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Abstract. In this contribution we consider localized, robust and efficient a-posteriori error
estimation of the localized reduced basis multi-scale (LRBMS) method for parametric elliptic
problems with possibly heterogeneous diffusion coefficient. The numerical treatment of such
parametric multi-scale problems are characterized by a high computational complexity, arising
from the multi-scale character of the underlying differential equation and the additional param-
eter dependence. The LRBMS method can be seen as a combination of numerical multi-scale
methods and model reduction using reduced basis (RB) methods to efficiently reduce the com-
putational complexity with respect to the multi-scale as well as the parametric aspect of the
problem, simultaneously. In contrast to the classical residual based error estimators currently
used in RB methods, we are considering error estimators that are based on conservative flux
reconstruction and provide an efficient and rigorous bound on the full error with respect to the
weak solution. In addition, the resulting error estimator is localized and can thus be used in
the on-line phase to adaptively enrich the solution space locally where needed. The resulting
certified LRBMS method with adaptive on-line enrichment thus guarantees the quality of the
reduced solution during the on-line phase, given any (possibly insufficient) reduced basis that
was generated during the offline phase. Numerical experiments are given to demonstrate the ap-
plicability of the resulting algorithm with online enrichment to single phase flow in heterogeneous
media.
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1 Introduction

We are interested in efficient and reliable numerical approximations of elliptic parametric
multi-scale problems. Such problems consist of finding p(µ) ∈ Q, such that

b(p(µ), q;µ) = l(q) for all q ∈ Q, (1)

in a suitable space Q for parameters µ ∈ P ⊂ Rp, for p ∈ N, where the data functions
involved may depend on an a-priori given multi-scale parameter ε > 0 (described in detail
in Section 2). An approximation ph(µ) ∈ Qh of p(µ) is usually obtained by a discretiza-
tion of (1) resulting from a Galerkin projection onto a discrete space Qh, associated with
a triangulation τh of Ω. Since τh should resolve all features of (1) associated with the
fine scale ε, solving parametric heterogeneous multi-scale problems accurately can be
challenging and computationally costly, in particular for strongly varying scales and pa-
rameter ranges (see the references in [44]). Two traditional approaches exist to reduce the
computational complexity of the discrete problem: numerical multi-scale methods and
model order reduction techniques. Numerical multi-scale methods reduce the complex-
ity of multi-scale problems with respect to ε for a fixed µ, while model order reduction
techniques reduce the complexity of parametric problems with respect to µ for moderate
scales ε (see [44] for an overview). In general, numerical multi-scale methods capture the
macroscopic behavior of the solution in a coarse approximation space QH ⊂ Qh, e.g.,
associated with a coarse triangulation TH of Ω, and recover the microscopic behavior of
the solution by local fine-scale corrections. Inserting this additive decomposition into (1)
yields a coupled system of a fine- and a coarse-scale variational problem. By appropriately
selecting trial and test spaces and defining the localization operators to decouple this sys-
tem, a variety of numerical multi-scale methods can be recovered, e.g., the multi-scale
finite element method (MsFEM) [22], the variational multi-scale method [43, 37], the
multi-scale finite volume method [30] and the heterogeneous multi-scale method (HMM)
[5, 31], just to name a few. Model order reduction using reduced basis (RB) methods, on
the other hand, is based on the idea to introduce a reduced space Qred ⊂ Qh, spanned
by discrete solutions for a limited number of parameters µ. These training parameters
are iteratively selected by an adaptive Greedy procedure (see e.g. [56] and the references
therein). Depending on the choice of the training parameters and the nature of the prob-
lem, Qred is expected to be of a significantly smaller dimension than Qh. Additionally, if
b allows for an affine decomposition with respect to µ, its components can be projected
onto Qred, which can then be used to effectively split the computation into an off-line and
on-line part. In the off-line phase all parameter-independent quantities are precomputed,
such that the on-line phase’s complexity only depends on the dimension of Qred. The
idea of the recently presented localized reduced basis multi-scale (LRBMS) approach
(see [36, 8]) is to combine numerical multi-scale and RB methods and to generate a local
reduced space QTred ⊂ QTh for each coarse element of TH , given a tensor product type
decomposition of the fine approximation space, Qh = ⊕T∈THQTh . The coarse reduced
space is then given as Qred(TH) := ⊕T∈THQTred ⊂ Qh, resulting in a multiplicative de-
composition of the solution into pred(x;µ) =

∑dimQred(TH)
n=1 pn(x;µ)ϕn(x), where the RB
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functions ϕn capture the microscopic behavior of the solution associated with the fine
scale ε and the coefficient functions pn only vary on the coarse partition TH .
Other model reduction approaches for parametric (but not multi-scale) problems that

incorporate localization ideas and concepts from domain decomposition (DD) methods
are the reduced basis element method [39, 38], the reduced basis hybrid method [33, 34]
and the port reduced static condensation reduced basis element method [52]. While the
idea of the former is to share one reduced basis on all subdomains the idea of the latter
two is to generate one reduced basis for each class of subdomains which are then coupled
appropriately. There also exist several approaches to use model reduction techniques
for homogenization problems (see [14]) and problems with multiple scales, such as the
reduced basis finite element HMM [3, 4]. For the case of no scale-separation there exist
the generalized MsFEM method [21], which incorporates model reduction ideas, and
most recently a work combining the reduced basis method with localized orthogonal
decomposition (see [6]).
It is vital for an efficient and reliable use of RB as well as LRBMS methods to have

access to an estimate on the model reduction error. Such an estimate is used to drive
the adaptive Greedy basis generation during the off-line phase of the computation and
to ensure the quality of the reduced solution during the on-line phase. It is usually given
by a residual based estimator involving the stability constant and the residual in a dual
norm. It was shown in [8] that such an estimator can be successfully applied in the
context of the LRBMS, but it was also pointed out that an estimator relying on global
information might not be computationally feasible since too much work is required in
the off-line part of the computation.
The novelty of this contribution lies in a completely different approach to error esti-

mation – at least in the context of RB methods. We make use of the ansatz of local error
estimation presented in [26] which measures the error by a conforming reconstruction
of the physical quantities involved, specifically the diffusive flux −λ(µ)κε∇p(µ). This
kind of local error estimation was proven to be very successful in the context of multi-
scale problems and very robust with respect to ε. We show in this work how we can
transfer those ideas to the framework of the LRBMS to obtain an estimate of the error
|||p(µ)− pred(µ)|||µ. We would like to point out that we are able to estimate the error
against the weak solution p(µ) in a parameter dependent energy norm while traditional
RB approaches only allow to estimate the model reduction error in a parameter indepen-
dent norm and only against the discrete solution. In principal, this approach is able to
turn the LRBMS method into a full multi-scale approximation scheme, while traditional
RB methods can only be seen as a model reduction technique. We would also like to
point out that, to the best of our knowledge, this approach (first published in [45]) is the
first one to make use of local error information in the context of RB methods.

2 Problem formulation and discretization

We consider linear elliptic problems in a bounded connected domain Ω ⊂ Rd, for d = 2, 3,
with polygonal boundary ∂Ω and a multiplicative splitting of the influences of the multi-
scale parameter ε and the parameter µ. An example is given by the problem of finding
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a global pressure p(µ) ∈ H1
0 (Ω) for a set of admissible parameters µ ∈ P, such that

−∇·
(
λ(µ)κε∇p(µ)

)
= f in Ω (2)

in a weak sense in H1
0 (Ω), where H1 denotes the usual Sobolev space of weakly differ-

entiable functions and H1
0 (Ω) ⊂ H1(Ω) its elements which vanish on the boundary in

the sense of traces. Problems of this kind arise for instance in the context of the global
pressure formulation of two-phase flow in porous media. Using an IMPES discretiza-
tion scheme of the pressure/saturation system (see [17] and the references therein), an
equation of the form (2) has to be solved in each time step for a different parameter
µ ∈ P. In that context λ(µ) denotes the scalar total mobility and κε denotes a possibly
complex heterogeneous permeability tensor; external forces are collected in f and the
parameter µ models the influence of the global saturation (see Definition 2.1 for details
on λ, κε and f). Note that more complex boundary conditions and additional parameter
dependencies of the boundary values as well as the right hand side (modeling parameter
dependent wells, for instance) are possible, but do not lie within the scope of this work.
Triangulation. We require two nested partitions of Ω, a coarse one, TH , and a fine

one, τh. Let τh be a simplicial triangulation of Ω with elements t ∈ τh. In the context
of multi-scale problems we call τh a fine triangulation if it resolves all features of the
quantities involved in (2), specifically if κε|t ∈ [L∞(t)]d×d is constant for all t ∈ τh.
This assumption is a natural one in the context of two-phase flow problems where the
permeability field is usually given by piecewise constant measurement data. For simplicity
we require τh to fulfill the requirements stated in [26, Sect. 2.1], namely shape-regularity
and the absence of hanging nodes; an extension to more general triangulations is possible
analogously to [26, A.1]. We only require the coarse elements T ∈ TH to be shaped such
that a local Poincaré inequality in H1(T ) is fulfilled (see the requirements of Theorem
4.2). We collect all fine faces in Fh, all coarse faces in FH and denote by N (t) ⊂ τh and
N (T ) ⊂ TH the neighbors of t ∈ τh and T ∈ TH , respectively and by h∗ the diameter of
any element ∗ of the sets τh, TH , Fh or FH . We collect in τTh ⊂ τh the fine elements of τh
that cover the coarse element T and in F∗h ⊂ Fh all faces that cover the set ∗, e.g. by F th
the faces of a fine element t ∈ τh, by FEh the faces that cover a coarse face E ∈ FH and so
forth; the same notation is used for coarse faces F∗H ⊂ FH . In addition we denote the set
of all boundary faces by Fh ⊂ Fh and the set of all inner faces, that share two elements,
by

◦
Fh ⊂ Fh, such that Fh ∪

◦
Fh = Fh and Fh ∩

◦
Fh = ∅. We also denote the set of fine

faces which lie on the boundary of any coarse element T ∈ TH by FTh :=
⋃
E∈FTH

FEh and

by
◦
FTh := FTh \F

T
h the set of fine faces which lie in the interior of the coarse element.

Finally, we assign a unit normal ne ∈ Rd to each inner face ∂t− ∩ ∂t+ = e ∈
◦
Fh, pointing

from t− to t+, and also denote the unit outward normal to ∂Ω by ne for a boundary face
e = ∂t− ∩ ∂Ω, for t−,t+ ∈ τh.

2.1 The continuous problem

For our analysis we define the broken Sobolev space H1(τh) ⊂ L2(Ω) by H1(τh) :={
q ∈ L2(Ω)

∣∣ q|t ∈ H1(t) ∀t ∈ τh
}

as the most general space for the weak, the
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discrete and the reduced solution defined below. In the same manner we denote the
local broken Sobolev spaces H1(τTh ) ⊂ L2(T ) for all coarse elements T ∈ TH and denote
by ∇h : H1(τh) → [L2(Ω)]d the broken gradient operator which is locally defined by
(∇hq)|t := ∇(q|t) for all t ∈ τh and q ∈ H1(τh). Now given λ(µ), κε and f as stated
in Definition 2.1 we define the parametric bilinear form b : P → [H1(τh) × H1(τh) →
R], µ 7→ [(p, q) 7→ b(p, q;µ)], and the linear form l : H1(τh) → R by b(p, q;µ) :=∑

T∈TH b
T (p, q;µ) and l(q) :=

∑
T∈TH l

T (q), respectively, and their local counterparts
bT : P → [H1(τTh )×H1(τTh ) → R], µ 7→ [(p, q) 7→ bT (p, q;µ)], and lT : H1(τTh ) → R for
all T ∈ TH , µ ∈ P and p,q ∈ H1(τh) by

bT (p, q;µ) :=

∫
T

(λ(µ)κε∇hp) ·∇hq dx and lT (q) :=

∫
T

fq dx ,

respectively.

Definition 2.1 (Weak solution). Let f ∈ L2(Ω) be bounded, λ(µ) ∈ L∞(Ω) be strictly
positive for all µ ∈ P and κε ∈ [L∞(Ω)]d×d symmetric and uniformly positive definite,
such that λ(µ)κε ∈ [L∞(Ω)]d×d is bounded from below (away from 0) and above for all
µ ∈ P. We define the weak solution p : P → H1

0 (Ω) for a parameter µ ∈ P, such that

b(p(µ), q;µ) = l(q) for all q ∈ H1
0 (Ω). (3)

Note that, since b(·, ·;µ) is continuous and coercive for all µ ∈ P (due to the assump-
tions on λ(µ)κε) and since l is bounded, there exists a unique solution of (3) due to the
Lax-Milgram Theorem. Given these requirements we denote by 0 < ctε(µ) and ctε(µ) ≤
Ctε(µ) the smallest and largest eigenvalue of (λ(µ)κε)|t, respectively, for any µ ∈ P and
t ∈ τh and additionally define 0 < ctε := minµ∈P c

t
e(µ) and cte < Cte := maxµ∈P C

t
e(µ).

A note on parameters. In addition to the assumptions we posed on λ above
we also demand it to be affinely decomposable with respect to µ ∈ P, i.e there ex-
ist Ξ ∈ N strictly positive coefficients θξ : P → R and Ξ nonparametric components
λξ ∈ L∞(Ω), for 1 ≤ ξ ≤ Ξ, such that λ(x;µ) =

∑Ξ
ξ=1 θξ(µ)λξ(x). We can then com-

pare λ for two parameters µ,µ ∈ P by α(µ,µ)λ(µ) ≤ λ(µ) ≤ γ(µ,µ)λ(µ), where
α(µ,µ) := minΞξ=1 θξ(µ)θξ(µ)−1 and γ(µ,µ) := maxΞξ=1 θξ(µ)θξ(µ)−1 denote the posi-
tive equivalence constants. This assumption on the data function λ is a common one
in the context of RB methods and covers a wide range of physical problems. If λ does
not exhibit such a decomposition one can replace λ by an arbitrary close approximation
using Empirical Interpolation techniques (see [10, 20]) which does not impact our anal-
ysis. All quantities that linearly depend on λ inherit the above affine decomposition in
a straightforward way. In particular there exist component bilinear forms such that b
and bT (and their discrete counterparts introduced further below) are also affinely de-
composable. Since we would like to estimate the error in a problem dependent norm
we introduce a parameter dependent energy (semi) norm |||·|||· : P → [H1(τh) → R],
µ → [q → |||q|||µ], defined by |||q|||µ :=

(∑
T∈TH |||q|||

2
µ,T

)1/2 with the local semi-norm
defined by |||q|||µ,T := bT (q, q;µ)1/2, for all T ∈ TH , µ ∈ P and q ∈ H1(τh); the local
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semi-norm on the fine triangulation, |||·|||µ,t for any t ∈ τh, is defined analogously to
|||·|||µ,T . Note that |||·|||· is a norm only on H1

0 (Ω). We can compare these norms for any
two parameters µ,µ ∈ P using the above decomposition of λ (the same holds true for
the local semi-norms):√

α(µ,µ) |||·|||µ ≤ |||·|||µ ≤
√
γ(µ,µ) |||·|||µ (4)

2.2 The discretization

We discretize (3) by allowing for a suitable discretization of at least first order inside
each coarse element T ∈ TH and by coupling those with a Symmetric weighted Interior-
Penalty discontinuous Galerkin (SWIPDG) discretization along the coarse faces of TH .
This ansatz can be either interpreted as an extension of the SWIPDG discretization
on the coarse partition TH , where we further refine each coarse element and introduce
an additional local discretization, or it can be interpreted as a domain-decomposition
approach, where we use local discretizations, defined on subdomains given by the coarse
partition, which are then coupled by the SWIPDG fluxes. In view of the latter, this ansatz
shows some similarities to [16] but allows for a wider range of local discretizations. A
similar ansatz for a multi-numerics discretization using a different coupling strategy was
independently developed and recently introduced in [46]. We will present two particular
choices for the local discretizations and continue with the definition of the overall DG
discretization.
Local discretizations. The main idea is to approximate the local bilinear forms bT ,

which are defined on the local subdomain triangulations τTh , by local discrete bilinear
forms bTh discretizing (2) on T with homogeneous Neumann boundary values. We will
additionally choose local discrete ansatz spaces Qk,Th ⊂ H1(τTh ), with polynomial order
k ∈ N, to complete the definition of the local discretizations. The first natural choice
for the local discretization is to use a standard continuous Galerkin (CG) discretization,
which we obtain by setting bTh = bT and Qk,Th = Skh(τTh ) with

Skh(τTh ) :=
{
q ∈ C0(T )

∣∣ q|t ∈ Pk(t) ∀t ∈ τTh
}
⊂ H1(T ),

where Pk(ω) denotes the set of polynomials on ω ⊆ Ω with total degree at most k ∈ N.
Another choice is to use a discontinuous space Qk,Th = Qkh(τTh ), given by

Qkh(τTh ) :=
{
q ∈ L2(T )

∣∣ q|t ∈ Pk(t) ∀t ∈ τTh
}
⊂ H1(τTh ),

and to choose bTh from a family of DG discretizations. Therefore we introduce the techni-
calities needed to state a common framework for the non symmetric, the incomplete, the
symmetric and the symmetric weighted interior-penalty (IP) DG discretization (hence-
forth denoted by NIPDG, IIPDG, SIPDG and SWIPDG, respectively, see [27] and the
references therein), following [26, Sect. 2.3].
For a function q ∈ H1(τh) that is double-valued on interior faces we denote its jump

on an inner face e ∈
◦
Fh by [[q]]e := q−−q+ with q± := q|t± , recalling that e = t−∩ t+ for
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t± ∈ τh. We also assign weights ω−e , ω+
e > 0 to each inner face, such that ω−e + ω+

e = 1,
and denote the weighted average of q by {{q}}e := ω−e q

− + ω+
e q

+. On a boundary face
e ∈ Fh we set ω−e = 1, ω+

e = 0, [[q]]e := q and {{q}}e := q. With these definitions we define
the local bilinear form bTh : P → [H1(τTh )×H1(τTh )→ R], µ 7→ [(p, q) 7→ bTh (p, q;µ)] for
ϑ ∈ {−1, 0, 1} by

bTh (p, q;µ) := bT (p, q;µ) +
∑
e∈
◦
FTh

(
ϑbec(q, p;µ) + bec(p, q;µ) + bep(q, p;µ)

)
(5)

on T ∈ TH , with its coupling and penalty parts bec and bep, respectively, defined by

bec(p, q;µ) :=

∫
e

−{{(λ(µ)κε∇p) ·ne}}e [[q]]e ds and bep(p, q;µ) :=

∫
e

σe(µ) [[p]]e [[q]]e ds ,

for all µ ∈ P, all p, q ∈ H1(τh) and all e ∈ Fh. The parametric positive penalty function
σe(µ) : P → R is given by σe(µ) := σh−1

e {{λ(µ)}}e σeε , where σ ≥ 1 denotes a user-
dependent parameter and the locally adaptive weight is given by σeε := δ+

e δ
−
e (δ+

e + δ−e )−1

for an interior face e ∈
◦
Fh and by σeε := δ−e on a boundary face e ∈ Fh, respectively,

with δ±e := ne · κ±ε ·ne. Using the weights ω±e := 1/2 we obtain the NIPDG bilinear
form for ϑ = −1, the IIPDG bilinear form for ϑ = 0 and the SIPDG bilinear form for
ϑ = 1. We obtain the SWIPDG bilinear form for ϑ = 1 by using locally adaptive weights
ω−e := δ+

e (δ+
e + δ−e )−1 and ω+

e := δ−e (δ+
e + δ−e )−1. From now on we assume that bTh is

of the form (5), since this is the most general case and also covers a CG discretization,
where all face terms vanish due to the nature of Skh(τTh ).
Global coupling. Now given suitable local discretizations on the coarse elements T ∈
TH we couple those along the coarse faces E ∈ FH using a SWIPDG discretization again
and define the bilinear form bh : P → [H1(τh)×H1(τh)→ R], µ 7→ [(p, q) 7→ bh(p, q;µ)],
by

bh(p, q;µ) :=
∑
T∈TH

bTh (p, q;µ) +
∑
E∈FH

bEh (p, q;µ), (6)

where we use the SWIPDG variants of ω±e to define the coupling bilinear form bEh : P →
[H1(τh)×H1(τh)→ R], µ→ [(p, q)→ bEh (p, q;µ)], by

bEh (p, q;µ) :=
∑
e∈FTh

(
bec(q, p;µ) + bec(p, q;µ) + bep(q, p;µ)

)
(7)

for all E ∈ FH , all µ ∈ P and all p, q ∈ H1(τh). Accordingly, we define the DG space
Qkh ⊂ H1(τh) for k ≥ 1 by

Qkh :=
{
q ∈ H1(τh)

∣∣ q|T ∈ Qk,Th ∀T ∈ TH
}
,
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with Qk,Th either being the local CG space Skh(τTh ) or the local DG space Qkh(τTh ).

Definition 2.2 (DG solution). Let σ be large enough, such that bh(·, ·;µ) is continuous
and coercive for all µ ∈ P. We define the DG solution ph : P → Q1

h for a parameter
µ ∈ P, such that

bh(ph(µ), qh;µ) = l(qh) for all qh ∈ Q1
h. (8)

As always with DG methods, coercivity is to be understood with respect to a DG norm
on Q1

h (i.e., given by the semi H1 norm combined with a DG jump norm) and there exists
a unique solution of (8) due to the Lax-Milgram Theorem, if σ is chosen accordingly.

Remark 2.3 (Properties of the discretization). Depending on the choice of the coarse
partition and the local discretization we can recover several discretizations from (6).
Choosing TH = Ω and Qk,Th = Skh(τTh ) yields a standard CG discretization (except for
the treatment of the boundary values), for instance. Choosing TH = τh, on the other
hand, results in the standard SWIPDG discretization proposed in [27, 26]. Note that the
local discretizations as well as the polynomial degree k do not have to coincide on each
coarse element (or even inside a coarse element when using a local DG space). It is
thus possible to balance the computational effort by choosing local CG or k-adaptive DG
discretizations. This puts our discretization close to the multi-numerics discretization
proposed in [46], where the latter allows for an even wider range of local discretizations
while coupling along the coarse faces using Mortar methods. Concerning the choice of
the user dependent penalty factor, we found an automated choice of σ depending on the
polynomial degree k, as proposed in [23], to work very well.

3 Model reduction

Disregarding the multi-scale parameter ε for the moment, model reduction using reduced
basis (RB) methods is a well established technique to reduce the computational complex-
ity of (8) with respect to the parameter µ. It has been successfully applied in multi-query
contexts, where (8) has to be solved for many parameters µ (e.g. in the context of op-
timization), and in real-time contexts, where a solution of (8) (or a quantity depending
on it) has to be available for some µ as fast as possible (see [8, 20, 44] and the references
therein). The general idea of RB methods is to span a reduced space Qred ⊂ Qkh by post-
processed solutions of (8) for a selection of parameters and to apply a Galerkin projection
of (8) onto this reduced space. Together with the assumption we posed on the data func-
tion in section 2 this allows for the well-known off-line/on-line decomposition of the RB
method, where all quantities depending on Qkh (in particular high-dimensional evalua-
tions of the bilinear form) can be precomputed and stored in so called Gramian-matrices
during a possibly computationally expensive off-line phase. In the on-line phase of the
simulation only low dimensional quantities depending on the parameter dependency of
the data functions and the dimension of Qred need to be computed which can usually be
done in real time and even on low end devices such as smartphones or embedded devices.
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It has been shown in [8], however, that the computational complexity of the off-line
phase can become unbearable if the RB method is applied to parametric multi-scale
problems, such as (8) for small scales ε� 1. There are two main drawbacks of classical
RB methods in this context: (i) all high-dimensional quantities (solution snapshots,
operator matrices, . . . ) usually depend on the fine triangulation τh, the size of which
scales with O(1/ε). Correspondingly all evaluations involving these quantities (scalar
products, operator inversions, . . . ) become increasingly expensive for small scales ε; (ii)
the generation of the reduced space Qred usually requires the discrete problem (8) to be
solved for several parameters µ. In the context of multi-scale problems, however, it is
usually only feasible to carry out very few global solutions of the original problem on the
fine triangulation, if at all.
The first of these shortcomings has been successfully addressed by the localized reduced

basis multi-scale (LRBMS) method introduced in [36, 8], which takes advantage of the
coarse partition and the underlying discretization to form local reduced spaces QTred ⊂
Qk,Th on each coarse element instead of the usual global RB space. This allows to balance
the computational effort of the off-line versus the on-line phase by selecting an appropriate
size of the coarse partition TH depending on the multi-scale parameter ε and the real-time
or multi-query context of the application. But it was also shown in [8], that the standard
residual based estimator which is usually used in the context of RB methods does not
scale well in the context of multi-scale problems. We thus finalize the definition of the
LRBMS method in this contribution with an efficiently off-line/on-line decomposable
a-posteriori error estimator (see the next section). The second shortcoming of classical
RB methods is addressed in section 5, where we propose an on-line enrichment extension
for the LRBMS method based on the presented error estimator, which finally turns the
LRBMS method into a fully capable multi-scale method.
The reduced problem. Let us assume that we are given a local reduced space

QTred ⊂ Qk,Th on each coarse element T ∈ TH . Those are usually, but not necessarily,
spanned by solutions of (8) and of low dimension, i.e., dimQTred � dimQk,Th . We then
define the coarse reduced space Qred(TH) ⊂ Qkh by

Qred(TH) :=
{
q ∈ Qkh

∣∣ q|T ∈ QTred ∀T ∈ TH
}
⊂ Qkh,

and obtain the reduced solution by a Galerkin projection of (8) onto Qred(TH).

Definition 3.1 (Reduced solution). We define the reduced solution pred : P → Qred(TH)
for a parameter µ ∈ P, such that

bh(pred(µ), qred;µ) = l(qred) for all qred ∈ Qred(TH). (9)

Off-line/on-line decomposition. The well-known off-line/on-line decomposition of
RB methods relies on an affine parameter dependence of the data functions (see section 2)
that carries over to the discrete bilinear form, i.e., there exist Ξ nonparametric component
bilinear forms bh,ξ : H1(τh) × H1(τh) → R, for 1 ≤ ξ ≤ Ξ, such that bh(p, q;µ) =∑Ξ

ξ=1 θξ(µ)bh,ξ(p, q), with θξ being the coefficients of the corresponding decomposition
of λ. In the standard RB framework, given a basis

{
qred,1, . . . , qred,N

}
of Qred, with

9
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N := dimQred, one would precompute dense Gramian matrices bh,ξ ∈ RN×N , given
by
(
bh,ξ
)
i,j

:= bh,ξ(qred,i, qred,j) during the off-line phase. In the on-line phase, given a
parameter µ ∈ P, one would obtain the reduced system matrix by a low dimensional
summation bh(µ) :=

∑Ξ
ξ=1 θξ(µ)bξ,h ∈ RN×N , which only involves evaluations of the

scalar coefficient functions θξ for the current parameter. The resulting dense reduced
system is of size N × N and does not depend on the dimension of Qkh. It can thus be
solved with a complexity of O(N3) in the on-line phase. Denoting by Nh := dimQkh and
NT
h := dimQkh(τTh ) (with Nh =

∑
T∈TH N

T
h ) the number of Degrees of Freedom of the

global and the local spaces, respectively, the reduction of bh during the off-line phase,
however, would be of a computational complexity of O(ΞN2Nh), which can become too
expensive in the context of small scales ε.
The flexible framework of the LRBMS method, however, allows for a more local ap-

proach. Since the affine decomposition of the data function λ also carries over to the local
bilinear forms bTh and the coupling bilinear forms bEh , we define local Gramian matrices
bTh,ξ ∈ RNT×NT on each coarse element T ∈ TH , given by(

bTh,ξ

)
i,j

:= bTh,ξ(q
T
red,i, q

T
red,j) +

∑
E∈FTH

bEh,ξ(q
T
red,i, q

T
red,j),

where
{
qTred,1, . . . , q

T
red,NT

}
denotes a basis of QTred with NT := dimQTred. In addition, we

define coupling Gramian matrices bT,Sh,ξ ∈ RNT×NS for all coarse elements T ∈ TH and
their neighbors S ∈ N (T ) by(

bT,Sh,ξ

)
i,j

:=
∑

E∈FTH∩F
S
H

bEh,ξ(q
T
red,i, q

S
red,j).

In the same manner, we define local vectors lT ∈ RNT , given by
(
lT
)
j

:= lT (qTred,j), for all
T ∈ TH . The global Gramian matrices bh,ξ ∈ RN×N and the global vector l ∈ RN , with
N :=

∑
T∈TH N

T , are then given by a standard DG mapping (with respect to the coarse
triangulation) of their local counterparts. The complexity to directly solve the reduced
system in the on-line phase, O

(
(
∑

T∈TH N
T )3
)
, is by definition larger than for standard

RB methods. The reduction of bh, however, can be carried out with a complexity of
roughly O(Ξ

∑
T∈TH N

T 2
NT
h ), which can be computed significantly faster than in the

standard RB setting described above (since Ξ|TH | local computations can be carried out
in parallel), depending on the choice of TH .

Remark 3.2 (Properties of the reduced system). The reduced system matrix of the
LRBMS method is obviously larger than the one we would obtain for standard RB methods
(given that it scales with |TH |). On the other hand we obtain a sparse matrix of dense
blocks (stemming from the local and coupling blocks and the DG mapping) that is usually
much smaller than the system matrix of the high-dimensional problem. Thus, if |TH | is
large, the reduced system can also be solved using sparse iterative solvers with a complexity
of O

(
(
∑

T∈TH N
T
h )2
)
.

10
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4 Error analysis

Our error analysis is a generalization of the ansatz presented in [26] to provide an esti-
mator for our DG approximation (8) as well as for our LRBMS approximation (9). The
main idea of the error estimator presented in [57, 26] is to observe that the approximate
DG diffusive flux −λ(µ)κε∇hph(µ) is nonconforming while its exact counterpart belongs
to Hdiv(Ω) ⊂ [L2(Ω)]d, which denotes the space of vector valued functions the diver-
gence of which lies in L2(Ω). The idea of [57, 26] is to reconstruct the discrete diffusive
flux in a conforming Raviart-Thomas-Nédélec space V l

h(τh) ⊂ Hdiv(Ω) and compare it
to the nonconforming one. Their error analysis relies on a local conservation property
of the reconstructed flux on the fine triangulation τh to prove estimates local to the fine
triangulation.
We transfer this concept to the DG discretization defined in section 2.2 and prove

estimates local to the coarse triangulation that are valid for the DG approximation
as well as for our LRBMS approximation. We obtain mild requirements for the coarse
triangulation and the local approximation spaces, namely that a local Poincaré inequality
holds on each coarse element and that the constant function 1 is present in the local
approximation spaces. The latter is obvious for traditional discretizations and can be
easily achieved for the LRBMS approximation. The estimates are fully off-line/on-line
decomposable and can thus be efficiently used for model reduction in the context of the
LRBMS. Preliminary results were published in [45].
We begin by stating an abstract energy norm estimate (see [26, Lemma 4.1]) that splits

the difference between the weak solution p ∈ H1
0 (Ω) of (3) and any function q ∈ H1(τh)

into two contributions. This abstract estimate does not depend on the discretization and
thus leaves the choice of s and v open. Note that we formulate the following Lemma
with different parameters for the energy norm and the weak solution. The price we have
to pay for this flexibility is the additional constants involving α(µ,µ) and γ(µ,µ), that
vanish if µ and µ coincide. In the following we denote the product over a space V (ω),
for ω ⊆ Ω, by (·, ·)V,ω and omit ω if ω = Ω; the same holds for the induced norm ||·||V,ω.

Lemma 4.1 (Abstract energy norm estimate). Let p(µ) ∈ H1
0 (Ω) be the weak solution

of (3) for µ ∈ P and let ph ∈ H1(τh) and µ ∈ P be arbitrary. Then

|||p(µ)− ph|||µ ≤
1√

α(µ,µ)

(
inf

s∈H1
0 (Ω)

√
γ(µ,µ)|||ph − s|||µ (10)

+ inf
v∈Hdiv(Ω)

{
sup

ϕ∈H1
0 (Ω)

|||ϕ|||µ=1

{(
f −∇·v, ϕ

)
L2 −

(
λ(µ)κε ·∇hph + v,∇ϕ

)
L2

}})

≤
√
γ(µ,µ)√
α(µ,µ)

2 |||p(µ)− ph|||µ.

Proof. We mainly follow the proof of [26, Lemma 4.1] while accounting for the parameter
dependency of the energy norm and the weak solution. It holds for arbitrary µ ∈ P,
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p ∈ H1
0 (Ω) and ph ∈ H1(τh), that

|||p− ph|||µ ≤ inf
s∈H1

0 (Ω)
|||ph − s|||µ + sup

ϕ∈H1
0 (Ω)

|||ϕ|||µ=1

b(p− ph, ϕ,µ) (11)

(see [57, Lemma 7.1]) and for the weak solution p(µ) ∈ H1
0 (Ω) of (3), that

b(p(µ)− ph, ϕ;µ) =
(
f, ϕ

)
L2 −

(
λ(µ)κε∇hph,∇ϕ

)
L2 ,

=
(
f −∇·v, ϕ

)
L2 −

(
λ(µ)κε ·∇hph + v,∇ϕ

)
L2 (12)

for all ϕ ∈ H1
0 (Ω) and all v ∈ Hdiv(Ω), where we used the definition of b in the first

equality and the fact that (v,∇ϕ)L2 = −(∇· v, ϕ)L2 due to Green’s Theorem and ϕ ∈
H1

0 (Ω) in the second one. Inserting (12) into (11) with p = p(µ) and using the norm
equivalence (4) then yields the first inequality in (10).
To obtain the second inequality we choose s = p(µ) and v = −λ(µ)κε∇p(µ) in the right

hand side of (10) which eliminates the two infimums and leaves us with two terms yet
to be estimated arising inside the supremum. Using Green’s Theorem and the definition
of b we observe the vanishing of the first term. We estimate the second term as∣∣(λ(µ)κε∇hph − λ(µ)κε∇p(µ),∇ϕ

)
L2

∣∣
=
∣∣((λ(µ)κε)

1/2∇h(ph − p(µ)), (λ(µ)κε)
1/2∇ϕ

)
L2

∣∣
≤
∣∣∣∣∣∣(λ(µ)κε)

1/2∇h(ph − p(µ))
∣∣∣∣∣∣
L2

∣∣∣∣∣∣(λ(µ)κε)
1/2∇ϕ

∣∣∣∣∣∣
L2

= |||ph − p(µ)|||µ|||ϕ|||µ,

where we used the Cauchy-Schwarz inequality and the definition of the energy norm. We
finally obtain the second inequality of (10) from the bound above by observing that the
supremum vanishes (due to |||ϕ|||µ = 1) and by using the norm equivalence (4) again.

The following theorem states the main localization result and gives an indication on
how to proceed with the choice of v: it allows us to localize the estimate of the above
Lemma, if v fulfills a local conservation property. It is still an abstract estimate in the
sense that it does not use any information of the discretization and does not yet fully
prescribe s and v.

Theorem 4.2 (Locally computable abstract energy norm estimate). Let p(µ) ∈ H1
0 (Ω)

be the weak solution of (3) for µ ∈ P, let s ∈ H1
0 (Ω) and ph ∈ H1(τh) be arbitrary, let

v ∈ Hdiv(Ω) fulfill the local conservation property (∇·v,1)L2,T = (f,1)L2,T and let CTP >

0 denote the constant from the Poincaré inequality
∣∣∣∣ϕ−ΠT

0 ϕ
∣∣∣∣2
L2,T

≤ CTP h2
T ||∇ϕ||

2
L2,T for

all ϕ ∈ H1(T ) on all T ∈ TH , where Πω
l denotes the L2-orthogonal projection onto Pl(ω)

for l ∈ N and ω ⊆ Ω. It then holds for arbitrary µ, µ̂ ∈ P, that

|||p(µ)− ph|||µ ≤ η̃(ph, s, v;µ, µ̂),

12
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with the abstract global estimator η̃(ph, s, v;µ, µ̂) defined as

η̃(ph, s, v;µ, µ̂) := 1√
α(µ,µ)

[ √
γ(µ,µ)

( ∑
T∈TH

η̃Tnc(ph, s;µ)2
)1/2

+
( ∑
T∈TH

η̃Tr (v)2
)1/2

+ 1√
α(µ,µ̂)

( ∑
T∈TH

η̃Tdf(ph, v; µ̂)2
)1/2

]

and the local nonconformity estimator defined as η̃Tnc(ph, s;µ) := |||ph − s|||µ,T , the local
residual estimator defined as η̃Tr (v) := (CTP /c

T
ε )1/2hT ||f −∇·v||L2,T and the local diffusive

flux estimator defined as η̃Tdf(ph, v; µ̂) :=
∣∣∣∣(λ(µ̂)κε)

−1/2
(
λ(µ)κε∇hph + v

)∣∣∣∣
L2,T

for all
coarse elements T ∈ TH , where cTε := mint∈τTh

ctε.

Proof. We loosely follow the proof of [26, Theorem 3.1] while accounting for the parameter
dependency and the coarse triangulation. Fixing an arbitrary s ∈ H1

0 (Ω) in (10) and
localizing with respect to the coarse triangulation yields

|||p(µ)− ph|||µ ≤
1√

α(µ,µ)

(√
γ(µ,µ)

√∑
T∈TH

|||ph − s|||2µ,T (13)

+ sup
ϕ∈H1

0 (Ω)
|||ϕ|||µ=1

{ ∑
T∈TH

( (
f −∇·v, ϕ

)
L2,T︸ ︷︷ ︸

:=(i)

−
(
λ(µ)κε ·∇hph + v,∇ϕ

)
L2,T︸ ︷︷ ︸

:=(ii)

)})

which leaves us with two local terms we will estimate separately.

(i) Since (f − ∇·v,ΠT
0 ϕ)L2,T = 0 due to the local conservation property of v we can

estimate the first term as∣∣(f −∇·v, ϕ)
L2,T

∣∣ ≤ ||f −∇·v||L2,T

∣∣∣∣ϕ−ΠT
0 ϕ
∣∣∣∣
L2,T

≤
√
CTP hT

(
max
t∈τTh

1

ctε

)−1
||f −∇·v||L2,T |||ϕ|||µ,T ,

where we used the Cauchy-Schwarz inequality, the Poincaré inequality and the local
norm equivalence (4) on all t ∈ τTh .

(ii) We estimate the second term as∣∣(λ(µ)κε∇hph + v,∇ϕ
)
L2,T

∣∣ ≤∣∣∣∣∣∣(λ(µ)κε)
−1/2

(
λ(µ)κε∇hph + v

)∣∣∣∣∣∣
L2,T
|||ϕ|||µ,T

≤
√
α(µ, µ̂)

−1
∣∣∣∣∣∣(λ(µ̂)κε)

−1/2
(
λ(µ)κε∇hph + v

)∣∣∣∣∣∣
L2,T
|||ϕ|||µ,T

using the Cauchy-Schwarz inequality, the definition of the local energy semi-norms
and the parameter equivalency from section 2.

13



PR
EP

RIN
T

Inserting the last two inequalities in (13) and using the Cauchy-Schwarz inequality yields

|||p(µ)− ph|||µ ≤
1√

α(µ,µ)

(√
γ(µ,µ)

( ∑
T∈TH

η̃Tnc(ph, s;µ)2
)1/2

+ sup
ϕ∈H1

0 (Ω)
|||ϕ|||µ=1

[ ∑
T∈TH

(
η̃Tr (v) + 1√

α(µ,µ̂)
η̃Tdf(ph, v; µ̂)

)
|||ϕ|||µ,T︸ ︷︷ ︸

(iii)

]2)
,

using the definition of the local estimators and of cTε . Using the Cauchy-Schwarz inequal-
ity again we can further estimate (iii) as

(iii) ≤

[( ∑
T∈TH

η̃Tr (v)2
)1/2

+ 1√
α(µ,µ̂)

( ∑
T∈TH

η̃Tdf(ph, v; µ̂)2
)1/2

]
|||ϕ|||µ.

The previous two inequalities combined give the final result, since the supremum vanishes
due to |||ϕ|||µ = 1.

Remark 4.3 (Properties of the locally computable abstract energy norm estimate). In
contrast to the estimator proposed in [26] the above estimate is local with respect to TH ,
not τh. Choosing TH = τh we obtain nearly the same estimate as the one in [26] for the
pure diffusion case (apart from a slightly less favorable summation). In general, however,
we can only expect η̃r to be superconvergent if we refine TH along with τh (see Section
6.1), thus keeping the ration H/h fixed.

What is left now in order to turn the abstract estimate of Theorem 4.2 into a fully
computable one is to specify s and v, given a DG solution ph. We will do so in the
following paragraphs, finally using the knowledge that ph was computed using our DG
discretization.
Oswald interpolation. The form of the nonconformity indicator in Theorem 4.2

already indicates how to choose s: it should be close to ph, in order to minimize η̃nc,
and it should be computable with reasonable effort. Both requirements are met by the
Oswald interpolation operator, that goes back to [35] (in the context of a-posteriori error
estimates; see also [26, Section 2.5] and the references therein). Given any nonconforming
approximation ph ∈ Qkh(TH) 6⊂ H1

0 (Ω) we choose s ∈ H1
0 (Ω) as a conforming reconstruc-

tion of ph by the Oswald interpolation operator Ios : Qkh(TH) → Qkh(TH) ∩H1
0 (Ω) which

is defined by prescribing its values on the Lagrange nodes ν of the triangulation: we set
Ios[ph](ν) := pth(ν) inside any t ∈ τh and

Ios[ph](ν) := 1
|τvh |

∑
t∈τνh

pth(ν) for all inner nodes of τh and Ios[ph](ν) := 0

for all boundary nodes of τh, where τvh ⊂ τh denotes the set of all simplices of the fine
triangulation which share ν as a node.
We continue with the specification of v, which is a bit more involved. The only formal

14
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requirement we have is for v to fulfill the local conservation property on each coarse
element, although the diffusive flux estimator already gives a good hint on the specific
form of v (namely, to be close to −λ(µ)κε∇hph(µ)). A particular choice is given by the
element-wise diffusive flux reconstruction (with respect to the fine triangulation) that was
proposed in [26], which fulfills the local conservation property on the coarse elements if
properly defined with respect to our DG discretization.
Diffusive flux reconstruction. We will reconstruct a conforming diffusive flux ap-

proximation uh(µ) ∈ Hdiv(Ω) of the nonconforming discrete diffusive flux−λ(µ)κε∇hph(µ) 6∈
Hdiv(Ω) in a conforming discrete subspace V l

h(τh) ⊂ Hdiv(Ω), namely the Raviart-
Thomas-Nédélec space of vector functions (see [26] and the references therein), defined
for k − 1 ≤ l ≤ k by

V l
h(τh) :=

{
v ∈ Hdiv(Ω)

∣∣v|t ∈ [Pl(t)]d + xPl(t) ∀t ∈ τh
}
.

See [26, Section 2.4] and the references therein for a detailed discussion of the role of
the polynomial degree l, the properties of elements of V l

h(τh) and the origin of the use
of diffusive flux reconstructions in the context of error estimation in general. We define
the diffusive flux reconstruction operator Rlh : P → [Qkh(TH) → V l

h(τh)], µ 7→
[
qh 7→

Rlh[qh;µ]
]
, by locally specifying Rlh[qh;µ] ∈ V l

h(τh), such that(
Rlh[qh;µ] ·ne, q

)
L2,e

= bec(qh, q;µ) + bep(qh, q;µ) for all q ∈ Pl(e) (14)

and all e ∈ F th and

(
Rlh[qh;µ],∇q

)
L2,t

= −bt(qh, q;µ)− ϑ
∑
e∈Fth

bec(q, qh;µ) for all ∇q ∈ [Pl−1(t)]d (15)

with q ∈ Pl(t) for all t ∈ τh, where ϑ is given by the local discretization inside each coarse
element and by ϑ = 1 on all fine faces that lie on a coarse face. The next Lemma shows
that this reconstruction of the diffusive flux is sensible for the DG solution as well as the
reduced solution, since the reconstructions of both fulfill the requirements of Theorem
4.2.

Lemma 4.4 (Local conservativity). Let 1 ∈ QTred ⊂ Qk,Th for all T ∈ TH and let
ph(µ) ∈ Qkh(TH) be the DG solution of (8) and pred(µ) ∈ Qred(TH) the reduced so-
lution of (9) for a parameter µ ∈ P and let uh(µ) := Rlh[ph(µ);µ] ∈ V l

h(τh) and
ured(µ) := Rlh[pred(µ);µ] ∈ V l

h(τh) denote their respective diffusive flux reconstructions.
It then holds that uh(µ) and ured(µ) fulfill the local conservation property of Theorem
4.2, i.e.,(

∇·uh(µ),1
)
L2,T

=
(
f,1

)
L2,T

=
(
∇·ured(µ),1

)
L2,T

for all T ∈ TH .

Proof. We follow the ideas of [26, Lemma 2.1] while accounting for the coarse triangula-
tion. Let 1T ∈ Qkh(TH) be an indicator for T ∈ TH , such that 1T

∣∣
T

= 1 ∈ Qk,Th and zero
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everywhere else. It then holds with ∗ = h, red, that(
∇·u∗(µ),1

)
L2,T

=
∑
t∈τTh

[(
u∗(µ) ·n,1

)
L2,∂t

−
(
u∗(µ),∇1)

)
L2,t

]
= bh(p∗(µ),1T ;µ) =

(
f,1)L2,T ,

for all T ∈ TH , where we used Green’s Theorem in the first equality, the definition of the
diffusive flux reconstruction, (14), (15), and the definition of 1T and bh in the second
and the fact, that 1 ∈ Qk,Th and p∗ solves (8) or (9), respectively, in the third.

Inserting the Oswald interpolation for s and the diffusive flux reconstruction for v in
Theorem 4.2 then yields a locally computable energy estimate for the DG as well as the
reduced solution.

Corollary 4.5 (Locally computable energy norm estimate). Let p(µ) ∈ H1
0 (Ω) be the

weak solution of (3), let ph(µ) ∈ Q1
h(TH) be the DG solution of (8), let pred(µ) ∈

Qred(TH) be the reduced solution of (9) and let Rlh denote the diffusive flux reconstruction
operator. Let the assumptions of Theorem (4.2) and Lemma (4.4) be fulfilled and let
µ, µ̂ ∈ P be arbitrary. It then holds, that

|||p(µ)− ph(µ)|||µ ≤ η(ph(µ);µ,µ, µ̂),

|||p(µ)− pred(µ)|||µ ≤ η(pred(µ);µ,µ, µ̂).

with

η(·;µ,µ, µ̂) := 1√
α(µ,µ)

[ √
γ(µ,µ)

( ∑
T∈TH

ηTnc(·;µ)2
)1/2

+
( ∑
T∈TH

ηTr (·;µ)2
)1/2

+ 1√
α(µ,µ̂)

( ∑
T∈TH

ηTdf(·;µ, µ̂)2
)1/2

]

and

ηTnc(·;µ) := η̃Tnc(·, Ios[·];µ), ηTr (·;µ) := η̃Tr (Rlh[·;µ]), ηTdf(·;µ, µ̂) := η̃Tdf(·, Rlh[·;µ]; µ̂).

Local efficiency. The global efficiency of the abstract estimate was already shown in
Lemma 4.1 (again note, that γ(µ,µ) = α(µ,µ) = 1 if µ and µ coincide); see [25, Remarks
4.2 and 4.3] for a discussion of the global efficiency of the abstract estimate. We also
state a local efficiency of the local estimates using the knowledge of the discretization, the
Oswald interpolation and the diffusive flux reconstruction. To do so we further localize
our estimates with respect to the fine triangulation and apply the ideas of [24, 25, 26].
We denote by . a proportionality relation between to quantities a and b in the sense
that a . b :⇐⇒ a ≤ Cb, where the positive constant C depends on the space dimension,
the polynomial degree k, the polynomial degree of f , the shape-regularity of τh and the
DG parameters σ and ϑ, only. We additionally denote the set of all fine elements that
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touch T ∈ TH by τ̃Th := {t ∈ τh | t ∩ T 6= ∅}, the set of all fine faces that touch T by
F̃Th := {e ∈ Fh | ∃t ∈ τTh : e ∩ t 6= ∅} and the weighted jump seminorms [[[·]]]·,F : P →
[H1(τh)→ R], µ 7→ [q 7→ [[[q]]]µ,F ] and [[[·]]]p,·,F : P → [H1(τh)→ R], µ 7→ [q 7→ [[[q]]]p,µ,F ]

for any subset F ⊂ Fh, all µ ∈ P and q ∈ H1(τh) by

[[[q]]]µ,F :=
(∑
e∈F

∣∣∣∣[[(λ(µ)κε∇q
)
·ne
]]∣∣∣∣

L2,e

)1/2
and [[[q]]]p,µ,F :=

(∑
e∈F

bep(q, q;µ)
)1/2

,

respectively. We analogously denote the set of all fine elements that touch t ∈ τh by τ̃ th
and the set of all fine faces that touch t by F̃ th and define

c̃Tε := min
t∈τ̃Th

ctε, hT := max
t∈τTh

ht, ωT :=
(

max
e∈FTh

ω+
e

2)1/2,
CTε := max

t∈τh
Ctε, hT := min

t∈τTh
ht, CTp := max

t∈τh
Ctp,

C
T
ε := max

t∈τTh

(
( max
s∈t∪N (t)

Csε
csε

)2
)

for all T ∈ TH , where Ctp > 0 denotes the Poincaré constant on t ∈ τh, defined analogously
to CTp .

Theorem 4.6 (Local efficiency of the locally computable energy norm estimate). With
the notation and assumptions from Corollary 4.5, let f be polynomial and maxt∈τh ht ≤ 1.
It then holds with ∗ = h, red, respectively, that

ηTnc(p∗(µ);µ) .
(
CTε /c̃

T
ε

)1/2
[[[p(µ)− p∗(µ)]]]p,µ,F̃Th

,

ηTr (p∗(µ);µ) .
√
γ(µ,µ)(CTp /c

T
ε )1/2hT

[
CTε hT

−1 |||p(µ)− p∗(µ)|||µ,T

+ CTp
1/2
cTε
−1/2

(
ωT hT

1/2
[[[p∗(µ)]]]µ,FTh

+ CTε
1/2

σ1/2 [[[p(µ)− p∗(µ)]]]p,µ,FTh

)]
ηTdf(p∗(µ);µ, µ̂) .

√
γ(µ, µ̂)

√
γ(µ,µ) C

T
ε

1/2(
|||p(µ)− p∗(µ)|||µ,T

+ [[[p(µ)− p∗(µ)]]]p,µ,FTh

)
for all coarse elements T ∈ TH .

Proof. We estimate each local estimator separately. It holds for the nonconformity esti-
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mator, that

ηTnc(p∗(µ);µ) =
( ∑
t∈τTh

|||p∗(µ)− Ios[p∗(µ)]|||2µ,t
)1/2

.
( ∑
t∈τTh

Ctε min
t∈τ̃ th

(ctε)
−1[[[p(µ)− p∗(µ)]]]2

p,µ,F̃th

)1/2

≤
(
CTε /c̃

T
ε

)1/2
[[[p(µ)− p∗(µ)]]]p,µ,F̃Th

,

where we use the definition of ηTnc[p∗(µ)] and τTh in the equality and the arguments of
[26, Proof of Theorem 3.2] in the first and the definition of CTε , c̃Tε and F̃Th in the second
inequality.
It holds for the residual estimator that

ηTr (p∗(µ);µ) ≤
(
CTp /c

T
ε

)1/2
hT

( ∣∣∣∣f −∇·(λ(µ)κε∇p∗(µ)
)∣∣∣∣
L2,T︸ ︷︷ ︸

:=(i)

+
∣∣∣∣∇·(λ(µ)κε∇p∗(µ) + u∗(µ)

)∣∣∣∣
L2,T︸ ︷︷ ︸

:=(ii)

)
,

where we used the definition of ηTr [u∗(µ)] and the triangle inequality, which leaves us
with two terms we will estimate separately.

(i) The first term can be estimated as follows, using the definition of τTh and the
arguments of [24, Proposition 3.3] in the first and the definition of CTε and τTh and
the fact that maxt∈τh ht ≤ 1 in the second inequality:

(i) .
( ∑
t∈τTh

Ctεh
−2
t |||p(µ)− p∗(µ)|||2µ,t

)−1/2
≤ CTε hT−1|||p(µ)− p∗(µ)|||µ,T

(ii) The second term can be estimated as

(ii) .
[ ∑

t∈τh

Ctphtc
t
ε
−1
∑
e∈Fth

ω+
e

2∣∣∣∣[[(λ(µ)κε∇p∗(µ)
)
·ne
]]∣∣∣∣2

L2,e

+
∑
t∈τh

CtpσC
t
ec
t
e
−1

[[[p(µ)− p∗(µ)]]]2p,µ,Fth

]1/2

. CTp
1/2
cTε
−1/2

ωT hT
1/2

[[[p∗(µ)]]]µ,FTh

+ CTp
1/2
cTε
−1/2

CTε
1/2

σ1/2[[[p(µ)− p∗(µ)]]]p,µ,FTh
,

using the definition of τTh and the arguments of [26, Proof of Theorem 3.2] in the
first and the definition of CTp , hT , CTε , cTε and τTh in the second inequality.
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Applying the norm equivalence (4) yields the desired result for the residual estimator.
Finally, it holds for the diffusive flux estimator, that

ηTdf(p∗(µ);µ,µ) ≤
√
γ(µ, µ̂)

( ∑
t∈τTh

∣∣∣∣∣∣(λ(µ)κε
)−1/2(

λ(µ)κε∇p∗(µ) + u∗(µ)
)∣∣∣∣∣∣2
L2,t

)1/2

.
√
γ(µ, µ̂)

[ ∑
t∈τTh

(
max

s∈t∪N (t)

Csε
csε

)2(|||p(µ)− p∗(µ)|||µ,t

+ [[[p(µ)− p∗(µ)]]]p,µ,Fth

)2]1/2

.
√
γ(µ, µ̂) C

T
ε

1/2(
|||p(µ)− p∗(µ)|||µ,T + [[[p(µ)− p∗(µ)]]]p,µ,FTh

)
,

where we used the definition of ηTdf [p∗(µ)] and τTh and the parameter equivalence from
(4) in the first, [25, Lemma 4.12] in the second and the definition of CTε and FTh in the
third inequality. Applying the norm equivalence (4) again finally yields the desired result
for the diffusive flux estimator.

5 On-line enrichment

As mentioned in Section 3 there are two drawbacks of classical RB methods in the con-
text of parametric multi-scale problems, stemming from the fact that dimQkh roughly
scales with O(ε−1): (i) expensive high-dimensional evaluations of global quantities dur-
ing reduction and orthogonalization and (ii) expensive high-dimensional inversions of
(8) during the basis generation. The first shortcoming was addressed by the LRBMS
method introduced in [36, 8] and finalized by the local error estimator introduced in the
previous section, that can be off-line/on-line decomposed with a computational complex-
ity depending only linearly on |τh| (not shown) while the original estimator presented
in [8] required the computation of |TH | global Riesz-representatives for each snapshot.
But also the LRBMS method suffers from the second shortcoming, namely that the basis
generation (for instance using an adaptive Greedy procedure) requires the global high-
dimensional problem (8) to be solved for a possibly large number of parameters out of a
finite training set Ptrain ⊂ P. In the context of parametric multi-scale problems, however,
solving (8) may be prohibitively expensive and one may only have the resources to do so
for a very limited amount of parameters, if at all. Such an RB space constructed out of
only very few solution snapshots is usually insufficient for nearly all parameters µ ∈ P
that were not included in the basis generation.
To address this shortcoming we relax the notion of a strict off-line/on-line splitting of

the computation in the classical sense. While the computational complexity of the on-line
phase must not depend on any global high-dimensional quantities (namely dimQkh) for
RB methods, we allow for high-dimensional but local computations (of order dimQk,Th ,
with T ∈ TH) in the context of the LRBMS method. The idea is as follows: during the
off-line phase we initialize the local reduced bases QTred with a DG basis of order up to
kH ∈ N with respect to the coarse elements T ∈ TH , thus ensuring that any reduced
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Algorithm 5.1 Discrete weak Greedy algorithm used in the LRBMS method
Input: ONB, kH ∈ N, Ptrain ⊂ P, ∆greedy > 0, Ngreedy ∈ N
Output: A local reduced basis ΦT for each coarse element T ∈ TH .

Initialize the local reduced bases with the coarse DG basis:
for all T ∈ TH do

ΦT
(0) ← ONB

(
{DG shape functions of order up to kH w.r.t. T}

)
end for
Qred(TH)(0) ←⊕

T∈TH span
(
ΦT

(0))
n← 0
while max

µ∈Ptrain
η(pred(µ);µ,µ, µ̂) > ∆greedy, with pred(µ) ∈ Qred(TH)(n) solving (9)

and n < Ngreedy do
Compute all reduced quantities w.r.t Qred(TH)(n).
Find the worst approximated parameter, with pred(µ) ∈ Qred(TH)(n) solving (9):

µmax ← arg max
µ∈Ptrain

η(pred(µ);µ,µ, µ̂)

Extend the local reduced bases, with ph(µ) ∈ Qkh solving (8):
for all T ∈ TH do

ΦT
(n+1) ← ONB

(
{ΦT (n)

, ph(µ)
∣∣
T
}
)

end for
Qred(TH)(n+1) ←⊕

T∈TH span
(
ΦT

(n+1))
n← n+ 1

end while
return

{
ΦT

(n)}
T∈TH

solution is at least as good as a DG solution on the coarse triangulation. We then carry
out a discrete weak Greedy algorithm based on the error estimator defined in Corollary
4.5 while allowing only for a limited amount of global solution snapshots, Nmax ∈ N, and
extend the local bases with these snapshots using an orthonormalization algorithm ONB
locally on each T ∈ TH . This procedure is summarized in Algorithm 5.1.
During the on-line phase, given any µ ∈ P, we compute a reduced solution pred(µ) ∈

Qred(TH) and efficiently assess its quality using the error estimator. If the estimated
error is above a prescribed tolerance, ∆online > 0, we start an intermediate local enrich-
ment phase to enrich the reduced bases in the SEMR (solve → estimate → mark →
refine) spirit of adaptive mesh refinement (the procedure is summarized in Algorithm
5.2): we first compute local error indicators ηT (pred(µ);µ,µ, µ̂) for all T ∈ TH , such
that η(·;µ,µ, µ̂)2 ≤

∑
T∈TH η

T (·;µ,µ, µ̂)2, defined as

ηT (·;µ,µ, µ̂)2 := 3√
α(µ,µ)

[√
γ(µ,µ) ηTnc(·;µ)2 + ηTr (·;µ)2 + 1√

α(µ,µ̂)
ηTdf(·;µ, µ̂)2

]
(16)

and mark coarse elements T̃H ⊆ TH for enrichment, given a marking strategy MARK. For
each marked T ∈ T̃H we solve

bTδh (pTδh (µ), qh;µ) = lTδh (qh) for all qh ∈ Qkh(τTδh ) (17)

on an overlapping domain Tδ ⊃ T with the insufficient reduced solution pred(µ) as dirich-
let boundary values on ∂Tδ to obtain an updated detailed solution pTδh (µ) ∈ Qkh(τTδh ).
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Here Qkh(τTδh ), bTδh and lTδh are extensions of Qkh(τTh ), bTh and lT , respectively, to the over-
sampled domain Tδ while additionally encoding pred(µ) as dirichlet boundary values.
We then extend each marked local reduced basis by performing an orthonormalization
procedure on pTδh (µ)

∣∣
T

with respect to the existing local basis and update all reduced
quantities with respect to the newly added basis vector. We finally compute an updated
reduced solution in the updated coarse reduced space and estimate the error again. We
repeat this procedure until the estimated error falls below the prescribed tolerance ∆online
or until the prescribed maximum number of iterations, Nonline ∈ N, is reached. Possible
choices for ONB and MARK are given in Section 6.2. Note that first steps in the direction
of on-line enrichment were published in [9].

Algorithm 5.2 Adaptive basis enrichment in the intermediate local enrichment phase
Input: MARK, ONB,

{
ΦT
}
T∈TH

, pred(µ), µ, ∆online > 0, Nonline ∈ N
Output: Updated reduced solution and local reduced bases.
ΦT

(0) ← ΦT , ∀T ∈ TH
n← 0
while η(pred(µ);µ,µ, µ̂) > ∆online and n < Nonline do

for all T ∈ TH do
Compute local error indicator ηT (pred(µ);µ,µ, µ̂) according to (16).

end for
T̃H ← MARK

(
TH
)

for all T ∈ T̃H do
Solve (17) for pTδh (µ) ∈ Qkh(τ

Tδ
h ).

ΦT
(n+1) ← ONB

(
{ΦT (n)

, p
Tδ
h (µ)

∣∣
T
}
)

end for
Qred(TH)(n+1) ←⊕

T∈T̃H span
(
ΦT

(n+1))⊕⊕T∈TH\T̃H span
(
ΦT

(n))
Update all reduced quantities w.r.t Qred(TH)(n+1).
Solve (9) for pred(µ) ∈ Qred(TH)(n+1).
n← n+ 1

end while
return pred(µ),

{
ΦT

(n)}
T∈TH

Remark 5.1. It is also possible to use other methods to compute (or approximate) ph(µ)
during the Greedy procedure, in particular other domain decomposition or multi-scale
methods. If the resulting approximation does not fulfill the local conservation property of
Lemma 4.4, however, the estimator would have to be replaced during the Greedy algorithm,
for instance in the spirit of [46]. But during the on-line phase the estimator would be
valid for any reduced solution, as long as the basis is initialized with at least a constant
function. In particular one could use variants of the MsFEM (see [22]), the HMM (see
[5]) or in particular the DG-HMM (see [2, 7]) during the Greedy procedure to generate a
coarse reduced basis with approximation properties of order H. Fine scale features of the
solution would then be adaptively recovered during the on-line enrichment phase, if and
where needed.

Remark 5.2. The computation of the local error indicators in Algorithm 5.2 can be effi-
ciently off-line/on-line decomposed (not shown here). Once a set of subdomains has been
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marked, the enrichment can be carried out in parallel without any communication. For
the update of the reduced quantities only local information and the information on one
layer of neighboring fine grid cells is needed. The on-line phase, however, requires infor-
mation on TH (in particular the number of coarse elements and neighboring information),
in contrast to traditional RB methods.

Remark 5.3. Our choice of the Greedy algorithm and the adaptive on-line enrich-
ment covers a wide range of scenarios. Disabling the on-line enrichment (by setting
Nonline = 0) and choosing any suitable ∆greedy and Ngreedy yields the standard Greedy
basis generation, well known in the RB context. Setting Ngreedy = 0 and kH = 1, on the
other hand, disables the Greedy procedure and merely initializes the reduced bases with
the coarse DG basis of order one. This is of particular interest in situations where the
computation of solutions of the detailed problem during the Greedy procedure might be too
costly. In that setup nearly all work is done in the adaptive on-line enrichment phase.
Many other variants are possible, e.g. other local boundary conditions, several mark-
ing strategies MARK or orthonormalization algorithms ONB or other stopping criteria; one
could also limit the number of intermediate snapshots added to the local bases. Depending
on these choices the resulting method is then close to existing DD methods (i.e., a DD
method with overlapping subdomains, see [47]) or multi-scale methods (i.e., the adaptive
iterative multi-scale finite volume method [30]).

The LRBMS method with the proposed adaptive on-line enrichment strategy is now
suitable for a far wider range of circumstances than standard RB methods or the pre-
viously published variant of the LRBMS method. As mentioned before it can now be
applied if the computational power available for the off-line phase is limited by time- or
resource constraints. It can also be applied if the set of training parameters given to the
Greedy Algorithm was insufficiently chosen or even if on-line a solution to a parameter is
requested that is outside of the original bounds of the parameter space. In general, the
on-line adaptive LRBMS method can be applied whenever the basis that was generated
during the off-line phase turns out to not be sufficient for what is required during the
on-line phase.

6 Numerical experiments

In this section we investigate the performance of the error estimator in the context
of the DG discretization defined in Section 2.2 as well as in the context of the the
LRBMS method defined in Section 3. We also investigate the performance of the on-line
enrichment procedure we proposed in the previous section.
We used several software packages for the implementation: everything concerning the

discretization was implemented within the high performance C++ software framework
DUNE [12, 11] while everything related to model reduction was implemented based on
the pyMOR package [40]. Data functions, container and linear solvers were implemented
within dune-stuff [41], discrete function spaces (based on the discretization modules
dune-fem [19] and dune-pdelab [1]), operators and products for the discretization as
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well as the error estimator were implemented within dune-gdt [49]. The coarse triangu-
lation was implemented in dune-grid-multiscale [50] while the Python bindings form-
ing the bridge between DUNE and pyMOR were implemented in dune-pymor [48]. Finally a
high-level solver for linear elliptic (and possibly parametric) PDEs was implemented in
dune-hdd [51] and exposed to pyMOR, where everything related to model reduction was
implemented.
The fine triangulations τh used are conforming refinements of triangular grids, rep-

resented by instances of ALUGrid< 2, 2, simplex, conforming > (see [18]). In the
following experiments we choose a DG space Q1,T

h (τTh ) locally on all coarse elements
T ∈ TH . The resulting discretization thus coincides with the one defined in [27, 26]
(though in general other choices are possible). All coarse triangulations TH used consist
of squared elements (though arbitrary shapes are possible).
Most figures in this publication were created or arranged using TikZ [55, 54] and

pgfplots [28], the colorblind safe colors in Figures 4 and 6 were selected with ColorBrewer
[15].

6.1 Study of the a-posteriori error estimator

To study the convergence properties of our estimator we consider two experiments. The
first one serves as an academic example and as a comparison to the work of [25, 26]. The
second experiment demonstrates the efficiency of the estimator in realistic circumstances.
In both experiments we compute estimator components η∗2 :=

∑
T∈TH η

T
∗

2, for ∗ =, nc,
r, df and the estimator η as defined in Corollary 4.5, using a 0th order diffusive flux recon-
struction (l = 0 in (14), (15)). If no analytical solution p(µ) is available we approximate
the discretization error |||p(µ)− p(µ)|||µ by substituting p(µ) for a discrete solution on
a finer grid and by computing all integrals using a high order quadrature on the finer
grid. We denote the efficiency of the estimator, η(ph(µ);µ,µ, µ̂)/|||p(µ)− ph(µ)|||µ ≥ 1,
by “eff.” and the average (over all refinement steps) experimental order of convergence
of a quantity by “order”.
Academic example. We consider (2) on Ω = [−1, 1]2 with a parameter space P =

[0.1, 1], κε ≡ id, f(x, y) = 1
2π

2 cos(1
2πx) cos(1

2πy), λ(x, y;µ) = 1+(1−µ) cos(1
2πx) cos(1

2πy)
and homogeneous Dirichlet boundary values. We study the components of the estima-
tor as well as its efficiency in several circumstances, i.e., for different parameters µ, µ,
µ̂ ∈ P and triangulations τh and TH . We choose τh just as in [25, Section 8.1] and
begin with µ = µ = µ̂ = 1, thus reproducing the nonparametric example studied in

|τh| |||p(µ)− ph(µ)|||µ ηnc(·;µ) ηr(·;µ) ηdf(·;µ, µ̂) eff.
128 3.28·10−1 1.66·10−1 5.79·10−1 3.55·10−1 3.36
512 1.60·10−1 7.89·10−2 2.90·10−1 1.76·10−1 3.40

2,048 7.78·10−2 3.91·10−2 1.45·10−1 8.73·10−2 3.49
8,192 3.47·10−2 1.95·10−2 7.27·10−2 4.35·10−2 3.91
order 1.08 1.03 1.00 1.01 –

Table 1: Discretization error, estimator components and efficiency of the error estimator
for the academic example in Section 6.1 with |TH | = 1 and µ = µ = µ̂ = 1.
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µ̂ = 1 µ̂ = 0.1
|τh| / |TH | ηr(·;µ) η(·;µ,µ, µ̂) eff. ηdf(·;µ, µ̂) η(·;µ,µ, µ̂) eff.
128 / 2× 2 2.89·10−1 8.10·10−1 2.47 3.16·10−1 7.71·10−1 2.35
512 / 4× 4 7.26·10−2 3.27·10−1 2.04 1.56·10−1 3.08·10−1 1.92

2,048 / 8× 8 1.82·10−2 1.45·10−1 1.86 7.74·10−2 1.35·10−1 1.73
8,192 / 16× 16 4.54·10−3 6.76·10−2 1.95 3.85·10−2 6.26·10−2 1.80

order 2.00 1.20 – 1.01 1.21 –

Table 2: Selected estimator components, estimated error and efficiency of the error esti-
mator for the academic example in Section 6.1 with τh and TH simultaneously
refined, µ = 1 and two choices of µ̂. Note that the estimator components ηnc
and ηdf are not influenced by TH , the estimator components ηnc and ηr are not
influenced by µ̂ and the discretization error is not influenced by either. Thus
only ηr, η and its efficiency are given for µ̂ = 1 and only ηdf, η and its efficiency
are given for µ̂ = 0.1 (the other quantities coincide with the ones in Table 1).

|τh| / |TH | |||p(µ)− ph(µ)|||µ ηnc(·;µ) η(·;µ,µ, µ̂) eff.
128 / 2× 2 3.81·10−1 1.82·10−1 1.18·100 3.10
512 / 4× 4 1.87·10−1 8.57·10−2 5.00·10−1 2.67

2,048 / 8× 8 9.08·10−2 4.22·10−2 2.29·10−1 2.52
8,192 / 16× 16 4.05·10−2 2.11·10−2 1.10·10−1 2.71

order 1.08 1.03 1.14 –

Table 3: Discretization error, selected estimator component, estimated error and effi-
ciency of the error estimator for the academic example in Section 6.1 with τh
and TH simultaneously refined, µ = 1 and µ = µ̂ = 0.1. Note that ηr and ηdf
are not influenced by µ and coincide with Table 2.

[25, Section 8.1] (since λ ≡ 1 and all constants involving α and γ are equal to 1). For
this specific choice of parameters an exact solution is available (see [25, Section 8.1]).
In this configuration, ηnc and ηdf coincide with their respective counterparts defined in
[25, 26] while ηr is directly influenced by the choice of the coarse triangulation and the
parametric nature of λ (entering cTε ). Choosing TH = Ω (the coarse grid configuration
with the worst efficiency), we observe results similar to [25, Table 1] for ηdf and ηnc in
Table 1. In contrast, ηr shows only linear convergence while the residual estimator in [25,
Table 1] converges with second order. Overall, the efficiency of the estimator η is around
3.5 (for fixed |TH | = 1) while the efficiency of the estimator in [25, Table 1] is around
1.2. We can recover the superconvergence of ηr, however, by refining TH along with τh
(thus keeping the ratio H/h fixed), see the left columns of Table 2. In order to make
the estimator off-line/on-line decomposable in the parametric setting, µ̂ has to be fixed
throughout the experiment. Choosing µ̂ = 0.1 has no negative impact on the efficiency
of the estimator, as we observe in the right columns of Table 2. It is often desirable to
additionally fix the error norm throughout the experiments. Choosing µ = 0.1 we still
observe a very reasonable efficiency in Table 3.
Multi-scale example. We consider (2) on Ω = [0, 5]× [0, 1] with f(x, y) = 2 · 103 if

(x, y) ∈ [0.95, 1.10]× [0.30, 0.45], f(x, y) = −1 · 103 if (x, y) ∈ [3.00, 3.15]× [0.75, 0.90] or
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|τh| / |TH | |||p(µ)− ph(µ)|||µ ηnc(·;µ) ηr(·;µ) ηdf(·;µ, µ̂) eff.
16,000 / 25× 5 7.49·10−1 2.13·100 1.88·10−9 9.66·10−1 4.14
64,000 / 50× 10 4.52·10−1 1.46·100 7.05·10−10 6.05·10−1 4.58

256,000 / 100× 20 2.58·10−1 1.02·100 7.44·10−11 3.85·10−1 5.44
1,024,000 / 200× 40 1.26·10−1 7.20·10−1 2.00·10−10 2.49·10−1 7.70

order 0.86 0.52 1.07 0.65 –

Table 4: Discretization error, estimator components and efficiency of the error estimator
for the multi-scale example in Section 6.1 with τh and TH simultaneously refined
and µ = µ = µ̂ = 1. Note that ηr should be close to zero (since f is piecewise
constant, compare Figure 1) and suffers from numerical inaccuracies (ignoring
the last refinement would yield an average order of 2.33 for ηr).

(x, y) ∈ [4.25, 4.40]× [0.25, 0.40] and 0 everywhere else, λ(x, y;µ) = 1 + (1− µ)λc(x, y),
κε = κ id, homogeneous Dirichlet boundary values and a parameter space P = [0.1, 1].
On each t ∈ τh, κ|t is the corresponding 0th entry of the permeability tensor used in the
first model of the 10th SPE Comparative Solution Project (which is given by 100 × 20
constant tensors, see [53]) and λc models a channel, as depicted in Figure 1. The right
hand side f models a strong source in the middle left of the domain and two sinks in
the top and right middle of the domain, as is visible in the structure of the solutions
(see Figure 1). The role of the parameter µ is to toggle the existence of the channel λc.
Thus λ(µ)κ reduces to the above mentioned permeability tensor for µ = 1 while µ = 0.1
models the removal of a large conductivity region near the center of the domain (see
the first row in Figure 2). This missing channel has a visible impact on the structure
of the pressure distribution as well as the reconstructed velocities, as we observe in the
left column of Figure 2. With a contrast of 106 in the diffusion tensor and an ε of about
|Ω|/2,000 this setup is a challenging heterogeneous multi-scale problem.
While we observe in Table 4 that the convergence rates of the estimator components

are not as good as in the experiment studied before, the estimator shows an average
efficiency of 5.5, which is quite remarkable considering the contrast of the data functions.
Fixing µ = µ̂ = 0.1 (to obtain a fully off-line/on-line decomposable configuration with
a fixed error norm) yields an average efficiency of 10.2 which is still very reasonable. In
addition we observe a good agreement between the spatial distribution of the error and
the estimator indicators in Figure 3.

Figure 1: Data functions of the multi-scale example in Section 6.1 on a triangulation with
|τh| = 16,000 elements: location of the channel function λc (left) and plot of
the force f (right) modeling one source (black: 2·103) and two sinks (dark gray:
−1 ·103, zero elsewhere).
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a triangulation with |τh| = 16,000 elements for parameters µ = 1 (left column)
and µ = 0.1 (right column). In each row both plots share the same color
map (middle) with different ranges per row. From top to bottom: logarithmic
plot of λ(µ)κ (dark: 1.41 · 10−3, light: 1.41 · 103), plot of the pressure ph(µ)
(solution of (8), dark: −3.92 · 10−1, light: 7.61 · 10−1, isolines at 10%, 20%,
45%, 75% and 95%) and plot of the magnitude of the reconstructed diffusive
flux R0

h[ph(µ);µ] (defined in (14) and (15), dark: 3.10 ·10−6, light: 3.01 ·102).
Note the presence of high-conductivity channels in the permeability (top left,
light regions) throughout large parts of the domain. The parameter dependency
models a removal of one such channel in the middle right of the domain (top
right), well visible in the reconstructed Darcy velocity fields (bottom).

Figure 3: Spatial distribution of the relative error contribution (top),
|||p(µ)− ph(µ)|||µ,T /|||p(µ)− ph(µ)|||µ, and the relative estimated error

contribution (bottom), ηT (ph(µ);µ,µ, µ̂)/
(∑

T∈TH η
T (ph(µ);µ,µ, µ̂)2

)−1/2,
for all T ∈ TH , for the multi-scale example in Section 6.1 with |TH | = 25 × 5
and µ = µ̂ = 0.1 for parameters µ = 1 (left column, light: 2.26 ·10−3, dark:
3.78 ·10−1) and µ = 0.1 (right column, light: 4.02 ·10−3, dark: 3.73 ·10−1).
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6.2 Adaptive on-line enrichment

To demonstrate the proposed adaptive on-line enrichment Algorithm 5.2 and the flexi-
bility of the LRBMS we study two distinct circumstances. We first consider a smooth
academic example where we disable the greedy procedure and build the reduced bases
only by local enrichment. The second example is again a multi-scale one with global
channels in the permeability and we allow for very few global solution snapshots and
adaptively enrich afterwards.
For the orthonormalization algorithm ONB in the Greedy Algorithm 5.1 we use the

stabilized Gram Schmidt procedure implemented in pyMOR1 with respect to the scalar
product given by (p, q) 7→ bT (p, q;µ) +

∑
e∈FTh

bTp (p, q;µ) on each T ∈ TH . In contrast to
other possible basis extension algorithms (e.g. using a proper orthogonal decomposition)
the Gram Schmidt basis extension yields hierarchical local reduced bases. This is of
particular interest in the context of on-line enrichment, since we do not need to update
reduced quantities w.r.t existing basis vectors after enrichment. We always initialize the
local reduced bases with the coarse DG basis of order up to one by setting kH = 1 in the
Greedy Algorithm 5.1. We choose the same orthonormalization algorithm in the adaptive
basis enrichment Algorithm 5.2 and use several marking strategies for MARK, depending
on the circumstances (detailed below). Regarding the overlap for the local enrichment
we always choose the overlapping subdomains Tδ ⊃ T to include T and all subdomains
that touch it, thus choosing an overlap of O(H) as motivated in [32].

Since the error of any reduced solution |||p(µ)− pred(µ)|||µ can not be lower than the
error of the corresponding detailed solution |||p(µ)− ph(µ)|||µ we always choose ∆online in
Algorithm 5.2 to be slightly larger than maxµ∈Ponline η(ph(µ);µ,µ, µ̂) in our experiments
(see below), where Ponline ⊂ P is the set of all parameters we consider during the on-line
phase. This is only necessary since we do not allow for an adaptation of τh; combining
our on-line adaptive LRBMS with the ideas of [58] would overcome this restriction.
Academic example. We again consider the academic example detailed in Subsection

6.1 on fixed triangulations with |τh| = 131,072 and |TH | = 8 × 8 and choose the set of
on-line parameters Ponline to consist of 10 randomly chosen parameters µ0, . . . ,µ9 ∈ P.
We set Ngreedy = 0 and kH = 1, thus disabling any Greedy search and initializing the
local bases with the coarse DG basis of order up to one (consisting of 4 shape functions).
In this setup maxµ∈Ponline η(ph(µ);µ,µ, µ̂) = 2.79 ·10−2 and we choose ∆online = 5 ·10−2

in Algorithm 5.2.
We begin by choosing MARK such that T̃H = TH (all coarse elements are marked;

denoted by uniform in the following). For each parameter µ ∈ Ponline this results in
a method that is similar to DD methods with overlapping subdomains. In contrast to
traditional DD methods, however, we start with an initial coarse basis and perform a
reduced solve before each iteration which helps to spatially spread information. As we
observe in Figure 4, top left, it takes four enrichment steps to lower the estimated error
for the first on-line parameter µ0 below the desired tolerance and another two enrichment
steps for the next on-line parameter µ1 (which is maxµ∈Ponline µ). With uniform marking

1http://docs.pymor.org/en/0.2.x/_modules/pymor/la/gram_schmidt.html#gram_schmidt
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Figure 4: Estimated error evolution during the adaptive on-line phase for the academic
example in Section 6.2 with |TH | = 64, Ngreedy = 0, kH = 1, ∆online = 5 · 10−2

(dotted line) and µ = µ̂ = 0.1 for several marking strategies: uniform marking
of all subdomains (top left), combined Dörfler marking with θdoerf = 1/3 and
age-based marking with Nage = 4 (top right) and additional uniform marking
while η(pred(µ);µ,µ, µ̂) > θuni∆online with θuni = 10 (bottom left). With each
strategy the local reduced bases are enriched according to Algorithm 5.2 for
each subsequently processed on-line parameter µ0, . . . ,µ9 (bottom right).

28



PR
EP

RIN
T

this increases the local basis sizes from four to ten on each coarse element. The resulting
coarse reduced space of dimension 640 is then sufficient to solve for the next four on-line
parameters µ2, . . . ,µ5 without enrichment. One additional enrichment phase is needed
for µ6 (which is minµ∈Ponline µ) and none for the remaining three on-line parameters. Note
that while this uniform marking strategy may be optimal in the number of enrichment
steps it takes to reach the desired error for all on-line parameters it also leads to an
unnecessarily high-dimensional coarse reduced space (of dimQred(TH) = 704) and a high
work-load in each enrichment step.
Another popular choice in the context of adaptive mesh refinement is a Dörfler marking

strategy (see [42] and the references therein), where we collect those coarse elements that
contribute most to θdoerf

∑
T∈TH η

T (·;µ,µ, µ̂)2 in T̃H ⊆ TH , for a given user-dependent
parameter 0 < θdoerf ≤ 1. In addition, similar to [13, 29], we count how often each
T ∈ TH was not marked and mark those elements the “age” of which is larger than
a prescribed Nage ∈ N (resetting the age count of each selected element). We denote
this marking strategy by doerfler_age(θdoerf, Nage). We found that a combination of
θdoerf = 1/3 and Nage = 4 yielded the smallest overall basis size (of 572), compared to
other combinations of θdoerf and Nage and the uniform marking strategy. The number
of elements marked per step range between five and 52 (over all on-line parameters and
all enrichment steps; 23 steps in total) with a mean of 14 and a median of ten. Of these
marked elements between one and 44 have been marked due to their age in 12 of these 23
steps (with an average of 12 and a median of eight, taken over only those 12 steps where
elements have been marked due to their age). We observe in Figure 4, top right, that
the general behavior of the method with this marking strategy is similar to the one with
uniform marking, with some commonalities and differences worth noting. First of all it
also takes three enrichment phases to reach the prescribed error tolerance, and for the
same parameters µ0, µ1 and µ6 as above. But each of these enrichment phases naturally
need more steps and large improvements can usually be observed after a lot of elements
have been marked due to their age count (see for instance the fifth enrichment step for
µ0 or µ1). In addition we observe that the estimated error for a parameter sometimes
increases, in particular in the very beginning (see the first four steps for µ0, the fourth
step for µ1 or the first step for µ6). This is not troublesome since we can only expect
a strict improvement in the energy norm induced by the bilinear form that is used in
the enrichment. This shows, never the less, that there is still room for improvement,
although using the doerfler_age marking we could reach a significantly lower overall
basis size than using the uniform marking (572 vs. 704).
We propose a combination of the two strategies, namely a uniform marking while

the estimated error is far away from the desired tolerance, i.e., η(pred(µ);µ,µ, µ̂) >
θuni ∆online for some θuni > 0, followed by a Dörfler and age-based marking as detailed
above. We denote this marking strategy by uniform_doerfler_age(θuni, θdoerf, Nage).
As we observe in Figure 4, bottom left, this marking strategy combines advantages of both
previous approaches, recovering the rapid error decrease of the uniform marking strategy
far away from the desired tolerance (see the first step for µ0 and µ1) while yielding the
smallest overall basis size of 530 (using a factor of θuni = 10) due to the doerfler_age
marking strategy. The smoothness and symmetry of the problem is reflected in the
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Figure 5: Spatial distribution of the final sizes of the local reduced
bases, |ΦT | (light: 7, dark: 11), for all T ∈ TH after
the adaptive on-line phase for the academic example in
Section 6.2 with Ω = [−1, 1]2, |TH | = 8 × 8 and the
uniform_doerfler_age(10, 1/3, 4) marking strategy (see
Figure 4, bottom left).

spatial distribution of the final local basis sizes (see Figure 5).
Multi-scale example. We again consider the multi-scale example detailed in §6.1 on

fixed triangulations with |τh| = 1,014,000 and |TH | = 25×5 and choose the set of on-line
parameters Ponline to consist of the same 10 randomly chosen parameters µ0, . . . ,µ9 ∈ P
as in the previous example. In this setup maxµ∈Ponline η(ph(µ);µ,µ, µ̂) = 2.66 and we
choose ∆online = 2 in Algorithm 5.2.
We first set Ngreedy = 0 and kH = 1 (thus disabling any Greedy search in the off-line

phase and initializing the local bases with the coarse DG basis of order up to one); in
the on-line phase we use the uniform marking strategy (see above). As we observe in
Figure 6, top, it takes 129 enrichment steps to lower the estimated error below the desired
tolerance for the first on-line parameter µ0. This is not surprising since the data functions
exhibit strong multi-scale features and non-local high-conductivity channels connecting
domain boundaries (see Figure 2). After this extensive enrichment it takes 12 steps for
µ1 and none or one enrichment steps to reach the desired tolerance for the other on-line
parameters. The resulting coarse reduced space is of size 10,749 (with an average of 86
basis functions per subdomain), which is clearly not optimal. Although each subdomain
was marked for enrichment, the sizes of the final local reduced bases may differ since the
local Gram Schmidt basis extension may reject updates (if the added basis function is
locally not linearly independent). As we observe in Figure 7, left, this is indeed the case
with local basis sizes ranging between 24 and 148.
To remedy the situation we allow for two global snapshots during the off-line phase

(setting Ngreedy = 2, Ptrain = {0.1, 1}) and use the adaptive uniform_doerfler_age
marking strategy (see above) in the on-line phase. With two global solution snapshots
incorporated in the basis the situation improves significantly, as we observe in Figure 6,
bottom left, and there is no qualitative difference of the evolution of the estimated error
during the adaptive on-line phase between the academic example studied above and this
highly heterogeneous multi-scale example (compare Figure 4, bottom left). In total we
observe only two enrichment steps with uniform marking (see the first two step for µ0).
The number of elements marked range between 11 and 110 (over all on-line parameters
and all but the first two enrichment steps) with a mean of 29 and a median of 22. Of
these marked elements only once have 87 out of 110 elements been marked due to their
age (see the last step for µ1). Overall we could reach a significantly lower overall basis
size than in the previous setup (1,375 vs. 10,749) and the sizes of the final local bases
range between only nine and 2 (compared to 24 to 148 above). We also observe in Figure
7, right, that the spatial distribution of the basis sizes follows the spatial structure of
the data functions (compare Figures 1, 2), which nicely shows the localization qualities
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Figure 6: Estimated error evolution during the adaptive on-line phase for the multi-
scale example in §6.2 with |TH | = 125, kH = 1, ∆online = 2 (dotted line),
µ = µ̂ = 0.1 for different on-line and off-line strategies: no global snap-
shot (Greedy search disabled, Ngreedy = 0) during the off-line phase, uniform
marking during the on-line phase (top) and two global snapshots (Greedy
search on Ptrain = {0.1, 1}, Ngreedy = 2) and combined uniform marking
while η(pred(µ);µ,µ, µ̂) > θuni∆online with θuni = 10, Dörfler marking with
θdoerf = 0.85 and age-based marking with Nage = 4 (bottom left); note the
different scales. With each strategy the local reduced bases are enriched ac-
cording to Algorithm 5.2 while subsequently processing the on-line parameters
µ0, . . . ,µ9 (bottom right).
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Figure 7: Spatial distribution of the final sizes of the local reduced bases, |ΦT | for all
T ∈ TH , after the adaptive online phase for the multi-scale example in §6.2
with Ω = [0, 5] × [0, 1], |TH | = 25 × 5 for the two strategies shown in Figure
6: no global snapshot with uniform enrichment (left, light: 24, dark: 148)
and two global snapshots with adaptive enrichment (right, light: 9, dark: 20).
Note the pronounced structure (right) reflecting the spatial structure of the
data functions (compare Figures 1 and 2).

of out error estimator.

7 Conclusion

In this contribution we equipped the localized Reduced Basis multi-scale method with
a rigorous and efficient localized a-posteriori error estimator and a new adaptive on-line
enrichment procedure. The LRBMS method was originally introduced in [36, 8] with a
standard residual based a-posteriori error estimator for the reduced solution against the
high-dimensional solution that could not give local error information and was computa-
tionally very costly during the off-line phase of the computation. In addition the method
was restricted to the SWIPDG discretization. We extended the original LRBMS method
to locally allow for arbitrary discretizations of at least first order within each subdomain.
In addition, we proposed a new error estimator for the high-dimensional as well as the
reduced solution against the weak solution in the spirit of [25, 26], based on a local con-
servative flux reconstruction. The proposed estimator yields a guaranteed upper bound
(involving no unknown constants), it is locally efficient and can be computed using local
information only. The estimator is efficiently off-line/on-line decomposable and allows to
estimate the error in parameter dependent norms.
Using the local information of the estimator we proposed a new adaptive on-line en-

richment strategy, where we extend the local reduced bases by solutions of local corrector
problems posed on overlapping subdomains. This is done during the on-line phase, thus
deviating from the strict off-line/on-line separation of traditional RB methods, but only
on those subdomains that have been selected by the estimator. This strategy allows to
guarantee the quality of the reduced solution during the on-line phase, even if an insuf-
ficient reduced basis had been prepared in the off-line phase (in contrast to traditional
RB methods where the reduced basis is fixed for the whole on-line phase).
We provide numerical experiments to demonstrate the performance of the proposed

estimator in the parametric setting for the high-dimensional discretization for an aca-
demic as well as a highly heterogeneous multi-scale example, where the estimator proves
to be very efficient (see Section 6.1). We also demonstrate the performance of the newly
proposed adaptive on-line enrichment strategy for both examples. It is particular note-
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worthy that only very few global solution snapshots were needed during the off-line phase
for the multi-scale example to sufficiently prepare a reduced basis that was then adap-
tively enriched during the off-line phase (see Section 6.2). For the academic example
of smooth data functions without any multi-scale features no global solution snapshots
were required at all.
First findings regarding the new estimator have been published in [45] while first steps

in the direction of on-line enrichment have been discussed in [9].
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