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A VARIATIONAL FORMULA FOR

RISK-SENSITIVE REWARD
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ABSTRACT: We derive a variational formula for the optimal growth
rate of reward in the infinite horizon risk-sensitive control problem for discrete
time Markov decision processes with compact metric state and action spaces,
extending a formula of Donsker and Varadhan for the Perron-Frobenius eigen-
value of a positive operator. This leads to a concave maximization formula-
tion of the problem of determining this optimal growth rate.

Key words: risk-sensitive control; Perron-Frobenius eigenvalue; positive
operators; variational formula

1EECS Department, University of California, Berkeley, CA 94720, USA. Research sup-
ported in part by the ARO MURI grant W911NF- 08-1-0233, Tools for the Analysis
and Design of Complex Multi-Scale Networks, the NSF grants CNS-0910702 and ECCS-
1343398, and the NSF Science & Technology Center grant CCF-0939370, Science of Infor-
mation. A part of this work was done while this author was visiting IIT Bombay.

2Department of Elec. Engg., IIT Bombay, Powai, Mumbai 400076, India. Work sup-
ported in part by a J. C. Bose Fellowship and grant 11IRCCSG014 from IIT Bombay.
A part of this work was done while this author was visiting the University of California,
Berkeley.

1

http://arxiv.org/abs/1501.00676v1


1 Introduction

Infinite time horizon risk-sensitive control seeks to maximize the asymptotic
growth rate for mean multiplicative reward in the standard Markov decision
theory setting. The optimal reward multiplier per step turns out to be the
Perron-Frobenius eigenvalue of a positive 1-homogeneous nonlinear operator.
The existence of this Perron-Frobenius eigenvalue and an associated eigen-
function is ensured by the nonlinear Krein-Rutman theorem of [37, Theorem
3.1.1 and Proposition 3.1.5] under suitable conditions (see also [36], [33], [32],
[12], [3]). Our aim here is to build on this nonlinear Krein-Rutman theorem
to provide a variational formula for the optimal growth rate of reward in the
spirit of the Donsker-Varadhan formula for the Perron-Frobenius eigenvalue
of a nonnegative matrix [15, section 3.1.2], [18], [22].

Risk-sensitive control has traditionally been studied in the framework of
cost minimization, see e.g. [16], [26], [27] for recent work on general state
space models and [20], [24] for its discrete state space precursors. Work on
risk-sensitive reward maximization has been relatively uncommon, see e.g.
[28]. Unlike in the case of the classical discounted or ergodic costs, the two
risk-sensitive control problems are not trivially equivalent by treating cost as
a negative reward. In fact, risk-sensitive reward maximization is the natu-
ral set-up in portfolio optimization, see e.g. [13]. Nevertheless, it has been
commonplace to replace it by risk-sensitive cost minimization so as to ex-
ploit the vastly more abundant available machinery for the latter problem,
see, e.g. equation (18) of [6]. Interestingly, our approach is tailored for the
risk-sensitive reward maximization problem.

The paper is organized as follows. This section presents the basic no-
tation and control-theoretic framework. In section 2 we develop the role of
the nonlinear Krein-Rutman theorem in giving an expression for the optimal
reward multiplier per stage. In section 3 this is parlayed into a variational
expression for the optimal growth rate of reward. Theorem 4 in section 3 is
the main result of this paper. Alternative variational formulations derived
from the primary one are discussed in section 4; each of these provides a
different kind of insight into how to think about the optimal growth rate of
reward. Some examples are worked out in section 5 to illustrate the nature
of the results. We close the paper with some concluding remarks in section 6.
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We turn next to introducing our notation and the control-theoretic frame-
work. For a compact metric space X , M(X ) and P(X ) will denote respec-
tively the space of finite (signed) Borel measures on X and the space of prob-
ability measures on X , both with the topology of weak convergence [9]. C(X )
will denote the Banach space of continuous maps X 7→ R with the supre-
mum norm, denoted by ‖ · ‖. Thus M(X ) is the dual Banach space of C(X ),
with the weak-* topology [39]. Let S be a prescribed compact metric space
called the state space and U another compact metric space, called the action
space. We shall consider an S-valued controlled Markov process (Xn, n ≥ 0)
controlled by a U -valued control process (Zn, n ≥ 0) defined as follows. Con-
sider a complete probability space (Ω,F , P ) where Ω := (S × U)∞, and F
is its product Borel σ-field. For ω = [(ω0, ω

′
0), (ω1, ω

′
1), (ω2, ω

′
2), · · · ] ∈ Ω

with ωi ∈ S and ω′
i ∈ U ∀i, define ‘canonical’ random variables Xi =

ωi, Zi = ω′
i, i ≥ 0. The probability measure P on (Ω,F) is then the law of

((Xn, Zn), n ≥ 0) defined as follows. The law of X0 is prescribed and the law
of ((Xn, Zn), n ≥ 0) is constructed inductively. For this purpose, define two
increasing families of sub-σ-fields of F : F−

n := σ(Xm, m ≤ n;Zm, m < n)
and Fn := σ(Xm, m ≤ n;Zm, m ≤ n) for n ≥ 0. First define the conditional
law of Z0 given F−

0 as φ0(du|X0), where

φ0(du|x0) : S 7→ P(U)

is a prescribed kernel, i.e. φ0(du|x) is a probability distribution in P(U) for
all x and φ0(A|x) is Borel measurable in x for all Borel subsets A ⊂ U . Let Pn

denote the law of ((X0, Z0), (X1, Z1), · · · , (Xn, Zn)), defined as a probability
measure on (Ω,Fn), starting with n = 0. Define the law of Xn+1 given Fn

as p(dy|Xn, Zn) where

p(dy|x, u) : S × U 7→ P(S)

is a prescribed kernel, i.e. p(dy|x, u) is a probability distribution in P(S) for
all (x, u) ∈ S × U and p(A|x, u) is Borel measurable in (x, u) for all Borel
subsets A ⊂ S. Define the conditional law of Zn+1 given F−

n+1 as

φn+1(du|(X0, Z0), · · · , (Xn, Zn), Xn+1)

where

φn+1(du|(x0, u0) · · · , (xn, un), xn+1) : (S × U)n × S 7→ P(U)
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is a prescribed kernel for each n. These together define Pn+1. By the Ionescu-
Tulcea theorem (p. 101, [38]), we define a unique P on (Ω,F). By construc-
tion, for all Borel A ⊂ S,

P (Xn+1 ∈ A|Fn) = P (Xn+1 ∈ A|Xn, Zn)

= p(A|Xn, Zn). (1)

The (Zn, n ≥ 0) constructed above will be referred to as admissible controls.
We shall also consider two special classes of admissible controls: stationary
Markov controls of the form

Zn = v(Xn) ∀ n,

for some measurable v : S 7→ U , and randomized stationary Markov controls
satisfying

P (Zn ∈ A|Fn) = P (Zn ∈ A|Xn) = ϕ(A|Xn) ∀ n, ∀ Borel A ⊂ U,

for some kernel ϕ(du|x) : S 7→ P(U). By a standard abuse of terminology,
we identify these with the maps v(·), ϕ(·|·) resp. The sets thereof will be
denoted by SM and RM respectively. We view SM as a subset of RM by
identifying v(·) with δv(·), the Dirac measure at v(·).

The infinite horizon risk-sensitive reward we seek to characterize is

λ := sup
x∈S

sup lim inf
N↑∞

1

N
logE

[

e
∑N−1

m=0 r(Xm,Zm,Xm+1)|X0 = x
]

, (2)

where the second supremum is over all admissible controls. Here r(x, u, y) is
an extended-real-valued function on S ×U ×S, called the ‘per stage reward’
on transitioning from x to y under action u. It should be noted that we
will allow er(x,u,y) = 0 for some (x, u, y), so r(x, u, y) should be thought of as
being allowed to take the extended real value −∞.

Throughout the paper, we make the following assumptions about r(x, u, y)
and p(dy|x, u). We will occasionally explicitly recall these assumptions to re-
mind the reader of this.

(A0): er(x,u,y) ∈ C(S × U × S).
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(A1): The maps (x, u) 7→
∫

f(y)p(dy|x, u), f ∈ C(S) with ‖f‖ ≤ 1, are
equicontinuous. This is true, e.g., if S is a compact metric space, U is a com-
pact metric space, and p(dy|x, u) = ψ(y|x, u)ϕ(dy) with ϕ ∈ P(S) having
full support and ψ(y|·, ·), y ∈ S, equicontinuous.

We shall denote by erM the least upper bound for er(·,·,·), which is finite
by virtue of assumption (A0).

Towards the end of the next section we will build up to the main varia-
tional formula by first considering the case where we have additional restric-
tions captured by the following assumptions.

(A0+): Condition (A0) holds and we have er(x,u,y) > 0 for all (x, u, y).

(A1+): Condition (A1) holds and p(dy|x, u) has full support for all x, u.
For instance, if S is a compact metric space, U is a compact metric space,
and p(dy|x, u) = ψ(y|x, u)ϕ(dy) as above with ψ(y|·, ·), y ∈ S, equicontinu-
ous, then ψ(·|x, u) > 0 on S will ensure that this assumption holds.

We shall denote by erm > 0 the greatest lower bound for er(·,·,·) when
(A0+) holds.

If p(dx) and q(dx) are finite nonnegative Borel measures on a compact
metric space X , we write D(p(dx)‖q(dx)) for the relative entropy of p(dx)
with respect to q(dx), defined by

D(p(dx)‖q(dx)) :=

{

∫

p(dx) log l(x) if we can write p(dx) = l(x)q(dx)

∞ otherwise.

See e.g. [41] for some of the basic properties of relative entropy.

2 The Perron-Frobenius eigenvalue

Let assumptions (A0) and (A1) be in force. Define the operator T : C(S) 7→
C(S) by

Tf(x) := sup
φ∈P(U)

∫ ∫

p(dy|x, u)φ(du)er(x,u,y)f(y). (3)
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For fixed x ∈ S on the left hand side of (3) the supremum on the right hand
side is the expectation of a continuous affine function on a compact set of
probability measures. Hence, it is a maximum attained at a Dirac measure.
For each fixed f ∈ C(S), a standard measurable selection theorem [5, Lemma
1, p. 182] allows us to choose the family of maximizers, parametrized by
x ∈ S, as a measurable function v : S 7→ U . To see that T is a map
C(S) 7→ C(S), note that for f ∈ C(S) with ‖f‖ ≤ R,

|Tf(x)− Tf(x′)|

= | sup
φ∈P(U)

∫ ∫

p(dy|x, u)φ(du)er(x,u,y)f(y)

− sup
φ∈P(U)

∫ ∫

p(dy|x′, u)φ(du)er(x
′,u,y)f(y)|

= | sup
u

∫

p(dy|x, u)er(x,u,y)f(y)

− sup
u

∫

p(dy|x′, u)er(x
′,u,y)f(y)|

≤ erM sup
u

sup
f :‖f‖≤R

|

∫

p(dy|x, u)f(y)

−

∫

p(dy|x′, u)f(y)|+Rmax
u,y

∣

∣

∣
er(x,u,y) − er(x

′,u,y)
∣

∣

∣
.

As x→ x′, the first term on the right tends to zero by (A1) and the second
term on the right tends to zero by uniform continuity of er, being a contin-
uous function defined on a compact set, by (A0). In fact, this shows that
Tf, ‖f‖ ≤ R, are equicontinuous and bounded. Also, from the definition of
T , it is straightforward to check that

‖Tf − Tg‖ ≤ erM‖f − g‖.

which establishes T as a continuous (in fact, Lipschitz) map C(S) 7→ C(S).

Likewise, define, for f ∈ C(S),

T (n)f(x) := supE
[

e
∑n−1

m=0 r(Xm,Zm,Xm+1)f(Xn)|X0 = x
]

,

where the supremum is over all admissible control processes. Then T (1) = T ,
by virtue of the measurable selection theorem alluded to after (3). We use
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the convention T (0) := the identity map.

Lemma 1. (T (n), n ≥ 0) is a semigroup of operators on C(S). ✷

Proof of Lemma 1: Note that we need to verify that T (n) for n ≥ 2 maps C(S)
to C(S) as part of the stated claim. This follows as a corollary of the proof,
which establishes that T (n) is the n-fold concatenation of T with itself. The
proof follows by a standard dynamic programming argument. Specifically,
we first have

T (n)f(x)

= supE
[

e
∑n−1

m=0 r(Xm,Zm,Xm+1)f(Xn)|X0 = x
]

≤ supE
[

er(X0,Z0,X1) supE
[

e
∑n−1

m=1 r(Xm,Zm,Xm+1)f(Xn)|X0, Z0, X1

]

|X0 = x
]

= supE
[

er(X0,Z0,X1)T (n−1)f(X1)|X0 = x
]

, (4)

where the inner supremum in the second line is over the control sequence from
time 1 onwards, conditioned on X0 = x0, Z0 = z0, X1 = x1 (say). Secondly,
let ǫ > 0. By [10, Lemma 1, p. 55], conditioned on (X0, Z0, X1), there exists
an admissible state-control sequence (X ′

m, Z
′
m), m ≥ 1, with X ′

1 = X1 such
that

E
[

e
∑n−1

m=1 r(X
′
m,Z′

m,X′
m+1)f(X ′

n)|X
′
1

]

≥ supE
[

e
∑n−1

m=1 r(Xm,Zm,Xm+1)f(Xn)|X1

]

− ǫ, a.s.

Let X ′
0 = X0 = x, Z ′

0 := argmax
(∫

p(dy|x, ·)er(x,·,y)T (n−1)f
)

. Then

(X ′
0, Z

′
0), (X

′
1, Z

′
1), · · · , (X

′
n, Z

′
n))

is an admissible state-control sequence and

T (n)f(x) ≥ E
[

e
∑n−1

m=0 r(X
′
m,Z′

m,X′
m+1)f(X ′

n)|X
′
0 = x

]

≥ E
[

er(X0,Z0,X1) supE
[

e
∑n−1

m=1 r(Xm,Zm,Xm+1)f(Xn)|X1

]]

− erM ǫ

= E
[

er(X0,Z0,X1)T (n−1)f(X1)|X0 = x
]

− erM ǫ

= T (1)
(

T (n−1)f
)

(x)− erM ǫ (5)
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Combining (4), (5) and using the fact that ǫ > 0 was arbitrary, it follows
that T (n) = T (1)◦T (n−1). A similar argument shows that T (n)f = T (n−1)◦Tf .
✷

The semigroup (T (n), n ≥ 0), is precisely the discrete time counterpart of
the Nisio semigroup [35].

Let C+(S) := {f ∈ C(S) : f(x) ≥ 0} denote the set of nonnegative
functions in C(S). Then C+(S) is a cone, i.e. it is closed under addition
and scalar multiplication by nonnegative real numbers, and we have C+(S)∩
(−C+(S)) = {θ} where θ denotes the constant function that is identically
zero. Thus C+(S) defines a partial order on C(S), denoted ≥, given by f ≥ g
if f − g ∈ C+(S). We write f > g (equivalently, g < f) if f ≥ g, f 6= g, and
we write f >> g if f−g is a strictly positive function in C(S) or equivalently
if f − g ∈ int(C+(S)), where int(C+(S)) denotes the interior of C+(S). The
dual cone of C+(S) is the cone in the dual Banach space M(S) given by
{µ ∈ M(S) :

∫

fdµ ≥ 0 ∀ f ∈ C+(S)}. This is the set of finite nonnegative
measures on S, which we denote by M+(S). For more on cones in Banach
spaces, see [2].

Let us now make the additional assumption (A0+) and (A1+). One
can then verify the following additional properties of T (n) for each n ≥ 1.

1. T (n) is strictly increasing, i.e., f < g implies T (n)f < T (n)g. In view of
the fact established above that (T (n), n ≥ 0) is a semigroup, it suffices
to prove this claim for n = 1. We know that there is a measurable
function v : S 7→ U such that

Tf(x) =

∫

p(dy|x, v(x))er(x,v(x),y)f(y) .

Then

Tg(x)− Tf(x)

≥

∫

p(dy|x, v(x))er(x,v(x),y)g(y)−

∫

p(dy|x, v(x))er(x,v(x),y)f(y)

≥ enrm
∫

p(dy|x, v(x))(g(y)− f(y))

> 0 ,
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because f < g, f 6= g and support(p(dy|x, u)) = S ∀ x, u.

2. T (n) is strongly positive, i.e., f ∈ C+(S), f 6= θ =⇒ T (n)f ∈ int(C+(S)).
This follows from the fact that for any u0 ∈ U ,

T (n)f(x) ≥ enrm
∫

p(dy|x, u0)f(y) > 0,

where we use the fact that support(p(dy|x, u0)) = S.

3. T (n) is positively one-homogeneous, i.e., for c > 0, T (n)(cf) = cT (n)f .
(This holds under the weaker assumptions (A0) and (A1).)

4. For M > e−nrm and f̆ ∈ C(S) defined by f̆(·) ≡ 1, MT (n)f̆ > f̆ .

5. T (n) is compact. (This holds under the weaker assumptions (A0) and
(A1).) It suffices to verify this for n = 1, the general case being then
a consequence of the semigroup property. By (A1), the family x 7→
Ff(x, u) :=

∫

f(y)er(x,u,y)p(dy|x, u), u ∈ U, ‖f‖ ≤ R, is equicontinuous
and bounded in C(S)-norm by erMR. Hence it is relatively compact in
C(S) by the Arzela-Ascoli theorem. Let δ ∈ [0, 1] 7→ wδ(·) denote its
common modulus of continuity relative to a compatible metric κ on S.
Then T : C(S) 7→ C(S) satisfies ‖Tf‖ ≤ erMR for ‖f‖ ≤ R, f ∈ C(S),
and,

sup
x,y∈S,κ(x,y)<δ

‖Tf(x)− Tf(y)‖

≤ sup
x,y∈S,κ(x,y)<δ

‖ sup
u

Ff (x, u)− sup
u

Ff (y, u)‖

≤ sup
x,y∈S,κ(x,y)<δ

sup
u

‖Ff(x, u)− Ff (y, u)‖

≤ wδ(Ff)
δ↓0
→ 0

uniformly in f : ‖f‖ ≤ R. Thus Tf, ‖f‖ ≤ R, ie equicontinuous.
By Arzela-Ascoli theorem, it is relatively compact, implying that T :
C(S) 7→ C(S) is a compact operator.

The preceding considerations allow us to state the following theorem.
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Theorem 1. Under the assumptions (A0+) and (A1+), there exists a
unique ρ > 0 (the Perron-Frobenius eigenvalue) and a ψ ∈ int(C+(S)) such
that Tψ = ρψ, i.e.,

ρψ(x) = sup
φ∈P(U)

∫ ∫

p(dy|x, u)φ(du)er(x,u,y)ψ(y), (6)

with ρ given by

ρ = inf
f∈int(C+(S))

sup
µ∈M+(S)

∫

Tfdµ
∫

fdµ

= sup
f∈int(C+(S))

inf
µ∈M+(S)

∫

Tfdµ
∫

fdµ
. (7)

✷

Equation (7) is an abstract version of the celebrated Collatz-Wielandt
formula for the Perron-Frobenius eigenvalue of irreducible nonnegative ma-
trices, see e.g. [34].

Before proceeding to the proof of Theorem 1, it is appropriate to make a
few remarks. A great deal is known about analogs of the Perron-Frobenius
theorem for increasing positively one-homogeneous maps on finite dimen-
sional vector spaces, see the recent book [30]. When the map is on an ordered
Banach space (and one talks about a Krein-Rutman theorem rather than a
Perron-Frobenius theorem, in view of the seminal work in [29]), we rely on
Theorem 3.1.1, Proposition 3.1.5, and Lemma 3.1.7 of [37], as seen in the
proof below (see also [36], [33]). These results in [37] are themselves stated
in a much broader context than the special case of the Banach space C(S)
and the order structure defined by the cone C+(S), with S a compact metric
space, which suffices for our purposes. The recent papers [32] and [12] claim
even stronger nonlinear Krein-Rutman theorems. However, it has been rec-
ognized in [3] that some of the claims in these papers are wrong. The proof
of the Theorem 1 given below does not rely in any way on [32], [12], or [3].

Proof of Theorem 1: We define

‖T (n)‖+ := sup{‖T (n)f‖ : f ∈ C+(S), ‖f‖ ≤ 1} , n ≥ 0 .
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Since (T (n), n ≥ 0) is a positive semigroup, it is straightforward to check that
‖T (k+l)‖+ ≤ ‖T (k)‖+‖T

(l)‖+ for all k, l ≥ 0, and so

r(T ) := lim
n→∞

‖T (n)‖
1
n
+

exists. By the fourth of the properties of the semigroup (T (n), n ≥ 0) shown
above, we have r(T ) > 0. It will turn out that the ρ promised in the statement
of Theorem 1 is just r(T ).

Strong positivity of T , which was shown above, verifies assumption A4
in [37, pg. 47], and the facts that T is compact (as established above), one-
homogeneous, and order preserving are respectively the conditions A1, A2,
and A3 in [37, pg.47]. Thus [37, Proposition 3.1.5.] provides the additional
requirement in the statement of [37, Theorem 3.1.1] that T have an eigen-
value, and [37, Theorem 3.1.1] states that with ρ taken to be r(T ) there
exists a ψ ∈ int(C+(S)) such that (6) holds.

It remains to establish (7), where we now know that ρ = r(T ). We have

ρ ≥ inf
f∈int(C+(S))

sup
µ∈M+(S)

∫

Tfdµ
∫

fdµ
,

which comes from substituting ψ as a choice for f on the right hand side.
Similarly, we have

ρ ≤ sup
f∈int(C+(S))

inf
µ∈M+(S)

∫

Tfdµ
∫

fdµ
.

Thus it suffices to establish

inf
f∈int(C+(S))

sup
µ∈M+(S)

∫

Tfdµ
∫

fdµ
≥ ρ ≥ sup

f∈int(C+(S))

inf
µ∈M+(S)

∫

Tfdµ
∫

fdµ
. (8)

Given f ∈ int(C+(S)), we have

Tf ≤

(

sup
µ∈M+(S)

∫

Tfdµ
∫

fdµ

)

f .

From [37, Lemma 3.1.7 (ii)], we have r(T ) ≤ supµ∈M+(S)

∫
Tfdµ∫
fdµ

. Since this

holds for all f ∈ int(C+(S)), this establishes the first inequality in (8). The
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proof of the second inequality in (8) is similar, based on [37, Lemma 3.1.7
(iii)]. This concludes the proof of Theorem 1. ✷

Next we show that log ρ is in fact the optimal growth rate of the risk-
sensitive reward. For a development of the analogous result in the case of
controlled diffusion processes, see [4]. As argued earlier, in connection with
the right hand side of (3), for each x ∈ S, the supremum on the right hand
side of (6) is the expectation of a continuous affine function on a compact
set of probability measures, and is therefore a maximum attained at a Dirac
measure. A standard measurable selection theorem [5, Lemma 1, p. 182]
then allows us to identify the family of maximizers, parametrized by x ∈ S,
with an element of SM , which we denote by v∗(·). Letting (X∗

n, n ≥ 0)
denote the chain governed by the stationary Markov strategy v∗(·) and (Z∗

n =
v∗(X∗

n), n ≥ 0) the corresponding control sequence, we then have

ρψ(x) = E
[

er(x,v
∗(x),X∗

1 )ψ(X∗
1 )
]

,

and, more generally, by iterating, we have, for all x ∈ S,

ρnψ(x) = E
[

e
∑n−1

m=0 r(X
∗
m,Z∗

m,X∗
m+1)ψ(X∗

n)|X
∗
0 = x

]

.

Since ψ(x) ∈ int(C+(S)), we have 0 < c < ψ(·) < C < ∞ for some
constants c, C when ψ is chosen with, say, ‖ψ‖ = 1. Thus, for all x ∈ S,

c

C
E
[

e
∑n−1

m=0 r(X
∗
m,Z∗

m,X∗
m+1)|X∗

0 = x
]

≤ ρn ≤
C

c
E
[

e
∑n−1

m=0 r(X
∗
m,Z∗

m,X∗
m+1)|X∗

0 = x
]

.

Hence

log ρ = lim
n↑∞

1

n
logE

[

e
∑n−1

m=0 r(X
∗
m,Z∗

m,X∗
m+1)|X∗

0 = x
]

.

For any other admissible state-control sequence ((Xn, Zn), n ≥ 0), we have

ρψ(x) ≤ E
[

er(x,Z0,X1)ψ(X1)|X0 = x
]

.

Iterating,

ρnψ(x) ≤ E
[

e
∑n−1

m=0 r(Xm,Zm,Xm+1)ψ(Xn)|X0 = x
]

.
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and therefore

log ρ ≤ lim inf
n↑∞

1

n
logE

[

e
∑n−1

m=0 r(Xm,Zm,Xm+1)|X0 = x
]

.

We have proved:

Theorem 2. Under the assumptions (A0+) and (A1+), we have, for all
x ∈ S,

log ρ = sup lim inf
n↑∞

1

n
logE

[

e
∑n−1

m=0 r(Xm,Zm,Xm+1)|X0 = x
]

,

where the supremum on the right is over all admissible controls and ρ on the
left is given as in Theorem 1. Furthermore, this supremum is a maximum
attained at some v∗(·) ∈ SM . ✷

An immediate consequence is the following.

Corollary 1. Under the assumptions (A0+) and (A1+) we have

λ = log ρ ,

where λ is the optimal growth rate of reward, as defined in (2), and ρ is as
defined in Theorem 1. ✷

3 A variational formula

By (7), we have

ρ = inf
f>>0

sup
µ∈M+(S):

∫
fdµ=1

∫

µ(dx) sup
u

∫

p(dy|x, u)er(x,u,y)f(y)

= inf
f>>0

sup
ν∈P(S)

∫

ν(dx)

(

supu

∫

p(dy|x, u)er(x,u,y)f(y)

f(x)

)

= inf
f>>0

sup
x

(

supu

∫

p(dy|x, u)er(x,u,y)f(y)

f(x)

)

= inf
f>>0

sup
x

sup
u

∫

p(dy|x, u)er(x,u,y)+log f(y)−log f(x)

= inf
f>>0

sup
γ∈P(S×U)

∫ ∫

γ(dx, du)

∫

p(dy|x, u)er(x,u,y)+log f(y)−log f(x).

13



Introduce the notation

η(dx, du, dy) = η0(dx)η1(du|x)η2(dy|x, u)

= η̃(dx, du)η2(dy|x, u).

Let

G := {η(dx, du, dy) : η0 is invariant under the transition kernel
∫

U

η2(dy|x, u)η1(du|x)},

i.e. η ∈ G iff
∫

η̃(dx, du)η2(dy|x, u) = η0(dy) .

Recall that D(·||·) is convex and lower semi-continuous in both arguments
[41]. Then

14



log ρ

= inf
f>>0

sup
γ

log

∫ ∫ ∫

γ(dx, du)p(dy|x, u)er(x,u,y)+logf(y)−log f(x)

= inf
g∈C(S)

sup
γ

log

∫ ∫ ∫

γ(dx, du)p(dy|x, u)er(x,u,y)+g(y)−g(x)

= inf
g∈C(S)

sup
γ

sup
η

∫ ∫ ∫

η(dx, du, dy)
(

r(x, u, y) + g(y)− g(x)
)

− D(η(dx, du, dy)||γ(dx, du)p(dy|x, u))

(by the Gibbs variational formula (Prop. 1.4.2(a), pp. 33-34, [17])

= sup
γ

sup
η

inf
g∈C(S)

∫ ∫ ∫

η(dx, du, dy)
(

r(x, u, y) + g(y)− g(x)
)

− D(η(dx, du, dy)||γ(dx, du)p(dy|x, u))

· · · · · · (by the min-max theorem [19])

= sup
γ

sup
η

inf
g∈C(S)

(

∫ ∫ ∫

η(dx, du, dy)
(

r(x, u, y) + g(y)− g(x)
)

−
(

D(η̃(dx, du)||γ(dx, du)) +

∫ ∫

η̃(dx, du)D(η2(dy|x, u)||p(dy|x, u)))
)

= sup
η

inf
g∈C(S)

(

∫ ∫ ∫

η(dx, du, dy)
(

r(x, u, y) + g(y)− g(x)
)

−

∫ ∫

η̃(dx, du)D(η2(dy|x, u)||p(dy|x, u))

· · · · · · (by setting γ = η̃)

= sup
η∈G

[

inf
g∈C(S)

(

∫ ∫ ∫

η(dx, du, dy)
(

r(x, u, y) + g(y)− g(x)
)

−

∫ ∫

η̃(dx, du)D(η2(dy|x, u)||p(dy|x, u))
]

· · · · · · (because
[

· · ·
]

= −∞ ∀ η /∈ G)

= sup
η∈G

(

∫ ∫ ∫

η(dx, du, dy)r(x, u, y)

−

∫ ∫

η̃(dx, du)D(η2(dy|x, u)||p(dy|x, u))
)

· · · · · · (because η ∈ G =⇒

∫

η(dx, du, dy)(g(y)− g(x)) = 0)

15



Thus we have:

Theorem 3. Under the assumptions (A0+) and (A1+), the optimal growth
rate of reward λ, as defined in (2), has the variational characterization

λ = log ρ = sup
η∈G

(

∫ ∫ ∫

η(dx, du, dy)r(x, u, y)

−

∫ ∫

η̃(dx, du)D(η2(dy|x, u)||p(dy|x, u))
)

, (9)

where ρ is defined as in Theorem 1. ✷

The following result, which uses a limiting argument to strengthen The-
orem 3, is the main result of this paper.

Theorem 4. Under the assumptions (A0) and (A1), the optimal growth
rate of reward λ, as defined in (2), has the variational characterization

λ = sup
η∈G

(

∫ ∫ ∫

η(dx, du, dy)r(x, u, y)

−

∫ ∫

η̃(dx, du)D(η2(dy|x, u)||p(dy|x, u))
)

. (10)

✷

Before proving Theorem 4, let us first consider the uncontrolled case.
We can fit this into our framework by taking U to be a set with one point,
so that p(dy|x, u) = p̃(dy|x) for all u ∈ U , for some kernel p̃(dy|x), and
r(x, u, y) = r̃(x, y) for all u ∈ U , for some r̃(·, ·). Theorem 4 then specializes
to the statement that the growth rate of the reward, under the respective
specializations of conditions (A0) and (A1), is given by

λ = sup
α∈G̃

(

∫ ∫ ∫

α(dx, dy)r̃(x, y)

−

∫ ∫

α0(dx)D(α1(dy|x)||p̃(dy|x))
)

where α(dx, dy) = α0(dx)α1(dy|x) and

G̃ := {α(dx, dy) = α0(dx)α1(dy|x) :

∫

α0(dx)α1(dy|x) = α0(dy)}.
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This is then a version of the Donsker-Varadhan formula for the Perron-
Frobenius eigenvalue of a positive operator [15], [18], [22].

Proof of Theorem 4: Let γ(dy) be an arbitrary probability distribution
on S with full support, and, for all ǫ > 0 sufficiently small, define the kernel

pǫ(dy|x, u) :=
1

a(x, u) + ǫ

(

er(x,u,y)p(dy|x, u) + ǫγ(dy)
)

,

and the reward
rǫ(x, u, y) := log(a(x, u) + ǫ) ,

where

a(x, u) :=

∫

er(x,u,y)p(dy|x, u) .

Since this kernel and reward satisfy the conditions (A0+) and (A1+), we
have from Theorem 3 that the optimal growth rate of reward for the risk-
sensitive reward maximization problem for this kernel and reward, call it λǫ,
is given by

λǫ = sup
η∈G

(

∫ ∫ ∫

η(dx, du, dy)rǫ(x, u, y)

−

∫ ∫

η̃(dx, du)D(η2(dy|x, u)||pǫ(dy|x, u))
)

. (11)

From the formulation of the risk-sensitive objective we see that λǫ is
nondecreasing in ǫ, and that λǫ ≥ λ for all ǫ > 0, where λ is defined as in
(2). This can be seen by writing the expression for the n-step multiplicative
reward, i.e.

Eǫ

[

e
∑N−1

m=0 rǫ(Xm,Zm,Xm+1)|X0 = x
]

,

as a multiple integral, which reveals that this quantity is monotonically non-
decreasing in ǫ for any initial condition x ∈ S and any admissible control
strategy. Thus limǫ→0 λǫ exists and satisfies

lim
ǫ→0

λǫ ≥ λ . (12)

To prove (10), we will first prove that

lim
ǫ→0

λǫ ≤ sup
η∈G

(

∫ ∫ ∫

η(dx, du, dy)r(x, u, y)

−

∫ ∫

η̃(dx, du)D(η2(dy|x, u)||p(dy|x, u))
)

, (13)
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and then prove that

λ ≥ sup
η∈G

(

∫ ∫ ∫

η(dx, du, dy)r(x, u, y)

−

∫ ∫

η̃(dx, du)D(η2(dy|x, u)||p(dy|x, u))
)

. (14)

Together with (12), these two claims establish (10).
For fixed η ∈ G, let Ψǫ(η) denote the expression inside the outer brackets

on the right hand side of (11). Then one has

Ψǫ(η) = −

∫ ∫

η̃(dx, du)D(η2(dy|x, u)||e
r(x,u,y)p(dy|x, u) + ǫγ(dy)) . (15)

Similarly, for fixed η ∈ G, let Ψ0(η) denote the expression inside the outer
brackets on the right hand side of (10). We have

Ψ0(η) = −

∫ ∫

η̃(dx, du)D(η2(dy|x, u)||e
r(x,u,y)p(dy|x, u)) . (16)

In fact, (15) reveals that for each η ∈ G we have Ψǫ(η) is nondecreasing
in ǫ, and together with (16), reveals that for all ǫ > 0 and η ∈ G, we
have Ψǫ(η) ≥ Ψ0(η). Thus we may conclude that for each η ∈ G the limit
limǫ→0Ψǫ(η) exists, and that this limit satisfies limǫ→0Ψǫ(η) ≥ Ψ0(η).

Now, for all ǫ > 0 and δ > 0 sufficiently small, choose ηδǫ ∈ G such
that Ψǫ(η

δ
ǫ ) > λǫ − δ. Since G is compact, there is a decreasing sequence

(ǫm, m ≥ 1) with limm→∞ ǫm = 0, such that the sequence (ηδǫm , m ≥ 1) has a
limit in P(S × U ×S), call it ηδ. Further, since G is closed, we have ηδ ∈ G.
By the lower semicontinuity of D(·‖·) as a function of (·, ·) [41] we have

sup
η∈G

Ψ0(η) ≥ Ψ0(η
δ) ≥ lim

m→∞
Ψǫm(η

δ
ǫm
) ≥ lim

m→∞
λǫm − δ = lim

ǫ→0
λǫ − δ .

Since δ > 0 was arbitrary, this establishes (13).
It remains to prove (14). If supη∈G Ψ0(η) (i.e. the right hand side of (14))

equals −∞ then there is nothing to prove, so we may assume that this is
not the case. Given η ∈ G for which Ψ0(η) 6= −∞, consider implementing
the stationary Markov strategy defined by the kernel η1(du|x). The expected
multiplicative reward after n steps when implementing this strategy, condi-
tioned on starting with the initial distribution η0(dx0), is

∫

· ·

∫

η0(dx0)
n−1
∏

m=0

η1(dum|xm)p(dxm+1|xm, um)e
r(xm,um,xm+1) .

18



Since η2(dy|x, u) is absolutely continuous with respect to p(dy|x, u) for almost
all (x, u), this equals

∫

··

∫

η0(dx0)

n−1
∏

m=0

η1(dum|xm)η2(dxm+1|xm, um)e
r(xm,um,xm+1)e

− log
η2(dxm+1|xm,um)

p(dxm+1|xm,um) .

Let {X ′
n} denote a controlled Markov chain with controlled transition kernel

η2(dy|x, u), initial law η0, and controlled by η1(du|x) ∈ RM . Then

λ

≥ lim
n→∞

1

n
log
(

∫

· ·

∫

η0(dx0)
n−1
∏

m=0

η1(dum|xm)p(dxm+1|xm, um)e
r(xm,um,xm+1)

)

≥ lim
n→∞

1

n
log
(

∫

· ·

∫

η0(dx0)
n−1
∏

m=0

η1(dum|xm)η2(dxm+1|xm, um)

× e
r(xm,um,xm+1)−log

η2(dxm+1|xm,um)

p(dxm+1|xm,um)

)

= lim
n→∞

1

n
log
(

E

[

e
∑n−1

m=0(r(X
′
m,Z′

m,X′
m+1)−log

dη2(·|X
′
m,Z′

m)

dp(·|X′
m,Z′

m)
(X′

m))
]

)

≥ lim
n→∞

1

n
E

[

n−1
∑

m=0

(r(X ′
m, Z

′
m, X

′
m+1)− log

dη2(·|X
′
m, Z

′
m)

dp(·|X ′
m, Z

′
m)

(X ′
m))

]

(by Jensen’s inequality)

= Ψ0(η)

(because η ∈ G).

It follows that λ, as defined in (2), satisfies (14), which concludes the
proof of Theorem 4. ✷.

4 Remarks

1. Assume (A0), (A1). Fix ϕ ∈ RM , and consider {(Xn, Zn), n ≥ 0}
governed by the randomized stationary Markov strategy ϕ as an uncon-
trolled S ×U -valued Markov chain. To be precise, let S̄ denote S ×U ,
let Ū := {ū} be a one point set, and define p̄(dȳ|x̄, ū) : S̄ × Ū 7→ P(S̄)
by

p̄(dȳ|x̄, ū) := p(dy|x, u)ϕ(du′|y) ,
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where x̄ := (x, u) and ȳ := (y, u′). Also, let

r̄(x̄, ū, ȳ) := r(x, u, y) .

It is straightforward to check that the assumptions (A0), (A1) hold for
the S̄-valued chain with trivial control space Ū and with the transition
kernel and one step reward as above.

Given τ(dx, du, dy, du′) = τ0(dx)τ1(du|x)τ2(dy|x, u)τ3(du
′|x, u, y), write

τ̃(dx, du) for τ0(dx)τ1(du|x) and τ̂ (dy, du
′|x, u) for τ2(dy|x, u)τ3(du

′|x, u, y).
Let

G+ := {τ(dx, du, dy, du′) :

∫ ∫

τ̃ (dx, du)τ̂(dy, du′|x, u) = τ̃ (dy, du′)} .

Further, given τ(dx, du, dy, du′), we define τ ′(dx, du, dy, du′) by setting

τ ′0 := τ0, τ
′
1 := τ1, τ

′
2 := τ2, τ

′
3(du

′|x, u, y) := τ1(du
′|y) ,

with the corresponding definitions for τ̃ ′, τ̂ ′. We claim that τ ′ ∈ G+.
To see this, first observe that

∫ ∫

τ̃ (dx, du)τ̂(dy, du′|x, u) = τ̃ (dy, du′)
when integrated over u′ gives

∫ ∫

τ̃ (dx, du)τ2(dy|x, u) = τ0(dy). This
means
∫ ∫

τ̃ ′(dx, du)τ̂ ′(dy, du′|x, u) =

∫ ∫

τ̃(dx, du)τ2(dy|x, u)τ1(du
′|y)

= τ0(dy)τ1(du
′|y)

= τ̃ (dy, du′) = τ̃ ′(dy, du′) ,

which establishes the claim.

Let λϕ denote the asymptotic growth rate of reward under the fixed
randomized stationary Markov strategy ϕ. Then by applying Theorem
4 to the S̄-valued chain with trivial control space Ū defined above, we
have

λϕ = sup
τ∈G+

(

∫ ∫ ∫

τ(dx, du, dy, U)r(x, u, y)−

∫ ∫

τ̃(dx, du)D(τ̂(dy, du′|x, u)||p(dy|x, u)ϕ(du′|y))
)

. (17)
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Then we have

sup
ϕ

λϕ

= sup
ϕ∈RM

sup
τ∈G+

(

∫ ∫ ∫

τ(dx, du, dy, U)r(x, u, y)−

∫ ∫

τ̃(dx, du)D(τ2(dy|x, u)τ3(du
′|x, u, y)||p(dy|x, u)ϕ(du′|y))

)

(a)
= sup

τ∈G+

(

∫ ∫ ∫

τ ′(dx, du, dy, U)r(x, u, y)−

∫ ∫

τ̃ ′(dx, du)D(τ ′2(dy|x, u)||p(dy|x, u))
)

(b)
= sup

η∈G

(

∫ ∫ ∫

η(dx, du, dy)r(x, u, y)−

∫ ∫

η̃(dx, du)D(η2(dy|x, u)||p(dy|x, u))
)

= λ .

Here, to justify step (a), notice that for every τ ∈ G+, we have shown
that τ ′ ∈ G+. Therefore we have both
∫ ∫ ∫

τ ′(dx, du, dy, U)r(x, u, y) =

∫ ∫ ∫

τ(dx, du, dy, U)r(x, u, y)

and
∫ ∫

τ̃ ′(dx, du)D(τ ′2(dy|x, u)||p(dy|x, u))

=

∫ ∫

τ̃(dx, du)D(τ2(dy|x, u)||p(dy|x, u)).

The choice of ϕ(du′|y) = τ1(du
′|y) (which also equals τ ′3(du

′|x, u, y))
would make the expression

∫ ∫ ∫

τ̃ ′(dx, du)τ ′2(dy|x, u)D(τ ′3(du
′|x, u, y)||ϕ(du′|y))

equal to zero, whereas the expression
∫ ∫ ∫

τ̃(dx, du)τ2(dy|x, u)D(τ3(du
′|x, u, y)||ϕ(du′|y))
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is nonnegative. To justify step (b) note that for every τ ∈ G+, we
have τ0(dx)τ1(du|x)τ2(dy|x, u) ∈ G, and conversely for every η ∈ G
we get τ ∈ G+ by defining τ(dx, du, dy, du′) := η(dx, du, dy)η1(du

′|y).
Furthermore, this τ satisfies τ ′ = τ .

The upshot is that we have proved

λ = sup
ϕ∈RM

λφ . (18)

Under (A0+), (A1+), this supremum is in fact a maximum by virtue
of Theorem 2.

2. Since D(·||·) is convex and lower semi-continuous in its arguments as
noted earlier, (10) is a concave maximization problem on the convex3

set

G1 := {η(dx)ϕ(du|x)µ(dy|x, u) : η is invariant under the transition

kernel x 7→

∫

U

ϕ(du|x)µ(dy|x, u)}.

It is worthwhile to compare this formulation with the classical dynamic
programming approach. Recall that the dynamic programming equa-
tion (6) is the nonlinear eigenvalue problem

ρV (x) = sup
ϕ

(
∫ ∫

p(dy|x, u)ϕ(dy|u)er(x,u,y)V (y)

)

.

Consider the standard ‘log transformation’ ζ(x) := log V . Then

log ρ+ ζ(x) = sup
ϕ

log

(
∫ ∫

p(dy|x, u)ϕ(du|x)er(x,u,y)+ζ(y)

)

.

We treat x as a fixed parameter on the right hand side. By the Gibbs
variational principle, we have

log ρ+ ζ(x)

= sup
ϕ

sup
µ(·,·|x)∈P(U×S)

(

∫

µ(du, dy|x)(r(x, u, y) + ζ(y))−

D(µ(du, dy|x)||p(dy|x, u)ϕ(du|x))
)

. (19)

3See [11, section 11.2.3, p. 358] for the proof of convexity
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Equation (19) is the dynamic programming equation for an ergodic
team problem whose ‘per stage payoff’ function is

r(x, u, y)−D(µ(du, dy|x)||p(dy|x, u)ϕ(du|x)),

where µ specifies an additional control variable the choice of which is in
fact the distribution of the next state and control, whereas the original
randomized control ϕ affects only the payoff. This is a team problem as
opposed to a control problem because while both controls have the same
objective, viz., to maximize a common reward, they are implemented in
a non-cooperative manner. This is reminiscent of, e.g., [24], which con-
siders the cost minimization formulation in which a similar procedure
leads to a zero sum ergodic game. There does not, however, appear to
be any corresponding development earlier for the reward maximization
problem with a positive reward. While this is completely analogous to
the game situation, we have obtained it without an explicit minoriza-
tion condition as in [16], or the ‘condition B’ of [26]. We have instead
conditions (A0) and (A1) which are relatively mild, and compactness
of state space, which is not. We are working towards relaxing the latter.

An important point to note here is that we have an equivalent prob-
lem of maximizing a concave upper semi-continuous function over the
convex set G1. This is in contrast with the ergodic team problem of
maximizing the same function over the nonconvex set

G2 := {η(dx)ϕ(du|x)µ(dy|x) : η is invariant under the transition

kernel x 7→ µ′(dy|x)},

i.e., where the controls ϕ, µ′ are chosen by the two team members non-
cooperatively. The latter is what one obtains from the team formulation
via log transformation.

3. It is also worth noting that the entropic penalty implicit in our varia-
tional formula also arises in different contexts [8], [23], [40].
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5 Examples

5.1 Path counting on graphs

Let G be a directed graph on a finite vertex set S of size d, with edge set
denoted by EG. LetMG denote the incidence matrix of the graph, namely the
d×d nonnegative matrixMG = [m(x, y)], withm(x, y) = 1 if (x, y) ∈ EG, and
m(x, y) = 0 otherwise. Assume that each vertex has at least one out-going
edge. For n ≥ 1 and x ∈ S, let Nn(x) denote the number of directed paths
of length n starting at x. Then the growth rate of the number of directed
paths in the graph, namely

max
x∈S

lim
n→∞

1

n
logNn(x)

exists and equals log ρ(MG), where ρ(MG) is the Perron-Frobenius eigenvalue
of MG.

It is also known that this common limit can be written as

sup
G−compatible (Π,π)

−
∑

x,y

π(x)π(y|x) log π(y|x) . (20)

Here Π ranges over d×d transition probability matrices that areG-compatible
for the directed graph G, i.e. such that π(y|x) > 0 implies that (x, y) ∈ EG,
and π ranges over invariant probability distributions for Π. Note that this is
the largest entropy rate among all stationary Markov chains whose transition
probability matrix is compatible with the graph.

This characterization of the growth rate of the number of paths in an
irreducible graph is a consequence of the Donsker-Varadhan formula for the
Perron-Frobenius eigenvalue of a nonnegative matrix. Let us verify this as
a corollary of Theorem 4 in the case without controls. We take the state
space in Theorem 4 to be S, i.e. the vertex set of the graph. The control
space U is a set consisting of a single point, which we write as U = {u}. Let
p(y|x, u) := 1

d(x)
for d(x) := the out-degree of x and (x, y) ∈ EG, and let

r(x, u, y) :=

{

log d(x) if (x, y) ∈ EG

−∞ otherwise.
(21)

Substituting these into the right hand side of (10) gives the expression in
(20).
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We now bring risk-sensitive control into this mix of ideas. Let U be a
finite set and suppose now that for each u ∈ U we are given a directed graph
Gu with vertex set S. Assume that each vertex has at least one out-going
edge in each Gu. We pose the problem of maximizing

max
x∈S

lim inf
n→∞

1

n
log N̂n(x) ,

where now N̂n(x) is the largest number of directed paths of length n one can
create when starting at x and at each time choosing one of the graphs along
which to move (i.e. one of the control actions) depending on the history of
the states visited so far. More generally, we might allow for a randomized
choice of the graph to be used at each time, based on the history of the states
and the realizations of the control so far, and ask for the maximum growth
rate of the expectation of the number of directed paths of each length that
we can create in this way.

This problem can be posed in a framework that is amenable to an applica-
tion of Theorem 4. As in the case without controls, we set p(y|x, u) := 1

du(x)

for all (x, y) ∈ EGu
, where du(x) denotes the out-degree of vertex x in Gu,

and we now set

r(x, u, y) :=

{

log du(x) if (x, y) ∈ EGu

−∞ otherwise.
(22)

According to Theorem 4 this maximum growth rate is given by

max
η

−
∑

x,u

η̃(x, u)
∑

y : (x,y)∈EGu

η2(y|x, u) log η2(y|x, u)) ,

where the maximum is over all η(x, u, y) = η̃(x, u)η2(y|x, u) with η2(y|x, u) >
0 implying that (x, y) ∈ EGu

, and such that

∑

(x,u)

η̃(x, u)η2(y|x.u) = η0(x) ,

where, as usual, η0(x) :=
∑

u η̃(x, u). Note that this has following interpreta-
tion: among all stationary Markov chains ((Xn, Zn), n ≥ 0) with state space
S × U that are compatible with the family of graphs in the sense that if a
transition from (x, u) to (y, u′) has positive probability then (x, y) ∈ EGu

,
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maximize the conditional entropy of the next state given the current state-
entropy pair, i.e. maximize H(X1|X0, U0).

The interpretation of the growth rate of the number of directed paths of a
given length in a directed graph as an entropy rate has considerable practical
importance in coding theory. Each directed path of length n can be viewed
as an allowed sequence of length n, with coordinates from the state space
S, and the set of such directed paths is then viewed as a set of constrained
sequences [14, Problem 4.16], [31]. The problem of constrained coding has
been extensively studied. In one version of this problem, the goal is to come
up with algorithms that can take an infinitely long sequence of symbols from
a finite set of size m and produce S-valued sequences as output in a one-to-
one fashion, and such that the output sequences meet the constraints defined
by the graph, see [31, Sec. 5.2] for more details. Naturally, it is not possible
to do this if logm exceeds the growth rate given by (20); finding efficient
algorithms to do this whenever logm is less than the growth rate given in
(20) was a key early success in this area [1], [31]. Investigating the question
of constrained coding up to the maximum possible conditional entropy rate
given by the application of Theorem 4 to the controlled graph formulation
above would be an interesting challenge.

5.2 Portfolio optimization

As another example, we consider the portfolio optimization problem from [6],
except that we consider the reward maximization framework instead of cost
minimization as in the classic work of Cover [13]. The model is as follows.
The underlying ‘factor process’ {Xn} is a discrete time Markov chain on
a finite state space Q := {1, · · · , m} (say) with an irreducible transition
matrix Q = [[q(j|i)]]. The control space will be the simplex A := {a =
a1, · · · , am] ∈ Rm : ai ≥ 0 ∀i,

∑

i ai ≤ 1}, with ai denoting the proportion
of wealth invested in the ith risky asset. In particular, 1−

∑

i ai is then the
proportion invested in the risk-less bank account. We denote by {πn} the
A-valued control sequence, representing the trading strategy, i.e., πn,i will
be the proportion of wealth invested in the ith risky asset at time n. {Wn}
is the process of m-dimensional vectors of price relatives such that Wn+1 is
conditionally independent of Xi, i < n;Wi, πi, i ≤ n, given (Xn, Xn+1) and its
conditional law given the latter is specified by a kernel ν(x, y, dw) : Q×Q 7→
Rm with support in the interior of the positive cone in Rm. Let er, r > 0,
denote the per period multiplier of wealth invested in the bank account (thus
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er − 1 is the interest rate). Let 1 denote the constant vector of all 1’s. The
evolution of the wealth process {Vt} is given by

Vn+1 = Vn [e
r + 〈πn,Wn+1 − er1〉] ,

where V0 := 1. The objective is to maximize the risk-adjusted growth rate
of wealth

lim inf
n↑∞

1

n
logE

[

e−
θ
2
log Vn

]

. (23)

Here θ is the risk sensitivity parameter. The control sequence {πn} is
assumed to be adapted to the factor process {Xn} and the controls, i.e. the
distribution of πn is chosen as a function of (X0, . . . , Xn, π0, . . . , πn−1).

It is useful to constrast the objecive we consider with that considered in
[6] of maximizing, for θ > 0, the quantity

lim inf
n↑∞

−
2

θ

1

n
logE

[

e−
θ
2
log Vn

]

. (24)

In [6], this problem is considered by writing the objective in (24) as

− lim sup
n↑∞

2

θ

1

n
logE

[

e−
θ
2
log Vn

]

,

and then studying the risk-sensitive cost minimization problem corresponding
to the objective

lim sup
n↑∞

2

θ

1

n
logE

[

e−
θ
2
log Vn

]

.

That positive θ indicates risk aversion in (24) is argued, see [7, Eqn. (2.1)],
by writing the Taylor’s series expansion, for small θ,

−
2

θ
logE

[

e−
θ
2
log Vn

]

= E[log Vn]−
θ

4
var(log Vn) +O(θ2) .

By constrast, our formulation is able to handle both the case of risk-
aversion and risk-seeking. The Taylor’s series expansion

logE
[

e−
θ
2
log Vn

]

= −
θ

2
E[log Vn] +

θ2

8
var(log Vn) + o(θ2)
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indicates that if the objective in (23) is multiplied by −2
θ
, then it corresponds

to risk-aversion for positive θ and to risk-seeking for negative θ.
Keeping in mind that er + 〈a,W − er1〉 > 0 under our assumption on the

support of ν(x, y, dz), define

µ(x, a, y) :=

∫

e−
θ
2
log[er+〈a,w−er〉]ν(x, y, dw),

(assumed to be <∞)

r(x, a) := −
2

θ
log

(

∑

y

q(y|x)µ(x, a, y)

)

,

p(y|x, a) :=
q(y|x)µ(x, a, y)

∑

y′ q(y
′|x)µ(x, a, y′)

.

One can show that for all n ≥ 1 and all admissible controls, we have

1

n
logE

[

e−
θ
2
logVn

]

=
1

n
log Ẽ

[

e−
θ
2

∑n−1
m=0 r(Xm,πm)

]

,

where Ẽ is the expectation with respect to the law

p(x0)φ0(da0|x0)p(x1|x0, a0)φ1(da1|x0, a0, x1) . . .

× φn−1(dan−1|(xi, ai, 0 ≤ i ≤ n− 2), xn−1) ,

where p(x0) is the initial distribution of X0, the admissible controls are de-
termined by the kernels φ0(·|·), . . . , φn−1(·|·), and the salient point is that the
transition kernel for the evolution of the factor process under this change
of measure is given by the kernel p(·|·, ·) defined above. To see this, first
observe that W1, . . . ,Wn are conditionally independent and identically dis-
tributed given (Xi, πi, 0 ≤ i ≤ n). Hence

E
[

e−
θ
2
log Vn |Xi, πi, 0 ≤ i ≤ n

]

= E

[

n−1
∏

m=0

e−
θ
2
log

Vm+1
Vm |Xi, πi, 0 ≤ i ≤ n

]

=
n−1
∏

m=0

E
[

e−
θ
2
log

Vm+1
Vm |Xi, πi, 0 ≤ i ≤ n

]

=
n−1
∏

m=0

µ(Xm, πm, Xm+1) ,
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so we have

E
[

e−
θ
2
log Vn

]

= E

[

n−1
∏

m=0

µ(Xm, πm, Xm+1)

]

.

For an admissible control strategy, we can write this as

∑

x0,...,xn

∫

a0

. . .

∫

an−1

p(x0)
n−1
∏

m=0

µ(xm, am, xm+1)q(xm+1|xm)

φm(dam|(xi, ai, 0 ≤ i ≤ m− 1), xm) ,

which is the same as

∑

x0,...,xn

∫

a0

. . .

∫

an−1

p(x0)

n−1
∏

m=0

e−
θ
2
r(xm,am)p(xm+1|xm, am)

φm(dam|(xi, ai, 0 ≤ i ≤ m− 1), xm) ,

which equals Ẽ
[

e−
θ
2

∑n−1
m=0 r(Xm,πm)

]

.

Hence the problem of maximizing (23) is equivalent to the risk-sensitive
control problem for a controlled Markov chain on Q with action space A and
controlled transition probabilities p(y|x, a), x, y ∈ Q, a ∈ A, the objective
being to maximize the reward

λ := sup
x0

sup lim inf
n↑∞

1

n
logE

[

e−
θ
2

∑n−1
m=0 r(Xm,πm)|X0 = x0

]

.

where the second supremum is over admissible controls.
The optimal growth rate for the wealth is then given by

λ = max
η∈G

(

∑

x

∫

A

η̃(x, da)(−
θ

2
r(x, a)−

∑

y

∫

A

η2(y|x, a) log

(

η2(y|x, a)

p(y|x, a)

)

)
)

where

G :=
{

η(x, da, y) ∈ P(Q× A×Q) : η(x, da, y) = η̃(x, da)η2(y|x, a)

= η0(x)η1(da|x)η2(y|x, a) such that η0 is stationary under

the transition matrix

[[
∫

η1(da|x)η2(y|x, a)

]]

}

.
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In order to justify this, we need to verify that the conditions (A0) and
(A1) are satisfied. Here Q plays the role of S, A plays the role of U , and
−θ

2
r(x, a) plays the role of r(x, u, y) in the general theory. The validity of

(A0) follows from the continuity of the logarithm function. The validity of
(A1) follows from the continuity of the logarithm function, the fact that Q
is finite, and because

∑

y′ q(y
′|x)µ(x, a, y) is strictly positive for all (x, a).

If we discretize A, this is a finite dimensional concave maximization prob-
lem eminently amenable to standard nonlinear programming tools.

5.3 Minimizing exit rate from a domain

Consider a set of controlled stochastic matrices on a finite state space S =
{1, · · · , s} denoted by Pu = [[p(j|i, u)]]i,j∈S. Here u is the control parameter
taking values in A, where A is a compact metric action space. We assume
that u 7→ Pu is continuous and Pu is irreducible for all u. Let S0 ⊂ S be a
nonempty proper subset of S and let S1 := Sc

0 denote its complement. Let
P̌u denote the restriction of Pu to S1 and for a sequence of random variables
{Xn} with values in S, define τ := inf{n ≥ 0 : Xn ∈ S0}.

We are interested in determining

λ := sup
i∈S1

sup lim inf
n↑∞

1

n
logP (τ > n) ,

where the second supremum is over all admissible controls, and the law of τ is
determined by the control strategy. Namely, we are interested in the problem
of finding the slowest exit rate from S1 over admissible control strategies.

Write P̌u = DuQu where Du is a diagonal matrix with its ith diagonal
entry d(i, u) :=

∑

j∈S1
p(j|i, u) and Qu := [[q(j|i, u)]] is a stochastic matrix

on S1 given by q(j|i, u) := d(i, u)−1p(j|i, u), where we will also assume that
d(i, u) > 0 for all i ∈ S1 and u ∈ A. It can be checked that for any admissible
control strategy and i ∈ S1, we have

P (τ > n) = E
[

e
∑n−1

m=0 log(d(Xm,Um))
]

,

where Um denotes the choice of control at time m, and {Xn} is the S1-
valued Markov chain, having the transition probability matrix QUm

at time
m. Therefore, with the choices S := S1, U := A, and r(i, u, j) := log d(i, u),
the problem is amenable to our general theory.
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Disintegrate a typical element η ∈ P(S1×A×S1) as η0(i)η1(du|i)η2(j|i, u),
and write η̃(i, du) for η0(i)η1(du|i).

Then our results show that

λ = max
η∈G

(

∑

i,j∈S1

∫

A

η(i, du, j) log(d(i, u))−

∑

i∈S1

∫

A

η̃(i, du)D(η2(j|i, u)||q(j|i, u))
)

,

where G denotes the set of η ∈ P(S1×A×S1) for which η0 is invariant under
the transition kernel

∫

A
η1(du|i)η2(j|i, u). To verify this, we need to check

the validity of the conditions (A0) and (A1). The former is a consequence
of the assumed continuity of u 7→ Pu. The latter is a consequence of the fact
that S1 is finite and that u 7→ Qu is continuous, which in turn follows from
the assumed continuity of u 7→ Pu and the assumption that d(i, u) > 0 for
all i ∈ S1 and u ∈ A.

6 Concluding remarks

We considered the problem of maximizing the growth rate of reward in the
standard risk-sensitive formulation for a controlled Markov chain on a com-
pact metric state space, with a compact metric action space. We took a
non-standard approach to this problem via a nonlinear version of the Krein-
Rutman theorem to obtain a variational formulation for the optimal reward.
This leads to an occupation measure based concave maximization formula-
tion of the control problem.

The approach holds promise for possible use of convex optimization tech-
niques for approximate solution of the risk-sensitive reward maximization
problem, in a manner analogous to what abstract linear programming does
for the classical additive reward problems (such as discounted or ergodic re-
wards, see, e.g., [25]). We achieved this with rather few technical conditions
except for the compactness of the state and action spaces. It remains a major
challenge to extend this approach to noncompact state and action spaces.
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