Huge Unimodular N-Fold Programs

Shmuel Onn * Pauline Sarrabezolles ${ }^{\dagger}$

Abstract

Optimization over $l \times m \times n$ integer 3 -way tables with given line-sums is NP-hard already for fixed $l=3$, but is polynomial time solvable with both l, m fixed. In the huge version of the problem, the variable dimension n is encoded in binary, with t layer types. It was recently shown that the huge problem can be solved in polynomial time for fixed t, and the complexity of the problem for variable t was raised as an open problem. Here we solve this problem and show that the huge table problem can be solved in polynomial time even when the number t of types is variable. The complexity of the problem over 4 -way tables with variable t remains open. Our treatment goes through the more general class of huge n-fold integer programming problems. We show that huge integer programs over n-fold products of totally unimodular matrices can be solved in polynomial time even when the number t of brick types is variable.

1 Introduction

Consider the following optimization problem over 3 -way tables with given line-sums:

$$
\min \left\{w x: x \in \mathbb{Z}_{+}^{l \times m \times n}, \sum_{i} x_{i, j, k}=e_{j, k}, \sum_{j} x_{i, j, k}=f_{i, k}, \sum_{k} x_{i, j, k}=g_{i, j}\right\} .
$$

It is NP-hard already for $l=3$, see [3]. Moreover, every bounded integer program can be isomorphically represented in polynomial time for some m and n as some $3 \times m \times n$ table problem, see [4]. However, when both l, m are fixed, it is solvable in polynomial time [2, 8, 10, and in fact, in time which is cubic in n and linear in the binary encoding of w, e, f, g, see [7]. Assume throughout then that l, m are fixed, and regard each table as a tuple $x=\left(x^{1}, \ldots, x^{n}\right)$ consisting of n many $l \times m$ layers. The problem is called huge if the variable number n of layers is encoded in binary. We are then given t types of layers, where each type k has its cost matrix $w^{k} \in \mathbb{Z}^{l \times m}$, column-sums vector $e^{k} \in \mathbb{Z}_{+}^{m}$, and row-sums vector $f^{k} \in \mathbb{Z}_{+}^{l}$. In addition, we are

[^0]given positive integers n_{1}, \ldots, n_{t}, n with $n_{1}+\cdots+n_{t}=n$, all encoded in binary. A feasible table $x=\left(x^{1}, \ldots, x^{n}\right)$ then must have first n_{1} layers of type 1 , next n_{2} layers of type 2 , and so on, with last n_{t} layers of type t. The special case of $t=1$ is the case of symmetric tables, where all layers have the same cost, row and column sums, and the classical (non-huge) table problem occurs as the special case of $t=n$ and $n_{1}=\cdots=n_{t}=1$. Note that for each k, the set of possible layers of type k is
$$
\left\{z \in \mathbb{Z}_{+}^{l \times m}: \sum_{i} z_{i, j}=e_{j}^{k}, \sum_{j} z_{i, j}=f_{i}^{k}\right\}
$$
and may have cardinality which is exponential in the binary encoding of e^{k}, f^{k}. So it is not off hand clear how to even write down a single table, let alone optimize.

The huge table problem was recently considered in [11, where it was shown, combining results of [2, 8, 10] on Graver bases and results of [5, 6] on integer cones, that it can be solved in polynomial time for fixed t. The complexity of the problem for variable t was raised as an open problem. Here we solve this problem and show that the huge table problem can be solved in polynomial time even when t is variable.

Theorem 1.1 The huge 3-way table problem with a variable numbert of types can be solved in time which is polynomial in t and in the binary encoding of $w^{k}, e^{k}, f^{k}, g, n_{k}$.

It was moreover shown in [11] that the huge d-table problem over $m_{1} \times \cdots m_{d-1} \times n$ tables with $m_{1}, \ldots m_{d-1}$ fixed and n variable can also be solved in polynomial time for any fixed number t of types. Interestingly, we do not know whether Theorem 1.1 could be extended to this more general situation, and the complexity of the huge d-way table problem with variable t remains open, already for $3 \times 3 \times 3 \times n$ tables.

Theorem 1.1 follows from broader results which we proceed to describe. The class of n-fold integer programming problems is defined as follows. The n-fold product of an $s \times d$ matrix A is the following $(d+s n) \times(d n)$ matrix, with I the $d \times d$ identity,

$$
A^{[n]}:=\left(\begin{array}{cccc}
I & I & \cdots & I \\
A & 0 & \cdots & 0 \\
0 & A & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A
\end{array}\right)
$$

The classical n-fold integer programming problem is then the following:

$$
\begin{equation*}
\min \left\{w x: x \in \mathbb{Z}^{d n}, A^{[n]} x=b, l \leq x \leq u\right\} \tag{1}
\end{equation*}
$$

where $w \in \mathbb{Z}^{d n}, b \in \mathbb{Z}^{d+s n}$, and $l, u \in \mathbb{Z}_{\infty}^{d n}$ with $\mathbb{Z}_{\infty}:=\mathbb{Z} \uplus\{ \pm \infty\}$. For instance, optimization over multiway tables is an n-fold program, as is explained later on.

Our starting point is the following result on classical n-fold integer programming, established in [2, 8], building on results of [1, 2, ,12]. See the monograph [10] for a detailed treatment of the theory and applications of n-fold integer programming.

Proposition 1.2 For fixed matrix A, the classical n-fold integer programming problem (1) can be solved in time polynomial in n and the binary encoding of w, l, u, b.

This result holds more generally if the identity I in the definition of $A^{[n]}$ is replaced by another fixed matrix B. Moreover, recently, in [7], it was shown that the problem can be solved in time which is cubic in n and linear in the binary encoding of w, b, l, u.

The vector ingredients of an n-fold integer program are naturally arranged in bricks, where $w=\left(w^{1}, \ldots, w^{n}\right)$ with $w^{i} \in \mathbb{Z}^{d}$ for $i=1, \ldots, n$, and likewise for l, u, and where $b=\left(b^{0}, b^{1}, \ldots, b^{n}\right)$ with $b^{0} \in \mathbb{Z}^{d}$ and $b^{i} \in \mathbb{Z}^{s}$ for $i=1, \ldots, n$. Call an n-fold integer program huge if n is encoded in binary. More precisely, we are now given t types of bricks, where each type $k=1, \ldots, t$ has its cost $w^{k} \in \mathbb{Z}^{d}$, lower and upper bounds $l^{k}, u^{k} \in \mathbb{Z}^{d}$, and right-hand side $b^{k} \in \mathbb{Z}^{s}$. Also given are $b^{0} \in \mathbb{Z}^{d}$ and positive integers n_{1}, \ldots, n_{t}, n with $n_{1}+\cdots+n_{t}=n$, all encoded in binary. A feasible point $x=\left(x^{1}, \ldots, x^{n}\right)$ now must have first n_{1} bricks of type 1 , next n_{2} bricks of type 2 , and so on, with last n_{t} bricks of type t. Classical n-fold integer programming occurs as the special case of $t=n$ and $n_{1}=\cdots=n_{t}=1$, and symmetric n-fold integer programming occurs as the special case of $t=1$. We show the following.

Theorem 1.3 Let A be a fixed totally unimodular matrix and consider the huge n-fold program over A with a variable number t of types. Then the optimization problem can be solved in time polynomial in t and the binary encoding of $w^{k}, l^{k}, u^{k}, b^{k}, n_{k}$.

The rest of the article is organized as follows. In Section 2 we discuss the feasibility problem which is easier than the optimization problem and admits a more efficient algorithm. In Section 3 we discuss the optimization problem, using the results on feasibility. We conclude in Section 4 with further discussion of tables.

2 Feasibility

In this section we consider the feasibility problem for huge n-fold integer programs:

$$
\text { is }\left\{x \in \mathbb{Z}^{d n}: A^{[n]} x=b, l \leq x \leq u\right\} \text { nonempty ? }
$$

We begin with the case of symmetric programs, with one type, so that $t=1$, over an $s \times d$ totally unimodular matrix A. So the data here consists of the top right-hand side $a \in \mathbb{Z}^{d}$, and for all bricks the same lower and upper bounds l, $u \in \mathbb{Z}_{\infty}^{d}$ and same right-hand side $b \in \mathbb{Z}^{s}$. Then the set in question can be written as

$$
\begin{equation*}
\left\{x \in \mathbb{Z}^{d n}: \sum_{i=1}^{n} x^{i}=a, A x^{i}=b, l \leq x^{i} \leq u, i=1, \ldots, n\right\} \tag{2}
\end{equation*}
$$

We have the following lemma.
Lemma 2.1 Let A be totally unimodular. Then the set in (2) is nonempty if and only if $A a=n b$ and $n l \leq a \leq n u$, and this can be decided in time that is polynomial in the binary encoding of n, l, u, a, b, even when A is a variable part of the input.

Proof. Suppose first that the set in (2) contains a feasible point $x=\left(x^{1}, \ldots, x^{n}\right)$. Then $A a=A \sum_{i=1}^{n} x^{i}=\sum_{i=1}^{n} A x^{i}=n b$, and $n l \leq a=\sum_{i=1}^{n} x^{i} \leq n u$. For the converse we use induction on n. Suppose a satisfies the conditions. If $n=1$ then $x^{1}:=a$ is a feasible point in (2). Suppose now $n \geq 2$. Consider the system

$$
l \leq y \leq u, \quad A y=b, \quad(n-1) l \leq a-y \leq(n-1) u
$$

in the variable vector y. Then $y=\frac{1}{n} a$ is a real solution to this system, and therefore, since A is totally unimodular, there is also an integer solution x^{n} to this system. In particular, $A x^{n}=b$ and $l \leq x^{n} \leq u$. Let $\bar{a}:=a-x^{n}$. Then $A \bar{a}=A\left(a-x^{n}\right)=(n-1) b$ and $(n-1) l \leq \bar{a}=a-x^{n} \leq(n-1) u$. It therefore now follows by induction that there is an integer solution $\left(x^{1}, \ldots, x^{n-1}\right)$ to the $(n-1)$-fold program

$$
\left\{x \in \mathbb{Z}^{d(n-1)}: \sum_{i=1}^{n-1} x^{i}=\bar{a}, A x^{i}=b, l \leq x^{i} \leq u, i=1, \ldots, n-1\right\}
$$

Then $\sum_{i=1}^{n} x^{i}=\bar{a}+x^{n}=a$ and therefore $x:=\left(x^{1}, \ldots, x^{n-1}, x^{n}\right)$ is a feasible point in (2). The statement about the computational complexity is obvious.

We proceed with the general case of t types. So the data now consists of $b^{0} \in \mathbb{Z}^{d}$ and for $k=1, \ldots, t$, lower and upper bounds $l^{k}, u^{k} \in \mathbb{Z}_{\infty}^{d}$, right-hand side $b^{k} \in \mathbb{Z}^{s}$, and positive integer n_{k}, with $n_{1}+\cdots+n_{t}=n$. We denote by $I_{1} \uplus \cdots \uplus I_{t}=\{1, \ldots, n\}$ the natural partition with $\left|I_{k}\right|=n_{k}$. So the set in question can be now written as

$$
\begin{equation*}
\left\{x \in \mathbb{Z}^{d n}: \sum_{i=1}^{n} x^{i}=b^{0}, A x^{i}=b^{k}, l^{k} \leq x^{i} \leq u^{k}, k=1, \ldots, t, i \in I_{k}\right\} . \tag{3}
\end{equation*}
$$

We have the following theorem asserting that when A is totally unimodular the feasibility problem is decidable in polynomial time even if the number t of types is variable. The algorithm underlying the proof uses only classical n-fold integer programming and avoids the heavy results of [6] on integer cones used in [11].

Theorem 2.2 Let A be a fixed totally unimodular matrix and consider the huge n-fold program over A with variable number t of types. Then it is decidable in time polynomial in t and the binary encoding of $l^{k}, u^{k}, b^{k}, n_{k}$, if the set in (3) is nonempty.

Proof. Consider the following set of points of a classical t-fold integer program:

$$
\begin{equation*}
\left\{y \in \mathbb{Z}^{d t}: \sum_{k=1}^{t} y^{k}=b^{0}, A y^{k}=n_{k} b^{k}, n_{k} l^{k} \leq y^{k} \leq n_{k} u^{k}, k=1, \ldots, t\right\} \tag{4}
\end{equation*}
$$

We claim that (3) is nonempty if and only if (4) is nonempty, which can be decided within the claimed time complexity by Proposition 1.2 on classical n-fold theory.

So it remains to prove the claim. First, suppose x is in (3). Define y by setting $y^{k}:=\sum_{i \in I_{k}} x^{i}$ for $k=1, \ldots, t$. Then we have $\sum_{k=1}^{t} y^{k}=\sum_{i=1}^{n} x^{i}=b^{0}, A y^{k}=$ $A \sum_{i \in I_{k}} x^{i}=n_{k} b^{k}$, and $n_{k} l^{k} \leq y^{k}=\sum_{i \in I_{k}} x^{i} \leq n_{k} u^{k}$, so y is in (4). Conversely, suppose y is in (4). For $k=1, \ldots, t$ consider the symmetric n_{k}-fold program

$$
\left\{\left(x^{i}: i \in I_{k}\right) \in \mathbb{Z}^{d n_{k}}: \sum_{i \in I_{k}} x^{i}=y^{k}, A x^{i}=b^{k}, l^{k} \leq x^{i} \leq u^{k}, i \in I_{k}\right\}
$$

Since y is in (4) we have that $A y^{k}=n_{k} b^{k}$ and $n_{k} l^{k} \leq y^{k} \leq n_{k} u^{k}$. Therefore, by Lemma 2.1, this program is feasible and has a solution $\left(x^{i}: i \in I_{k}\right)$. Let $x=\left(x^{1}, \ldots, x^{n}\right)$ be obtained by combining the solutions of these t programs. Then we have $\sum_{i=1}^{n} x^{i}=\sum_{k=1}^{t} y^{k}=b^{0}$ and $A x^{i}=b^{k}$ and $l^{k} \leq x^{i} \leq u^{k}$ for $k=1, \ldots, t$ and $i \in I_{k}$, so x is in (3). This completes the proof of the claim and the theorem.

3 Optimization

In this section we consider the optimization problem for huge n-fold programs:

$$
\min \left\{\sum_{k=1}^{t} \sum_{i \in I_{k}} w^{k} x^{i}: x \in \mathbb{Z}^{d n}, \sum_{i=1}^{n} x^{i}=b^{0}, A x^{i}=b^{k}, l^{k} \leq x^{i} \leq u^{k}, k=1, \ldots, t, i \in I_{k}\right\} .
$$

The optimization problem is harder than the feasibility problem in that we need to actually produce an optimal solution if one exists. Since the problem is huge, meaning that n is encoded in binary, we cannot explicitly even write down a single point $x \in \mathbb{Z}^{d n}$ in polynomial time. But it turns out that we can present x compactly as follows. For $k=1, \ldots, t$ the set of all possible bricks of type k is the following

$$
S^{k}:=\left\{z \in \mathbb{Z}^{d}: A z=b^{k}, l^{k} \leq z \leq u^{k}\right\}
$$

We assume for simplicity that S^{k} is finite for all k, which is the case in most applications, such as in multiway table problems. Let $\lambda^{k}:=\left(\lambda_{z}^{k}: z \in S^{k}\right)$ be a nonnegative integer tuple with entries indexed by points of S^{k}. Each feasible point $x=\left(x^{1}, \ldots, x^{n}\right)$ gives rise to $\lambda^{1}, \ldots, \lambda^{t}$ satisfying $\sum\left\{\lambda_{z}^{k}: z \in S^{k}\right\}=n_{k}$, where
λ_{z}^{k} is the number of bricks of x of type k which are equal to z. Let the support of λ^{k} be $\operatorname{supp}\left(\lambda^{k}\right):=\left\{z \in S^{k}: \lambda_{z}^{k} \neq 0\right\}$. Then a compact presentation of x consists of the restrictions of λ^{k} to $\operatorname{supp}\left(\lambda^{k}\right)$ for all k. While the cardinality of S^{k} may be exponential in the binary encoding of the data b^{k}, l^{k}, u^{k}, it turns out that a compact presentation of polynomial size always exists. The following theorem was shown in [11] using the recent computationally heavy algorithm of [6] which builds on [5].

Proposition 3.1 For fixed d and t, the huge n-fold integer optimization problem with t types, over an $s \times d$ matrix A which is part of the input, can be solved in polynomial time. That is, in time polynomial in the binary encoding of $A, l^{k}, u^{k}, b^{k}, n_{k}$, it can either be asserted that the problem is infeasible, or a compact presentation $\lambda^{1}, \ldots, \lambda^{t}$ of an optimal solution with $\left|\operatorname{supp}\left(\lambda^{k}\right)\right| \leq 2^{d}$ for $k=1, \ldots, t$ be computed.

We now show that for a totally unimodular matrix, we can solve the huge problem even for variable t, extending both the above result and classical n-fold theory.
Theorem 1.3 Let A be a fixed totally unimodular matrix and consider the huge n-fold program over A with a variable number t of types. Then the optimization problem can be solved in time polynomial in t and the binary encoding of $w^{k}, l^{k}, u^{k}, b^{k}, n_{k}$.

Proof. Consider the following classical t-fold integer optimization problem:
$\min \left\{\sum_{k=1}^{t} w^{k} y^{k}: y \in \mathbb{Z}^{d t}, \sum_{k=1}^{t} y^{k}=b^{0}, A y^{k}=n_{k} b^{k}, n_{k} l^{k} \leq y^{k} \leq n_{k} u^{k}, k=1, \ldots, t\right\}$.
By Proposition 1.2 on classical n-fold theory we can either assert the problem is infeasible, or obtain an optimal solution y, within the claimed time complexity. As shown in the proof of Theorem[2.2, if this problem is infeasible, then so is the original program, and we are done. So assume we have obtained an optimal solution y.

For $k=1, \ldots, t$ consider the symmetric n_{k}-fold program
$\min \left\{\sum_{i \in I_{k}} w^{k} x^{i}:\left(x^{i}: i \in I_{k}\right) \in \mathbb{Z}^{d n_{k}}, \sum_{i \in I_{k}} x^{i}=y^{k}, A x^{i}=b^{k}, l^{k} \leq x^{i} \leq u^{k}, i \in I_{k}\right\}$.
As shown in the proof of Theorem 2.2, this program is feasible. Since this is a huge symmetric program, that is, with a single type, by Proposition 3.1 we can compute in polynomial time a compact presentation λ^{k} with $\left|\operatorname{supp}\left(\lambda^{k}\right)\right| \leq 2^{d}$ of an optimal solution $\left(x^{i}: i \in I_{k}\right) \in \mathbb{Z}^{d n_{k}}$. (In fact, any point in that program has the same objective function value $\sum_{i \in I_{k}} w^{k} x^{i}=w^{k} y^{k}$ and is optimal to that program.) Then $\lambda^{1}, \ldots, \lambda^{t}$ obtained from all these programs provide a compact presentation of a point $x=\left(x^{1}, \ldots, x^{n}\right)$ feasible in the original program. We claim this x is optimal. Suppose indirectly there is a better point \bar{x} and define \bar{y} by $\bar{y}^{k}=\sum_{i \in I_{k}} \bar{x}^{i}$ for all k.

Then we have

$$
\sum_{k=1}^{t} w^{k} \bar{y}^{k}=\sum_{k=1}^{t} \sum_{i \in I_{k}} w^{k} \bar{x}^{i}<\sum_{k=1}^{t} \sum_{i \in I_{k}} w^{k} x^{i}=\sum_{k=1}^{t} w^{k} y^{k}
$$

contradicting the optimality of y in the t-fold program. So indeed $\lambda^{1}, \ldots, \lambda^{t}$ provide a compact presentation of an optimal solution of the given huge n-fold program.

We make the following remark. The algorithm of Theorem 2.2 for the feasibility problem involves only one application of the classical n-fold integer programming algorithm of Proposition 1.2. In contrast, the algorithm of Theorem 1.3 is much heavier, and in addition to one application of classical n-fold integer programming, uses t times the algorithm of Proposition 3.1 for huge n-fold integer programming with one type, which in turn uses the heavy algorithm for integer cones of [6].

4 Tables

We now return to tables. Consider first 3-way $l \times m \times n$ tables. Index each table as $x=\left(x^{1}, \ldots, x^{n}\right)$ with $x^{i}=\left(x_{1,1}^{i}, \ldots, x_{l, m}^{i}\right)$. Then the table problem is the n-fold program with matrix $A_{l, m}^{[n]}$ with $A_{l, m}$ the vertex-edge incidence matrix of the bipartite graph $K_{l, m}$. Indeed, then $\sum_{i=1}^{n} x^{i}=g$ provides the vertical line-sum equations, and $A_{l, m} x^{i}=b^{k}$ with $b^{k}=\left(e^{k}, f^{k}\right)$ provides the column and row sum equations for $i \in I_{k}$. Since $A_{l, m}$ is totally unimodular, Theorem 1.3 implies our following claimed result.
Theorem 1.1 The huge 3-way table problem with a variable number t of types can be solved in time which is polynomial in t and in the binary encoding of $w^{k}, e^{k}, f^{k}, g, n_{k}$. In particular, deciding if there is a huge table with variable number of types is in P.

Let us continue with 4 -way $k \times l \times m \times n$ tables. Index each table as $x=\left(x^{1}, \ldots, x^{n}\right)$ with each x^{k} an $k \times l \times m$ layer. Then the table problem is the n-fold program with matrix $A^{[n]}$ where $A=A_{k, l}^{[m]}$. Now, unfortunately, for $k, l, m \geq 3$, the matrix A is not totally unimodular. Therefore, the results of the previous sections do not apply, and we remain with the results of [11], which are as follows.

Proposition 4.1 The huge 4-way table problem with fixed number t of types is solvable in time polynomial in the binary encoding of w^{k}, n_{k} and the line sums. Moreover, deciding if there is a huge table with t variable is in NP intersect coNP.

The contrast between Theorem 1.1 and Proposition 4.1 motivates the following.
Open problem. What is the complexity of deciding feasibility of huge 4 -way tables with a variable number of types ? In particular, is it in P for $3 \times 3 \times 3 \times n$ tables ?

Acknowledgments

The research of the first author was partially supported by a VPR Grant at the Technion and by the Fund for the Promotion of Research at the Technion. The research of the second author was partially supported by a Bourse d'Aide à la Mobilité Internationale from Université Paris Est.

References

[1] Aoki, S., Takemura, A.: Minimal basis for connected Markov chain over $3 \times 3 \times K$ contingency tables with fixed two-dimensional marginals. Australian and New Zealand Journal of Statistics 45:229-249 (2003)
[2] De Loera, J., Hemmecke, R., Onn, S., Weismantel, R.: N-fold integer programming. Discrete Optimization 5:231-241 (2008)
[3] De Loera, J., Onn, S.: The complexity of three-way statistical tables. SIAM Journal on Computing 33:819-836 (2004)
[4] De Loera, J., Onn, S.: All linear and integer programs are slim 3-way transportation programs. SIAM Journal on Optimization 17:806-821 (2006)
[5] Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Operations Research Letters 34:564-568 (2006)
[6] Goemans, M.X., Rothvoß, T.: Polynomiality for Bin Packing with a Constant Number of Item Types. Symposium on Discrete Algorithms 25:830-839 (2014)
[7] Hemmecke, R., Onn, S., Romanchuk, L.: N-fold integer programming in cubic time. Mathematical Programming 137:325-341 (2013)
[8] Hemmecke, R., Onn, S., Weismantel, R.: A polynomial oracle-time algorithm for convex integer minimization. Mathematical Programming 126:97-117 (2011)
[9] Hoşten, S., Sullivant, S.: Finiteness theorems for Markov bases of hierarchical models. Journal of Combinatorial Theory Series A 114:311-321 (2007)
[10] Onn, S.: Nonlinear Discrete Optimization. Zurich Lectures in Advanced Mathematics, European Mathematical Society (2010), available online at: http://ie.technion.ac.il/~onn/Book/NDO.pdf
[11] Onn, S.: Huge multiway table problems. Discrete Optimization 14:72-77 (2014)
[12] Santos, F., Sturmfels, B.: Higher Lawrence configurations. Journal of Combinatorial Theory Series A 103:151-164 (2003)

[^0]: *Technion - Israel Institute of Technology, Haifa, Israel. Email: onn@ie.technion.ac.il
 ${ }^{\dagger}$ Ecole des Ponts, Paris, and Technion, Haifa. Email: pauline.sarrabezolles@gmail.com

