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Abstract

Restoring images degraded by spatially varying blur is a problem encountered in
many disciplines such as astrophysics, computer vision or biomedical imaging. One of
the main challenges to perform this task is to design efficient numerical algorithms to
approximate integral operators.

We introduce a new method based on a sparse approximation of the blurring oper-
ator in the wavelet domain. This method requires O

(
Nε−d/M

)
operations to provide

ε-approximations, where N is the number of pixels of a d-dimensional image and M ≥ 1
is a scalar describing the regularity of the blur kernel. In addition, we propose original
methods to define sparsity patterns when only the operators regularity is known.

Numerical experiments reveal that our algorithm provides a significant improvement
compared to standard methods based on windowed convolutions.

Keywords: Image deblurring, spatially varying blur, integral operator approximation,
wavelet compression, windowed convolution

1 Introduction

The problem of image restoration in the presence of spatially varying blur appears in many
domains. Examples of applications in computer vision, biomedical imaging and astronomy
are shown in Figures 1 and 2 respectively. In this paper, we propose new solutions to address
one of the main difficulties associated to this problem: the computational evaluation of
matrix-vector products.

A spatially variant blurring operator can be modelled as a linear operator and therefore
be represented by a matrix H of size N ×N , where N represents the number of pixels of
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a d-dimensional image. Sizes of typical images range from N = 106 for small 2D images,
to N = 1010 for large 2D or 3D images. Storing matrices and computing matrix-vector
products using the standard representation is impossible for such sizes: it amounts to tera
or exabytes of data/operations. In cases where the Point Spread Functions (PSF) supports
are sufficiently small in average over the image domain, the operator can be coded as a
sparse matrix and be applied using traditional approaches. However, in many practical
applications this method turns out to be too intensive and cannot be applied with decent
computing times. This may be due to i) large PSFs supports or ii) the need for super-
resolution applications where the PSFs sizes increase with the resolution. Spatially varying
blurring matrices therefore require the development of computational tools to compress
them and evaluate them in an efficient way.

Existing approaches

To the best of our knowledge, the first attempts to address this issue appeared at the
beginning of the seventies (see e.g. [41]). Since then, many techniques were proposed. We
describe them briefly below

Composition of diffeomorphisms and convolutions One of the first method pro-
posed to reduce the computational complexity, is based on first applying a diffeomorphism
to the image domain [41, 42, 34, 45, 20] followed by a convolution using FFTs and an
inverse diffeomorphism. The diffeomorphism is chosen in order to transform the spatially
varying blur into an invariant one. This approach suffers from two important drawbacks:

• first it was shown that not all spatially varying kernel can be approximated by this
approach [34],

• second, this method requires good interpolation methods and the use of Euclidean
grids with small grid size in order to correctly estimate integrals.

Separable approximations Another common idea is to approximate the kernel of the
operator by a separable one that operates in only one dimension. The computational
complexity of a product is thus reduced to d applications of one-dimensional operators.
It drastically improves the performance of algorithms. For instance, in 3D fluorescence
microscopy, the authors of [39, 32, 4, 50] proposed to approximate PSFs by anisotropic
Gaussians and assumed that the Gaussian variances only vary along one direction (e.g.,
the direction of light propagation). The separability assumption implies that both the
PSF and its variations are separable. Unfortunately, most physically realistic PSFs are
not separable and do not vary in a separable manner (see e.g., Figure 3). This method is
therefore usually too crude.
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Wavelet or Gabor multipliers Some works [9, 19, 21, 29] proposed to approximate
blurring operators H using operators diagonal in wavelet bases, wavelet packet or Gabor
frames. This idea consists of defining an approximation H̃ of kind H̃ = ΨΣΨ∗, where Ψ∗

and Ψ are wavelet or Gabor transforms and Σ is a diagonal matrix. These diagonal approx-
imations mimic the fact that shift-invariant operators are diagonal in the Fourier domain.
These approaches lead to fast O(N) or O(N log(N)) algorithms to compute matrix-vector
products. In [19], we proposed to deblur images using diagonal approximations of the
blurring operators in redundant wavelet packet bases. This approximation was shown to
be fast and efficient in deblurring images when the exact operator was scarcely known or
in high noise levels. It is however too coarse for applications with low noise levels. This
approach seems however promising. Gabor multipliers are considered the state-of-the-art
for 1D signals in ODFM systems for instance (slowly varying smoothing operators).

Weighted convolutions Probably the most commonly used approaches consist of ap-
proximating the integral kernel by spatially weighted sum of convolutions. Among these
approaches two different ideas have been explored. The first one will be called windowed
convolutions in this paper and appeared in [36, 37, 25, 28, 16]. The second one was proposed
in [22] and consists of expanding the PSFs in a common basis of small dimensionality.

Windowed convolutions consists of locally stationary approximations of the kernel. We
advise the reading of [16] for an up-to-date description of this approach and its numerous
refinements. The main idea is to decompose the image domain into subregions and perform
a convolution on each subregion. The results are then gathered together to obtain the
blurred image. In its simplest form, this approach consists in partitioning the domain Ω
in squares of equal sizes. More advanced strategies consist in decomposing the domain
with overlapping subregions. The blurred image can then be obtained by using windowing
functions that interpolate the kernel between subregions (see, e.g., [36, 28, 16]). Various
methods have been proposed to interpolate the PSF. In [28], a linear interpolation is
performed, and in [16] higher order interpolation of the PSF are handled.

Sparse wavelet approximations The approach studied in this paper was proposed
recently and independently in [48, 49, 18]. The main idea is to represent the operator in the
wavelet domain by using a change of basis. This change of basis, followed by a thresholding
operation allows sparsifying the operator and use sparse matrix-vector products. The main
objective of this work is to provide solid theoretical foundations to these approaches.

1.1 Contributions of the paper

Our first contribution is the design of a new approach based on sparse approximation of H in
the wavelet domain. Using techniques initially developed for pseudo-differential operators
[5, 35], we show that approximations H̃ satisfying ‖H− H̃‖2→2 ≤ ε, can be obtained with

3



this new technique, in no more than O
(
Nε−d/M

)
operations. In this complexity bound,

M ≥ 1 is an integer that describes the smoothness of the blur kernel.
Controlling the spectral norm is usually of little relevance in image processing. Our

second contribution is the design of algorithms that iteratively construct sparse matrix
patterns adapted to the structure of images. These algorithms rely on the fact that both
natural images and operators can be compressed simultaneously in the same wavelet basis.

As a third contribution, we propose an algorithm to design a generic sparsity structure
when only the operators regularity is known. This paves the way to the use of wavelet
based approaches in blind deblurring problems where operators need to be inferred from
the data.

We finish the paper by numerical experiments. We show that the proposed algorithms
allow significant speed ups compared to some windowed convolutions based methods.

Let us emphasize that the present paper is a continuation of our recent contribution [18].
The main evolution is that i) we provide all the theoretical foundations of the approach with
precise hypotheses, ii) we propose a method to automatically generate adequate sparsity
patterns and iii) we conduct a thorough numerical analysis of the method.

1.2 Outline of the paper

The outline of this paper is as follows. We introduce the notation used throughout the
paper in Section 2. We propose an original mathematical description of blurring operators
appearing in image processing in Section 3. We introduce the proposed method and analyze
its theoretical efficiency Section 4. We then propose various algorithms to design good
sparsity patterns in Section 5. Finally, we perform numerical tests to analyze the proposed
method and compare it to the standard windowed convolutions based methods in Section
6.

(a) Sharp image (b) Blurred image and the associated PSF

Figure 1: An example in computer vision. Image degraded by spatially varying blur due
to a camera shake. Images are from [27] and used here by courtesy of Michael Hirsch.
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Figure 2: An example in biology. Image of a multicellular tumor spheroid imaged in 3D
using Selective Plane Illumination Microscope (SPIM). Fluorescence beads (in green) are
inserted in the tumor model and allow the observation of the PSF at different locations.
Nuclei are stained in red. On the left-hand-side, 3D PSFs outside the sample are observed.
On the right-hand-side, 3D PSFs inside the sample are observed. This image is from [30]
and used here by courtesy of Corinne Lorenzo.

Figure 3: Three PSFs displayed in a XZ plan at different z depths: −20µm , 0µm and 20µm.
PSFs are generated using Gibson and Lanni 3D optical model from the PSF Generator
[31]. The parameters used are ni = 1.5, ns = 1.33, ti = 150µm, NA = 1.4 and a wavelength
of 610nm.
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2 Notation

In this paper, we consider d dimensional images defined on a domain Ω = [0, 1]d. The
space L2(Ω) will denote the space of squared integrable functions defined on Ω.

Let α = (α1, . . . , αd) denote a multi-index. The sum of its components is denoted
|α| =

∑d
i=1 αi. The Sobolev spaces WM,p are defined as the set of functions f ∈ Lp with

partial derivatives up to order M in Lp where p ∈ [1,+∞] and M ∈ N. These spaces,
equipped with the following norm are Banach spaces

‖f‖WM,p = ‖f‖Lp + |f |WM,p , where, |f |WM,p =
∑
|α|=M

‖∂αf‖Lp . (1)

In this notation, ∂αf = ∂α1

∂x
α1
1

. . . ∂
αd

∂x
αd
d

f .

Let X and Y denote two metric spaces endowed with their respective norms ‖ · ‖X
and ‖ · ‖Y . In all the paper H : X → Y will denote a linear operator and H∗ its adjoint
operator. The subordinate operator norm is defined by

‖H‖X→Y = sup
x∈X,‖x‖X=1

‖Hx‖Y .

The notation ‖H‖p→q corresponds to the case where X and Y are endowed with the
standard Lp and Lq norms. In all the paper, operators acting in a continuous domain are
written in plain text format H. Finite dimensional matrices are written in bold fonts H.
Approximation operators will be denoted H̃ in the continuous domain or H̃ in the discrete
domain.

In this paper we consider a compactly supported wavelet basis of L2(Ω). We first
introduce wavelet basis of L2([0, 1]). We let φ and ψ denote the scaling and mother wavelets.
We assume that the mother-wavelet ψ has M vanishing moments, i.e.

for all 0 ≤ m < M,

∫
[0,1]

tmψ(t)dt = 0.

We assume that supp(ψ) = [−c(M)/2, c(M)/2]. Note that c(M) ≥ 2M − 1, with equality
for Daubechies wavelets, see, e.g., [33, Theorem 7.9, p. 294].

We define translated and dilated versions of the wavelets for j ≥ 0 as follows

φj,l = 2j/2φ
(
2j · − l

)
,

ψj,l = 2j/2ψ
(
2j · − l

)
, (2)

with l ∈ Tj and Tj = {0, . . . , 2j − 1}.
In dimension d, we use separable wavelet bases, see, e.g., [33, Theorem 7.26, p. 348].

Let m = (m1, . . . ,md). Define ρ0
j,l = φj,l and ρ1

j,l = ψj,l. Let e = (e1, . . . , ed) ∈ {0, 1}d. For
ease of reading, we will use the shorthand notation λ = (j,m, e). We also denote

Λ0 =
{

(j,m, e) | j ∈ Z, m ∈ Tj , e ∈ {0, 1}d
}
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and
Λ =

{
(j,m, e) | j ∈ Z, m ∈ Tj , e ∈ {0, 1}d \ {0}

}
.

Wavelet ψλ is defined by ψλ(x1, . . . , xd) = ψej,m(x1, . . . , xd) = ρe1j,m1
(x1) . . . ρedj,md(xd).

Elements of the separable wavelet basis consist of tensor products of scaling and mother
wavelets at the same scale. Note that if e 6= 0 wavelet ψej,m has M vanishing moments in

Rd. We let Ij,m = ∪e suppψej,m and Iλ = suppψλ.
We assume that every function f ∈ L2(Ω) can be written as

u =
〈
u, ψ0

0,0

〉
ψ0

0,0 +
∑

e∈{0,1}d\{0}

+∞∑
j=0

∑
m∈Tj

〈
u, ψej,m

〉
ψej,m

=
〈
u, ψ0

0,0

〉
ψ0

0,0 +
∑
λ∈Λ

〈u, ψλ〉ψλ

=
∑
λ∈Λ0

〈u, ψλ〉ψλ

This is a slight abuse since wavelets defined in (2) do not define a Hilbert basis of L2([0, 1]d).
There are various ways to define wavelet bases on the interval [12] and wavelets having a
support intersecting the boundary should be given a different definition. We stick to these
definitions to keep the proofs simple.

We let Ψ∗ : L2(Ω)→ l2(Z) denote the wavelet decomposition operator and Ψ : l2(Z)→
L2(Ω) its associated reconstruction operator. The discrete wavelet transform is denoted
Ψ : RN → RN . We refer to [33, 15, 12] for more details on the construction of wavelet
bases.

3 Blurring operators and their mathematical properties

3.1 A mathematical description of blurring operators

In this paper, we consider d-dimensional real-valued images defined on a domain Ω = [0, 1]d,
where d denotes the space dimension. We consider a blurring operator H : L2(Ω)→ L2(Ω)
defined for any u ∈ L2(Ω) by the following integral operator:

∀x ∈ Ω, Hu(x) =

∫
y∈Ω

K(x, y)u(y)dy. (3)

The function K : Ω × Ω → R is a kernel that defines the Point Spread Function (PSF)
K( · , y) at each location y ∈ Ω. The image Hu is the blurred version of u. By the
Schwartz kernel theorem, a linear operator of kind (3) can represent any linear operator
if K is a generalized function. We thus need to determine properties of K specific to
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blurring operators that will allow to design efficient numerical algorithms to approximate
the integral (3).

We propose a definition of the class of blurring operators below.

Definition 1 (Blurring operators). Let M ∈ N and f : [0, 1]→ R+ denote a non-increasing
bounded function. An integral operator is called a blurring operator in the class A(M,f)
if it satisfies the following properties:

1. Its kernel K ∈WM,∞(Ω× Ω);

2. The partial derivatives of K satisfy:

(a)
∀ |α| ≤M, ∀(x, y) ∈ Ω× Ω, |∂αxK(x, y)| ≤ f (‖x− y‖∞) . (4)

(b)
∀ |α| ≤M, ∀(x, y) ∈ Ω× Ω,

∣∣∂αyK(x, y)
∣∣ ≤ f (‖x− y‖∞) . (5)

Let us justify this model from a physical point of view. Most imaging systems satisfy
the following properties:

Spatial decay.
The PSFs usually have a bounded support (e.g. motion blurs, convolution with
the CCD sensors support) or at least a fast spatial decay (Airy pattern, Gaussian
blurs,...). This property can be modelled as property 2a. For instance, the 2D Airy
disk describing the PSF due to diffraction of light in a circular aperture satisfies 2a
with f(r) = 1

(1+r)4
(see e.g. [6]).

PSF smoothness.
In most imaging applications, the PSF at y ∈ Ω, K( · , y) is smooth. Indeed it is the
result of a convolution with the acquisition device impulse response which is smooth
(e.g. Airy disk). This assumption motivates inequality (4).

PSFs variations are smooth
We assume that the PSF does not vary abruptly on the image domain. This property
can be modelled by inequality (5). It does not hold true in all applications. For
instance, when sharp discontinuities occur in the depth maps, the PSFs can only be
considered as piecewise regular. This assumption simplifies the analysis of numerical
procedures to approximate H. Moreover, it seems reasonable in many settings. For
instance, in fluorescence microscopy, the PSF width (or Strehl ratio) mostly depends
on the optical thickness, i.e. the quantity of matter laser light has to go through,
and this quantity is intrinsically continuous. Even in cases where the PSFs variations
are not smooth, the discontinuities locations are usually known only approximately
and it seems important to smooth the transitions in order to avoid reconstruction
artifacts [2].
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Remark 1. A standard assumption in image processing is that the constant functions
are preserved by the operator H. This hypothesis ensures that brightness is preserved on
the image domain. In this paper we do not make this assumption and thus encompass
image formation models comprising blur and attenuation. Handling attenuation is crucial
in domains such as fluroescence microscopy.

Remark 2. The above properties are important to derive mathematical theories, but only
represent an approximation of real systems. The methods proposed in this paper may be
applied even if the above properties are not satisfied and are likely to perform well. It is
notably possible to relax the boundedness assumption.

4 Wavelet representation of the blurring operator

In this section, we show that blurring operators can be well approximated by sparse rep-
resentations in the wavelet domain. Since H is a linear operator in a Hilbert space, it can
be written as H = ΨΘΨ∗, where Θ : l2(Z) → l2(Z) is the (infinite dimensional) matrix
representation of the blur operator in the wavelet domain. Matrix Θ is characterized by
the coefficients:

θλ,µ = 〈Hψλ, ψµ〉 , ∀λ, µ ∈ Λ. (6)

In their seminal papers [35, 13, 5], Y. Meyer, R. Coifman, G. Beylkin and V. Rokhlin
prove that the coefficients of Θ decrease fastly away from its diagonal for a large class
of pseudo-differential operators. They also show that this property allows to design fast
numerical algorithms to approximate H, by thresholding Θ to obtain a sparse matrix. In
this section, we detail this approach precisely and adapt it to the class of blurring operators.

This section is organized as follows: first, we discuss the interest of approximating
H in a wavelet basis rather than using the standard discretization. Second, we provide
various theoretical results concerning the number of coefficients necessary to obtain an
ε-approximation of H.

4.1 Discretization of the operator by projection

The proposed method relies on a Galerkin discretization of H. The main idea is to use a
projection on a finite dimensional linear subspace Vq = Span(ϕ1, . . . , ϕq) of L2(Ω) where
(ϕ1, ϕ2, . . .) is an orthonormal basis of L2(Ω). We define a projected operator Hq by
Hqu = PVqHPVqu. where PVq is the projector on Vq. We can associate a q × q matrix Θ
to this operator defined by Θ = (〈Hϕi, ϕj〉)1≤i,j≤q.

It is very common in image processing to assume that natural images belong to func-
tional spaces containing functions with some degree of regularity. For instance, images are
often assumed to be of bounded total variation [40]. This hypothesis implies that

‖u− PVqu‖2 = O(q−α) (7)
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for a certain α > 0. For instance, in 1D, if (ϕ1, ϕ2, . . .) is a wavelet or a Fourier basis and
u ∈ H1(Ω) then α = 2. For u ∈ BV (Ω) (the space of bounded variation functions), α = 1
in 1D and α = 1/2 in 2D [33, 38].

Moreover, if we assume thatH is a regularizing operator, meaning that ‖Hu−PVqHu‖2 =
O(q−β) with β ≥ α for all u satisfying (7), then we have:

‖Hu−Hqu‖2
= ‖Hu− PVqH(u+ PVqu− u)‖2
≤ ‖Hu− PVqHu‖2 + ‖PVqH‖2→2‖PVqu− u‖2
= O(q−α).

This simple analysis shows that under mild assumptions, the Galerkin approximation
of the operator converges and that the convergence rate can be controlled. The situation
is not as easy for standard discretization using finite elements for instance (see, e.g., [47, 3]
where a value α = 1/6 is obtained in 2D for BV functions, while the simple analysis above
leads to α = 1/2).

4.2 Discretization by projection on a wavelet basis

In order to get a representation of the operator in a finite dimensional setting, we truncate
the wavelet representation at scale J . This way, we obtain an operator H̃ acting on a space
of dimension N , where N = 1 +

∑J−1
j=0 (2d − 1)2dj denotes the numbers of wavelets kept to

represent images.
After discretization, it can be written in the following convenient form:

H = ΨΘΨ∗ (8)

where Ψ : RN → RN is the discrete separable wavelet transform. Matrix Θ is an N ×N
matrix which corresponds to a truncated version (also called finite section) of the matrix
Θ defined in (6).

4.3 Theoretical guarantees with sparse approximations

Sparse approximations of integral operators have been studied theoretically in [5, 35].
They then have been successfully used in the numerical analysis of PDEs [14, 11, 10].
Surprisingly, they have been scarcely applied to image processing. The two exceptions we
are aware of are the paper [9], where the authors show that wavelet multipliers can be
useful to approximate foveation operators. More recently, [48] proposed an approach that
is very much related to that of our paper.

Let us provide a typical result that motivates the proposed approach.
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Lemma 1 (Decay of θλ,µ). Assume that H is a blurring operator (see Definition 1) in the
class A(M,f). Assume that the mother wavelet is compactly supported with M vanishing
moments.

Then, the coefficients of Θ satisfy the following inequality for all λ = (j,m, e) ∈ Λ and
µ = (k, n, e′) ∈ Λ:

|θλ,µ| ≤ CM2−(M+ d
2 )|j−k|2−min(j,k)(M+d)fλ,µ (9)

where fλ,µ = f (dist (Iλ, Iµ)), CM is a constant that does not depend on λ and µ and

dist (Iλ, Iµ) = inf
x∈Iλ, y∈Iµ

‖x− y‖∞

= max

(
0,
∥∥∥2−jm− 2−kn

∥∥∥
∞
− (2−j + 2−k)

c(M)

2

)
. (10)

Proof. See Appendix A.

Lemma 1 is the key to obtain all subsequent complexity estimates.

Theorem 2. Let Θη be the matrix obtained by zeroing all coefficients in Θ such that

2−min(j,k)(M+d)fλ,µ ≤ η,

with λ = (j,m, e) ∈ Λ and µ = (k, n, e′) ∈ Λ.
Let H̃η = ΨΘηΨ

∗ denote the resulting operator. Suppose that f is compactly supported
in [0, κ] and that η ≤ log2(N)−(M+d)/d. Then:

i) The number of non zero coefficients in Θη is bounded above by

C ′MNκ
d η−

d
M+d (11)

where C ′M > 0 is independent of N .

ii) The approximation H̃η satisfies
∥∥∥H− H̃η

∥∥∥
2→2

. η
M
M+d .

iii) The number of coefficients needed to satisfy
∥∥∥H− H̃η

∥∥∥
2→2
≤ ε is bounded above by

C ′′MNκ
d ε−

d
M (12)

where C ′′M > 0 is independent of N .

Proof. See Appendix B.

Let us summarize the main conclusions drawn from this section:
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• A discretization in the wavelet domain provides better theoretical guarantees than
the standard quadrature rules (see Section 4.1).

• The method is capable of handling automatically the degree of smoothness of the

integral kernel K since there is a dependency in ε−
d
M where M is the smoothness of

the integral operator.

• We will see in the next section that the method is quite versatile since different
sparsity patterns can be chosen depending on the knowledge of the blur kernel and
on the regularity of the signals that are to be processed.

• The method can also handle more general singular operators as was shown in the
seminal papers [35, 13, 5].

Remark 3. Similar bounds as (9) can be derived with less stringent assumptions. First,
the domain can be unbounded, given that kernels have a sufficiently fast decay at infinity.
Second, the kernel can blow up on its diagonal, which is the key to study Calderon-Zygmund
operators (see [35, 13, 5] for more details). We sticked to this simpler setting to simplify
the proofs.

5 Identification of sparsity patterns

A key step to control the approximation quality is the selection of the coefficients in the
matrix Θ that should be kept. For instance, a simple thresholding of Θ leads to sub-
optimal and somewhat disappointing results. In this section we propose algorithms to
select the most relevant coefficients for images belonging to functional spaces such as that
of bounded variation functions. We study the case where Θ is known completely and the
case where only an upper-bound such as (9) is available.

5.1 Problem formalization

Let H be the Nd × Nd matrix defined in equation (8). We wish to approximate H by a
matrix H̃K of kind ΨSKΨ∗ where SK is a matrix with at most K non-zero coefficients.
Let SK denote the space of N × N matrices with at most K non-zero coefficients. The
problem we address in this paragraph reads

min
SK∈SK

∥∥∥H− H̃K

∥∥∥
X→2

= min
SK∈SK

max
‖u‖X≤1

‖Hu−ΨSKΨ∗u‖2 .

The solution of this problem provides the best K-sparse matrix SK , in the sense that no
other choice provides a better SNR uniformly on the unit-ball {u ∈ RN , ‖u‖X ≤ 1}.
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5.1.1 Theoretical choice of the space X

The norm ‖ · ‖X should be chosen depending on the type of images that have to be blurred.
For instance, it is well-known that natural images are highly compressible in the wavelet
domain [33, 43]. This observation is the basis of JPEG2000 compression standard. There-
fore, a natural choice could be to set ‖u‖X = ‖Ψ∗u‖1. This choice will ensure a good
reconstruction of images that have a wavelet decomposition with a low `1-norm.

Another very common assumption in image processing is that images have a bounded
total variation. The space of functions with bounded total variation [1] contains images
discontinuous along edges with finite length. It is one of the most successful tools for image
processing tasks such as denoising, segmentation, reconstruction, ... Functions in BV (Ω)
can be characterized by their wavelet coefficients [38, 33]. For instance, if u ∈ BV (Ω), then∑

λ∈Λ0

2j(1−
d
2

) |〈u, ψλ〉| < +∞ (13)

for all wavelet bases. This results is due to embeddings of BV space in Besov spaces which
are characterized by their wavelet coefficients (see [10] for more details on Besov spaces).
This result motivated us to consider norms defined by

‖u‖X = ‖ΣΨ∗u‖1
where Σ = diag(σ1, . . . , σN ) is a diagonal matrix. Depending on the regularity level of the
images considered, different diagonal coefficients can be used. For instance, for BV signals
in 1D, one could set σi = 2j(i)/2 where j(i) is the scale of the i-th wavelet, owing to (13).

5.1.2 Practical choice of the space X

More generally, it is possible to adapt the weights σi depending on the images to recover.
Most images exhibit a similar decay of wavelet coefficients across subbands. This decay is a
characteristic of the functions regularity (see e.g. [26]). To illustrate this fact, we conducted
a simple experiment in Figure 4. We evaluate the maximal value of the amplitude of wavelet
coefficients of three images with different contents across scales. The wavelet transform
is decomposed at level 4 and we normalize the images so that their maximum wavelet
coefficient is 1. As can be seen even though the maximal values differ from one image to
the next, their overall behavior is the same: amplitudes decay nearly dyadically from one
scale to the next. The same phenomenon can be observed with the mean value.

This experiment suggests setting σi = 2j(i) in order to normalize the wavelet coefficients
amplitude in each subband. Once again, the same idea was explored in [48].

5.1.3 An optimization problem

We can now take advantage of the fact that images and operators are sparse in the same
wavelet basis. Let z = Ψ∗u and ∆ = Θ − SK . Since we consider orthogonal wavelet
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(a) Boat
(1−0.02−0.02−0.009−0.004)

(b) Drosophila
(1−0.04−0.02−0.007−0.004)

(c) Pattern
(1−0.02−0.02−0.009−0.004)

Figure 4: Three pictures and the mean amplitude of their wavelet coefficients at each scale
of the wavelet transform.

transforms, we have ‖Ψu‖2 = ‖u‖2, for any u ∈ RN therefore:∥∥∥H− H̃K

∥∥∥
X→2

= max
‖u‖X≤1

‖Ψ(Θ− SK)Ψ∗u‖2

= max
‖Σz‖1≤1

‖(Θ− SK)z‖2

= max
‖z‖1≤1

∥∥∆Σ−1z
∥∥

2
.

Since the operator norm ‖A‖1→2 = max
1≤i≤N

∥∥∥A(i)
∥∥∥

2
, where A(i) denote the i-th column of

the N × N matrix A and by remarking that (∆Σ−1)(i) = ∆(i)σ−1
i , we finally get the

following simple expression for the operator norm:∥∥∥H− H̃
∥∥∥
X→2

= max
1≤i≤N

1

σi

∥∥∥∆(i)
∥∥∥

2
. (14)

Our goal is thus to find the solution of:

min
SK∈SK

max
1≤i≤N

1

σi

∥∥∥∆(i)
∥∥∥

2
. (15)

5.2 Link with the approach in [48]

In this paragraph, we show that the method proposed in [49, 48], can be interpreted with
the formalism given above. In those papers, Θ is approximated by Θ̃ using the following
rule:

Θ̃i,j =

{
Θi,j if

Θi,j

wj
is in the K largest values of ΘW−1

0 otherwise.
(16)
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The weights wi are set as constant by subbands and learned as described in paragraph
5.1.2.

The thresholding rule (16) can be interpreted as the solution of the following problem:

min
Θ̃∈SK

∥∥∥Θ− Θ̃
∥∥∥

W→∞
,

where here ‖x‖W = ‖Wx‖1 with W = diag(wi) a diagonal matrix. Indeed, the above
problem is equivalent to:

min
Θ̃∈SK

max
1≤i,j≤N

∣∣∣∣ 1

wj

(
Θ− Θ̃

)
i,j

∣∣∣∣ .
In other words, the method proposed in [49, 48] constructs a K best-term approximation
of Θ in the metric ‖ · ‖W→∞.

Overall, the problem is very similar to (15), except that the image quality is evaluated
through an infinite norm in the wavelet domain, while we propose using a Euclidean norm
in the spatial domain. We believe that this choice is more relevant for image processing
since the SNR is the most common measure of image quality. In practice, we will see in
the numerical experiments that both methods lead to very similar practical results.

Finally, let us mention that the authors in [48] have an additional concern of storing
the matrix representation with the least memory. They therefore quantize the coefficients
in Θ. Since the main goal in this paper is the design of fast algorithms for matrix-vector
products, we do not consider this extra refinement.

5.3 An algorithm when Θ is known

Finding the minimizer of problem (15) can be achieved using a simple greedy algorithm:
the matrix Sk+1 is obtained by adding the largest coefficient of the column ∆i with largest
Euclidean norm to Sk. This procedure can be implemented efficiently by using quick sort
algorithms. The complete procedure is described in Algorithm 1. The overall complexity
of this algorithm is O(N2 log(N)). The most computationally intensive step is the sorting
procedure in the initialisation. The loop on k can be accelerated by first sorting the set
(γj)1≤j≤N , but the algorithm’s complexity remains essentially unchanged.

5.4 An algorithm when Θ is unknown

In the previous paragraph, we assumed that the full matrix Θ was known. There are
at least two reasons that make this assumption irrelevant. First, computing Θ is very
computationally intensive and it is not even possible to store this matrix in RAM for
medium sized images (e.g. 512× 512). Second, in blind deblurring problems, the operator
H needs to be inferred from the data and adding priors on the sparsity pattern of SK
might be an efficient choice to improve the problem identifiability.
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Algorithm 1: An algorithm to find the minimizer of (15).

Input:
Θ: N ×N matrix;
Σ: Diagonal matrix;
K: the number of elements in the thresholded matrix;
Output:
SK : Matrix minimizing (15)
Initialization:
Set SK = 0 ∈ RN×N ;
Sort the coefficients of each column Θ(j) of Θ in decreasing order;
Obtain A(j) the sorted columns Θ(j) and index sets Ij ;
The sorted columns A(j) and index set Ij satisfy A(j)(i) = Θ(j)(Ij(i));

Compute the norms γj =
‖Θ(j)‖22
σ2
j

;

Define O = (1, . . . , 1) ∈ RN ;
O(j) is the index of the largest coefficient in A(j) not yet added to SK ;
begin

for k = 1 to K do
Find l = arg max

j=1...N
γj ;

(Find the column l with largest Euclidean norm)
Set SK(Il(O(l)), l) = Θ(Il(O(l)), l) ;
(Add the coefficient in the l-th column at index Il(O(l))

Update γl = γl −

(
A(l)(O(l))

σl

)2

;

(Update norms vector)
Set O(l) = O(l) + 1 ;
(The next value to add in l-th column will be at index O(l) + 1)

end

end
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When Θ is unknown, we may take advantage of equation (9) to define sparsity patterns.
A naive approach would consist in applying Algorithm (1) directly on the upper-bound
(9). However, this matrix cannot be stored and this approach is applicable only for small
images. In order to reduce the computational burden, one may take advantage of the
special structure of the upper-bound: equation (9) indicates that the coefficients θλ,µ can
be discarded for sufficiently large |j−k| and sufficiently large distance between the wavelet
supports. Equation (9) thus means that for a given wavelet ψλ, only its spatial neighbours
in neighbouring scales have significant correlation coefficients 〈Hψλ, ψµ〉. We may thus
construct sparsity patterns using the notion of multiscale neighbourhoods defined below.

Definition 2 (Multiscale shift). The multiscale shift sλ,µ ∈ Zd between two wavelets ψλ
and ψµ is defined by

sλ,µ =
⌊ n

2max(k−j,0)

⌋
−
⌊ m

2max(j−k,0)

⌋
. (17)

We recall that λ = (j,m, e) ∈ Λ and µ = (k, n, e′) ∈ Λ. Note that for k = j, the multi-
scale shift is just sλ,µ = n − m and corresponds to the standard shift between wavelets,
measured as a multiple of the characteristic size 2−j . The divisions by 2max(k−j,0) and
2max(j−k,0) allow to rescale the shifts at the coarsest level. This definition is illustrated in
Figure 5.

Definition 3 (Multiscale neighborhood). Let

NNN =
{

(j, (k, s)), (j, k) ∈ {0, . . . , log2(N)− 1}2, s ∈ {0, . . . , 2min(j,k) − 1}d
}

denote the set of all neighborhood relationships, i.e. the set of all possible couples of type
(scale, (scale,shift)). A multiscale neigborhood N is an element of the powerset P(NNN ).

Definition 4 (Multiscale neighbors). Given a multiscale neigborhood N , two wavelets ψλ
and ψµ will be said to be N -neighbors if (j, (k, sλ,µ)) ∈ N where sλ,µ is defined in equation
(17).

The problem of finding a sparsity pattern is now reduced to finding a good multiscale
neighborhood. In what follows, we let NNN (j) = {(k, s), (j, (k, s)) ∈ NNN} denote the set of
all possible neighborhood relationships at scale j. This is illustrated in Figure 6. Let
N ∈ P(NNN ) denote a multiscale neighborhood. We define the matrix SN as follows:

SN (λ, µ) =

{
θλ,µ if ψλ is an N -neighbor of ψµ
0 otherwise.

Equation (9) indicates that
|θλ,µ| ≤ u(j, k, s)

with
u(j, k, s) = CM2−(M+ d

2 )|j−k|−(M+d) min(j,k)fj,k,s (18)
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j=0

j=1

j=2

s=0s=-1

s=0

Figure 5: Illustration of a multiscale shift on a 1D signal of size 8 with the Haar basis.
The shifts are computed with respect to wavelet ψ1,1. Wavelets ψ0,0, ψ2,2 and ψ2,3 have a
multiscale shift s = 0 with ψ1,1 since their support intersects that of ψ1,1. Wavelets ψ1,0,
ψ2,0 and ψ2,1 have a multiscale shift s = −1 with ψ1,1 since their support intersects that
of ψ1,0.
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scales

Figure 6: Illustration of a multiscale neighborhood on a 1D signal. In this example, the
neighborhood at scale 1 isN (1) = {(−1, 0), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1), (2, 0)}.
Notice that the two red wavelets at scale 2 are neighbors of the orange wavelet at scale 1
and that this relationship is described through only one shift.

and fj,k,s = f
(

max
(

0, 2−min(j,k) ‖s‖∞ − (2−j + 2−k) c(M)
2

))
. Let U be the matrix defined

by U(λ, µ) = u(j, k, sλ,µ). Finding a good sparsity pattern can now be achieved by solving
the following problem:

min
N∈P(NNN )
|N |=K

max
1≤i≤N

1

σi

∥∥∥(U− SN )(i)
∥∥∥

2
(19)

where (U− SN )(i) denotes the i-th column of (U− SN ).
In what follows, we assume that σi only depends on the scale j(i) of the i-th wavelet.

Similarly to the previous section, finding the optimal sparsity pattern can be performed
using a greedy algorithm. A multiscale neighborhood is constructed by iteratively adding
the couple (scale, (scale,shift)) that minimizes a residual. This technique is described in
Algorithm 2.

Note that the norms γk only depend on the scale j(k), so that the initialisation step only
requires O(N log2(N)) operations. Similarly to Algorithm 1, this algorithm can be accel-
erated by first sorting the elements of u(j, k, s) in decreasing order. The overall complexity
for this algorithm is O(N log(N)2) operations.

6 Numerical experiments

In this section we perform various numerical experiments in order to illustrate the theory
proposed in the previous sections and to compare the practical efficiency of wavelet based
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Algorithm 2: An algorithm to find the minimizer of (19).

Input:
u: Upper-bound defined in (18);
Σ: Diagonal matrix;
K: the number of elements of the neighborhood;
Output:
N : multiscale neighborhood minimizing (19)
Initialization:
Set N = ∅;
Compute the norms γk =

‖U(k)‖22
σ2
k

using the upper-bound u;

begin
for k = 1 to K do

Find j∗ = arg max
j=1...N

γj ;

(The column with largest norm)
Find (k∗, s∗) = arg max

(k,s)∈NNN (j∗)
u2(j∗, k, s)2max(j∗−k,0) ;

(The best scale and shift for this column is (k∗, s∗))
(The number of elements in the neighborhood relationship (j∗, (k, s)) is
2max(j∗−k,0))
Update N = N ∪ {(j∗, (k∗, s∗))} ;
Set γk = γk − u2(j∗, k∗, s∗) · 2max(j∗−k,0)

end

end
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methods against windowed convolutions (WC) based approaches. We first describe the
operators and images used in our experiments. Second, we provide numerical experiments
for the direct problems. Finally, we provide numerical comparisons for the inverse problem.

6.1 Preliminaries

6.1.1 Test images

We consider a set of 16 images of different natures: standard image processing images (the
boat, the house, Lena, Mandrill (see Figure 7a), peppers, cameraman), two satellite images,
three medical images, three buildings images, and two test pattern images (see Figure 7b).
Due to memory limitations, we only consider images of size N = 256 × 256. Note that a
full matrix of size N ×N stored in double precision weighs around 32 gigabytes.

6.1.2 Test operators

Three different blur kernels of different complexities are considered, see Figure 8. The PSFs
in Figure 8a and 8b modeled for all x ∈ [0, 1]2 by 2D Gaussians. Therefore the associated
kernel is defined for all (x, y) ∈ [0, 1]2 × [0, 1]2 by

K(x, y) =
1

2π |C(y)|
exp

[
1

2
(y − x)TC−1(y)(y − x)

]
.

The covariance matrices C are defined as:

• In Figure 8a: C(y) =

(
f(y1) 0

0 f(y1)

)
with f(t) = 2t, for t ∈ [0, 1]. The PSFs are

truncated out of a 11× 11 support.

• In Figure 8b: C(y) = R(y)TD(y)R(y) where R(y) is a rotation matrix of angle

θ = arctan
(
y1−0.5
y2−0.5

)
and D(y) =

(
g(y) 0

0 h(y)

)
with g(y) = 10

∥∥y − (0.5, 0.5)T
∥∥

2
and

h(y) = 2
∥∥y − (0.5, 0.5)T

∥∥
2
. The PSFs are truncated out of a 21× 21 support.

The PSFs in Figure 8c were proposed in [44] as an approximation of real spatially optical
blurs.

21



(a) Mandrill (b) Letters

Figure 7: The two images of size 256× 256 used in these numerical experiments

(a) (b) (c)

Figure 8: PSFs maps used in the paper. The PSFs in Figure 8a are Gaussians with
equal variances increasing in the vertical direction. The PSFs in Figure 8b are anisotropic
Gaussians with covariance matrices that depend on the polar coordinates. The PSFs in
Figure 8c are based on paper [44].
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6.1.3 Computation of the full Θ matrix

Before applying our approximation methods, matrix Θ needs to be computed explicitly.
The coefficients 〈Hψλ, ψµ〉 are approximated by their discrete counterparts. If ψλ and ψµ
denote discrete wavelets, we simply compute the wavelet transform of Hψλ and store it
into the λ-th column of Θ. This computation scheme is summarized in Algorithm 3. This
algorithm corresponds to the use of rectangle methods to evaluate the dot-products:∫

Ω

∫
Ω
K(x, y)ψλ(y)ψµ(x)dydx ' 1

N2d

∑
x∈X

∑
y∈X

K(x, y)ψλ(y)ψµ(x). (20)

Algorithm 3: An algorithm to compute Θ

Output:
Θ: the full matrix of H
begin

forall the λ do
Compute the wavelet ψλ using an inverse wavelet transform
Compute the blurred wavelet Hψλ
Compute

(〈
Hψλ,ψµ

〉)
µ

using one forward wavelet transform

Set
(〈

Hψλ,ψµ
〉)
µ

in the λ-th column of Θ.

end

end

6.2 Application to direct problems

In this section, we investigate the approximation properties of the proposed approaches
in the aim of computing matrix-vector products. In all numerical experiments, we use
an orthogonal wavelet transform with 4 decomposition levels. We always use Daubechies
wavelets.

6.2.1 Influence of vanishing moments

First of all we demonstrate the influence of vanishing moments on the quality of approxima-
tions. For each number of vanishing moments M ∈ {1, 2, 4, 6, 10}, a sparse approximation
H̃ is constructed by thresholding Θ, keeping the K = l × N largest coefficients with
l ∈ {0 . . . 40}. Then for each u in the set of 16 images, we compare H̃u to Hu computing
the pSNR. We then plot the average of pSNRs over the set of images with respect to the
number of operations needed for a matrix-vector product. The results of this experiment
are displayed in Figure 9. It appears that for the considered operators, using as many
vanishing moments as possible was preferable. Using more than 10 vanishing moments
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however led to insignificant performance increase while making the numerical complex-
ity higher. Therefore, in all the following numerical experiments we will use Daubechies
wavelets with 10 vanishing moments. Note that paper [48] only explored the use of Haar
wavelets. This experiment shows that very significant improvements can be obtained by
leveraging regularity of the integral kernel using vanishing moments. The behavior was
predicted by Theorem 2.

0 10 20 30 40

30

40

50

60

Number of operations divided by N

p
S

N
R

M = 1

M = 2

M = 4

M = 6

M = 10

Figure 9: pSNR of the blurred image using the approximated operator H̃u with respect
to the blurred image using the exact operator Hu. pSNRs have been averaged over the
set of test images. Daubechies wavelets have been used with different number vanishing
moments M ∈ {1, 2, 4, 6, 10}. The case M = 1 corresponds to Haar wavelets.

6.2.2 Comparison of different methods

Wavelets VS windowed convolutions. In this first numerical experiment, we evaluate∥∥∥H− H̃
∥∥∥

2→2
where H̃ is obtained by windowed convolutions method or sparse approxi-

mations in the wavelet domain.
The sparse approximation of the operator is constructed by thresholding the matrix Θ

in order to keep the K largest coefficients. We have set K = 2l×N with l ∈ {0 . . . 2 log2N}.
This way K is a multiple of the number of pixels in the image. The windowed convo-
lutions method is constructed by partitioning the image into 2l × 2l sub-images where
l ∈ {1 . . . log2N}. We also studied the case where sub-images overlap and linearly interpo-
lated the blur between sub-images as proposed in [36, 28]. The overlap has been fixed to
50% of the sub-images sizes.

For each sub-image size, and each overlap, the norm
∥∥∥H− H̃

∥∥∥
2→2

is approximated
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using a power method [23]. We stop the iterative process when the difference between the
eigenvalues of two successive iterations is smaller than 10−8‖H‖2→2. The number of opera-
tions associated to each type of approximation is computed using theoretical complexities.
For sparse matrix-vector product the number of operations is proportional to the number
of non-zero coefficients in the matrix. For windowed convolutions methods, the number of
operations is proportional to the number of windows (2l × 2l) multiplied by the cost of a

discrete convolution over a window
(
N
2l

+Nκ
)2

log2

(
N
2l

+Nκ
)
.

Figure 10 shows the results of this experiment. The wavelet based method seems to
perform much better than windowed convolutions methods for both operators. The gap is
however significantly larger for the rotation blur in Figure 8b. This experiment therefore
suggests that the advantage of wavelet based approaches will depend on the type of blur
considered.

The influence of sparsity patterns. In this numerical experiment, we obtain a K-
sparse matrix ΘK using either a simple thresholding strategy, Algorithm 1 or Algorithm 2.

We evaluate the error
∥∥∥H− H̃

∥∥∥
X→2

defined in (14) for each methods. We set σi = 2j(i),

where j(i) corresponds to the scale of the i-th wavelet. As can be seen from Figure 11,
Algorithm 1 provides a much better error decay for each operator than the simple thresh-
olding strategy. This fact will be verified for real images in next paragraph. Algorithm 2
has a much slower decay than both thresholding algorithm. Notice that this algorithm is
essentially blind, in the sense that it does not require knowing the exact matrix Θ to select
the pattern. It would therefore work for a whole class of blur kernels, whereas the simple
thresholding and Algorithm 1 work only for a specific matrix.

Figure 12 shows the sparsity patterns of matrices obtained with Algorithms 1 and 2 for
K = 30N and K = 128N coefficients. The sparsity patterns look quite similar. However,
Algorithm 1 selects subbands that are not selected by Algorithm 2, which might explain
the significant performance differences. Similarly, Algorithm 2 select subbands that would
probably be crucial for some blur kernels, but which are not significant for this particular
blur kernel.
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Figure 10: The operator norms
∥∥∥H− H̃

∥∥∥
2→2

are displayed for the three proposed kernels.

(Left: kernel Figure 8a, middle: kernel in Figure 8b, right: kernel in Figure 8c). Norms are
plotted with respect to the number of operations needed to compute H̃u. The abscissas
are in log scale.
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Figure 11: The operator norms
∥∥∥H− H̃

∥∥∥
X→2

are displayed for kernels Figure 8a (left) and

Figure 8b (right); and with respect to the number of operations needed to compute H̃u.
The abscissas are in log scale. Daubechies wavelets with 10 vanishing moments have been
used.
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(a) Algorithm 1 – K = 30N (b) Algorithm 2 – K = 30N

(c) Algorithm 1 – K = 128N (d) Algorithm 2 – K = 128N

Figure 12: The structure of the wavelet matrices of ΘK are displayed for Algorithms 1 and
2 and for K = 30N and K = 128N coefficients. Algorithm 1 has been applied using the
second Σ = diag(2j(i))i matrix. This experiment corresponds to the blur in Figure 8b
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6.2.3 Quality of matrix-vector products for real images

In this section, we evaluate the performance of wavelet based methods for matrix-vector
products with real images.

Quality VS complexity. We compare H̃u to Hu, where u is the image in Figure 7b
and where H̃ is obtained either by windowed convolutions methods or by sparse wavelet
approximations. We plot the pSNR between the exact blurred image Hu and the blurred
image using the approximated operator H̃u in Figure 13. Different approximation methods
are tested:

Thresholded matrix : This corresponds to a simple thresholding of the wavelet matrix Θ.

Σ n◦1 : This corresponds to applying Algorithm 1 with σi = 1, ∀i where j(i) corresponds
to the scale of the i-th wavelet.

Σ n◦2 : This corresponds to applying Algorithm 1 with σi = 2j(i) ∀i.

[48] : The method presented in [48] with K = l × N coefficients in the matrix, with l ∈
{1, . . . , 100}.

WC, Overlap 50% : This corresponds to the windowed convolution with 50% overlap. We
use this overlap since it produces better pSNRs.

Algo 2: The algorithm finds multi-scale neighbourhoods until K = l×N coefficients popu-
late the matrix, with l ∈ {1, . . . , 100}. In this experiment, we set M = 1, f(t) = 1

1+t

and σi = 2j(i), ∀i.

The pSNRs are averaged over the set of 16 images. The results of this experiment are
displayed in Figure 13 for the two kernels from Figures 8b and 8a. Let us summarize the
conclusions from this experiment:

• A clear fact is that windowed convolution methods are significantly outperormed by
wavelet based methods for all blur kernels. Moreover, the differences between wavelet
and windowed convolution based methods get larger as the blurs regularity decreases.

• A second result is that wavelet based methods with fixed sparsity patterns (Algo 2)
are quite satisfactory for very sparse patterns (i.e. less than 20N operations) and
kernels 8a and 8b. We believe that the most important regime for applications is in
the range [N, 20N ], so that this result is rather positive. However, Algo 2 suffers from
two important drawbacks: first, the increase in SNR after a certain value becomes
very slow. Second, this algorithm provides very disappointing results for the last
blur map 8c. These results suggest that this method should be used with caution
if one aims at obtaining very good approximations. In particular, the algorithm is
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dependent on the bound (9) which itself depends on user given parameters such as
function f in (2a). Modifying those parameters might result in better results, but is
usually hard to tweak manually.

• The methods Σ n◦ 1, Σ n◦ 2, Thresholded matrix all behave similarly. Method Σ n◦

1 is however significantly better, showing the importance of choosing the weights σi
in equation (15) carefully.

• The methods Σ n◦ 1, Σ n◦ 2, Thresholded matrix outperform the method proposed in
[48] for very sparse patterns (< 20N) and get outperformed for mid-range sparisfica-
tion > 40N . The main difference between algorithm [48] and the methods proposed
in this paper is the number of vanishing moments. In [48], the authors propose using
the Haar wavelet (i.e. 1 vanishing moment), while we use Daubechies wavelets with
10 vanishing moments. In practice, this results in better approximation properties in
the very sparse regime, which might be the most important in applications. For mid-
range sparsification, the Haar wavelet provides better results. Two reasons might
explain this phenomenon: first, Haar wavelets have a small spatial support, there-
fore matrix Θ contains less non-zero coefficients when expressed with Haar wavelets
than Daubechies wavelets. Second, the constants C ′M and C ′′M in Theorem (2) are
increasing functions of the number of vanishing moments.

Illustration of artefacts. Figure 14 provides a comparison of the windowed convo-
lutions methods and the wavelet based approach in terms of approximation quality and
computing times. The following conclusions can be drawn from this experiment:

• The residual artefacts appearing in the windowed convolutions approach and wavelet
based approach are different. They are localized at the interfaces between sub-images
for the windowed convolutions approach while they span the whole image domain
for the wavelet based approach. It is likely that using translation and/or rotation
invariant wavelet would improve the result substantially.

• The approximation using the second Σ matrix produces the best results and should
be preferred over more simple approaches.

• In our implementation, the windowed convolutions approach (implemented in C) is
outperformed by the wavelet based method (implemented in Matlab with C-mex
files). For instance, for a precision of 45dBs, the wavelet based approach is about 10
times faster.

• The computing time of 1.21 seconds for the windowed convolutions approach with a
2× 2 partition might look awkward since the computing times are significantly lower
for finer partitions. This is because the efficiency of FFT methods depend greatly
on the image size. The time needed to compute an FFT is usually lower for sizes
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that have a prime factorization comprising only small primes (e.g. less than 7). This
phenomenon explains the fact that the practical complexity of windowed convolutions
algorithms may increase in a chaotic manner with respect to m.
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Figure 13: pSNR of the blurred image using the approximated operators H̃u with respect
to the blurred image using the exact operator Hu. The results have been obtained with
blur Figure 8a for top-left graph, blur Figure 8b for top-right graph and blur Figure 8c for
the bottom. pSNR are averaged over the set of 16 images.
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Piece. Conv. Difference Algorithm 1 Difference l =

2× 2 31.90 dB 36.66 dB 5

1.21 sec 0.039 sec

4× 4 38.49 dB 45.87 dB 30

0.17 sec 0.040 sec

8× 8 44.51 dB 50.26 dB 50

0.36 sec 0.048 sec

16× 16 53.75 dB 57.79 dB 100

0.39 sec 0.058 sec

Figure 14: Blurred images and the differences Hu− H̃u for the kernel Figure 8b. Results
on the left are obtained using windowed convolutions approximations with 2×2, 4×4, 8×8
and 16 × 16 partitionings all with 50% overlap. Results on the right are obtained using
Algorithm 1 with the second Σ = diag(2j(i))i matrix keeping K = lN coefficients. The
pSNR and the time needed for the computation for the matrix-vector product are shown.
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6.3 Application to inverse problems

In this experiment we compare the methods efficiency in deblurring problems. We assume
the following classical image degradation model

v = Hu + η, η ∼ N
(
0, σ2Id

)
, (21)

where v is the degraded image observed, u is the image to restore, H in the blurring
operator and σ2 is the noise variance. A standard TV-L2 optimization problem is solved
to restore the image u:

Find u∗ ∈ arg min
u∈RN ,‖H̃u−v‖2

2
≤α
TV (u), (22)

where H̃ is an approximating operator and TV is the isotropic total variation of u. The
optimization problem is solved using the primal-dual algorithm proposed in [8]. We do not
detail the resolution method since it is now well documented in the literature.

An important remark is that the interest of the total variation term is not only to
regularize the ill-posed inverse problem, but also to handle the errors in the operator
approximation. In practice we found that setting α = (1 + ε)σ2N where ε > 0 is a small
parameter provides good experimental results.

In Figures 15 and 16, we present deblurring results using Figure 7b with kernel 8b.
In both the noisy and noiseless cases, the 4×4 windowed convolutions method performs

worst reconstructions than wavelet approaches with 30N . Moreover, they are between 4
and 6 times significantly slowlier. Surprisingly even the implementation in the space domain
is faster. The reason for that is probably a difference in the quality of implementation: we
use Matlab sparse matrix-vector products for space and wavelet methods. This routine is
cautiously optimized while our c implementation of windowed convolutions can probably
be improved. In addition, let us mention that two wavelet transforms need to be computed
at each iteration with the wavelet based methods, while this is not necessary with the space
implementation. It is likely that the acceleration factor would have been significantly higher
if wavelet based regularizations had been used.

In the noiseless case, the simple thresholding approach provides significantlty better
SNRs than the more advanced proposed in this paper and in [48]. Note however that it
produces more significant visual artefacts. This result might come as a surprise at first
sight. However, as was explained in section 5, our aim to design sparsity patterns was
to minimize an operator norm ‖H − H̃‖X→2. When dealing with an inverse problem,
approximating the direct operator is not as relevant as approximating its inverse. This
calls for new methods specific to inverse problems.

In the noisy case, all three thresholding strategies produce results of a similar quality.
The Haar wavelet transform is however about twice faster since the Haar wavelet support is
smaller. Moreover, the results obtained with the approximated matrices are nearly as good
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as the ones with the true operator. It suggests that it is not necessary to construct accurate
approximations of the operators in practical problems. This observation is also supported
by the experiment in Figure 17. In this experiment, we plot the pSNR of the deblurred
image in presence of noise with respect to the number of elements in ΘK . Interestingly,
a matrix containing only 20N coefficients leads to deblurred images close to the results
obtained with the exact operator. In this experiment, a total of K = 5N coefficients in
ΘK is enough to retrieve satisfactory results. This is a very encouraging result for blind
deblurring problems.

7 Conclusion

7.1 Brief summary

In this paper, we introduced an original method to represent spatially varying blur opera-
tors in the wavelet domain. We showed that this new technique has a great adaptivity to
the smoothness of the operator and exhibit an O(Nε−d/M ) complexity, where M denotes
the kernel regularity. This method is versatile since it is possible to adapt it to the kind of
images that have to be treated. We showed that much better performance to approximate
the direct operator can be obtained by leveraging the fact that natural signals exhibit some
structure in the wavelet domain. Moreover, we proposed a original method to design spar-
sity patterns for class of blurring operators when only the operator regularity is known.
These theoretical results were confirmed by practical experiments on real images. Even
though our conclusions are still preliminary since we tested only small 256 × 256 images,
the wavelet based methods seem to significantly outperform standard windowed convolu-
tions based approaches. Moreover, they seem to provide satisfactory deblurring results on
practical problems with a complexity no greater than 5N operations, where N denotes the
pixels number.

7.2 Outlook

We provided a simple complexity analysis based solely on the global regularity of the kernel
function. It is well known that wavelets are able to adapt locally to the structures of images
or operators [11]. The method should thus provide an efficient tool for piecewise regular
blurs appearing in computer vision for instance. It could be interesting to evaluate precisely
the complexity of wavelet based approximations for piecewise regular blurs.

A key problem of the wavelet based approach is the need to project the operator on
a wavelet basis. In this paper we performed this operation using the computationally
intensive Algorithm 3. It could be interesting to derive fast projection methods. Let us
note that such methods already exist in the literature [5]. A similar procedure was used in
the specific context of spatially varying blur in [48].
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(a) Degraded image
21.85dB

(b) Exact operator
34.53dB – 64.87 sec

(c) Simple thresh
31.68dB – 21.68 sec

(d) Algorithm 1
30.57dB – 21.16 sec

(e) WC 4× 4
28.37dB – 85.60 sec

(f) [48]
30.53dB – 14.12 sec

Figure 15: Deblurring results for kernel Figure 8b and without noise. Top-left: degraded image.
Top-right: deblurred using the exact operator. Middle-left: deblurred by the wavelet based method
and a simple thresholding. Middle-right: deblurred by the wavelet based method and Algorithm 2
with the second Σ = diag(2j(i))i matrix. Bottom: deblurred using a 4× 4 windowed convolutions
algorithm with 50% overlap. For wavelet methods K = 30N coefficients are kept in matrices. pSNR
are displayed for each restoration. 36



(a) Degraded image
21.62dB

(b) Exact operator
29.09dB – 64.87 sec

(c) Simple thresh
28.64dB – 21.68 sec

(d) Algorithm 1
28.24dB – 21.16 sec

(e) WC 4× 4
27.62dB – 85.60 sec

(f) [48]
28.37dB – 14.12 sec

Figure 16: Deblurring results for kernel Figure 8b and with σ = 0.02 noise. Top-left: degraded
image. Top-right: deblurred using the exact operator. Middle-left: deblurred by the wavelet based
method and a simple thresholding. Middle-right: deblurred by the wavelet based method and
Algorithm 2 with the second Σ = diag(2j(i))i matrix. Bottom: deblurred using a 4 × 4 windowed
convolutions algorithm with 50% overlap. For wavelet methods K = 30N coefficients are kept in
matrices. pSNR are displayed for each restoration.37
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Figure 17: pSNR of the deblurred image with respect to the number of coefficients in
the matrix divided by N for the image Figure 7a and the kernel Figure 8a. The matrix
is constructed using Algorithm 1 with the second Σ = diag(2j(i))i matrix with K = lN
coefficients for l from 1 to 30. Deblurred imaged using these matrices are compared with
the one obtained with the exact operator.

Moreover, the proposed method can already be applied to situations where the blur
mostly depends on the instrument: the wavelet representation has to be computed once for
all off-line, and then all deblurring operations can be handled much faster. This situation
occurs in satellite imaging or for some fluorescence microscopes (see e.g. [24, 46, 32]).

The design of good sparsity patterns is an open and promising research avenue. In
particular, designing patterns adapted to specific inverse problems could have some impact
as was illustrated in section 6.3.

Another exciting research perspective is the problem of blind deconvolution. Expressing
the unknown operator as a sparse matrix in the wavelet domain is a good way to improve
the problem identifiability. This is however far from being sufficient since the blind decon-
volution problem has far more unknowns (a full operator and an image) than data (a single
image). Further assumptions should thus be made on the wavelet coefficients regularity,
and we plan to study this problem in a forthcoming work.

Finally let us mention that we observed some artefacts when using the wavelet based
methods with high sparsity levels. This is probably due to their non translation and
rotation invariance. It could be interesting to study sparse approximations in redundant
wavelet bases or other time-frequency bases. It was shown for instance in [7] that curvelets
are near optimal to represent Fourier integral operators. Similarly, Gabor frames are known
to be very efficient to describe smoothly varying integral operators in the 1D setting [29].
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A Proof of Lemma 1

We let ΠM denote the set of polynomials of degree less or equal to M .
Lemma 3 below is a common result in numerical analysis [17] (see also Theorem 3.2.1

in [10]). It ensures that the approximation error of a function by a polynomial of degree
M is bounded by the Sobolev semi-norm WM,p.

Lemma 3 (Polynomial approximation). For 1 ≤ p ≤ +∞, M ∈ N∗ and Ω ⊂ Rd a bounded
domain, the following bound holds

inf
g∈ΠM

‖f − g‖Lp(Ω) ≤ C |f |WM+1,p(Ω) , (23)

where C is a constant that depends on d,M, p and Ω only.
Moreover, if Ih ⊂ Ω ⊂ Rd is a cube of sidelength h, the following estimate holds

inf
g∈ΠM

‖f − g‖Lp(Ih) ≤ Ch
M+1 |f |WM+1,p(Ih) , (24)

where C is a constant only depending on d,M, p and Ω.

Let Iλ = supp(ψλ). From the wavelets definition, we get

Iλ = 2−j(m+ [−c(M)/2, c(M)/2]d)

therefore |Iλ| = c(M)d · 2−jd. We will now prove Lemma 1.

Proof of Lemma 1. Since the mapping (x, y) 7→ K(x, y)ψλ(y)ψµ(x) is bounded, it is also
absolutely integrable on compact domains. Therefore 〈Hψλ, ψµ〉 is well-defined for all
(λ, µ). Recall that λ = (j,m, e) ∈ Λ and µ = (k, n, e′) ∈ Λ. Moreover Fubini’s theorem can
be applied and we get

〈Hψλ, ψµ〉 =

∫
Iµ

∫
Iλ

K(x, y)ψλ(y)ψµ(x)dydx

=

∫
Iλ

∫
Iµ

K(x, y)ψλ(y)ψλ(x)dxdy.

To prove the result, we distinguish the cases j ≤ k and j > k. In this proof, we focus
on the case j ≤ k. The other one can be obtained by symmetry, using the facts that
〈Hψλ, ψµ〉 = 〈ψλ, H∗ψµ〉 and that H and H∗ are both blurring operators in the same class.

To exploit the regularity of K and ψ, note that for all g ∈ ΠM−1,

∫
Iµ

g(x)ψµ(x)dx = 0

since ψ has M vanishing moments. Therefore,

〈Hψλ, ψµ〉 =

∫
Iλ

inf
g∈ΠM−1

∫
Iµ

(K(x, y)− g(x))ψλ(y)ψµ(x)dxdy,
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and

|〈Hψλ, ψµ〉| ≤
∫
Iλ

inf
g∈ΠM−1

∫
Iµ

|K(x, y)− g(x)| |ψλ(y)| |ψµ(x)| dxdy

≤
∫
Iλ

inf
g∈ΠM−1

‖K( · , y)− g‖L∞(Iµ) ‖ψµ‖L1(Iµ) |ψλ(y)| dy.

By Lemma 3, inf
g∈ΠM−1

‖K( · , y)− g‖L∞(Iµ) . 2−kM |K( · , y)|WM,∞(Iµ) since Iµ is a cube of

sidelength c(M) · 2−k. We thus obtain

|〈Hψλ, ψµ〉| . 2−kM ‖ψµ‖L1(Iµ) ‖ψλ‖L1(Iλ) ess sup
y∈Ij,m

|K( · , y)|WM,∞(Iµ)

. 2−kM2−
dj
2 2−

dk
2 ess sup

y∈Iλ
|K( · , y)|WM,∞(Iµ)

since ‖ψλ‖L1 = 2−
dj
2 ‖ψ‖L1 .

Since H ∈ A(M,f)

ess sup
y∈Iλ

|K( · , y)|WM,∞(Iµ) = ess sup
y∈Iλ

∑
|α|=M

ess sup
x∈Iµ

|∂αxK(x, y)|

≤
∑
|α|=M

ess sup
(x,y)∈Iλ×Iµ

f (‖x− y‖∞)

. ess sup
(x,y)∈Iλ×Iµ

f (‖x− y‖∞) .

Because f is a non-increasing function, f (‖x− y‖∞) ≤ f (dist (Iλ, Iµ)) since dist (Iλ, Iµ) =
inf

(x,y)∈Iλ×Iµ
‖x− y‖∞. Therefore

|〈Hψλ, ψµ〉| . 2−kM2−
dj
2 2−

dk
2 f (dist (Iλ, Iµ))

= 2−(M+ d
2

)|j−k|2−j(M+d)f (dist (Iλ, Iµ)) .

The case k < j gives

|〈Hψλ, ψµ〉| . 2−(M+ d
2

)|j−k|2−k(M+d)f (dist (Iλ, Iµ)) ,

which allows to conclude that

|〈Hψλ, ψµ〉| . 2−(M+ d
2

)|j−k|2−min(j,k)(M+d)f (dist (Iλ, Iµ)) ,
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B Proof of Theorem 2

Let us begin with some preliminary results. Recall that λ = (j,m, e) ∈ Λ and µ =
(k, n, e′) ∈ Λ. Since f is compactly supported on [0, κ] and bounded by cf , we have
fλ,µ = f (dist (Iλ, Iµ)) ≤ cf1dist(Iλ,Iµ)≤κ. By equation (10), dist (Iµ, Iλ) ≤ κ if ‖2−jm −
2−kn‖∞ ≤ Rκj,k, where Rκj,k = (2−j + 2−k)c(M)/2 + κ.

Lemma 4. Define

Ge,e
′

j,k =
{

(m,n) ∈ Tj × Tk |1dist(Iλ,Iµ)≤κ = 1
}
.

Then
∣∣∣Ge,e′j,k

∣∣∣ ≤ (2j2k+1Rκj,k)
d.

Proof. First note that

Ge,e
′

j,k =
{

(m,n) ∈ Tj × Tk|
∣∣∣2−jmi − 2−kni

∣∣∣ ≤ Rκj,k, ∀i ∈ {1, . . . , d}
}
.

Now, define Ge,e
′

j,k,m =
{
n ∈ Tk |(m,n) ∈ Ge,e

′

j,k

}
. For a fixed (j, k,m, e, e′) the set Ge,e

′

j,k,m

is a discrete hyper-cube of sidelength bounded above by 2k+1Rκj,k. Therefore
∣∣∣Ge,e′j,k,m

∣∣∣ ≤
(2k+1Rκj,k)

d coefficients. Moreover, |Tj | = 2jd, hence the number of coefficients in Ge,e
′

j,k is

bounded above by (2j2kRκj,k)
d.

Proof of i). We denote Jmax = log2(N)/d the highest scale of decomposition. First note
that a sufficient condition for 2−min(j,k)(M+d)fλ,µ ≤ η is that min(j, k) ≥ J(η) with J(η) =
− log2(η/cf )

M+d . In the following, we let J̃(η) = min(J(η), Jmax) and define

G =
⋃

min(j,k)<J(η)

⋃
e,e′∈{0,1}d\{0}

Ge,e
′

j,k .

The overall number of non zero coefficients |G| in Θη satisfies

#G =

Jmax−1∑
j=0

Jmax−1∑
k=0

∑
e,e′∈{0,1}d

#Ge,e
′

j,k 1min(j,k)<J(η)

. (2d − 1)2
Jmax−1∑
j=0

Jmax−1∑
k=0

1min(j,k)<J(η)2
jd2kd

(
c(M)

2
(2−j + 2−k) + κ

)d

.
Jmax−1∑
j=0

Jmax−1∑
k=0

1min(j,k)<J(η)2
jd2kd

(
c(M)d

2d
2−dj +

c(M)d

2d
2−dk + κd

)
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.
Jmax−1∑
j=0

Jmax−1∑
k=0

1min(j,k)<J(η)2
kd +

Jmax−1∑
j=0

Jmax−1∑
k=0

1min(j,k)<J(η)2
jd

+

Jmax−1∑
j=0

Jmax−1∑
k=0

1min(j,k)<J(η)2
kd2jdκd.

The first sum yields

Jmax−1∑
j=0

Jmax−1∑
k=0

1min(j,k)<J(η)2
kd

=

J̃(η)−1∑
j=0

Jmax−1∑
k=j

2kd +

J̃(η)−1∑
k=0

2kd
Jmax−1∑
j=k

1


. J̃(η)N + 2dJ̃(η) log2(N) . log2(N)N.

The second sum is handled similarly and the third sum gives

Jmax−1∑
j=0

Jmax−1∑
k=0

1min(j,k)<J(η)2
kd2kdκd

= κd
J̃(η)−1∑
j=0

2jd
Jmax−1∑
k=j

2kd +

J̃(η)−1∑
k=0

2kd
Jmax−1∑
j=k

2jd

. κdN2dJ̃(η).

Overall |G| . log2(N)N + η−
d

M+dN . For η ≤ log2(N)−(M+d)/d, the dominating terms

are of kind η−
d

M+d , hence |G| . η−
d

M+dNκd.

Proof of ii). Since Ψ is an orthogonal wavelet transform∥∥∥H− H̃η

∥∥∥
2→2

= ‖Θ−Θη‖2→2 .

Let ∆η = Θ−Θη. We will make use of the following version of Shur inequality

‖∆η‖22→2 ≤ ‖∆η‖1→1‖∆η‖∞→∞. (25)

Since the upper-bound (9) is symmetric,

‖∆η‖∞→∞ = ‖∆η‖1→1 = max
λ∈Λ

∑
µ∈Λ

|∆λ,µ|
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By definition of Θη we get that

∑
µ∈Λ

|∆λ,µ| =
Jmax−1∑
k=0

∑
e′∈{0,1}d\{0}

∑
n∈Ge,e

′
j,k,m

|θλ,µ|1min(j,k)>J(η)

.
Jmax−1∑
k=0

∑
e′∈{0,1}d\{0}

∑
n∈Ge,e

′
j,k,m

2−(M+ d
2

)|j−k|2−min(j,k)(M+d)1min(j,k)>J(η).

Then ∑
µ∈Λ

|∆λ,µ| .
Jmax−1∑
k=0

2−(M+ d
2

)|j−k|2−min(j,k)(M+d)1min(j,k)>J(η)

∣∣∣Ge,e′j,k

∣∣∣
.

j−1∑
k=0

(2kRκj,k)
d2(k−j)(M+d/2)2−k(M+d)1k>J(η)

+

Jmax−1∑
k=j

(2kRκj,k)
d2(j−k)(M+d/2)2−j(M+d)1j>J(η).

The first sum on k < j is equal to

A1 = 2−jM2−jd/2
j−1∑
k=0

(2k/2Rκj,k)
d1k>J(η)

= 2−jM2−jd/21j>J(η)

j−1∑
k=J(η)

(2k/2Rκj,k)
d.

The second sum on k ≥ j is:

A2 = 1j>J(η)2
−jd/2

Jmax−1∑
k=j

(Rκj,k)
d2−k(M−d/2).

Now, notice that (Rκj,k)
d . 2−jd + 2−kd + κd. Thus

A1 . 2−jM2−jd/21j>J(η)

j−1∑
k=J(η)

(
2dk/22−jd + 2−dk/2 + 2kd/2κd

)
. 2−jM2−jd/21j>J(η)

(
2−jd2jd/2 + 2−

d
2
J(η) + κd2jd/2

)
= 2−jM1j>J(η)

(
2−jd + 2−

d
2

(J(η)+j) + κd
)
.
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And

A2 . 1j>J(η)2
−jd/2

Jmax−1∑
k=j

(
2−jd + 2−kd + κd

)
2−k(M−d/2)

. 1j>J(η)2
−jd/2

(
2−jd2−j(M−d/2) + 2−j(M+d/2) + κd2−j(M−d/2)

)
. 1j>J(η)2

−jM
(

2−jd + κd
)
.

Hence ∑
µ∈Λ

|∆λ,µ| . 1j>J(η)2
−jM

(
2−jd + κd + 2−

d
2

(J(η)+j)
)
.

Therefore

‖∆η‖1→1 . 2−J(η)M
(

2−J(η)d + κd + 2−dJ(η)
)

. 2−J(η)M
(

2−J(η)d + κd
)

. η + κdη
M
M+d

. κdη
M
M+d for small η.

Finally, we can see that there exists a constant CM independent of N such that

‖∆η‖1→1 ≤ CMκdη
M
M+d and ‖∆η‖∞→∞ ≤ CMκdη

M
M+d .

It suffices to use inequality (25) to conclude.

Proof of iii). This is a direct consequence of point i) and ii).
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