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Motivated by Bland’s linear-programming generalization of the renowned Edmonds-Karp efficient refine-
ment of the Ford-Fulkerson maximum-flow algorithm, we discuss three closely-related natural augmentation
rules for linear and integer-linear optimization. In several nice situations, we show that polynomially-many
augmentation steps suffice to reach an optimum. In particular, when using “discrete steepest-descent aug-
mentations” (i.e., directions with the best ratio of cost improvement per unit 1-norm length), we show that
the number of augmentation steps is bounded by the number of elements in the Graver basis of the problem
matrix, giving the first ever strongly polynomial-time algorithm for N-fold integer-linear optimization. Our
results also improve on what is known for such algorithms in the context of linear optimization (e.g., gener-
alizing the bounds of Kitahara and Mizuno for the number of steps in the simplex method) and are closely
related to research on the diameters of polytopes and the search for a strongly polynomial-time simplex or
augmentation algorithm.
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1. Introduction. We consider a general framework for solving linear programs (LPs) and
integer-linear programs (ILPs) of the form

min{c⊺x : Ax= b, 0≤ x≤ u, x∈X } , (1)

1

http://arxiv.org/abs/1408.3518v3
mailto:deloera@math.ucdavis.edu
http://www.math.ucdavis.edu/$\sim $deloera
mailto:hemmecke@tum.de
http://www-m9.ma.tum.de/Allgemeines/RaymondHemmecke
mailto:jonxlee@umich.edu
https://sites.google.com/site/jonleewebpage/


De Loera, Hemmecke and Lee: Augmentation in Linear and Integer Linear Programming
2

where A ∈ Z
d×n, b ∈ Z

d, c ∈ Z
n, and where X = R

n (LP) or X = Z
n (ILP). We focus on solution

algorithms that are based on an augmentation procedure. At each iteration, we have a current
feasible point xk. An augmentation direction z has xk +αz feasible for some α> 0 (which implies
that z is in the kernel of A) and has c⊺z< 0. Together, the augmentation is αz, and we pass to
the next feasible solution xk+1 := xk +αz. We note the trivial fact that c⊺xk+1 < c⊺xk. In this way,
an augmentation procedure produces a sequence of feasible solutions x1, x2, . . . that are successive
improvements on the value of the objective function, until an optimal solution is reached. Finally,
an augmentation αz is maximal if, considering xk and z to be fixed, α is the largest value of t > 0
for which xk+1 := xk + tz is feasible. If the augmentation is maximal, xk+1 is the best point on the
intersection of the feasible region with the half-line {xk + tz : t > 0}. In what follows, we give
upper bounds on the number of maximal augmentations required to reached an optimum, for both
the LP and ILP cases.
Of course, augmentation algorithms are nothing new, and one of the best-known in the family

is the classical simplex algorithm. For the case of LP, the simplex method is indeed an augmen-
tation algorithm, where we start at a vertex of the polyhedron that is the feasible region, and
the augmentation used at each iteration corresponds to an available edge direction at the current
vertex. Of course, in the degenerate case, there can be considerable work to calculate an improving
edge direction. Nonetheless, by limiting augmentation directions to available edge directions at
the current vertex, and always choosing maximal augmentations, we insure that the next feasible
solution is also a vertex, and so the simplex algorithm can continue. Similarly, the idea of aug-
mentation has played a very important historical role in the algorithmic theory of network flows;
in particular, there is the seminal and very well-known work of Edmonds and Karp (see [15]).
They showed that for maximum-flow (essentially the same problem as maximizing the flow on a
single arc of a flow-conservative network, subject to simple bounds on the other arcs), the num-
ber of augmentations (taken by the classic Ford-Fulkerson augmentation algorithm) is bounded
by the number of arcs times the number of vertices, or slightly more crudely by the number of
arcs squared, when augmentations are always chosen to have the fewest number of arcs, and the
augmentation is maximal. In unpublished work, R. Bland ([6]) extended this, rather elegantly, to
general LPs. Besides not being published by Bland in the 1970’s, it is not well known even today.
The result was implicitly alluded to in print in 1987 (see [4]), and mentioned more concretely in J.
Lee’s 1986 dissertation [25] (see Proposition 3.1 in the follow-on publication [26]). Bland himself
made a concrete statement of it (still without proof) in 1992 (see [7]):
“It was prompted by another result in the same Edmonds-Karp paper [15], that if one always
augments on a shortest augmenting path, the number of augmentations in the Ford-Fulkerson
maximum flow algorithm is less than the product of the numbers of nodes and edges. Fulkerson
[17] had investigated the extent to which fundamental properties of networks generalize to
broader classes of linear programming problems, where elementary vectors in the appropriate
subspaces play the roles of circuits and cocircuits (minimal cutsets). Bland’s dissertation [5]
carried this further, and in later work he showed how the Edmonds-Karp result generalizes to
arbitrary linear programming problems of the form

maximize x0

subject to Ax= 0, (2)
l≤ x≤ u.

Here the bound on the number of augmentations is the number of variables times the number
of different lengths of normalized elementary vectors; in particular if A is totally unimodu-
lar the bound is the product of the dimensions of A, as in the max flow result of Edmonds
and Karp, where A is the (totally unimodular) node-edge matrix of a directed graph. This
seemed to be amusing, but without any obvious use, until late in 1978 when Paul Seymour [35]
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proved his remarkable decomposition theorem for unimodular matroids. Bland and Edmonds
[8] used Seymour’s theorem to show how shortest augmentations could be computed in polyno-
mial time when the constraint matrix A is totally unimodular. Cost scaling was used to extend
the approach to a polynomial-time primal algorithm for totally unimodular linear programming
problems

maximize a⊺x
subject to Ax=b,
l≤ x≤ u.

which are solved as a sequence of subproblems of the form (2). More recently Tardos [36] has
given strongly polynomial algorithms for totally unimodular linear programming problems, and
still more general classes of combinatorial optimization problems, using cost scaling in a far
more clever way.”
Today, progress on the augmentation approach to LP continues: new families of augmentation

algorithms for LP include those proposed in [12] (and rediscovered in [2]). Very recently, the work
of Kern, Faigle, and Peis [23] rekindled our interest in Bland’s result as they, among other things,
rediscovered it. Additionally, Kitahara and Mizuno [24] gave an upper bound for the number of
different basic-feasible solutions generated by the simplex method. Their results are direct gener-
alizations of Y. Ye’s work [37].
On the other hand, the study of augmentation algorithms for ILPs goes back at least to the

1970’s and was part of the study of “test sets” (see [18, 31, 32] and the references therein). More
recently there have been important developments. In [33] the authors show that one can solve
every integer-linear programming problem in polynomial time provided one can efficiently solve a
special directed-augmentation problem (the directed-augmentation problem differs from the ordi-
nary augmentation problem by splitting each direction into its positive and negative parts and
considering linear objectives on each of these parts). These authors showed that if one can solve the
directed-augmentation problem in polynomial time, then the original problem can be solved by a
polynomial-time algorithm. Their main application is to specific combinatorial-optimization prob-
lems, such as the min-cost flow problem. Later [21] showed that if a “best-improving” augmentation
z in the “Graver basis” of the constraint matrix is chosen (the authors of [21] called this augmenta-
tion rule “greedy improvement”; here we will call this “deepest descent”), only polynomially-many
augmentations (in the binary encoding length of the input data) must be performed in order to
reach the optimal value. The paper [21] shows how to efficiently use an augmentation algorithm
for separable convex objective functions and implicitly provided bounds like those presented here.
The set of possible augmentation directions we use depends on the type of problem: for the

LP case, we use as the set of possible augmentation directions the circuits of A. C(A) consists
of the normalized elementary vectors (or circuits) associated with ker(A) \ {0} (see [29]) — that
is, the vectors having (set-wise) minimal support in ker(A) \ {0}. The set of elementary vectors
of ker(A) \ {0} is a finite set of lines through the origin, with the origin excluded. Usually, it is
convenient to normalize in an arbitrary manner, so that C(A) comprises a single point and its
negative from each such line. In our context, Bland’s normalization uses the objective function so
that c⊺z=−1 for every augmentation direction — in his terms, such a z is unit augmenting. For
the vectors in C(A), we choose on each line the (nonzero) integer point closest to the origin and its
negative as the normalized representatives.
For the IP case, the set of possible augmentation directions is the Graver basis of A, denoted

by G(A). We obtain Graver’s original finite set of ⊑-minimal elements in ker(A)∩Z
n \{0}, where

u ⊑ v if and only if u(i)v(i) ≥ 0 and |u(i)| ≤ |v(i)| (see [18]). In general, G(A) has a nice sign-
compatible representation property: every (integer vector) z∈ ker(A) can be written as z=

∑

αigi,
with gi ∈ G(A), αi > 0, αi ∈ Z, and αigi ⊑ z, for all i, and the sum involves at most 2n− 2 terms.
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In fact, G(A) is an inclusion-minimal set with this property. It should be noted that due to the
sign-compatible representation we have

‖z‖1 =
∑

αi‖gi‖1,

where ‖ · ‖1 is the usual 1-norm.
We remark that the all circuits are members of the Graver basis. But they also provide an elegant

sign-compatible representation over the reals for all non-zero elements of ker(A). Specifically, every
vector z∈ ker(A) can be written as z=

∑

αigi, with gi ∈ C(A), αi ≥ 0, αi ∈R, and the sum involves
at most n terms. Note that the (worst-case) number of summands is smaller than in the general
Graver decomposition. It is worth remarking that Graver bases can also be defined for the general
mixed-integer case (see [19, Section 3.3]) — but in the mixed-integer setting, the Graver basis is
not generally finite, in sharp contrast to the LP and ILP cases; so we do not consider that situation
here as, unlike the LP and ILP cases, it requires the existence of some kind of specialized oracle
to generate the augmentations one by one. For an introduction to Graver bases and the latest on
augmentation algorithms for integer programming see the books [13] and [27].

1.1. Our Contributions The main contribution of this paper is an extension of Bland’s
theorem beyond LP to ILP. Our main results and proofs extend what Bland did for circuits to
Graver bases. We look at several augmentation rules. Although they are very similar, our results
here are naturally divided into the LP and ILP cases, with small but important technical changes.
Also, depending on whether variables are restricted to be integers or not, we rely on different sets as
the set of allowable augmentation directions, which we denote by T (A). The set T (A) will change
depending on the case.
In what follows, we will employ T (A) in augmentation algorithms that iteratively replace a

feasible (either continuous or integer) solution xk to Ax= b, 0≤ x≤ u, by a better feasible solution
xk+1 := xk +αz, where c⊺z< 0 and α> 0. We consider three specific augmentation rules.

Definition 1 (Discrete Deepest Descent). With respect to a feasible solution xk, we
choose z such that −αc⊺z is maximized among all z ∈ T (A) and α > 0 such that xk+1 := xk +αz
is feasible (note that for ILP this means that α∈Z).

Definition 2 (Discrete Dantzig Descent). With respect to a feasible solution xk, we
choose z such that −c⊺z is maximized among all z ∈ T (A) such that xk + ǫz is feasible for some
ǫ > 0 (note that for LP this means for all sufficiently small ǫ > 0, and for ILP this means for ǫ=1).
Then we take a maximum augmentation in such a direction. That is, we let xk+1 := xk+αz, where
α is the largest value for which xk +αz is feasible (note that for ILP this means that α∈Z).

Definition 3 (Discrete Steepest Descent). With respect to a feasible solution xk, we
choose z such that −c⊺z/‖z‖1 is maximized among all z ∈ T (A) such that xk + ǫz is feasible for
some ǫ > 0 (note that for LP this means for all sufficiently small ǫ > 0, and for ILP this means for
ǫ=1). Then we take a maximum augmentation in such a direction. That is, we let xk+1 := xk+αz,
where α is the largest value for which xk+αz is feasible (note that for ILP this means that α∈Z).

Note that all three augmentation rules produce maximal augmentations. Practically speaking,
there are more situations in which discrete steepest descent and discrete Dantzig descent can be
practically implemented, as compared to discrete deepest descent. Still, it is interesting to analyze
and contrast these augmentation rules. We derive the following main results concerning these
augmentation rules for the ILP and the LP cases. In some structured situations, these bounds will
provide very good guarantees of performance. Our ILP theorem is new, while our LP results extend
what Bland started early on, and greatly extends the applicability of the bounds of Kitahara and
Mizuno.



De Loera, Hemmecke and Lee: Augmentation in Linear and Integer Linear Programming
5

Next we state the results. Note that in what follows the base of all logarithms is two.
For the discrete deepest-descent rule, in the ILP case a polynomial time bound was first proved,

but not explicitly stated as a proposition, in [21] and in [27] (see top of page 47 (end of proof of
Lemma 3.10)). Here we make it very explicit:

Lemma 1 ((see also [21])). The number of discrete deepest-descent augmentations needed to
reach an optimal solution from x0 is bounded by (4n− 4) log(c⊺(x0 −xmin)).

In addition, for the other two augmentation rules we prove:

Theorem 1 (ILP case). Let A∈Z
d×n, b∈ Z

d and c ∈Z
n define the ILP

min{c⊺x : Ax= b, 0≤ x≤u, x∈ Z
n } .

Let x0 be an initial feasible solution, let xmin be an optimal solution, and let γ be the maximum
non-zero entry (in absolute value) in any feasible solution. Then we have the following bounds on
the number of augmentations to reach an optimal solution from x0.

(a) The number of discrete Dantzig-descent augmentations needed to reach an optimal solution of
the ILP is bounded by (4n− 4)γ log(c⊺(x0 −xmin)).

(b) Any discrete steepest-descent direction (which by definition belongs to G(A)) is an overall
steepest-descent direction (which could be any applicable direction from Z

n). Moreover, the num-
ber of discrete steepest-descent augmentations to reach an optimal solution of the given ILP is
bounded by |G(A)|.

Next we present our results for augmentation algorithms in linear programming. The results for
integer augmentations arguments in [21] and in [27] (see top of page 47 (end of proof of Lemma
3.10)) could be adapted to obtain an LP bound too, but the bound one obtains from [21] leads
directly to an extra factor of n in the number of augmentations due to the strategy presented there
to ensure termination. Our contribution is that we manage to get rid of this factor of n:

Lemma 2. The number of discrete deepest-descent augmentations needed to reach an optimal
solution from x0 is bounded by 2n log(δ c⊺(x0 −xmin)).

Moreover we prove the following extensions to the other augmentation rules for LPs:

Theorem 2 (LP case). Let A∈Z
d×n, b∈ Z

d and c ∈Z
n define the LP

min{c⊺x : Ax= b, 0≤ x≤ u, x∈R
n } .

Let x0 be an initial feasible solution, let xmin be an optimal solution, let γ be the maximum non-zero
entry (in absolute value) in any feasible solution, and let δ denote the least common multiple of
all subdeterminants of A. Then we have the following bounds on the number of augmentations to
reach an optimal solution from x0.

(a) The number of discrete Dantzig-descent augmentations needed to reach an optimal solution from
x0 is no more than 2n2δγ log(δ c⊺(x0 −xmin)).

(b) Any discrete steepest-descent direction (which by definition belongs to C(A)) is an overall
steepest-descent direction (which could be any applicable direction from R

n). Moreover, the num-
ber of discrete steepest-descent augmentations to reach an optimal solution of the given LP is
bounded by |C(A)|.

While by nature LP augmentation algorithms cannot have cycling, as can happen for the sim-
plex method, it should be noted that the LP case of the discrete deepest-descent and the discrete
Dantzig-descent augmentation algorithms only guarantee that we reach a feasible solution xk with
objective value “close enough” to the optimal value. Whether any given feasible solution is “close
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enough” can be checked by generating a vertex of the feasible region with objective value that is
at least as good as c⊺xk. Finding such a vertex can be done by augmenting xk only along such
(discrete deepest-/Dantzig-descent) circuit directions that lead to a better feasible solution with an
additional component reaching its lower or upper bound. Geometrically, this corresponds to (iter-
ative) augmentation within the smallest face of the polyhedron {x : Ax= b, 0≤ x≤ u, x∈R

n }
that contains xk. (The circuits of the problem matrix A provide such a restricted optimality certifi-
cate). We recommend the example in [19]. Finally, again using the circuits of A, it can be checked
whether the vertex found is optimal. The overall closeness-test requires at most n augmentations.
Finally we present the interesting consequences of the main theorems. Note that the bounds in

part (c) of Theorems 1 and 2 only depend on A, but not on b, c, and the particular initial feasible
solution x0 chosen. As a direct consequence of Part (b) of Theorem 1, we obtain the following
corollaries.

Corollary 1. For the pure 0/1 ILP min{c⊺x :Ax=b, 0≤ x≤ 1, x∈Z
n } the number of

discrete deepest-/Dantzig-/steepest-descent augmentations is bounded by O(n log(‖c‖1)).

We note that in the LP case, the proof of Theorem 2, part (c), immediately gives Bland’s
fundamental result:

Corollary 2 (Bland’s Theorem). The number of discrete steepest-descent augmentations
needed to solve min{c⊺x :Ax=b,0≤ x≤ u,x∈R

n } is bounded by the number of (different) posi-
tive values of −c⊺z/‖z‖1 over all (elementary vectors) z ∈ C(A) times the number n of variables.

As for totally-unimodular matrices A, C(A) = G(A), i.e., they coincide for the LP and ILP cases,
the proof of Theorem 2, part (c), also implies:

Corollary 3. For totally-unimodular matrix A, the number of discrete steepest-descent aug-
mentations needed to solve min{c⊺x :Ax= b,0≤ x≤u,x∈Z

n } is bounded by the number of (dif-
ferent) positive values of −c⊺z/‖z‖1 over all (elementary vectors) z∈ C(A) times the number n of
variables.

For a totally-unimodular matrix A, C(A) consists only of vectors with (at most d+ 1) entries
in {−1,0,1} Thus, for z ∈ C(A) we have | − c⊺z| ≤ ‖c‖1 and ‖z‖1 takes on at most d+1 different
values. Plugging this into Corollary 3 we get the following.

Corollary 4. For totally-unimodular matrix A, the number of discrete steepest-descent aug-
mentations needed to solve min{c⊺x :Ax= b,0≤ x≤u,x∈Z

n } is bounded by n(d+1)‖c‖1.

From this we immediately recover the complexity bound for the algorithm of Edmonds and Karp
to find maximum flows in a network: let A be the node/arc-incidence matrix of a connected directed
graph. Note that one row of A is linearly dependent on the other rows and thus can be removed
from A. Then n= |E| and d= |V |− 1. As we maximize the flow on a specific (auxiliary) arc (from
sink to source), we have ‖c‖1 = 1. Thus, n(d+ 1)‖c‖1 = |E| · |V | bounds the number of discrete
steepest-descent augmentations to solve the max-flow problem. This observation is not surprising,
as the augmentation approach using Graver bases specializes to the algorithm by Edmonds and
Karp in the setting of maximum flows.
It is worth recalling that although the complexity statements in Corollary 1 and Corollary 4

depend on the unary size of c, these two results actually can be improved based on the results
of Frank and Tardos [16]. Frank and Tardos used Diophantine approximation to replace c with a
new objective function c′ where the integer numbers occurring in the entries are small but define
an equivalent problem with the same optima. Furthermore, the new weight function c′ can be
found in strongly polynomial-time. In conclusion, if we are able to generate in polynomial time the
corresponding augmentation elements of the Graver basis according to one of the three rules, we
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obtain strongly polynomial-time algorithms. Of course, this is in general hard to do other than by
computing the entire Graver basis, but for special matrices A, one can do much better.
Our results on augmentations for totally-unimodular matrices provide another interesting geo-

metric result. For years, researchers have been looking at the diameter of the graph of polyhedra
(i.e., the graph whose nodes are the vertices of the convex polyhedron P = {x :Ax= b,0≤ x≤u}).
It has been shown in [9] that the diameter of the graph of totally-unimodular d-dimensional poly-
topes (i.e., the length of the longest shortest path between a pair of nodes) is bounded above by
d3.5 log(d). We wish to stress that in our circuit augmentations, we do not always follow edges of
the polyhedron P . Rather, we may cut through the interior of P or the interior of some faces. This
suggests the notion of circuit diameter. The circuit distance from v1 to v2 is the smallest number
of circuit augmentations needed to go from v1 to v2. We can then define the circuit diameter as
the maximum number of steps along circuit basis directions that are needed to go from any vertex
of the polyhedron to any other vertex of the polyhedron. This notion was first introduced and
investigated in the article [10]. More recently other generalizations of the notion of diameter using
circuits were introduced in [11]. One can show that the circuit diameter of a polyhedron is bounded
from above by the usual combinatorial diameter of polyhedra (this is because arcs are themselves
some of the possible augmentation directions, a subset of the circuits). In this context, our results
show that one can bound the circuit diameter for totally-unimodular polytopes in standard form
as follows

Corollary 5. For a d×n totally-unimodular matrix A, the circuit diameter of the polyhedron
P := {x :Ax= b,0≤ x≤u} is bounded above by 2(n(d+1)(n− d)).

This corollary is a good general bound for totally-unimodular matrices, but we suspect it can be
further improved, as we already know that for network-flow polytopes a better bound is possible.
Indeed, Orlin [28] designed a polynomial-time primal network-simplex algorithm for the minimum-
cost flow problem which gives a graph-diameter bound of O(|E||V | log(|V |)), with E,V equal to
the sets of of arcs and nodes in the network.
Proof: To see this, take any vertex v of P . Choose a cost vector specific to v: namely, let ci = 1

if vi =0 and ci =−1 if vi = ui. Otherwise, put ci =0. Thus, this new objective function c has n−d
= n− rank(A) many nonzero entries. Thus, by Corollary 4, with the steepest-descent rule, any
other vertex is connected to v with no more than n(d+1)(n− d) many augmentations. Hence, the
path between any pair of vertices of P is bounded by 2n(d+1)(n− d). �

Finally, let us consider optimization problems for which the constraint matrix is structured.
Recall that an N -fold matrix is a matrix of the form

[A,B](N) :=















B B · · · B
A O O
O A O

. . .

O O A















.

For fixed matrices A and B, the size of the Graver basis of [A,B](N) (and its binary encoding
length) increases only polynomially with N . Combining this with Theorems 1 and 2, parts (c), we
obtain the following result.

Theorem 3. For fixed matrices A and B, the associated families of N-fold LPs and ILPs can
be solved in strongly polynomial time.

This generalizes the results from [20, 21], which showed that for fixed matrices A and B, the
corresponding N -fold ILPs could be solved in time polynomial in N , in fact in O(N3) steps.
Theorem 3 strengthens this to strong polynomiality. As a direct consequence we obtain the following
results:
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Corollary 6. The following special cases of N-fold matrices can be solved in strongly poly-
nomial time in the linear and integer case:

• All 2-way transportation problems with a fixed number of rows or columns.
• All 3-way transportation problems with two of the three dimensions fixed.
• All d-way transportation problems with d− 1 dimensions of fixed constant value.

2. Proofs We present the proofs to the above results in separate subsections. We will use the
following lemma (a slight variation from Theorem 3.1 in [1]) which establishes the bounds we claim
once we can guarantee sufficient improvement at each iteration:

Lemma 3. Let ǫ > 0 be given. Moreover, let H denote the difference between maximum and
minimum objective-function values of the LP/ILP problem in n variables. Suppose that fk = c⊺xk

is the objective-function value of the solution xk at the k-th iteration of an algorithm and that
f ∗ = c⊺xmin is the minimum objective-function value. Furthermore, suppose that the algorithm
guarantees that for every augmentation k,

(fk − fk+1)≥ β(fk − f ∗)

(i.e., the improvement at augmentation k + 1 is at least β times the maximum possible improve-
ment). Then the algorithm reaches a solution with fk − f ∗ < ǫ in no more than 2 log (H/ǫ)/β
augmentations.

Proof: Without loss of generality, we assume that c is an integer vector. (Thus for the ILP
version the values fk are decreasing successive integer values.) The biggest necessary change of
value of the objective function occurs when we start the augmentation at an maximum point xmax

and end with some minimum optimal point xmin. Thus, we have H = fmax − fmin.
If we had at every augmentation an improvement of at least β(fmax− fmin)/2, then in no more

than 2/β augmentations we would have reached the optimum. But if this improvement is not
achieved at each augmentation, say at the q-th augmentation we have f q−f q+1 ≤ β(fmax−fmin)/2
then, together with the hypothesis (f q − f q+1)≥ β(f q − fmin), we get that

f q − fmin ≤ (fmax− fmin)/2=H/2.

In other words, the overall improvement reached so far is at least half of the maximum possible
improvement H. In conclusion, after 2/β augmentations, we have either reached the optimum or
have at least divided the possible gap by 2. Therefore in no more than 2/β log2 (H/ǫ) augmentations
we reach a solution with fk − f ∗ < ǫ. �

It is important to note that in the ILP case fk is integer, and we can apply Lemma 3 with ǫ=1
and conclude that we can reach the optimum in O(log (H)/β) augmentations. In the LP case, let δ
denote the least common multiple of all subdeterminants of A. Observe that once we find a feasible
solution xk with objective value fk satisfying fk − f ∗ < ǫ= 1/δ, then any vertex with an objective
value of at most fk must be optimal. As explained above (right before the statement of Theorem
1), such a vertex can be found from xk in at most n additional augmentations. This leads to extra
factors of n and of log(δ) in the bounds for the LP cases compared to the ILP cases.

2.1. Proof of Lemma 1 and Theorem 1 Let us assume that xk is a non-optimal feasible
solution, and let xmin be an optimal solution to the ILP. Then there exists a (sign-compatible)
representation

xmin−xk =
∑

αigi,

with αi > 0, αi ∈ Z and with αigi ⊑ xmin −xk. Moreover, due to Sebö’s result [34], at most 2n− 2
summands are needed.
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Note that sign-compatibility of the representation xmin − xk =
∑

αigi implies that for all i the
vectors xk + αigi and xmin − αigi are all feasible solutions, since their components lie between
the components of xk and of xmin. Moreover, we can observe that for all such sign-compatible
representations xmin−xk =

∑

αigi we must have c⊺gi ≤ 0 for all i, as otherwise xmin−αigi would
be a feasible solution with c⊺(xmin−αigi) = c⊺xmin−αic

⊺gi < c⊺xmin, contradicting the minimality
of xmin.
Next, we analyze what happens for each choice of augmentation rule:

2.1.1. Proof of Lemma 1: Discrete deepest descent. We observe that

0> c⊺(xmin−xk) = c⊺
∑

αigi =
∑

αic
⊺gi ≥−(2n− 2)∆

where ∆> 0 is the largest value of −αc⊺z over all z∈ G(A) and integer α> 0 for which xk +αz is
feasible. Rewriting this, we get

∆≥
c⊺(xk −xmin)

2n− 2
.

Now let αz be the discrete deepest-descent augmentation applied to xk, leading to xk+1 := xk+αz.
Then we get ∆=−αc⊺z and

c⊺(xk −xk+1) =−αc⊺z=∆≥
c⊺(xk −xmin)

2n− 2
.

Thus, we have a factor of β = 1/(2n− 2) of objective-function decrease at each augmentation,
leading to the desired polynomial number of augmentations via Lemma 3 taking ǫ= 1. In this case,
we get the number of augmentations bounded by (4n− 4) log(c⊺(x0 −xmin))).

2.1.2. Proof of part (a) of Theorem 1: Discrete Dantzig descent. We observe that

0> c⊺(xmin−xk) = c⊺
∑

αigi =
∑

αic
⊺gi ≥−∆0

∑

αi ≥−(2n− 2)∆0αmax,

where this time ∆0 > 0 denotes the greatest value of −c⊺z over all z∈ G(A) for which xk+z is still
feasible and where αmax =max{αi }. Rewriting this, we get

∆0 ≥
c⊺(xk −xmin)

(2n− 2)αmax

.

Now let αz be the discrete Dantzig-descent augmentation applied to xk, leading to xk+1 := xk+αz.
Then we get

c⊺(xk −xk+1) =−αc⊺z=α∆0 ≥∆0 ≥
c⊺(xk −xmin)

(2n− 2)αmax

≥
c⊺(x0 −xmin)

(2n− 2)γ
,

where γ is the maximum entry in any feasible integer solution (or, equivalently, in any vertex of PI).
Thus, we have a factor of β = 1/((2n− 2)γ) of objective-function decrease at each augmentation
leading to the desired polynomial number of augmentations via Lemma 3 taking ǫ= 1. In this case
we get the number of augmentations bounded by (4n− 4)γ log(c⊺(x0 −xmin)))

2.1.3. Proof of part (b) of of Theorem 1: Discrete steepest descent. We begin with
a series of lemmas. Note that the proof for the LP case follows exactly the same lines, since we do
not use integrality of the components in our arguments.

Lemma 4. Let xk be a feasible solution, and let z be an associated steepest descent direction.
Then there is some augmentation direction g ∈ G(A) from xk, with −c⊺g/‖g‖1 ≥−c⊺z/‖z‖1.
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Proof. There is a sign-compatible representation z =
∑

αigi via elements gi ∈ G(A). Observe
that due to the sign-compatible representation, xk+αigi is also feasible for all i. (The components
of xk +αigi lie between those of xk and xk + z, implying that 0≤ xk +αigi ≤ u.) In other words,
all αigi are applicable augmentations at xk.
It remains for us to show that there exists some index i with −c⊺gi/‖gi‖1 ≥−c⊺z/‖z‖1. Assume

to the contrary that we have −c⊺gi/‖gi‖1 <−c⊺z/‖z‖1 for all i. This yields

−c⊺z = −
∑

αic
⊺gi

=
∑

αi‖gi‖1
−c⊺gi

‖gi‖1

<
∑

αi‖gi‖1
−c⊺z

‖z‖1

=
−c⊺z

‖z‖1

∑

αi‖gi‖1

=
−c⊺z

‖z‖1
‖z‖1

= −c⊺z,

a contradiction. �

Lemma 4 states that among all steepest-descent directions applicable at a feasible solution xk,
there is always one in G(A). Or in other words, the discrete steepest-descent rule is a steepest
descent rule as claimed in Theorems 1 and 2, parts(c).

Lemma 5. Let xk be a feasible solution, let αs be a steepest-descent augmentation relative to
xk, and let xk+1 := xk + αs. Let βt be a steepest-descent augmentation relative to xk+1. Then we
have −c⊺s/‖s‖1 ≥−c⊺t/‖t‖1.

Proof. Suppose on the contrary that −c⊺s/‖s‖1 <−c⊺t/‖t‖1. First observe that αs+ βt is an
applicable augmentation at xk. Moreover, we have

−c⊺(αs+βt) = α‖s‖1
−c⊺s

‖s‖1
+β‖t‖1

−c⊺t

‖t‖1

> α‖s‖1
−c⊺s

‖s‖1
+β‖t‖1

−c⊺s

‖s‖1

= (α‖s‖1 +β‖t‖1)
−c⊺s

‖s‖1
,

≥ (‖αs+βt‖1)
−c⊺s

‖s‖1
,

and therefore
−c⊺(αs+βt)

‖αs+βt‖1
>

−c⊺s

‖s‖1
.

This contradicts the fact that s was a steepest descent direction for xk. �

Lemma 5 states that the steepness of steepest-descent augmentations never increases.

Lemma 6. Let xk be a feasible solution and let α1z1, . . . , αjzj be the following steepest-descent
augmentations applied to xk. If z1 and zj do not have the same sign-pattern from {≤ 0,≥ 0}

n
,

then we have −c⊺z1/‖z1‖1 >−c⊺zj/‖zj‖1.
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Proof. Assume on the contrary that −c⊺z1/‖z1‖1 ≤ −c⊺zj/‖zj‖1. By monotonicity, Lemma 5,

we must have −c⊺z1
‖z1‖1

= −c⊺z2
‖z2‖1

= · · ·=
−c⊺zj

‖zj‖1
. We conclude that

−c⊺
(

∑j

i=1αizi

)

=
∑j

i=1αi‖zi‖1
−c⊺zi
‖zi‖1

=
∑j

i=1αi‖zi‖1
−c⊺z1
‖z1‖1

=
(

∑j

i=1αi‖zi‖1

)

−c⊺z1
‖z1‖1

>
∥

∥

∥

∑j

i=1αizi

∥

∥

∥

1

−c⊺z1
‖z1‖1

,

since z1 and zj do not have the same sign-pattern. This implies that

−c⊺
(

∑j

i=1 αizi

)

‖
∑j

i=1αizi‖1
>

−c⊺z1
‖z1‖1

.

As by assumption
∑j

i=1 αizi is an applicable augmentation at xk. This contradicts the fact that z1
was a steepest-descent augmentation for xk. �

Lemma 6 states that once the sign pattern of a steepest-descent augmentation strictly changes,
the steepness must decrease. This lemma has a surprising consequence if we only apply steepest-
descent directions from G(A):

Corollary 7. For discrete steepest descent, no direction from G(A) is chosen twice as an
augmenting direction. Therefore, the number of steepest-descent augmentations needed to reach an
optimal solution is bounded by |G(A)| and thus is independent of b, c and the initial solution z0.

Proof. Let xk be a feasible solution and let α1z1, . . . , αjzj, with z1, . . . ,zj ∈ G(A), be the following
steepest-descent augmentations applied to xk with αi chosen maximally in each augmentation.
Moreover assume that zj = z1. Then, by Lemma 6, all intermediate augmentations must have the
same sign-pattern as z1, as otherwise the steepness of the augmentations would have dropped.
As all vectors α1z1, . . . , αjzj have the same sign-pattern, the components of xk + α1z1 + αjzj lie
between the components of xk and xk +

∑j

i=1 αizi and therefore also between 0 and u. Thus,
xk + α1z1 + αkzj = xk + (α1 + αj)z1 is a feasible solution. This contradicts the fact that α1 was
chosen maximally. �

2.2. Proof of Lemma 2 and Theorem 2 Let us assume that xk is a non-optimal feasible
solution, and let xmin be an optimal solution to the LP. Then there exists a (sign-compatible)
representation

xmin−xk =
∑

αigi,

with αi > 0 and with αigi ⊑ xmin − xk. Moreover, due to Carathéodory theorem, at most n sum-
mands are needed in such a representation. Again, sign-compatibility of the representation xmin−
xk =

∑

αigi implies that for all i the vectors xk +αigi and xmin −αigi are all feasible solutions.
Let us now analyze what happens for each choice of augmentation rule:

2.2.1. Proof of Lemma 2 for Discrete deepest descent. We observe that

0> c⊺(xmin−xk) = c⊺
∑

αigi =
∑

αic
⊺gi ≥−n∆

where ∆> 0 is the largest value of −αc⊺z over all z ∈ C(A) and α> 0 for which xk +αz is feasible.
Rewriting this, we get

∆≥
c⊺(xk −xmin)

n
.
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Now let αz be the discrete deepest-descent augmentation applied to xk, leading to xk+1 := xk+αz.
Then we get ∆=−αc⊺z and

c⊺(xk −xk+1) =−αc⊺z=∆≥
c⊺(xk −xmin)

n
.

Thus, we have a factor of β = 1/n of objective-function value decrease at each augmentation. Apply-
ing Lemma 3 with ǫ= 1/δ then yields a solution x̄ with |c⊺(x̄−xmin)|< 1/δ within 2n log(δ c⊺(x0−
xmin))) many augmentations. Due to the definition of δ as the least common multiple of all subde-
terminants of A, any vertex with an objective value of at most c⊺x̄ must be optimal. As explained
right before the statement of Theorem 1, such a vertex can be found from x̄ in at most n additional
augmentations. Finally, note that once the discrete deepest-descent augmentation makes progress
in objective value less than ǫ/(2n− 2), we have

|c⊺(xk −xmin)|=
∑

|αic
⊺gi|< (2n− 2) · ǫ/(2n− 2)= ǫ.

Hence, we can decide effectively when we should stop making discrete deepest-descent augmenta-
tions and should rather find a nearby vertex.

2.2.2. Proof of part (a) of Theorem 2: Discrete Dantzig descent. In order to avoid
zig-zagging (see example in Section 4 of [19] and the details of how to avoid this), we must augment
to a vertex with lower objective-function value after each discrete Dantzig-descent augmentation.
For this, we need at most n discrete Dantzig-descent augmentations within smaller and smaller
faces of P . Let xk be a vertex of the given polyhedron. Again we observe that

0> c⊺(xmin−xk) = c⊺
∑

αigi =
∑

αic
⊺gi ≥−∆0

∑

αi ≥−n∆αmax,

where ∆0 > 0 is the greatest value of −c⊺z over all z ∈ C(A) for which xk + λz is feasible for
sufficiently small λ> 0 and where αmax =max{αi }. Rewriting this, we get

∆0 ≥
c⊺(xk −xmin)

nαmax

.

Now, let αz be the discrete Dantzig-descent augmentation applied to xk, leading to xk+1 := xk+αz.
As xk is a vertex and z an edge direction, we have xk,z ∈

1
δ
Z

n. As xk+1 is lies on the intersection
of the half-line {x= xk +λz : λ≥ 0} with some facet of the polyhedron, we get that xk+1 ∈

1
δ2
Z

n.
Consequently, α≥ 1/δ.
Thus, we get

c⊺(xk −xk+1) =−αc⊺z=α∆0 ≥
1

δ
∆0 ≥

c⊺(xk −xmin)

nδαmax

≥
c⊺(x0 −xmin)

nδγ
,

where γ is the maximum entry in any feasible solution (or, equivalently, in any vertex). Thus, we
have a factor of β = 1/(nδγ) of objective-function decrease at each augmentation. Applying Lemma
3 with ǫ= 1/δ then yields the desired bound on the number of augmentations 2n2δγ log(δ c⊺(x0 −

xmin))) to reach a vertex x̄ with |c⊺(x̄−xmin)|< 1/δ. This vertex must be optimal.

2.2.3. Proof of part (b) of Theorem 2: Discrete steepest descent. The proof here
follows exactly the same lines of the proof to Theorem 1, part (c).



De Loera, Hemmecke and Lee: Augmentation in Linear and Integer Linear Programming
13

2.3. Proof of Theorem 3. If we keep A and B fixed and let N vary, the binary encoding
lengths of the Graver bases of [A,B](N) are bounded by a polynomial in N , see [14]. More precisely,
there is a constant g(A,B), the so-called Graver complexity of A and B (see [22, 30, 3]), given by

max{‖g‖1 : g ∈ G(BG(A))} ,

such that
∣

∣G
(

[A,B](N)
)∣

∣≤

(

N

g(A,B)

)

∣

∣G
(

[A,B](g(A,B))
)∣

∣ ∈O
(

Ng(A,B)
)

.

This means that we can find a steepest-descent direction in G
(

[A,B](N)
)

in time polynomial in N
and by Theorems 1 and 2, parts (c), the number of steepest-descent augmentations to pass from any
feasible solution x0 to an optimal solution is bounded polynomially in N . As the input of an N -fold
LP/ILP contains Θ(N) integer numbers (to encode b and c), we can augment x0 to optimality in
strongly polynomial-time. It remains for us to show how we can find such a feasible solution x0

in strongly polynomial-time. Note that by a shift of coordinates, we may assume without loss of
generality that l= 0.
To find such a feasible solution x0, consider the extended N -fold LP/ILP with problem matrix















B O O IdB −IdB B O O IdB −IdB · · · B O O IdB −IdB
A IdA −IdA O O

A IdA −IdA O O
. . .

A IdA −IdA O O















.

This is an N -fold matrix composed using the matrices Ā =
(

A IdA −IdA O O
)

and B̄ =
(

B O O IdB −IdB
)

. As the right-hand side of our LP/ILP, we choose the same right-hand side vec-
tor b, and as objective vector we use a 0/1-vector with zeros in the original components and with
ones in the auxiliary components. All variables get lower bounds of 0, and the original variables
get upper bounds specified by u. Due to the special form of the matrix, we can immediately write
down a feasible solution to this problem. (Simply assign zeros to the original variables and set the
auxiliary slack variables according to the positive and negative parts of the right-hand side values.)
Optimizing this special linear objective function can now be done in strongly polynomial-time,

since Ā and B̄ are constant the running time of this auxiliary N -fold LP/ILP is bounded polynomi-
ally in N , but does not depend on the right-hand side or the objective vector. If the optimal value
of this auxiliary LP/ILP is 0, a feasible solution to our original problem has been found (simply
drop the auxiliary components). If the optimal value is positive, our original problem is infeasible.
�

3. Concluding remarks Through the notion of Graver basis, we have obtained extensions of
classical results of Bland, Edmonds, and Karp. Our new version applies now to the case of integer-
linear programs. As a consequence we have also derived the first-ever strongly polynomial-time
algorithm for N -fold integer-linear optimization. Our new results also show that Kitahara-Mizuno-
style bounds [24] hold in larger generality to include augmentations that go through the interior
of the polytope and are not restricted to edges. Theorem 1 is in fact an ILP extension of those
bounds too.
There are at least three interesting directions for improvement and further research. First, we

remark the numbers n and 2n−2 from Carathéodory’s and Sebö’s theorems we used in many of the
arguments can be further improved to be n− rank(A) and 2(n− rank(A))−2 respectively because
the arguments can be modified to use the dimension of the kernel of A. Such small improvement
slightly strengthens several of the results of the paper, but we leave the details to the reader.
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Second, as was demonstrated in [10, 11] the estimation of number of augmentations contribute
to the estimation of the diameters of polytopes. Third, it would be interesting to improve our
strongly polynomial algorithm for N -fold matrices. Currently, the number of augmentations does
not depend on b and u, but is a polynomial of degree O(g(A,B)) with g(A,B) the Graver complexity
(see [22, 30, 3]) Thus the degree depends on the fixed matrices A and B. It would be desirable to
arrive to a lower exponent algorithm, like the one of [20] which is not strongly polynomial yet, the
number of augmentations is linear in the binary encoding of b and u, and it is only cubic in N ,
O(N3).
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