma2.4gives a violating constraint, return it.

• Else letf denote the feasible flow satisfying the guarantee in Lemma3.6. Then return(x̂, ŷ)
defined as follows.

ŷi =

{

1 if i ∈ I

2y⋆i if i ∈ S
x̂ij =

{

g⋆ij if i ∈ I, j ∈ D

dj
h(i,j)
h(S,j) if i ∈ S, j ∈ D

Figure 4: Overview of algorithm for Theorem3.3.
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A Formal Proof of Separation Lemma

We give the formal proof of Lemma2.4.

Lemma 2.4. Giveng⋆ in addition to (x⋆,y⋆) such thatMFN(g⋆,x⋆,y⋆) is infeasible, we can find in
polynomial time a violated inequality, i.e., an inequalitythat is valid forMFN-LP but violated by(x⋆,y⋆).
Moreover, the number of bits needed to represent each coefficient of this inequality is polynomial in|F|,
|D|, andlogU , whereU := maxi∈F Ui.

Proof. Supposeg⋆ is not integral. Since theb-matching polytope is integral, we can decomposeg⋆ into a
convex combination of polynomially many integralb-matchings{ĝi}1≤i≤r. Note that such a decomposition
can be found in polynomial time [13]. As was seen in the proof of Lemma2.3, at least one of these integral
ĝi’s rendersMFN(ĝi,x

⋆,y⋆) infeasible. Hence, from now on, we will assumeg⋆ is integral, since otherwise
we can find in polynomial time an integralĝi for whichMFN(ĝi,x

⋆,y⋆) is infeasible.
Note that the graph topology ofMFN(g,x,y) does not depend on(g,x,y): some arcs may have zero

capacities depending on(g,x,y), but the underlying digraph ofMFN(g,x,y) is defined independently
from (g,x,y). It is only the capacities of these arcs that are defined as (linear) functions of(g,x,y). LetA
denote the set of arcs inMFN(·, ·, ·) andPj the family of alljs − jt paths. Letca(g,x,y) be the capacity
of arca ∈ A in MFN(g,x,y) anddj(g) be the demand of clientj. Note thatdj(g) does not depend onx
or y.

As Onaga [29] and Iri [15] showed, it follows from Farkas’ lemma thatMFN(g⋆,x,y) is feasible if and
only if for all z ∈ R

D
+ andℓ ∈ R

A
+ satisfying

zj ≤
∑

a∈P

ℓa, ∀j ∈ D, P ∈ Pj; and (8)

0 ≤ z, ℓ ≤ 1, (9)

the following holds:
∑

j∈D

dj(g
⋆)zj ≤

∑

a∈A

ca(g
⋆,x,y)ℓa. (10)

Thus, asMFN(g⋆,x⋆,y⋆) is infeasible, there exists(z⋆, l⋆) such that

z⋆j ≤
∑

a∈P

ℓ⋆a, ∀j ∈ D, P ∈ Pj ;

0 ≤ z⋆, ℓ⋆ ≤ 1;
∑

j∈D

dj(g
⋆)z⋆j >

∑

a∈A

ca(g
⋆,x⋆,y⋆)ℓ⋆a.

Our separation oracle finds such(z⋆, l⋆) by solving the following LP:

minimize
∑

a∈A

ca(g
⋆,x⋆,y⋆)ℓa −

∑

j∈D

dj(g
⋆)zj ,

subject to (8) − (9).

Note that this LP can be solved in polynomial time by using Djikstra’s algorithm as the separation oracle.
We will in particular find an extreme point solution to this LP.
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Now we have
∑

j∈D

dj(g
⋆)z⋆j >

∑

a∈A

ca(g
⋆,x⋆,y⋆)ℓ⋆a;

but on the other hand, any feasible solution(x,y) to MFN-LP has to satisfy

∑

j∈D

dj(g
⋆)z⋆j ≤

∑

a∈A

ca(g
⋆,x,y)ℓ⋆a, (11)

since this is a necessary condition forMFN(g⋆,x,y) to be feasible. Thus we output (11) as a violated
inequality. Recall thatca(g⋆,x,y) is a linear function in(x,y); hence (11) is a linear inequality in(x,y).

Now it remains to verify that each coefficient of (11) can be represented inpoly(|F|, |D|, log U) bits.
dj(g) is a constant that is either 0 or 1;ca(g

⋆,x,y) is a linear function in(x,y) where every coefficient is an
integer between 0 andU . Finally, note that every coefficient of (8) and (9) areO(1); hence, as we have cho-
sen(z⋆, ℓ⋆) as an extreme point solution,(z⋆, ℓ⋆) can be represented inpoly(|F|, |D|) bits. Thus, (11) can
be written as a linear inequality in(x,y) where every coefficient is represented usingpoly(|F|, |D|, log U)
bits.

B Rounding a Semi-Integral Solution to an Integral Solution

We present in this appendix how to round a semi-integral solution to an integral solution using known bi-
criteria algorithms for the soft-capacitated problem withgeneral demands.

Lemma 3.2. Given a semi-integral solution(x̂, ŷ), we can in polynomial time find an integral solution
(x̄, ȳ) whose cost is at most36c(x̂, ŷ).

Proof. Let (x̂, ŷ) be a semi-integral solution. We consider the residual instance on facilities inS, where
each clientj ∈ D is assigned to these facilities by the fraction ofd̂j =

∑

i∈S x̂ij. Using this residual
solution, we now formulate an instance with general demandsas follows.

In the capacitated facility location problem with general demands, in addition to the standard input of
the CFL, we are also given̄dj ≥ 0 for each clientj and goal is to open a subset of facilities and assign clients
to facilities (possibly by splitting demand among multiplefacilities) such that total demand assigned to an
open facility is no more than its capacity. The objective function is the sum of cost of opened facilities and
cost of the assignment. The cost of assigningd amount demand of clientj to facility i is d · cij. Figure5
shows the standard LP relaxation for the facility location problem with general demands. We will call this
program LPdemand. We denote the capacity of facilityi by U ′

i to differentiate it from the capacities in our
problem.

The following theorem follows from Abrams et al [2].

Theorem B.1([2]). Given a feasible solution(x,y) to LPdemand, there exists a solution(x̄, ȳ) such thatȳ
is integral and satisfiesLPdemandif U ′

i is replaced by2U ′
i . Moreover,c(x̄, ȳ) ≤ 18c(x,y).

We now complete the proof of Lemma3.2 using TheoremB.1. Consider the facility location problem
with fractional demands created by facilities inS and demand̄dj = d̂j =

∑

i∈S x̂ij ≤ 1 for each client
j ∈ D. LetU ′

i =
Ui

2 . We decompose the semi-integral solution(x̂, ŷ) into (x̂S , ŷS) ∈ [0, 1]S×D × [0, 12 ]
S

and(x̂I , ŷI) ∈ [0, 1]I×D×{1}I by naturally restricting(x̂, ŷ) to I andS, respectively. Then(x̂S , 2ŷS) is a
feasible solution to LPdemand. Observe that here we use the fact thatŷSi ≤ 1

2 for eachi ∈ S and therefore we
have2ŷSi ≤ 1 and the upper bound constraints are satisfied. Feasibility of the rest of the constraints follows
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minimize
∑

i∈F

oiyi +
∑

i∈F ,j∈D

cijxij

subject to
∑

i∈F

xij = d̄j , ∀j ∈ D

d̄jyi ≥ xij, ∀i ∈ F , j ∈ D

Uiyi ≥
∑

j∈D

xij , ∀i ∈ F

yi ≤ 1, ∀i ∈ F

x,y ≥ 0.

Figure 5: LPdemand.

from semi-integrality of(x̂, ŷ). We run the algorithm from TheoremB.1 on (x̂S , 2ŷS), and it returns a
solution(x̄S , ȳS) such thatȳS ∈ {0, 1}S is integral and capacity constraints are satisfied with respect to
2U ′

i = Ui. Moreover,c(x̄S , ȳS) ≤ 18c(x̂S , 2ŷS) ≤ 36c(x̂S , ŷS).
We concatenate(x̂I , ŷI) ∈ [0, 1]I×D × {1}I and(x̄S , ȳS) ∈ [0, 1]S×D × {0, 1}S to obtain(x̄′, ȳ) ∈

[0, 1]F×D × {0, 1}F . Observe that now(x̄′, ȳ) satisfies the following constraints.

1. ȳ is integral.

2. For eachj ∈ D, we have
∑

i∈F x̄′ij =
∑

i∈I x̂
I
ij +

∑

i∈S ȳSij = 1− d̂j + d̄j = 1.

3. For eachi ∈ F , we have
∑

j∈D x̄′ij ≤ Ui if ȳi = 1 and
∑

j∈D x̄′ij = 0 otherwise.

Now we solve a minimum costb-matching problem to find an integral assignment of clients to facilities
which are opened bȳy. We letF denote the set of facilities with̄yi = 1. We form a bipartite graph with
clients inD on one side and facilities inF on the other side. The cost of edge betweeni ∈ F andj ∈ D
is cij and solve the following linear program as given in Figure6. It is straightforward to see that̄x′ is a
feasible solution to this linear program. The integrality of the b-matching problem implies that there exists
an integral solution̄x such thatc(x̄) ≤ c(x̄′).

minimize
∑

i∈F,j∈D

cijxij

subject to
∑

i∈F

xij = 1, ∀j ∈ D

∑

j∈D

xij ≤ Ui, ∀i ∈ F

x ≥ 0.

Figure 6:b-matching Linear Program.

Together withȳ, we obtain that(x̄, ȳ) is a feasible solution to the capacitated facility locationproblem
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and

c(x̄, ȳ) ≤ c(x̄′, ȳ) = c(x̂I , ŷI) + c(x̄S , ȳS) ≤ c(x̂I , ŷI) + 36c(x̂S , ŷS) ≤ 36(c(x̂I , ŷI) + c(x̂S , ŷS))

≤ 36c(x̂, ŷ)

as claimed.
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