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Abstract

We study stable matching problems with locality of information and control. In our model,

each agent is a node in a fixed network and strives to be matched to another agent. An

agent has a complete preference list over all other agents it can be matched with. Agents can

match arbitrarily, and they learn about possible partners dynamically based on their current

neighborhood. We consider convergence of dynamics to locally stable matchings – states that

are stable with respect to their imposed information structure in the network. In the two-sided

case of stable marriage in which existence is guaranteed, we show that the existence of a path

to stability becomes NP-hard to decide. This holds even when the network exists only among

one partition of agents. In contrast, if one partition has no network and agents remember a

previous match every round, a path to stability is guaranteed and random dynamics converge

with probability 1. We characterize this positive result in various ways. For instance, it holds for

random memory and for cache memory with the most recent partner, but not for cache memory

with the best partner. Also, it is crucial which partition of the agents has memory. Finally, we

present results for centralized computation of locally stable matchings, i.e., computing maximum

locally stable matchings in the two-sided case and deciding existence in the roommates case.
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1 Introduction

Matching problems form the basis for a variety of assignment and allocation tasks encountered
in computer science, operations research, and economics. A prominent and popular approach in
all these areas is stable matching, as it captures aspects like distributed control and rationality of
participants that arise in many assignment problems today. A variety of allocation problems in
markets can be analyzed within the context of two-sided stable matching, e.g., the assignment of
jobs to workers [5, 28], organs to patients [36], or general buyers to sellers. In addition, stable
marriage problems have been successfully used to study distributed resource allocation problems in
networks [3, 17, 33].

In this paper, we consider a game-theoretic model for decentralized matching with limited infor-
mation. A set of rational agents are embedded in a (social) network and strive to find a partner for
a joint relationship or activity, e.g., to do sports, write a research paper, exchange data etc. Such
problems are of central interest in economics and sociology, and they act as fundamental coordina-
tion tasks in distributed computer networks. Our model extends the stable marriage problem, in
which we have sets A and B of men and women. Each man (woman) can match to at most one
woman (man) and has a complete preference list over all women (men). Each agent would rather
be matched than unmatched. Given a matching M , a blocking pair is a man-woman pair such that
both improve by matching to each other and leaving their current partner (if any). A matching
without any blocking pair is a stable matching.

A central assumption in stable marriage is that every agent knows all agents it can match
to. In reality, however, agents often have limited information about their matching possibilities.
For instance, in a large society we would not expect a man to match up with any other woman
immediately. Instead, there exist restrictions in terms of knowledge and information that allow some
pairs to match up directly, while others would have to get to know each other first before being
able to start a relationship. Similar information restrictions exist in many large matching markets
– in job markets, one of the most successful strategies to find a new job is to rely on personal
contacts that allow the discovery of job opportunities before they become public knowledge. In
housing markets, a popular strategy for finding a new roommate is to rely on personal contacts
in the social network to find possible tenants. In dating markets, agents usually get to know only
a small subset of agents based on which further contacts can evolve. The same happens in many
matching scenarios, e.g., for finding partners to travel or to do sports.

We incorporate this aspect of local information by assuming that agents are embedded in a fixed
network of links L. Links represent an enduring knowledge relation that is not primarily under the
control of the agents. Depending on the interpretation, links could represent, e.g., family, neighbor,
co-worker or teammate relations. Each agent strives to build one matching edge to a partner. The
set of links and edges defines a dynamic information structure based on triadic closure, a standard
idea in social network theory: If two agents have a common friend, they are likely to meet and learn
about each other. Translated into our model this implies that each agent can match to partners in
its 2-hop neighborhood of the network of matching edges and links. To clarify our discussion, we
present a formal definition here. For more preliminaries and details on the model see Section 2.1.

Definition 1 (Locally Stable Matching). We denote by V the set of agents, and E ⊂ V × V the
set of possible matching edges. A local blocking pair of matching M is a blocking pair {u, v} ∈ E of
agents u, v ∈ V which are at hop distance at most 2 in the network G = (V,M ∪ L). Consequently,
a locally stable matching is a stable matching without local blocking pairs.

Local blocking pairs are a subset of blocking pairs. This implies that every stable matching is
a locally stable matching, because it allows no (local or global) blocking pairs. Thus, one might
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be tempted to think that locally stable matchings are easier to find and/or reach using distributed
dynamics than ordinary stable matchings. In contrast, we show in this paper that locally stable
matchings have a rich structure and can behave quite differently than ordinary stable matchings.
Our study of locally stable matching with general strict preferences significantly extends recent
work on the special case of correlated preferences [19, 20, 22], in which preferences are determined
by benefits for each matching edge.

For most of the paper, we concentrate on the important two-sided scenario of stable marriage,
in which a (locally) stable matching is always guaranteed to exist. Our primary interest is to
characterize convergence properties of iterative round-based dynamics with distributed control, in
which in each round a local blocking pair is resolved. We focus on the Path-To-Stability problem:

Definition 2 (Path-To-Stability). Given a local matching game and an initial matching M0, the
problem is to decide if there is a path to stability, i.e., a sequence of local blocking pair resolutions
leading from M0 to an arbitrary locally stable matching. As a variation, we sometimes consider
existence of a path to a given locally stable matching instead of an arbitrary one.

The properties of such dynamics in large matching markets are a broad domain of interest in the
literature [16,35] (see also our discussion of related work below). We show that, in contrast to stable
matching without locality restrictions, Path-To-Stability can be NP-hard, even in surprisingly
special cases. There are two conditions we identify to overcome this lower bound – correlated
structure in the preference lists, and memory.

Memory is a natural and important characteristic of human behavior. Moreover, even when
agents are, e.g., organizations, or software/hardware components, it is reasonable to assume a certain
form of memory. We take a quite conservative approach to this issue and assume that in each step of
a sequence, each agent can remember only a single other agent that it was matched to before. This
single agent can be chosen in various ways, and we consider three natural strategies – the best partner
(quality memory), the most recent partner (recency memory), a random partner (random memory).
Our results show that the right kind of memory can indeed drastically change the properties of
Path-To-Stability. In fact, perhaps the most effective strategy of the three is random memory,
since it allows to guarantee convergence in the limit with probability 1. However, recency memory
also can be effective under some restrictions on the structure of the instance. Quality memory,
however, does not seem to significantly change the complexity of Path-To-Stability.

1.1 Results and Contribution

In Section 3 we first derive an example instance, where a locally stable matching can never be
reached when starting from the empty matching. This is in strong contrast to the case of correlated
preferences (sometimes referred to as weighted matching, or globally ranked pairs), in which it
is easy to show convergence of every sequence of local blocking pair resolutions with a potential
function [33]. In fact, we use this gadget to show that it is NP-hard to decide Path-To-Stability,
even if there are no links within one partition of agents. If we need to decide Path-To-Stability

from a given initial matching to a given locally stable matching, we show that this is NP-hard even
for correlated preferences, and even if the links are only within one partition of agents.

Moreover, we prove that there exist games and initial matchings such that every sequence of
local blocking pair resolutions terminating in a locally stable matching is exponentially long. Hence,
in general Path-To-Stability might even be outside NP. In contrast, for correlated preferences,
we show that every reachable state can also be reached using a sequence of polynomial length.
Thus, for correlated preferences, Path-To-Stability is in NP and, thus, NP-complete if we ask
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for a given locally stable matching1.
Given our NP-hardness results, in Section 4 we concentrate on a more restricted class of games

in which one partition has no internal links, i.e., links exist only between partitions and among
the other partition. This is a natural assumption when considering objects that do not generate
knowledge about each other, e.g., when matching resources to networked nodes or users, where
initially resources are only known to a subset of users. Here we characterize the impact of memory
on distributed dynamics. For recency memory, each agent remembers in every round the most
recent partner that is different from the current one. With recency memory, we show that Path-

To-Stability is always true, and for every initial matching there exists a sequence of polynomially
many local or remembered blocking pairs leading to a locally stable matching. In fact, we only
need the partition without internal links to have recency memory. If, in contrast, only the other
partition has recency memory, Path-To-Stability becomes again NP-hard. The same hardness
holds for quality memory if all agents from both partitions remember their best partner. Our results
formally support the intuition that recency memory is more powerful than quality memory, as the
latter can be easily misled in the course of a dynamic process. This provides a novel distinction
between recency and quality memory that was not known in previous work [19].

Our positive results for recency memory in Section 4 imply that if we pick admissible blocking
pairs uniformly at random in each step, we achieve convergence with probability 1. This can also be
guaranteed for random memory if in each round each agent remembers one of his previous matches
chosen uniformly at random. In fact, for random memory this result holds even in general when
links exist among or between both partitions. However, using known results on stable marriage
with full information [2], convergence time can be exponential with high probability, independently
of any memory.

In Sections 5.1 and 5.2 we treat more centralized aspects of locally stable matching to highlight
their different nature compared to ordinary stable matchings. A fundamental observation that
motivates our results in Section 5.1 is that – in contrast to ordinary stable matchings – two locally
stable matchings can have different sizes, and we consider the natural problem of finding a locally
stable matching of maximum cardinality. This problem is known to be APX-hard [14]. While a
simple 2-approximation algorithm exists, we can show a non-approximability result of 1.5− ε under
the unique games conjecture. Finally, in Section 5.2 we consider the roommates problem, in which
agents can match arbitrarily to other agents. In this case, we show that – in contrast to ordinary
stable matchings – deciding existence of locally stable matchings is NP-complete.

Note that we prove all our hardness results for the case when agents have complete lists. In
contrast, all our positive results are shown for the case of incomplete lists, where for each agent
the set of possible matching partners is restricted to some arbitrary subset of agents (or, in case of
stable marriage, subset of the other partition).

1.2 Related Work

Locally stable matchings were introduced by Arcaute and Vassilvitskii [5] in a two-sided job-market
model, in which links exist only among one partition. The paper uses strong uniformity assumptions
on the preference lists and addresses the lattice structure for stable matchings and a local Gale-
Shapley algorithm.

More recently, we studied locally stable matching and extensions with correlated preferences [19].
In the roommates problem, where arbitrary pairs of agents can be matched, a potential function
argument shows that Path-To-Stability is always true and convergence guaranteed [1,34]. More-
over, in [19] we proved that for every initial matching there is a polynomial path to stability, i.e., a

1Note that it is always true if we ask for an arbitrary one [19].
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sequence of local blocking pairs that leads to a locally stable matching. The expected convergence
time of random dynamics, however, can be exponential. If we restrict to resolution of pairs with
maximum benefit, then for random memory the expected convergence time becomes polynomial,
but for recency or quality memory convergence time remains exponential, even if the memory is of
polynomial size.

Subsequent to publication of the extended abstract of this paper in [21], we studied more general
coalition formation games with correlated preferences in which a polynomial path to stability can
always be guaranteed. In [22] we extended some of the results shown here (the NP-hardness result
in Theorem 2 and the existence result in Theorem 4) to other variants of matching games, such
as considerate or friendship matching [4] that capture externalities among agents. In addition, we
provided a tight characterization for a class of games with more general dynamic restrictions on the
set of available blocking coalitions. This class contains locally stable matching as well as a variety
of other variants of matching games. In [20] we showed a tight characterization for graph-based
coalition formation games with limited visibility. This class extends the ideas underlying locally
stable matching to coalitions of larger size.

For ordinary two-sided stable matching there have been a wide variety of works on various
aspects, e.g., many-to-many matchings, ties, incomplete lists, etc. For an introduction to the topic
we refer the reader to several books in the area [18, 31, 37]. Theoretical work on convergence issues
in ordinary stable marriage has focused on better-response dynamics, in which agents sequentially
deviate to blocking pairs. It is known that for stable marriage these dynamics can cycle [30]. On
the other hand, Path-To-Stability is always true, and for every initial matching there exists
a polynomial path to stability to an arbitrary stable matching [38]. Our recent work [22] shows
that deciding Path-To-Stability to a given stable matching becomes NP-hard. If blocking pairs
are chosen uniformly at random at each step, convergence time to an arbitrary stable matching
can be exponential [2]. More recently, several works studied convergence time of random dynamics
using combinatorial properties of preferences [23], or the probabilities of reaching certain stable
matchings via random dynamics [9]. A prominent open problem in this domain is deciding Path-

To-Stability for a sequence of blocking switches, where if a blocking pair {a, b} deviates, then
their former partners also pair up immediately. A path to stability does not necessarily exist [39,40],
but up to our knowledge the complexity of deciding Path-To-Stability is still open.

For the more general roommates problem, in which every pair of agents can be matched, stable
matchings can be absent. There are algorithms to decide existence and compute stable matchings in
polynomial time if they exist [26]. Some of these algorithms rely on a tight characterization of stable
matchings in terms of linear programming [41]. In terms of convergence, if a stable matching exists,
there also exist polynomial paths to stability to a stable matching from every initial matching [15].
Similar results hold for more general concepts like P -stable matchings that always exist [24]. Ergodic
sets of the underlying Markov chain have been studied [25] and related to random dynamics [29].
Alternatively, several works have studied the computation of (variants of) stable matchings using
iterative entry dynamics [8, 10, 11, 13].

Recently, computing locally stable matchings with maximum cardinality has attracted some
interest. While local algorithms perform arbitrarily badly [12], the problem was shown to be APX-
hard in [14] and non-approximable within 21/19 unless P 6= NP. We show a stronger lower bound
of 1.5− ε under unique games conjecture. The same question has been studied for a related variant
termed socially stable matching. Askalidis et al [6] show that the problem in this variant is also
non-approximable within 1.5−ε under the unique games conjecture by adapting the proof technique
of this paper. They also provide a 1.5-approximation algorithm for socially stable matchings.
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2 Preliminaries

2.1 Locally Stable Matching

A network matching game (or network game) consists of a (social) network N = (V,L), where V is
a set of vertices representing agents and L ⊆ {{u, v} | u, v ∈ V, u 6= v} is a set of fixed links. The
set E ⊆ {{u, v} | u, v ∈ V, u 6= v} defines the potential matching edges. Note that, in general, E is
not necessarily a sub- or superset of L. A state M ⊆ E is a matching, where for each v ∈ V we
have |{e | e ∈ M,v ∈ e}| ≤ 1. Based on a state, we define the graph to be GM = (V,L ∪M).

If an edge e = {u, v} ∈ M , the incident agents obtain a utility of bu(e), bv(e) > 0 for u
and v, respectively. Alternatively, we often represent the preference of each agent v by a list
≻v over all its possible matching partners, where u ≻v w if bv({v, u}) > bv({v,w}) and u =v w if
bv({v, u}) =v bv({v,w}), for any {v, u}, {v,w} ∈ E. Note here that our model includes instances
with incomplete lists and ties, and all our upper bounds hold for this general case. In contrast,
our lower bounds apply even for the case of strict preference lists. As a special case, we also study
games with correlated preferences (also termed correlated network games), in which it holds that
bu(e) = bv(e) = b(e) > 0 for every e ∈ E.

If we can divide V into two disjoint sets U and W such that E ⊆ {{u,w} | u ∈ U,w ∈ W}, we
call the game bipartite. We will focus on this case in Section 3 and Section 4. Note that this does
not imply that N has to be bipartite. If further the agents of U are isolated in N , we term the
game a job-market game for consistency with [5, 19].

To describe stability in network matching games, we extend the classic notion of blocking pair.
Consider a matching M and the graph GM . A possible matching edge e = {u, v} ∈ E is termed
preferred by u in M if u is either (1) unmatched in M or (2) matched by edge {u,w} ∈ M such
that v ≻u w. The edge e ∈ E is termed a blocking pair in M if it is both preferred by u and v.
Further, we term the pair {u, v} accessible in M if u and v are connected via a path of length at
most 2 in GM . A possible matching edge e = {u, v} ∈ E is termed a local blocking pair in M if it is
both a blocking pair and accessible in M . Thus, for a local blocking pair e both agents can strictly
increase their utility by deviating jointly to e (and dismissing any existing incident edges). A state
M without a local blocking pair is termed a locally stable matching.

Most of our analysis concerns iterative round-based dynamics. In this process, we pick in each
step one local blocking pair e = {u, v}, remove all edges incident to u and v in M , and then add e
to M . We call one such step a local improvement step. By random dynamics we refer to the process
when in each step the local blocking pair is chosen uniformly at random from the ones available.
Consider a local blocking pair {u, v} ∈ E that is resolved in such a step. Before the step, u and
v are either connected directly by a link {u, v} ∈ L, by a path of two links {u,w}, {w, v} ∈ L, or
by a path of a single matching edge and a single link in L. In the latter case, let w.l.o.g. {u,w}
be the matching edge and {v,w} the link. Since {u,w} is the only edge of M incident to u, the
local improvement step will remove {u,w} to create {u, v}. This observation will be helpful in our
constructions below, and for simplicity we will refer to such a step as "an edge moving from {u,w}
to {u, v}" or "u’s edge moving from w to v".

In subsequent sections, we will consider dynamics in which each agent has a memory that allows
to "remember" one matching partner from a previous step. Memory can be thought of as a cache
of size 1 to store a single previous partner. In this case, we extend the notion of accessible agents
as follows. A pair {u, v} of agents becomes accessible in M if (1) there is a u-v-path of distance
at most 2 in GM , or (2) if u is present in the memory of v, or v in the memory of u. All other
definitions follow accordingly. Hence, in this case a local blocking pair can be based solely on access
through memory. We consider three strategies for memory update. For random memory, we assume
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Agent Preference List

1 C ≻ B ≻ A

2 A ≻ C ≻ B

3 B ≻ A ≻ C

A 3 ≻ 1 ≻ 2

B 1 ≻ 2 ≻ 3

C 2 ≻ 3 ≻ 1

1

2

3

A

B

C

b1

b2

b3

Figure 1: Preferences and links in the circling gadget.

that in every step the memory contains a previous matching partner chosen uniformly at random.
For recency memory, each agent keeps in memory the last matching partner that is different from
the current partner. For quality memory, each agent remembers the previous matching partner that
gave him the highest utility.

3 Reachability in Bipartite Network Games

In this section we focus on lower bounds for the Path-To-Stability problem in bipartite network
games. Throughout, we focus on the empty matching as a natural candidate for the initial matching
and show that Path-To-Stability is NP-hard to decide. This is in contrast to correlated network
games, where Path-To-Stability is always true, and for every initial matching there is a poly-
nomial path to a locally stable matching [19]. However, we show that given a distinct matching to
reach, deciding Path-To-Stability becomes NP-hard, even for correlated job-market games.

Additionally, we give a network game and an initial matching such that we need an exponential
number of steps before reaching any locally stable matching. This is again in contrast to the
correlated case, in which we show that every reachable locally stable matching can be reached by a
polynomial path.

3.1 Complexity

Our constructions rely on a simple instance, in which it is impossible to reach a locally stable
matching from the empty initial matching. We term this structure a circling gadget.

Example (Circling Gadget). The agent set V consists of the classes U = {1, 2, 3} and W =
{A,B,C, b1, b2, b3}. The links are L = {{A, b1}, {B, b2}, {C, b3}, {1, b1}, {2, b2}, {3, b3}, {A,B},
{B,C}, {C,A} (see Fig. 1 below). For simplicity, we restrict the possible matching edges to E =
{{u, v} | u = 1, 2, 3, v = A,B,C}. It will become obvious that by ranking b1, b2, b3 at the bottom,
we can similarly allow E = U ×W without changing the arguments.

This gadget has two locally stable matchings, namely

{{1, B}, {2, C}, {3, A}} and {{1, C}, {2, A}, {3, B}} .

However, we will show that from every state in which one agent of W is unmatched, every possible
sequence of local improvement steps leads to some state where some agent of W is unmatched
again. The symmetry of the gadget then allows to repeat the argument, and thus no locally stable
matching can be reached. For our analysis, let us w.l.o.g. assume that 1 is unmatched.

First, suppose A is not matched to 3. Then {A, 1} is a local blocking pair, since the agents
are at hop distance 2 from each other, 1 is unmatched and A prefers 1 over 2. When creating this
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edge, the distance from 1 to B reduces from 3 to 2. Agent 1 is the top choice of B. Hence, as long
as 1 remains matched to A, {B, 1} remains a local blocking pair. When A gets matched to some
other agent, then 1 becomes unmatched. Otherwise, if we create {B, 1}, A is left unmatched, which
implies that also one of the agents 2 or 3 must be unmatched.

Now suppose A is matched to 3. Following the arguments above, as long as B is matched to 2,
{C, 2} is a local blocking pair. Hence, suppose that B is not matched to 2. Since 1 is unmatched,
{B, 3} is a local blocking pair. If we create this edge, A becomes unmatched, and we reach the case
analyzed above. Hence, every sequence of moves yields a state in which another agent of {1, 2, 3} is
unmatched.

In turn, it is simple to verify that when agent A is matched to some more preferred partner
outside of the gadget, the remaining agents can always stabilize easily through local improvement
steps. For example, starting from the empty matching, consider the following sequence: ∅ →
{(2, B)} → {(2, C)}. The latter is a locally stable matching when A is matched to a preferred
partner outside the gadget.

Finally, observe that all the previous arguments can be made if E = U ×W and the agents bi
are ranked arbitrarily at the bottom of the lists of agents in U . Consider agent b1, the argument is
similar for all other agents bi. b1 is only accessible with agent i′ ∈ U , i′ 6= 1, when i′ is matched to
A. At this point, however, i′ has no incentive to deviate to b1. Hence, each bi can only be involved
in the local blocking pair {i, bi}. Since these edges also exist as links, their creation does not change
any of the arguments made above. �

In our hardness proofs we use this gadget if we need to force a certain agent to be matched in
a locally stable matching. For this we identify the forced agent with A of the gadget and declare
all allowed outside connections preferable to the gadget agents. Then, if the agent is matched to a
partner outside the gadget, the gadget can stabilize while otherwise it does not.

Our first theorem proves NP-hardness of deciding Path-To-Stability to a given locally stable
matching. In our related work, we provided a simpler proof template for this statement in a variety
of matching games with additional visibility or externality constraints [22]. The template, however,
does not work for the special case of a job-market game (i.e., links exist only within one partition)
with correlated preferences (i.e., preferences are correlated by a single value b(e) for each matching
edge). Since the empty matching is always locally stable in job market games, we use a different
initial state to show the result.

In addition, the proof will introduce the main construction and intuition that will be used to
show a number of hardness proofs for different scenarios with and without memory throughout the
paper.

Theorem 1. It is NP-hard to decide Path-To-Stability to a given locally stable matching in a
correlated job-market game.

Proof. We reduce from 3Sat. Let the given 3Sat-formula contain k variables x1, . . . , xk and l
clauses C1, . . . , Cl, where clause Cj holds the literals l1j , l2j and l3j . For each variable xi, our
instance contains an agent uxi

in U , and four agents axi
, xi, xi and vxi

in W . For every clause Cj ,
our instance contains an agent uCj

in U and two agents aCj
and vCj

in W . Further, there is an agent
a in W . We allow all possible matching edges E = U ×W , but due to the structure of the instance
and our choice of initial state, some of these edges can never be created during the dynamics.

First, let us describe the link structure. Since we have a job market game, links are all among
agents in W . The network N forms a path with a branching in the middle, see Fig. 2. The first
part of the path contains links {aCj

, aCj+1
} for j = 1, . . . , l − 1, a link {aCl

, ax1
}, links {axi

, axi+1
}

for i = 1, . . . , k− 1, and a link {axk
, a}. The branching is created by links {a, xi}, {a, x̄i}, {xi, vx1

}
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x1

x1

xk

xk

a vx1
vx2

vxk
vC1

vC2
vCl

uC1
uC2

uCl
ux1

ux2
uxk

aC1
aC2

aCl
ax1

ax2
axk

. . . . . ....

. . .. . .

. . .. . .

Figure 2: Network and initial matching in the instance for Theorem 1

and {x̄i, vx1
} for i = 1, . . . , k. Finally, we obtain the second part of the path by links {vxj

, vxj+1
}

for j = 1, . . . , l − 1, a link {vxk
, vC1

}, and links {vCj
, vCj+1

} for j = 1, . . . , l − 1.
The initial matching M0 consists of M0 = {{us, as} | s ∈ {x1, .., xk} ∪ {C1, .., Cl}}. The given

locally stable matching to be reached is M = {{us, vs} | s ∈ {x1, .., xk} ∪ {C1, .., Cl}}. In Table 1
we provide a description of the preferences w.r.t. the relevant matching edges in the dynamics. All
other matching edges not mentioned in the table can be considered to have edge weight of, say,
ε ≪ 1. Thereby, these matches are ranked arbitrarily at the bottom of the preference list of each
involved agent.

Let us first provide a broad intuition of the dynamics in the gadget. Consider the display of
the gadget in Fig. 2. Agents in U will generally prefer to be matched “further to the right” along
the path in N (i.e., most preferred vCl

, least preferred aC1
). We assume all agents xi and x̄i in the

branching are equally preferred for each agent u ∈ U , but in order to avoid ties in the preference lists
we can also break them arbitrarily. Agents in W generally prefer to have a partner that is “further
to the right” in the order the agents of U are displayed (i.e., most preferred uxk

, least preferred uC1
).

As such there is, e.g., exactly one local blocking pair for the initial matching, namely {uxk
, a}.

Since the instance is a job-market game, if an agent in U becomes unmatched, it can never
be involved in any local blocking pair and thus stays unmatched from that point on. How-
ever, since in M all agents of U are matched, they must stay matched throughout the sequence.
Therefore, the sequence will proceed from M0 by “shifting the edges along the path” – for every
s ∈ {x1, . . . , xk, C1, . . . , Cl}, agent us will become matched, one by one, to the agents of W along
the left side of the path leading from as to a, one agent in the branching, and then the agents on
right side leading from the branching to vs. This is the only way us will be able to discover and
match to vs via resolution of local blocking pairs. Hence, the matching edge incident to us will
“move” along the path, through the branching and then to vs.

We now describe some adjustments to the general outline above that serve to create a correct
reduction. If agent uxi

is matched to a, we restrict his preference so that the only local blocking
pairs involving uxi

are {uxi
, xi} or {uxi

, x̄i}. Hence, at this point uxi
is only interested in deviating

to designated agents xi, x̄i. Matching edges {uxi
, s} for s ∈ {xj , x̄j} with i 6= j become ranked

arbitrarily at the bottom of the preference list of the corresponding agents. A similar adjustment
is done for the clause agents. If agent uCj

is matched to a, we restrict his preference so that the
only local blocking pairs are {uCj

, lj1}, {uCj
, l2j} and {uCj

, l3j}. Hence, at this point uCj
is only

interested in deviating to agents that correspond to literals that evaluate the formula to true.
Furthermore, we “stop” the movement of the matching edge incident to uxi

once it has reached
to vxi

– we assume edges {uxi
, vxj

} for j > i and {uxi
, vCj

} for j = 1, . . . , l are ranked at the

9



u ∈ U w ∈ W edge weight b({u,w})

uCj
aCj′

2(k + l + 1)j + j′ j, j′ ∈ [l]

uCj
axi

2(k + l + 1)j + l + i i ∈ [k], j ∈ [l]

uxi
aCj

2(k + l + 1)(l + i) + j i ∈ [k], j ∈ [l]

uxi
axi′

2(k + l + 1)(l + i) + l + i′ i, i′ ∈ [k]

uCj
a 2(k + l + 1)j + k + l + 1 j ∈ [l]

uxi
a 2(k + l + 1)(l + i) + k + l + 1 i ∈ [k]

uCj
l1j/l2j/l3j 2(k + l + 1)j + k + l + 2 j ∈ [l]

uxi
xi/x̄i 2(k + l + 1)(l + i) + k + l + 2 i ∈ [k]

uCj
vxi′

2(k + l + 1)j + (k + l + 2) + i′ i ∈ [k], j ∈ [l]

uxi
vxi′

2(k + l + 1)(l + i) + (k + l + 2) + i′ i, i′ ∈ [k], i′ ≤ i

uCj
vCj′

2(k + l + 1)j + (k + l + 2) + k + j′ j, j′ ∈ [l], j′ ≤ j

Table 1: Preferences of agents in the instance for Theorem 1. Since preference lists are correlated,
we here specify the edge weight for a significant subset of matching edges. Agents rank their possible
partners in non-increasing order of edge weight. For each edge we did not specify here, we assume
there is a very small weight. Edges of small weight are then ranked in arbitrary order at the bottom
the preference lists of the incident agents. They do not change the dynamics as described in the
proof.

bottom of the lists. A similar adjustment is made to edges {uCj
, vCj′

} for j′ > j. Observe that
these adjustments imply that M is a locally stable matching. More precisely, M becomes the unique
(globally) stable matching.

Now it is rather simple to see the idea of the reduction. The key property is that once any edge
{uxi

, vxi
} exists, every agent uCj

must be matched to vxi′
with i′ > i or vCj′

. Assume otherwise,
then the edge incident to some uCj

must still pass through vxi
to reach vCj

. Since vxi
is the most

preferred partner of uxi
, the latter would have to become (and remain) unmatched, at which point

M could not be obtained. By similar arguments, M can only be reached if and only if every agent
vxi

becomes matched to uCl
, . . . , uC1

, uxk
, . . . , uxi

in that order.
Finally, for the formal correctness proof, suppose the 3Sat formula is satisfiable. Then for each

variable x1, . . . , xk in that order, we match each xi iteratively along the path to a and then match it
to xi (x̄i) if xi is set false (true) in the satisfying assignment. This leaves unmatched the agents of
W in the branching that correspond to the satisfying assignment. Now, for each clause Cl, . . . , C1

in this order, we consider agent uCj
, iteratively match it along the path to a, then to one of the

literal agents l1j , l2j , l3j (one is unmatched since the assignment is satisfying), and further to vCj
.

For each variable xk, . . . , x1 in that order, we then match uxi
from its current partner to vx1

and
further to vxi

. Thereby we obtain a sequence from M0 to M .
In turn, suppose there is a sequence from M0 to M . Due to the key property, we must match

every uxi
to one of its designated agents in the branching before matching any of them to vx1

. This
induces an assignment of the variables. Then, since uCj

considers deviating from a only to agents
that correspond to its literals, each uCj

must be matched to one of its literal agents in order to
become accessible to vCj

. Therefore, to construct the desired sequence, the 3Sat formula must be
satisfiable.

The main property of the previous proof is that, intuitively, we need to carefully match the
variable agents of U in a branching in order to allow the clause agents of U reach their desired
partner. We now drop the requirement of a job-market game and allow links among both partitions

10



x1

x1

xk

xk

a

a1

vx1
vx2

vxk
vC1

vC2
vCl

uC1
uC2

uCl
ux1

ux2
uxk

. . . . . ....

. . .. . .

Figure 3: Network in the instance for Theorem 2

of the agents. Thereby, we can even establish the same result starting from the empty matching.
This is again a stronger result than the one derived by the template in [22], since the template does
not apply to an empty initial matching.

Theorem 2. It is NP-hard to decide Path-To-Stability from the initial matching M = ∅ to a
given locally stable matching in a correlated bipartite network game.

Proof. The argument will heavily rely on the ideas put forward in the previous proof. The main
adjustment here is that we replace the left side of the path (agents axi

and aCj
, for i ∈ [k], j ∈ [l]) by

a different construction that allows to create matching edges for unmatched agents in U . In contrast
to the previous construction, we add agents bh, h = 1, . . . , l+ k− 1, to U , and replace all agents axi

and aCj
by a single agent a1 in W . For the link set L, consider the display of the instance in Fig. 3.

The b-agents are not labeled in the picture as they only act as a buffer to ensure that local blocking
pairs involving bh exist only when the neighboring u-agent is matched to a. We again construct
a path with a branching in a similar fashion as above. For the left side of the path, we add links
{a, a1}, {a1, uC1

}, {uCj
, bj} for j = 1, . . . , l, {bj , uCj+1

} for j = 1, . . . , l− 1, {bl, ux1
}, {uxi

, bl+i} for
i = 1, . . . , k − 1 and {bl+i, uxi+1

} for i = 1, . . . , k − 1. We start from the empty matching, and the
the goal is again to reach M = {{us, vs} | s ∈ {x1, .., xk} ∪ {C1, .., Cl}}. For a formal description of
the correlated preference lists, see Table 2.

Suppose the 3Sat formula is satisfiable. We describe the sequence to reach M , which shows
the general idea of the construction. First, we match a iteratively to uC1

, b1, uC2
, b2, . . . , bk+l−1, ux1

.
Then, we match ux1 to x1 (x̄1) if x1 is false (true) in the satisfying assignment. Afterwards, we
match a again iteratively to uCl

, b1, uCl−1
, b2, . . . , bk+l−2, ux2

, and then ux2
to x2 (x̄2) if x2 is false

(true) in the satisfying assignment. In similar fashion, we proceed with all variable agents. Once
uxk

is matched to either xk or x̄k, we proceed with the clause agents. We match a iteratively to
uC1

, b1, uC2
, b2, . . . , bl−1, uCl

, match uCl
to an agent corresponding to a literal that evaluates Cl to

true, and iteratively further down the path to vCl
. In similar fashion, we proceed with uCl−1

, . . . , uC1
.

Finally, we match uxi
to vx1

and down the path to vxi
, for each i = k, . . . , 1 in that order.

Note that agent a and the path among agents us and bh allow to create matching edges for all
agents us and shift them iteratively to agents in the branching, for us with s = x1, . . . , xk, Cl, . . . , C1

in that order. In particular, the construction requires that edges incident to x1, . . . , xk have to be
created before any of uC1

, . . . , uCl
is matched to an agent in the branching. Otherwise, a key property

similar to the one in the previous proof implies that the desired matching cannot be reached. This
is the main intuition in the following proof of the reverse direction.

Suppose there is a sequence to reach M from the empty matching. With the exception of uCl
,

none of the agents from uCj
or uxi

are at hop-distance 2 from any agent of W in the empty matching.

11



u ∈ U w ∈ W edge weight b({u,w})

uCj
a j j ∈ [l]

uxi
a l + i i ∈ [k]

bh a h+ 1
2 h ∈ [k + l − 1]

uCj
l1j/l2j/l3j k + l + 1 j ∈ [l]

uxi
xi/x̄i k + l + 1 i ∈ [k]

uCj
vxi

(k + l + 1) + (k + l)j + i i ∈ [k], j ∈ [l]

uxi
vxi′

(k + l + 1) + (k + l)(l + i) + i′ i, i′ ∈ [k], i′ ≤ i

uCj
vCj′

(k + l + 1) + (k + l)j + k + j′ j, j′ ∈ [l], j′ ≤ j

Table 2: Preferences of agents in the instance for Theorem 2. For correlated preferences, we again
specify the edge weights of a significant subset of matching edges, which are used to derive the
preference lists. For each edge not given here, there is a very small weight, and these edges are then
ranked in arbitrary order at the bottom the preference lists of the incident agents. They do not
change the dynamics as described in the proof.

Hence, the only way for such an agent us to become matched is via resolution of local blocking pairs
that evolve when the left neighbor bh is matched (cf. Fig. 3). Furthermore, with the exception of
b1, none of the bh agents is at hop distance 2 from any agent of W in the empty matching. Hence,
in a similar fashion, such an agent can only get matched via a local blocking pair that evolves when
the corresponding left neighbor us′ is matched. The latter local blocking pairs, however, can evolve
only when us is matched to a, since all other agents of W rank all agents bh at the bottom of their
lists. As a consequence, the only way to create a matching edge for an agent bh is by matching a
first to uCl

, then to b1, to uCl−1
, to b2, etc. Note that once an agent bh is matched to a, there is no

local blocking pair involving bh, since a is the most preferred partner for every bh. Hence, to have
the sequence proceed towards matching the v-agents, we must match a to some agent us, at which
point local blocking pairs with some xi- and x̄i-agents in the branching appear.

Now suppose some uxi
is matched to a, and we resolve a local blocking pair with an agent in

the branching. Suppose uxi−1
is unmatched at this point, and suppose all uxi′

with i′ < i − 1 are
matched. If uxi

does not become unmatched, there will be no local blocking pair involving a and
uxi−1

. Thereby a cannot become matched to uxi−1
, and the latter will remain unmatched. Otherwise,

if uxi
becomes unmatched, this can only happen when matched to some agent vx1

, . . . , vxi′
, at the

point where that agent becomes matched to some uxi′
with i′ < i − 1. Then, however, it is easy

to see that a similar key property as in the previous proof is violated – uxi−1
will not be able to

discover vxi−1
, since for every agent vs matched to uxi′

there is no local blocking pair involving
uxi−1

. As such, uxi−1
will get “stuck” being matched to some agent on a path between a and vxi′

.
If we apply the above argument inductively, it reveals that we must resolve local blocking pairs

with agents in the branching and uxi
in increasing order of i. The same argument shows that we

have to match all ux1
, . . . , uxk

to an agent in the branching before matching any of uC1
, . . . , uCl

to
agents in the branching. Together with the key property, this implies the desired structure. We
need to match the agents uxi

in a way to leave unmatched at least one literal agent for each clause.
Hence, a sequence to reach M implies a satisfying assignment for the 3Sat formula.

In addition, NP-hardness also holds for reaching an arbitrary locally stable matching from M = ∅
under a restriction on the link structure. The proof of the following theorem was kindly provided
by an anonymous referee.
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Theorem 3. It is NP-hard to decide Path-To-Stability from the initial matching M = ∅ to an
arbitrary locally stable matching in a bipartite network game with links restricted to L ⊆ (U ×W )∪
(W ×W ).

Proof. We define a stable matching M to be complete if all men and women are matched in M .
Then, SMTI is the problem of deciding whether a complete stable matching exists in an instance of
the stable marriage problem where preference lists may be incomplete and may contain ties. This
problem is NP-complete, even if each woman’s list is strictly ordered and each man’s list is either
strictly ordered or is a tie of length 2 [32]. We will use a reduction from this restriction of SMTI

to show that it is NP-hard to decide Path-To-Stability from the initial matching M = ∅ to an
arbitrary locally stable matching in a bipartite network game.

Let I be an instance of the stated restriction of SMTI, where U is the set of men and W is the
set of women. We form an instance J of Path-To-Stability by letting the potential matching
edges E be obtained from the graph underlying I. That is, {u,w} forms an acceptable pair in I if
and only if {u,w} ∈ E. Initially, let L = E, i.e., the links comprise all potential matching edges.
Each woman w ∈ W initially has the same preference list in J as in I. We create a circling gadget
Gw and identify woman w with vertex Aw. That is, woman w appends the men 3w ≻ 1w ≻ 2w, in
that order, to her preference list in J . Let U ′ ⊆ U be the set of men in I whose preference list is
a single tie. Each man u ∈ U \ U ′ has the same preference list in J as in I. Now let u ∈ U ′ and
suppose that u is indifferent between w1 and w2 in I. Remove {u,w1, } and {u,w2} from L. Create
two new women au and bu in J . Add {u, au} and {u, bu} to E, and add {au, w1}, {au, w2}, {au, bu}
and {u, bu} to L. In J , man u ranks w1 ≻ w2 ≻ au ≻ bu in that order. It may be verified that I has
a complete stable matching if and only if J has a sequence to a locally stable matching from the
empty initial matching. Suppose that I has a complete stable matching M . We will show a path
to a locally stable matching M ′ ∈ J . Pick any man u ∈ U \ U ′. Then we may simply add the edge
{u,M(u)} to M ′, where M(u) denotes u’s partner in M . This is possible since {u,M(u)} ∈ E ∩L.
Now let u ∈ U ′. Then we add {u, bu} to M ′, since {u, bu} ∈ E ∩ L. Then u moves to au in M ′,
since {au, bu} ∈ L. Next u moves to M(u) in M ′, since {M(u), au} ∈ L. All women in W are
now matched in M ′. Therefore we can now let all circling gadgets stabilise in M ′, so that the final
matching M ′ is locally stable in J .

Conversely suppose that J has a sequence to a locally stable matching M ′ starting from M = ∅.
Since the circling gadgets must stabilize, every woman in W is matched in M ′ to a man in U outside
of the circling gadget. Thus M = M ′ ∩ (U ×W ) is a complete stable matching in I.

The following corollary provides a slightly weaker result than Theorem 3. It proves hardness
either under the condition L ⊆ (U ×W ) ∪ (W ×W ) or the condition M = ∅. We include it since
the proof construction is useful below to show additional hardness results for quality memory.

Corollary 1. It is NP-hard to decide Path-To-Stability to an arbitrary locally stable matching
in a bipartite network game with links restricted to L ⊆ (U ×W )∪ (W ×W ). The same result holds
for the initial matching M = ∅.

Proof. We adapt the previous constructions of Theorem 1 and 2. Instead of setting a specific
matching M to converge to, we make use of circling gadgets. For every variable and every clause we
use one separate circling gadget. We identify agents vxi

and vCj
in our previous constructions with

agent A of the corresponding circling gadget. In Table 3 we show how to adjust the preference of the
main structure from Theorem 1, which shows the result starting from M0 = ∅. The adjustment of the
main structure of Theorem 2 is very similar. Note that in the latter case we get U = {us, 1s, 2s, 3s, |
s ∈ {x1, . . . , xk, C1 . . . , Cl}}, and hence this shows the result for L ⊆ (U ×W ) ∪ (W ×W ).
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Agent Preference List

uxi
vxi

≻ vxi−1
≻ . . . ≻ vx1

≻ xi ≻ xi ≻ a ≻ [. . .] i ∈ [k]

uCj
vCj

≻ . . . ≻ vC1
≻ vxk

≻ . . . ≻ vx1
≻ l1j ≻ l2j ≻ l3j ≻ a ≻ [. . .] j ∈ [l]

bh a ≻ [. . .] h ∈ [k + l − 1]

a uxk
≻ bl+k−1 ≻ uxk−1

≻ . . . ≻ b1 ≻ uC1
≻ [. . .]

vxi
uCl

≻ . . . ≻ uC1
≻ uxk

≻ . . . ≻ uxi
≻ 3Cj

≻ 1Cj
≻ 2Cj

≻ [. . .] i ∈ [k]

vCj
uCl

≻ . . . ≻ uCj+1
≻ uCj

≻ 3xi
≻ 1xi

≻ 2xi
≻ [. . .] j ∈ [l]

xi/xi uxi
≻ uC1

≻ uC2
≻ . . . ≻ uCl

≻ [. . .] i ∈ [k]

Table 3: Preference lists for agents of the main structure of Corollary 1 when adding circling gadgets
to the hardness instances of Theorem 1. [. . .] indicates that all other remaining agents from the
other partition follow in arbitrary order. The preference list of a1 can be given arbitrarily.

For correctness, it suffices to reason why matching edges {{us, vs} | s ∈ {x1, . . . , xk, C1, . . . , Cl}}
are required to exist in every reachable locally stable matching. Then correctness follows using the
arguments of the previous proofs. Assume there exists a reachable locally stable matching with
some vs not matched to any of the u-agents. For this s the circling gadget will not stabilize. vCl

must be matched to uCl
in order to stabilize the circling gadget for Cl, which leaves only uCl−1

for vCl−1
etc. Inductively, all the edges {{us, vs} | s ∈ {x1, . . . , xk, C1, . . . , Cl}} must be present in

every reachable locally stable matching.

3.2 Length of Sequences

For classic two-sided stable matching without locality constraints, from every initial state a stable
matching can be reached in a polynomial number of steps [38]. With the restriction to local blocking
pairs, we know that locally stable matchings exist, but the circling gadget shows that there are initial
states from which none of the locally stable matchings is reachable. A weaker condition one might
hope for is that once a state (locally stable or not) is reachable, it can also be reached via a short path
of polynomially many steps. We show in Theorem 4 below that this condition holds for instances
with correlated preferences, even beyond bipartite games in the roommates case. For uncorrelated
strict preferences, however, we provide in Corollary 2 a class of instances with initial states such
that every path to stability takes an exponential number of steps. This raises the question as to
whether Path-To-Stability is even in NP.

Theorem 4. For every network game with correlated preferences, every (locally stable) matching
M∗ ⊆ E and initial matching M0 ⊆ E such that M∗ can be reached from M0 through local improve-
ment steps, there exists a sequence of at most O(|E|3) local improvement steps leading from M0 to
M∗.

Proof. Consider an arbitrary sequence between M0 and M∗. We will show that only a polynomial
part of it is necessary by omitting a possibly large number of intermediate steps. We rank all
edges by their benefit (allowing multiple edges to have the same rank) such that r(e) > r(e′) iff
b(e) > b(e′). Further, we set rmax = max{r(e) | e ∈ E}. First, recall the structure of the path of
length at most 2 for accessible pairs discussed in Section 2.1. As a consequence, every edge e formed
at any point during the sequence can be assigned to have at most one direct predecessor e′ in the
sequence, which was necessary for e to become accessible and get formed. Since e and e′ must share
a common agent, e′ must get removed once e is formed. Hence, we call e the direct successor of e′.
Also, note that being a local blocking pair implies r(e′) < r(e). Thus, every e ∈ M∗ has at most
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rmax predecessors and every e ∈ M0 at most rmax successors. We will say that upon formation e
removes its predecessor e′. Note that the formation of e might also lead to removal of a second
matching edge, which is not (assigned as) the predecessor of e. The remaining proof is based on
three crucial observations:

(1) Consider an edge e that has no predecessor – that is, either e ∈ M0, or e 6∈ M0 with both
agents connected via a path of at most two links. For every such e there is a chain of edges
resulting from direct successor/predecessor relations. We say e starts a chain.

(2) Consider e 6∈ M0 that starts a chain. If the final edge of the chain is not in M∗ and none
of the edge formations of the chain removed any non-predecessor edge, the chain does not
contribute in any way to the outcome and can be omitted completely from the sequence.

(3) An edge can only be removed when forming a more preferred one. Hence, every chain is
limited in length by rmax.

If M0 = ∅, every edge that is created in the sequence is part of a chain that starts with e 6∈ M0.
Now, by (inductive application of) (2) we can restrict to creation of the chains with final edges in
M . Thus, there are |M∗| chains, and by (3) each of them has length at most rmax. Thus, there is
a sequence to M of length at most |M∗| · rmax ∈ O(|E|2).

If M0 is arbitrary, every edge in M0 starts a chain. Consider such a chain C where the final edge
is not in M . Then, the final edge of C is removed by an edge that part of exactly one other chain C ′.
By (2), this can justify the existence of at most one other chain C ′. Note that the final edge of C ′

must have a strictly higher rank than the final edge of C. Hence, after repeating this argument at
most rmax many times, we arrive at a chain with a final edge in M . Each of these rmax many chains
might need rmax many steps to arrive at its final edge. Thus, each edge in M0 justifies the existence
of at most rmax many chains of length rmax each. For all other edges of M , which cannot be traced
back to a chain starting from M0, one can apply the previous arguments for the empty matching.
Thus, there is a sequence to M of length at most |M0| · rmax · rmax + |M∗| · rmax ∈ O(|E|3).

Theorem 5. There is a bipartite network game with general preferences such that a locally stable
matching can be reached by a sequence of local improvement steps from the initial matching M = ∅,
but every such sequence has length 2Ω(|V |).

Proof. We compose the instance of several intertwined gadgets. Our instance consists of n = Ω(|V |)
entangled gadgets 1, . . . , n, each of constant size, where w.l.o.g. let n be an even number. For clarity
we list and analyze them as separately as possible, see below. For a schematic overview of the
network construction, see Fig. 4.

The bipartite partition of the agent set is as follows:

U = {Ao
0, Ende0} ∪ {Ai, Bi, Ci, End1i, End2i | i odd} ∪ {SA

i , S
C
i , T

B
i , TC

i | i even}

∪{Di, 1i, Ei, 2i, Fi | i even} ,

W = {Ae
0, b0, Endo0} ∪ {Ai, Bi, Ci, End1i, End2i | i even} ∪ {SA

i , S
C
i , T

B
i , TC

i | i odd}

∪{Di, 1i, Ei, 2i, Fi | i odd} .

Further, every End-agent is the agent A of a circling gadget and ranks the agents inside the circling
gadget lowest.

We first explain how to construct a particular sequence from M0 = ∅ to a locally stable matching.
Then we argue that this sequence cannot be significantly shortened.
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Generation Gadget: Agent Preference List

Ao
0

Endo0 ≻ F1 ≻ 21 ≻ E1 ≻ 11
≻ D1 ≻ D3 ≻ . . . ≻ Dn−1

Ae
0

Ende0 ≻ F2 ≻ 22 ≻ E2 ≻ 12
≻ D2 ≻ D4 ≻ . . . ≻ Dn

b0 −
Endo0 Ao

0

Ende0 Ae
0

Agents:
Ao

0, A
e
0, b

o
0, Endo0, Ende0

Links:
{{Ao

0, Ci} | i odd}, {{Ae
0, Ci} | i even},

{{b0,Di} | i ∈ [n]}, {Ao
0, b0}, {A

e
0, b0},

{F1, Endo0}, {F2, Ende0}, {A
o
0, Endo0},

{Ae
0, Ende0}

Matching Edges:
{{Ao

0,Di} | i odd}, {{Ae
0,Di} | i even},

{Ao
0, 11}, {A

o
0, E1}, {A

o
0, 21}, {A

o
0, F1},

{Ae
0, 12}, {A

e
0, E2}, {A

e
0, 22}, {A

e
0, F2},

{Ao
0, Endo0}, {A

e
0, Ende0}

Rotation Gadget i = 1: Agent Preference List

A1 F1 ≻ E1

B1 E1 ≻ D1

C1 D1 ≻ F1

D1

End21 ≻ B1 ≻ TB
2

≻ F2 ≻ 22 ≻ E2 ≻ 12 ≻ D2

≻ SC
2 ≻ C1 ≻ Ao

0

Ei A1 ≻ B1 ≻ Ao
0

F1

End11 ≻ C1 ≻ TC
2

≻ F2 ≻ 22 ≻ E2 ≻ 12 ≻ D2

≻ SA
2 ≻ A1 ≻ Ao

0

11, 21 Ao
0

End11 F1

End21 D1

Agents:
A1, B1, C1,D1, E1, F1, 11, 21, End11, End21
Links:
{A1, B1}, {D1, E1}, {E1, F1}, {F1,D1},
{D1, 11}, {11, E1}, {E1, 21}, {21, F1},
{A1, End11}, {C1, End21}
Matching Edges:
{A1, E1}, {A1, F1}, {B1,D1}, {B1, E1},
{C1, F1}, {C1,D1}, {F1, End11}, {D1, End21}

Rotation Gadget i = 2: Agent Preference List

A2 F2 ≻ E2

B2 E2 ≻ D2

C2 D2 ≻ F2

D2

End22 ≻ B2 ≻ TB
3

≻ F3 ≻ 23 ≻ E3 ≻ 13 ≻ D3

≻ SC
3 ≻ C2 ≻ D1 ≻ F1 ≻ Ae

0

E2 A2 ≻ B2 ≻ D1 ≻ F1 ≻ Ae
0

F2
End12 ≻ C2 ≻ TC

3

≻ F3 ≻ 23 ≻ E3 ≻ 13 ≻ D3

≻ SA
3 ≻ A2 ≻ D1 ≻ F1 ≻ Ae

0

12, 22 D1 ≻ F1 ≻ Ae
0

SC
2 , T

C
2 F1

SA
2 , T

B
2 D1

End12 F2

End22 D2

Agents, Links, and Matching Edges similar
as in all following gadgets i = 3, . . . , n− 1
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Rotation Gadget i = 3, . . . , n− 1: Agent Preference List

Ai Fi ≻ Ei

Bi Ei ≻ Di

Ci Di ≻ Fi

Di

End2i ≻ Bi ≻ TB
i+1

≻ Fi+1 ≻ 2i+1 ≻ Ei+1 ≻ 1i+1 ≻ Di+1

≻ SC
i+1 ≻ Ci ≻ Di−1 ≻ Fi−1 ≻ A

o/e
0

Ei Ai ≻ Bi ≻ Di−1 ≻ Fi−1

Fi
End1i ≻ Ci ≻ TC

i+1

≻ Fi+1 ≻ 2i+1 ≻ Ei+1 ≻ 1i+1 ≻ Di+1

≻ SA
i+1 ≻ Ai ≻ Di−1 ≻ Fi−1

1i, 2i Di−1 ≻ Fi−1

SC
i , T

C
i Fi−1

SA
i , T

B
i Di−1

End1i Fi

End2i Di

Agents:
Ai, Bi, Ci,Di, Ei, Fi, 1i, 2i, S

A
i , S

C
i ,

TB
i , TC

i , End1i, End2i
Links:
{Ai, Bi}, {Di, Ei}, {Ei, Fi}, {Fi,Di},
{Di, 1i}, {1i, Ei}, {Ei, 2i}, {2i, Fi},
{Ai, End1i}, {Ci, End2i}, {Di, S

A
i }, {S

A
i , Ai−1},

{Di, S
C
i }, {S

C
i , Ci−1}, {Fi, T

B
i }, {TB

i , Bi−1},
{Fi, T

C
i }, {TC

i , Ci−1}
Matching Edges:
{Ai, Ei}, {Ai, Fi}, {Bi,Di}, {Bi, Ei},
{Ci, Fi}, {Ci,Di}, {Fi, End1i}, {Di, End2i},
{Di,Di−1}, {1i,Di−1}, {Ei,Di−1}, {2i,Di−1},
{Fi,Di−1}, {Di, Fi−1}, {1i, Fi−1},
{Ei, Fi−1}, {2i, Fi−1}, {Fi, Fi−1}

Rotation Gadget i = n:
Agent Preference List

An Fn ≻ En

Bn En ≻ Dn

Cn Dn ≻ Fn

Dn End2n ≻ Bn ≻ Cn ≻ Dn−1 ≻ Fn−1 ≻ Ae
0

En An ≻ Bn ≻ Dn−1 ≻ Fn−1

Fn End1n ≻ Cn ≻ An ≻ Dn−1 ≻ Fn−1

1n, 2n Dn−1 ≻ Fn−1

SC
n , T

C
n Fn−1

SA
n , T

B
n Dn−1

End1n Fn

End2n Dn

Agents:
An, Bn, Cn,Dn, En, Fn, 1n, 2n, S

A
n , S

C
n ,

TB
n , TC

n , End1n, End2n
Links:
{An, Bn}, {An, Cn}, {Bn, Cn}, {Dn, En},
{En, Fn}, {Fn,Dn}, {Dn, 1n}, {1n, En},
{En, 2n}, {2n, Fn}, {An, End1n}, {Cn, End2n},
{Dn, An−1}, {Dn, Cn−1}, {Fn, Bn−1}, {Fn, Cn−1}
Matching Edges:
{An, En}, {An, Fn}, {Bn,Dn}, {Bn, En},
{Cn, Fn}, {Cn,Dn}, {Fn, End1n}, {Dn, End2n},
{Dn,Dn−1}, {1n,Dn−1}, {En,Dn−1},
{2n,Dn−1}, {Fn,Dn−1}, {Dn, Fn−1}, {1n, Fn−1},
{En, Fn−1}, {2n, Fn−1}, {Fn, Fn−1}

17



Endo0 F1 21 E1 11 D1

End11 A1 B1 C1 End21

TC
2

TB
2

SA
2

SC
2

Ende0 F2 22 E2 12 D2

End12 A2 B2 C2 End22

TC
n−1

TB
n−1

SA
n−1

SC
n−1

Fn−1 2n−1 En−1 1n−1 Dn−1

End1n−1 An−1 Bn−1 Cn−1 End2n−1

TC
n

TB
n

SA
n

SC
n

Fn 2n En 1n Dn

End1n An Bn Cn End2n

b0

Ao
0

Ae
0

Figure 4: Network in the instance for Theorem 5. Matching edges depict a state in the described
sequence. At this state, we have generated two edges in every rotation gadget, and the exponential
rotation in the gadgets starts in order to iteratively get D1, E1 and F1 unmatched. This is necessary
to match them to Ao

0, which thereby discovers Endo0. Then, a similar approach allows Ae
0 to get

matched to Ende0.
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Obviously, since all agents End1i, End2i are embedded into a circling gadget, we have to match
them to Di, Fi in order to achieve a locally stable matching. Hence, every locally stable matching
must contain the edges {Di, End2i} and {Fi, End1i}. When these edges exist, we say rotation
gadget i is fixed. For the same reason, edges {Ao

0, Endo0} and {Ae
0, Ende0} must exist in every locally

stable matching. When these edges exist, we say the generation gadget is fixed.
The only local blocking pairs in M = ∅ are {Ao

0,Di} and {Ae
0,Di} for odd and even i, respectively.

These agent pairs are accessible by a path of two links incident to b0. We start the sequence with
creation of {Ao

0,D1}. With the link {Ao
0, C1}, the edge {C1,D1} becomes accessible. At this position

we could match D1 to End21, thereby stabilizing the incident circling gadget. This, however, would
match D1 to its most preferred partner, and thereby we would not be able to construct {F1, End11}.
Hence, we instead match D1 iteratively to agents of rotation gadget 2. We start by moving D1’s
edge from C1 to SC

2 , and then further to D2, E2, F2, and then to TB
2 and B1. Now we replace

{D1, B1} by {B1, E1}, which is replaced by {A1, E1} and finally by {A1, F1}. Then, we recreate
{Ao

0,D1} and {D1, C1}. At this point we could, in principle, fix rotation gadget 1. Then, however,
we will not be able to create {Ao

0, Endo0}, since Ao
0 needs to discover Endo0 by matching iteratively

to D1, E1 and F1. If rotation gadget 1 is fixed, D1 and F1 do not want to deviate to Ao
0.

Instead of fixing gadget 1, we proceed similarly with rotation gadget 2 by first creating {Ae
0,D2},

then {C2,D2} etc. until both {A2, F2} and {C2,D2} exist. Again, we will refrain from fixing rotation
gadget 2, since this would imply that Ae

0 cannot discover Ende0, similar to the arguments before.
In a similar fashion we proceed with rotation gadgets i = 3, 4, . . . , n, using Ao

0 or Ae
0 when i is

odd or even, resp. Note that whenever we create edges in rotation gadget i, rotation gadget i+1 is
still empty and all agents SC

i+1,Di+1, Ei+1, Fi+1, T
B
i+1 are unmatched when Di’s edge reaches them.

At the end of this process, matching edges {Ci,Di} and {Ai, Fi} exist for all i = 1, . . . , n. Observe
that it is necessary to create two matching edges in each rotation gadget for the gadget to become
fixed eventually. Since the only agents at which additional matching edges can be introduced are Ao

0

and Ae
0, this has to be done before the generation gadget is fixed. This shows that every {Ci,Di}

needs to be created before the generation gadget is fixed. We do not necessarily have to advance
the sequence such that the first edge in each gadget reaches position {Ai, Fi}, but we have done so
in our sequence for clarity and consistency.

Suppose a gadget is not fixed, then the two edges in this gadget can rotate along six positions.
The rotation of a single edge runs as follows:

{Ci,Di} → {Bi,Di} → {Bi, Ei} → {Ai, Ei} → {Ai, Fi} → {Ci, Fi} → {Ci,Di}

Note that since there are two edges, we always have four of the six agents matched. There is exactly
one pair of agents unmatched, which allows to shift one of the edges further along its rotation. We
call a sequence a rotation of gadget i if the two edges in gadget i both fulfill the complete cycle.

Only in gadget n, each of the six transitions is available directly via resolving a single local
blocking pair. In all other gadgets i = 1, . . . , n − 1, two transitions are not directly available as
local blocking pairs. As we have seen above, for the transition from {Ci,Di} to {Bi,Di}, Di needs
to discover Bi by matching iteratively to agents from gadget i+ 1. Exactly the same construction
is in place for the transition {Ai, Fi} to {Ci, Fi}, where the agents SA

i+1,Di+1, Ei+1, Fi+1, T
C
i+1 have

to be iteratively matched to Fi for this agent to discover Ci. Since always only one of Di+1, Ei+1,
Fi+1 is unmatched, gadget i+1 also needs to complete a full rotation, thereby making Di+1, Ei+1,
Fi+1 iteratively available for the less preferred partners Di or Fi. Consider the transition of, say, Di

from Ci to Bi. If Di is matched to Di+1, then in order to get Ei+1 unmatched, we have to rotate
the two edges in gadget i + 1 to Di+1 and Fi+1. This, however, would imply we “lose” the edge
incident to Di, since Di is currently still matched to Di+1. Then, subsequently gadget i cannot be
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fixed. Hence, in order to keep Di matched, we match it to 1i+1, proceed with the rotation in gadget
i + 1 to free Ei+1, then match Di to Ei+1 and further to 2i+1. Finally, we complete the rotation
of gadget i + 1 by freeing Fi+1, which allows Di to match to Fi+1, TB

i+1 and Bi. See Fig. 5 for a
visualization of a complete rotation in gadget n to allow Dn−1 become matched to Dn, En, Fn.

Since one rotation of gadget i involves two transitions, which each require a full rotation in
gadget i + 1, a single rotation of gadget 1 requires 2n−1 rotations of gadget n. Now, the single
rotation of gadget 1 is required, since we need to make agents D1, E1, F1 iteratively available for
matching to Ao

0 in order to fix the generation gadget. In the end, we rotate all edges back to
{Ci,Di} and {Ai, Fi} and fix the rotation gadgets. In this way, there is an exponential sequence in
the gadget from M = ∅ to a locally stable matching.

Let us now argue, why the above idea of intertwined rotation cannot be avoided. The main
underlying reason is that Ao

0 and Ae
0 must be used for generation of additional matching edges.

Only after a sufficient number of matching edges is present in each gadget, we can proceed to fix
the generation gadget. As part of this, we must fulfill a rotation in gadgets 1 and 2, implying an
exponential number of rotations in higher gadgets.

Obviously, we cannot fix the generation gadget before two matching edges in each rotation
gadget have been created. Similarly, none of the rotation gadgets can be fixed before the generation
gadget is fixed – suppose a gadget i is fixed before the generation gadget is fixed. At this point,
neither Di nor Fi are willing to match to Di−1 or Fi−1. Thus, the rotation in gadget i − 1 breaks
and the gadget stabilizes. The same is true for all rotation gadgets i− 2, . . . , 1. Hence, the rotation
of gadget 1 cannot be completed, so Ao

0 is unable to reach Endo0. For the same reason, we must not
create three or more matching edges in a rotation gadget. This stabilizes the gadget and does not
allow rotation, which is needed to eventually fix the generation gadget.

A more subtle point is the interplay of even and odd gadgets. Since we strive for bipartite
instances, we cannot use a single agent A0 to generate matching edges in all rotation gadgets, since
there are Di-agents in both partitions. Given the sequence above, the reader might wonder why
Ae

0 has to trigger a final rotation in gadget 2. Imagine that Ae
0 can directly match to Ende0 once

all matching edges in the even rotation gadgets are created. Then, however, we could break the
intertwining of rotation gadgets: First, create all edges in odd gadgets, and move Ao

0 to Endo0. Since
at this point gadget 2 is empty, the single rotation in gadget 1 does not propagate to other gadgets.
Then, create the matching edges of the even gadgets for gadget i = 2, 4, . . . , n. This causes rotation
in the odd gadget i+1, but since gadget i+2 does not yet contain any matching edges, the rotations
do not propagate to higher gadgets. In this way, we could fix all gadgets in a polynomial number
of steps.

In principle, we can also adopt this approach by first creating the matching edges in odd gadgets
and then in even gadgets. However, in our instance Ae

0 then triggers a final rotation in gadget 2 after
generation of all matching edges in the even gadgets. At this point, all the gadgets are intertwined,
and the single rotation in gadget 2 then requires that every gadget i ≥ 2 rotates 2i−2 times.

4 Memory

In this section, we focus on the impact of memory for the reachability of locally stable matchings.
As a direct initial result, we observe that no memory can help with the reachability of a given locally
stable matching, even in a correlated job-market game.

Corollary 2. It is NP-hard to decide Path-To-Stability to a given locally stable matching in a
correlated job-market game with any kind of memory.
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Fn 2n En 1n Dn

An Bn Cn

Fn 2n En 1n Dn

An Bn Cn

Fn 2n En 1n Dn

An Bn Cn

Fn 2n En 1n Dn

An Bn Cn

Fn 2n En 1n Dn

An Bn Cn

Fn 2n En 1n Dn

An Bn Cn

Figure 5: A rotation of gadget n. Suppose Dn−1 must become iteratively matched to Dn, En, Fn

to discover TB
n−1 and Bn−1. Top left: Starting position, Dn is occupied and should be freed. Top

right: After resolution of {Bn,Dn} and {Bn, En}, Dn is free to be matched to Dn−1. Middle left:
By resolution of {Cn, Fn} and {Cn,Dn}, Dn becomes matched, so Dn−1 should become matched
to 1n before this step. Middle right: After resolution of {An, En} and {An, Fn}, En is free to be
matched to Dn−1. Bottom left: By resolution of {Bn,Dn} and {Bn, En}, En becomes matched,
so Dn−1 should get matched to 2n before this step. Bottom right: After resolution of {Cn, Fn}
and {Cn,Dn}, Fn is free to be matched to Dn−1, which subsequently gets matched to TB

n−1. By
resolution of {An, En} and {An, Fn}, the rotation is complete.
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Proof. We observe that the same reduction as in Theorem 1 yields the result even for arbitrary
memory. If the 3Sat formula is satisfiable, the sequence given in the proof can obviously be
constructed without memory. Now assume that the desired matching M∗ is reachable. Recall the
instance, for which links and initial matching are depicted in Fig. 2, and the main idea of the proof.
The agents of U iteratively get matched along the path of agents as, into the branching of agents
xi and x̄i, and subsequently to agents vs on the right side of the path. For every agent u ∈ U , the
preference of the partner is strictly increasing during this process. Hence, for u there is no (local)
blocking pair with any agent w ∈ W that u was matched to before. Thus, memory can only have
an impact if an agent u gets unmatched.

An agent u ∈ U might indeed become unmatched. For example, suppose we follow the sequence
outlined in the proof of Theorem 1 by matching all agents uxi

to an agent xi or x̄i in the branching.
Then, uC1

gets matched iteratively to the agents along the path, to a, to an agent corresponding
to a true literal, and then to vC1

. At this point, we could resolve the local blocking pair of, say,
ux1

and vx1
, thereby leaving uC1

unmatched. uC1
remembers all previous partners, so it forms

blocking pairs, in particular, with all currently unmatched previous partners. In this way, uC1
can

get matched again, which would be impossible without memory. However, it is clear to see in this
example that once vx1

and ux1
are matched, for all j = 1, . . . ,m, none of the edges {uCj

, vCj
} can be

constructed – none of them existed before, so vCj
would have to be discovered by uCj

via sequences
of local blocking pair resolutions starting from vx1

. However, {ux1
, vx1

} is the top choice for both
agents, and therefore none of them will become part of any local blocking pair again.

It is easy to verify that this condition must hold more generally. Every agent vxj
must become

matched to all agents uC1
, . . . , uCl

before it gets matched to any of the agents vxk
, . . . , vxj

. The
argument is quite similar to the one in Theorem 2. Consider an agent vxi

that becomes matched to
uxi′

for i ≤ i′ before getting matched to some uCj
. Then uCj

does not hold vxs in its memory, for
all s ≥ i′, since these agents must be discovered by iteratively resolving local blocking pairs of uCj

and vx1
, . . . , vxi′−1

. First, suppose uxi′
subsequently does not get unmatched. Then uCj

will not be
able to discover vxs for any s ≥ i′, since no agent v is involved in a local blocking pair with uCj

when being matched to uxi′
. Also, none of these vxs can be made accessible for uCj

by memory.
Thus, figuratively speaking, the edge incident to uCj

gets “stuck behind the edge incident to uxi′

when it tries to traverse the path of v-agents from vx1
to vCj

”.
Second, suppose uxi′

subsequently gets unmatched. This can only happen when some edge
{uxi′

, vxs} with i ≤ s ≤ i′ − 1 exists, and is replaced by {uxi′′
, vxs} for some s ≤ i′′ < i′, since these

are the only agents of U that vxs prefers to uxi′′
. Then, however, we can repeat the above argument

that uCj
is unable to reach vCj

, where uxi′′
takes the role of uxi′

and vxs takes the role of vxi
.

This implies, in particular, that vx1
must be matched to all agents uCj

before getting matched
to any of the agents uxi

. Note that agent uxi
only considers deviating to agents xi and x̄i from

the branching. This directly implies that while being matched to the a-agents or the x/x̄-agents,
no agent uxi

can become unmatched. Therefore, we again must obey the structure of the sequence
outlined in Theorems 1, 2 before, and a satisfying assignment must exist.

We will now concentrate on the impact of memory on reaching an arbitrary locally stable match-
ing. Although existence is guaranteed for bipartite instances, even quite simple structures like the
circling gadget do not allow a locally stable matching to be reached through improvement dynamics
from every initial matching.

Quality Memory We start our treatment with quality memory, where every agent remembers at
every round the best matching partner he ever had before. While this seems quite a natural choice
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sx
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sx

tx > ..

tx

sx > x

tx tx

Figure 6: Effect of a memory jammer

and appears like a smart strategy for each agent, it can be easily fooled by starting with a much-
liked partner who soon after matches with someone more preferred and never becomes unmatched
again. This way the memory becomes useless which leaves us with the same dynamics as before.

Example (Memory Jammer). Consider the graph given in Fig. 6. As agents x and tx are at distance
2 in the network (V,L), edge {x, tx} is accessible, regardless of the current matching. Furthermore,
it is the only accessible edge for tx when tx is unmatched. Let tx be the most preferred partner of
x. Thus, {x, tx} is a local blocking pair as long as tx is unmatched. Once this blocking pair gets
resolved, edge {tx, sx} becomes accessible. Let sx be the most preferred partner of tx, and tx the
most preferred partner of sx. Thus, {tx, sx} becomes a local blocking pair, and tx will leave x to
match to sx. Since tx is the most-liked partner, x will keep it in his memory, and tx will never be
replaced by any other agent. At the same time, tx and sx will never break their match regardless
which other agents become accessible. Therefore, x has no benefit from remembering tx, and all
subsequent sequences will evolve in similar fashion as without memory of x. �

We augment each agent in the circling gadget with a separate memory jammer. In the following
Proposition 1, we show that this augmented circling gadget does not allow a sequence of local
improvement steps from M = ∅ to any locally stable matching. We then show in Theorem 6 below
that deciding this question is again NP-hard.

Proposition 1. There is a bipartite network game with general preferences, quality memory and
initial matching M = ∅ such that no locally stable matching can be reached with local improvement
steps from M .

Proof. As seen in the example above, we can add a memory jammer for every agent A,B,C, 1, 2, 3
of the circling gadget to make sure that initially each of the ordinary agents x gets to match with
an agent tx which symbolizes its top choice. Then tx can (and will) switch to some agent sx and
stay in this matching for the rest of the dynamics. At the same time tx will stay in the memory
of gadget agent x indefinitely, thereby making his memory useless. Recall that we argued above,
by suitably ranking the bi-agents at the bottom of every list, they are never involved in any local
blocking pair other than {i, bi}. As such, we do not need memory jammers for bi-agents.
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Agent Preference List

1 t1 ≻ C ≻ B ≻ A

2 t2 ≻ A ≻ C ≻ B

3 t3 ≻ B ≻ A ≻ C

A tA ≻ 3 ≻ 1 ≻ 2

B tB ≻ 1 ≻ 2 ≻ 3

C tC ≻ 2 ≻ 3 ≻ 1

tx sx ≻ x for x ∈ {1, 2, 3, A,B,C}
sx tx for x ∈ {1, 2, 3, A,B,C}

1

2

3

A

B

C

b1

b2

b3

d1

d2

d3

dA

dB

dC

t1

t2

t3

tA

tB

tC

s1

s2

s3

sA

sB

sC

Figure 7: Preferences and links in the circling gadget with memory jammers as described in Propo-
sition 1

Formally, we consider

U ={1, 2, 3} ∪ {tx | x ∈ {A,B,C}} ∪ {sx | x ∈ {1, 2, 3}}

W ={A,B,C, b1, b2, b3} ∪ {dx | x ∈ {1, 2, 3, A,B,C}}

∪ {tx | x ∈ {1, 2, 3} ∪ {sx | x ∈ {A,B,C}}

L ={{A, b1}, {B, b2}, {C, b3}, {b1, 1}, {b2, 2}, {b3, 3}}

∪ {{A,B}, {B,C}, {C,A}}

∪ {{sx, x}, {x, dx}, {dx, tx} | x ∈ {1, 2, 3, A,B,C}} and

E ={{u, v} | u ∈ {1, 2, 3}, v ∈ {A,B,C}} ∪ {{x, tx}, {tx, sx} | x ∈ {1, 2, 3, A,B,C}} .

The new preference lists and a sketch of the links can be found in Fig. 7. Note that we restrict
the possible matching edges to the set of edges previously considered in the circling gadget and
described for the memory jammers. It will become obviou below that by suitably ranking agents at
the bottom of the lists, we can also assume that E = U ×W .

To show that no locally stable matching can be reached, start with M = ∅ and assume for
contradiction that there is a sequence of local improvement steps leading to a locally stable matching.
A matching cannot be locally stable until {x, tx} was created once for all x ∈ {1, 2, 3, A,B,C},
because otherwise it is accessible, matches x to his favorite partner, and matches tx to the only
possible accessible partner when being single. Afterwards, every such edge will be replaced by
{tx, sx}, which remains stable since it matches both partners to their most preferred choice. Let
x∗ be the last agent for which {tx∗ , sx∗} is generated. At that moment x∗ is unmatched, and every
agent of {1, 2, 3, A,B,C} will continue to hold his t-partner in his memory. As the t-agents are not
willing to change their matching edges, there will be no edge created from memory from this point
on. If x∗ ∈ {1, 2, 3}, one of the agents in {A,B,C} is unmatched as well and vice versa. This leaves
us in the situation described in the dynamics of the circling gadget. Since all memory entries are
filled by tx-agents, from this state no locally stable matching can be reached.
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Remark. The same memory reset also works if every agent remembers the best k previous matches,
for any number k, simply by applying k copies of the memory reset construction for each agent.

Theorem 6. It is NP-hard to decide Path-To-Stability to an arbitrary locally stable matching
in a bipartite network game with quality memory.

Proof. For the proof we use the 3Sat gadget described in Corollary 2, where we proved that no
memory can help to reach a given stable matching M . We then combine this instance with aug-
mented circling gadgets (similar as we did in Corollary 1). In this way, we ensure that every stable
matching must include the edges of M to stabilize the gadgets. This matching, however, can be
reached if and only if the 3Sat formula is satisfiable.

As a slightly stronger result, the same hardness result might be shown with the empty initial
matching. For this, one might be able to adjust the construction of Theorem 3 in order to avoid
that quality memory helps reachability. We leave this issue as an avenue for future work.

Recency Memory In recency memory, every agent remembers the last agent it has been matched
to before, which is yet another very natural update strategy. For our treatment we focus on the
case in which the network links satisfy L ⊆ (W × W ) ∪ (U × W ). This is a natural restriction
when one side consists of inanimate objects that form resources to be consumed. Theorem 3 shows
NP-hardness of deciding Path-To-Stability in this class of instances. In contrast, with recency
memory it is always possible to reach a locally stable matching.

Theorem 7. For every bipartite network game with general preferences, links L ⊆ (U ×W )∪ (W ×
W ), recency memory and every initial matching, there is a sequence of O(|U |2|W |2) many local
improvement steps to a locally stable matching.

Proof. Our basic approach is to construct the sequence in two phases similarly as in [2]. In the first
phase, we let the matched agents from U improve, but ignore the unmatched ones. In the second
phase, we execute iterations, where in each iteration we pick a u ∈ U and only do improvements
steps involving u. Here we keep track of the agents from W and ensure they improve at the end of
each iteration.

Preparation phase: As long as there is at least one u ∈ U with u matched and u part of a local
blocking pair, allow u to switch to the better partner.

The preparation phase terminates after at most |U | · |W | steps, as in every round one matched
u ∈ U strictly improves in terms of preference. This can happen at most |W | times for each matched
u. In addition, the number of matched agents from U can only decrease.

Memory phase: As long as there is a u ∈ U with u part of a local blocking pair, pick u and
execute a sequence of local improvement steps involving u until u is not part of any local blocking
pair anymore. For every edge e = {u′, w} with u′ 6= u that was deleted during the sequence, recreate
e from the memory of u′.

We claim that if we start the memory phase after the preparation phase, at the end of every
iteration we have the following invariants: The agents of W that have been matched before are still
matched, they do not have a worse partner than before, and at least one of them is matched strictly
better than before. Also, only unmatched agents from U are involved in local blocking pairs.

Obviously, at the end of the preparation phase, all local blocking pairs contain unmatched agents
of U , i.e., initially our invariant holds. Let u be the agent chosen in the following iteration of the
memory phase. At first, we consider the outcome for w ∈ W . If w is the agent matched to u in the
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Figure 8: Example of a sequence computed by the algorithm in Theorem 7

end, then w clearly has improved. Otherwise w gets matched to its former partner (if it had one)
through memory and thus is matched similarly as before. In particular, every w that represents an
improvement to some u′ but was blocked by a higher ranked agent, still remains blocked. Together
with the fact that we execute local improvement steps involving u until it is not part of a local
blocking pair anymore, this guarantees that all matched agents of U cannot improve at the end of
this iteration of the memory phase. As one agent of W strictly improves in every iteration, we have
at most |U | · |W | iterations in the memory phase, where every iteration consists of at most |W | steps
by u and at most |U | − 1 edges reproduced from memory.

The structure of L, combined with recency memory, plays a key role in this proof. During the
memory phase, an agent u ∈ U can only become unmatched if its current partner from W deviates
to a more desirable match. Due to the structure of L, agents in U \ {u} and W do not require a
matching edge to u in order to discover more desirable matches. Hence, it is not necessary to alter
the memory of u to stabilize the system with respect to another agent u′ ∈ U . Due to recency
memory, agent u can reinsert the edge to the last partner, thereby allowing to recover the state of
the system w.r.t. u and make overall progress towards a locally stable matching. We illustrate the
arguments with the following example.

Example. In the example given in Figure 8 we execute an iteration of the memory phase. u1 ∈ U
is the agent currently chosen. During the phase, u1 repeatedly switches partner to improve. In
that process, it also matches to agent w. w was matched to u2 at the beginning of the iteration.
However, w is only an intermediate partner for u1, who can improve further once new agents become
accessible via the links of w. Thus, at the end of the iteration when u1 is involved in no further
local blocking pairs, the edge {u2, w} can be retrieved from u2’s memory. �

Remark. Note that the network used in Proposition 1 does not fulfill the criteria of L ⊆ (U ×
W ) ∪ (W ×W ), and thereby the impossibility results for quality memory do not apply. However,
if we discard all d-agents with their links as well as all {x, sx}-links, install direct links between
tx and sx and use {{x, tx} | x ∈ {1, 2, 3} ∪ {A,B,C}} as initial state, the memory gets jammed
in the same way, and the social network now is limited to L ⊆ (U × W ) ∪ (W ×W ). Theorem 6
easily continues to hold also with this type of circling gadget, which proves that for quality memory
Path-To-Stability remains NP-hard even in instances with L ⊆ (U ×W ) ∪ (W ×W ).
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The following is a direct corollary from the previous theorem. In random dynamics, with prob-
ability 1 in the limit, we will at least once start in a matching and execute the sequence described
in the last theorem.

Corollary 3. For every bipartite network game with general preferences, links L ⊆ (U×W )∪ (W ×
W ), recency memory, and every initial matching, random dynamics converge to a locally stable
matching in the limit with probability 1.

Sadly, we cannot always expect fast convergence here, as there are instances where random
dynamics yield a sequence of exponential length with high probability even in ordinary stable
marriage where all pairs of agents are accessible (see [2]).

Our constructions require only the agents from U to have recency memory, which allows us to
show the same results when we have no memory for agents in W . In contrast, if we omit the memory
for U and just allow recency memory for W , no sequence of local improvement steps might lead to
a locally stable matching.

Proposition 2. There is a bipartite network game with general preferences, links L ⊆ (U ×W ) ∪
(W ×W ), recency memory for agents in W and initial matching M = ∅ such that no locally stable
matching can be reached with local improvement steps from M .

Proof. Consider the circling gadget. First, as noted before, memory for the bi-agents has no effect
since the only matching edges that can evolve are {i, bi}. All agents of W are matched in every
locally stable matching, and none of the edges present in any locally stable matching is accessible
via two links. As such, the last edge to complete any locally stable matching must come from
memory. Now {1, A}, {2, B}, {3, C} are always accessible. {1, C}, {2, A}, and {3, B} only get
removed if the W -agent finds a better partner. This shows that the locally stable matching {{1, C},
{2, A}, {3, B}} cannot be reached, even with recency memory. By symmetry, assume the last edge
recovered from memory be {2, A}. Then 2 must be the last partner A was matched to. Since A
must leave 2 for a better partner (for 1), and {1, A} must become deleted subsequently, A removes
2 from its memory.

As such, this leaves us with the locally stable matching M∗ = {{1, B}, {2, C}, {3, A}}. Suppose
the last edge of the matching created from memory is {3, A}. Then {2, B} must have been created
from the memory of B, since otherwise it needs {1, A} to exist, which implies the memory of A is
not set ot 3. For the same reason, {2, C} must have been created from memory, since for symmetric
reasons {1, B} had not been able to be created from memory. Hence, in order to reach {{1, B},
{2, C}, {3, A}} we must create all three edges from memory. Now consider for agent A the earliest
step where the memory is set to 3 and remains set like this until the end. We say the memory for
A is finalized in this step. Similarly, we consider the steps where the memories of agents B and C
are finalized. Assume w.l.o.g. that the memory of A is finalized last. Then edge {3, A} must be
constructed by existence of {3, C}. This, however, implies that the memory for C is finalized later,
a contradiction.

The proposition can be used with the construction of Corollary 2 in the same manner as Propo-
sition 1 was used to show Theorem 6. This yields the following result. As for quality memory, a
similar result might be possible from the empty initial matching. We leave this issue as an open
problem.

Theorem 8. It is NP-hard to decide Path-To-Stability to an arbitrary locally stable matching
in a bipartite network game when recency memory exists only for one partition.
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Random Memory Let us now consider how random memory might help us reach a locally stable
matching from every starting state even in general bipartite network games. Again, we cannot expect
fast convergence due to the full-information lower bound in [2]. However, we show that random
memory can help with reachability:

Theorem 9. For every bipartite network game with random memory, random dynamics converge
to a locally stable matching with probability 1.

Proof. Our proof combines an idea used in [19] with a convergence result in [38]. We consider a
sequence of random local improvement steps and divide it into phases. Whenever a new edge is
created for the first time, a new phase starts. Hence, phase t contains the part of the sequence,
where exactly t edges have been created for the first time. Within a phase we have a fixed number
of matching edges available (from the network or from memory). Consider phase t∗ where t∗ is the
maximal phase of the sequence. t∗ exists, as t is monotonically increasing and limited by |E|. We
know that every phase t < t∗ ends after a finite number of steps. Hence we only have to show
that phase t∗ is finite in expectation. Roth and Vande Vate [38] demonstrate how to construct
a sequence of blocking pair resolutions to form a stable matching with full information when all
possible matching edges are accessible. In phase t∗, we have t∗ edges that can be used for the
matching, and all of them can also be remembered. Thus, with non-zero probability there is an
initial state such that the random memory remembers the local blocking pairs from the sequence
in the correct order and the random dynamics implement the local blocking pair resolutions in the
correct way. Thus, phase t∗ is ends after a finite number of steps in expectation. This proves the
theorem.

5 Centralized problems

5.1 Maximum locally stable matching

The size of locally stable matchings in an instance can be highly variable – for example, in the
trivial example where there are no links, the empty matching as well as a perfect matching are
locally stable. From a designer’s perspective, since all agents strive to be matched, it is desirable
to form locally stable matchings of maximal size. Unfortunately, we will show that there is a close
connection between maximum independent sets and maximum locally stable matchings. This allows
us to transfer hardness of approximation results for independent set to locally stable matching.

Theorem 10. For every graph G we can build a network N such that N holds a maximum locally
stable matching of size |V [G] |+ k iff G has a maximum independent set of size k.

Proof. Consider a graph G = (V,E), |V | = n, as an instance of the maximum independent set
problem. We construct the following job-market network N = (V ′ = U ∪W,L). For every v ∈ V we
have agents uv,1 and uv,2 in U and agents wv,1 and wv,2 in W . Further there are links {wv,1, wv′,2}
and {wv′,2, wv,2}, if v′ ∈ N(v). We allow matching edges {uv,1, wv,1}, {uv,1, wv′,2} for v′ ∈ N(v),
{uv,1, wv,2} and {uv,2, wv,2}. Each uv,1 prefers wv,2 to every wv′,2, v′ ∈ N(v), and every wv′,2 to wv,1.
The preferences between the the different neighbors can be chosen arbitrarily. Each wv,2 prefers uv,1
to every uv′,1, v′ ∈ N(v), and every uv′,2 to uv,2. Again the neighbors can be ordered arbitrarily.
The agents wv,1 and uv,2 have only one possible matching partner anyway.

We claim that G has a maximum independent set of size k iff N has a locally stable matching
of size n + k. First, let S be a maximum independent set in G. Then M = {{uv,1, wv,2} | v ∈
V \S}∪{{uv,1, wv,1}, {uv,2, wv,2} | v ∈ S} is a locally stable matching in N . From edges {uv,1, wv,2}
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no agent wants to deviate. For the other agents, the independent set property tells us that for v ∈ S
all agents v′ ∈ N(S) yield edges {uv′,1, wv′,2} that keep uv,1 from switching to wv′,2. Thus, from
{uv,1, wv,1} no agents wants to deviate. wv,2 is not accessible with uv,1, which implies that the
agents do not want to deviate from {uv,2, wv,2}.

Now, let M be a maximum locally stable matching for N . Further, we chose M such that every
uv,1 is matched, which is possible as replacing a matching partner of wv,2 by (the unmatched) uv,1
will not generate local blocking pairs or lower the size of M . We note that no uv,1 is matched to
some wv′,2 with v 6= v′, since this would imply {uv,1, wv,2} becomes accessible and a local blocking
pair. Then for S = {v | uv,2 ∈ M}, |S| = |M | − n. Every uv,2 can only be matched to wv,2, which
means that uv,1 must be matched to wv,1. These agents must not be involved in local blocking
pairs, which implies for every v ∈ S, N(v) ∩ S = ∅. Thus, S is an independent set.

Corollary 4. Under the unique games conjuncture maximum locally stable matching cannot be
approximated within 1.5 − ǫ, where ǫ approaches 0 when n grows.

Proof. We combine the relation to maximum independent set as shown in Theorem 10 with a result

of [7] that independent set is unique-games-hard to approximate within a factor of Ω
(

d
log2(d)

)

for

independent sets of size k =
(

1
2 −Θ

(

log(log(d))
log(d)

))

n, where d is the maximum degree. Hence, it is

hard to distinguish instances with maximum independent set of size k and k · O
(

log2(d)
d

)

. With

d = Θ(n), maximum locally stable matching is unique-games-hard to approximate within

n+ k

n+ k ·O
(

log2(n)
n

) =
n+

(

1
2 −Θ

(

log(log(n))
log(n)

))

n

n+
(

1
2 −Θ

(

log(log(n))
log(n)

))

n ·O
(

log2(n)
n

) ≤ 1.5− ǫ ,

for any constant ǫ > 0.

Remark. Note that in fact we only used the setting of the bipartite job-market game, where one
side has no network at all. This shows that even under quite strong restrictions the hardness of
approximation holds.

Proposition 3. If a stable matching exists, every stable matching is a 2-approximation of a maxi-
mum locally stable matching.

Proof. Note that every stable matching is locally stable as well. Now let M be a stable matching
and e = {u, v} an edge of a maximum locally stable matching M∗. We show that at least one agent
of e is matched in M . Then obviously |M∗| < 2|M |. Assume that both agents are unmatched in
M . As e exists in M∗, u and v prefer each other to being alone. Thus {u, v} is a blocking-pair and
M cannot be stable.

5.2 Roommates Problem

If E is bipartite, there always exists a stable (and thus, a locally stable) matching. In the more
general roommates case, there are instances with general preferences such that no stable matching
exists. The same obviously holds for locally stable matchings, since locality has no effect if L
contains a link for every pair of agents. While the existence of a stable matching can be decided in
polynomial time [26], we show that the same question is NP-hard for locally stable matchings. Our
initial proof was significantly simplified by an anonymous referee, who kindly provided the following
proof.
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Theorem 11. It is NP-complete to decide if a locally stable matching exists in a network game.

Proof. Let SRT denote the problem of deciding whether an instance of the stable roommates prob-
lem with ties admits a stable matching. SRT is NP-complete even if each agent finds all other
agents acceptable, and each tie is of length 2 and occurs at the head of some agent’s preference
list [27].

We will use a reduction from this restricted version of SRT to show that our problem is NP-
complete. Let I be an instance of the stated restriction of SRT, and V is the set of agents in I. Let
V ′ ⊆ V denote the set of agents in I who have a tie (of length 2) at the head of their preference list
in I. We form an instance J of Local-SRT by letting the potential matching edges E be the edge
set of the complete graph on V . Initially, let L = E, i.e., the links comprise all potential matching
edges.

Each agent v ∈ V initially has the same preference list in J as in I. If v ∈ V ′, then assume that
the tie at the head of v’s preference list involves agents v′ and v′′. By inspection of the proofs of
Theorem 6.1 and Corollary 6.3 in [27], for one of v′ and v′′ (w.l.o.g. let that be v′′) the unique first
partner on the preference list is v. Moreover, v′ 6∈ V ′ and v′′ 6∈ V ′. Break the tie in J so that v
prefers v′ to v′′, and then v′′ is preferred to all other agents on v’s preference list, as before. Remove
all links incident to v from L apart from the link {v, v′′}. Moreover, remove the link {v′, v′′} from
L. Hence, now if v is unmatched or matched to v′′, it is not accessible with v′.

We claim that I has a stable matching if and only if J has a locally stable matching. First, let
M be a stable matching in I. Suppose that {v1, v2} is a local blocking pair of M in J . If v1 6∈ V ′

and v2 6∈ V ′ then it is clear that {v1, v2} is a blocking pair of M in I, a contradiction. Now suppose
w.l.o.g. let v1 ∈ V ′. Let v′1 and v′′1 be the two members of v1’s tie in I, and w.l.o.g. suppose v1
prefers v′1 to v′′1 in J . By inspection of the proofs of Theorem 6.1 and Corollary 6.3 in [27], it may
be verified that M(v1) ∈ {v′1, v

′′
1}. It follows that v2 = v′1 and M(v1) = v′′1 . But by construction of

L, v1 and v′1 are not accessible, a contradiction. Hence M is locally stable in J .
Conversely, suppose that M is a locally stable matching in J . Suppose that {v1, v2} is a blocking

pair of M in I. If {v1, v2} ∈ L then {v1, v2} is a local blocking pair of M in J , a contradiction.
Next suppose that {v1, v2} 6∈ L. If v1 6∈ V ′ and v2 6∈ V ′, then v1 and v2 are the two members of the
tie of length 2 in some agent v’s preference list. W.l.o.g. suppose that v prefers v1 to v2 in J . Note
{v, v2} ∈ L and v2 ranks v in first place, so M(v) ∈ {v1, v2}, for otherwise {v, v2} is a local blocking
pair of M , a contradiction. By inspection of the proofs of Theorem 6.1 and Corollary 6.3 in [27],
if {v, v1} ∈ M , then v1 prefers v to v2 in I, whilst if {v, v2} ∈ M , v2 prefers v to v1 in I. Hence
{v1, v2} cannot be a blocking pair of M in I after all. Finally, suppose {v1, v2} 6∈ L and w.l.o.g.
v1 ∈ V ′ and v2 6∈ V ′. Let v′1 and v′′1 be the two members of v1’s tie in I. If M(v1) ∈ {v′1, v

′′
1}, then

v1 cannot be involved in any blocking pair in I. Otherwise, v1 prefers each of v′1 and v′′1 to M(v1)
in J . By construction of J , {v1, v′′1} ∈ L and v′′1 ranks v1 in first place. Hence {v1, v

′′
1} is a local

blocking pair of M in J , a contradiction. Thus M is stable in I.

6 Conclusion

In this paper, we study Path-To-Stability problems for locally stable matchings. Our results
show that locally stable matchings might not necessarily be reachable by a sequence of local im-
provement steps. We prove that deciding this question is NP-hard in many rather restricted domains
of two-sided instances. Moreover, even in cases where a locally stable matching can be reached from
an initial matching, the length of the shortest such sequence can be exponentially long. An inter-
esting case, where locally stable matchings can always be reached, are instances with correlated
preferences [19]. For these instances we show that, in fact, every reachable matching can be reached
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within O(|E3|) many steps. Another interesting and natural property, which can be used to over-
come these negative conditions, is memory. With recency memory we can guarantee existence of a
sequence of O(|U |2|W |2) many steps to a locally stable matching when there is no network among
one partition. With random memory convergence is guaranteed in the limit with probability 1.

In this direction, there are a variety of open problems. It is not known if the polynomial
bounds we provide for correlated preferences or recency memory are tight. Furthermore, it would
be interesting to see if there are other meaningful classes of instances, for which existence of a path
to stability (of polynomial length) can be shown, or at least decided in polynomial time.

In addition to convergence questions, we study existence and optimization problems regarding
locally stable matchings. For finding the locally stable matching of maximum cardinality, we provide
a lower bound of 1.5− ǫ on the approximation factor under the unique games conjecture, for every
constant ǫ. In the roommates case, even existence of locally stable matchings is shown to be NP-
complete to decide.

Perhaps the most interesting open problem in this domain is whether there is an efficient 1.5-
approximation algorithm for finding a maximum locally stable matching. Alternatively, can the
lower bound can be strengthened towards the simple upper bound of 2? For the roommates case, it
would be interesting to identify further classes of instances, for which existence of a locally stable
matching is guaranteed or at least decidable in polynomial time.
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