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Abstract

Contact-drop dispensing is central to many small-scale applications,

such as direct-scanning probe lithography and micromachined fountain-

pen techniques. Accurate and controllable dispensing required for nanometer-

resolved surface patterning hinges on the stability and breakup of liquid

bridges. Here, we analytically study the stability of catenoids pinned at

one contact line with the other free to move on a substrate subject to ax-

isymmetric and non-axisymmetric perturbations. We apply a variational

formulation to derive the corresponding stability criteria. The maximal

stability region and stability region are represented in the favourable and

canonical phase diagrams, providing a complete description of catenoid

equilibrium and stability. All catenoids are stable with respect to non-

axisymmetric perturbations. For a fixed contact angle, there exists a

critical volume below which catenoids are unstable to axisymmetric per-

turbations. Equilibrium solution multiplicity is discussed in detail, and we

elucidate how geometrical symmetry is reflected in the maximal stability

and stability regions.

1 Introduction

The celebrated treatise of Plateau [1] was a key study in the nineteen cen-
tury, addressing liquid-bridge stability and breakup. Early investigations were
motivated by applications such as liquid-jet breakup [2, 3], crystal growth in
microgravity [4], oil recovery [5], and paper wet strength [6]. Recently, interests
have grown into areas such as elastocapillarity [7–10], contact-drop dispensing
[11] with applications to scanning-probe lithography [12] and micromachined
fountain-pen techniques [13]. Molecular-resolution surface patterning provides
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new opportunities for advanced tissue engineering [14], DNA self-assembled
nanoconstructs [15], and highly sensitive protein chips [16].

Static stability analysis of liquid bridges can be traced to the nineteenth
century [1, 17]. Howe’s variational formulation extended Plateau’s primitive
theory for cylindrical interfaces to unbounded axisymmetric capillary surfaces
subject to a constant-volume. His criteria (sufficient conditions for the weak
extrema of a functional) guarantee a surface to have the minimum energy among
all the neighbouring surfaces of revolution. Gillette and Dyson [18] applied
Howe’s method to predict the stability limit of bounded axisymmetric liquid
bridges with respect to axisymmetric perturbations. These criteria were later
generalized for arbitrary interfaces with arbitrary perturbations [19].

Catenoids are doubly-connected surfaces of revolution with zero mean cur-
vature. They are special cases of constant-mean-curvature axisymmetric sur-
faces, and are important to stability studies on weightless liquid bridges for
two reasons: (1) Stability criteria can be obtained analytically for catenoids,
which helps guide numerical algorithms for general liquid brides in the small
pressure (mean curvature) limit, and (2) the curve corresponding to catenoidal
interfaces in the volume-slenderness phase diagram defines a boundary between
regions of positive and negative capillary pressure [19]. This is important for
mechanical systems with dynamics that are driven by capillary pressure (e.g.,
elasto-capillary systems [20]). Previous studies have considered catenoids bridg-
ing two circular discs of the same radius [21], catenoids between two parallel
plates with both contact lines free to move [22–24], and catenoids between a
plat and sphere [25]. However, these results are not applicable to contact-drop
dispensing applications where the liquid forms a bridge with a free contact line
at one end.

Recent studies on contact-drop dispensing have shown that the deposited
drop size can be adjusted by the needle retraction speed, needle-tip size, sur-
face characteristics, and dispensing control parameters [11, 26]. However, these
studies do not distinguish the effect of static parameters from dynamic ones. A
static stability analysis of liquid bridges with a free contact line furnishes the
maximum-height stability limit, which reasonably approximates the pinch-off
height at small capillary numbers Ca ≪ 1 (quasi-static limit) [27, 28]. Critical
perturbations estimate the dispensed drop volume and show how the bridge dy-
namically evolves. Here, we only focus on the catenoid as an important special
case since equilibrium solution multiplicity and stability criteria can be deter-
mined analytically.

In this paper, we analytically study the static stability of catenoids pinned
at one contact line with the other free to move on a flat substrate with respect
to constant-volume perturbations. This furnishes a two-dimensional phase di-
agram in which the stability region is represented with respect to the catenoid
volume and slenderness. The effect of the catenoid geometrical symmetry on
the stability region boundaries is discussed. We also present a phase diagram
with respect to canonical variables, which facilitates the representation of sym-
metry in the stability region, maximal stability region, and multiple equilibrium
solutions subject to various constraints. Myshkis et al. [19] described how free
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Disc

Plate 

Figure 1: Catenoidal liquid bridge: schematic (left) and coordinate system with
meridian curve parametrization (right).

contact lines are generally treated in their variational method. However, the
stability criteria were not presented for liquid bridges with free contact lines.
Therefore, we first present an exposition of Myshkis’s variational formulation
[19], and then derive the stability criteria in section 2 for axisymmetric liquid
bridges with a free contact line. Equilibrium solution multiplicity is discussed
in section 3.1, and the maximal stability and stability regions are determined
for cylinders and catenoids in sections 3.2.1 and 3.2.2, respectively. The results
are summarized in sections 4.

2 Theory

We consider a liquid of volume v bridging a circular disk with radius R0 and a
large plate. The disc and plate are separated by a distance h, as shown in Fig. 1.
The region occupied by the liquid bridge is denoted Ωl, and that occupied by
the surrounding fluid (of a different phase) is denoted Ωg. The bridge is pinned
to the disc and free to slide horizontally on the plate. We restrict our analysis
to catenoidal liquid bridges, which implies that the regions g and l have the
same density and pressure, and the interface Γgl is a surface of revolution. The
formulation is presented as the limit of axisymmetric weightless liquid bridges
with mean curvature approaching zero. The origin of the coordinate system
is placed on the plane passing through the catenoid neck such that the z-axis
is the symmetry axis. The meridian curve is parametrized with respect to its
arclength s such that s = 0 at z = 0. An equilibrium surface is specified by

{

r = r(s)
z = z(s)

s ∈ [s0, s1], (1)

extremizing the potential energy

U = γslΓsl + γglΓgl + γsgΓsg, (2)

where γij is the surface tension between the phases i and j, and Γij is the
interfacial surface area. Following Myshkis et al. [19], this leads to the Young-
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Laplace equation
{

r′′ = −z′(q − z′/r)
z′′ = r′(q − z′/r)

(′≡ d/ds) (3)

for axisymmetric equilibrium surfaces and

γgl cos θc = γsg − γsl, and cos θc = n · np, (4)

where q = −2km and θc is the contact angle. Here, km is the mean curvature,
which is zero for catenoids. Equation (4) shows that the contact angle is a
thermodynamic property of the three-phase (g, l, and s) contact line, which is
a constant for a specific substrate (plate) and the fluids occupying Ωg and Ωl.
Note that the dihedral angle θd can vary independently with the bridge volume
to extremize the potential energy. Introducing the following lengths, which are
scaled with the neck radius,

r̂ = r/r0, ẑ = z/r0, ŝ = s/r0, (5)

the cylindrical volume V = v/(πR2
0h) and slenderness Λ = h/R0 are two di-

mensionless parameters with which to present the phase diagram.
Following the method of Myshkis et al. [19], the interface stability is de-

termined by the sign of the second variation. Using the Ritz method [29], the
second variation is associated with the eigenvalues of the corresponding Strum-
Liouville problem. Stability studies are generally concerned with determining
stability regions in the phase diagram. Stability-region boundaries, identified
by δ2U = 0, correspond to critical states, separating stable equilibrium surfaces
from unstable ones. Hence, we seek the conditions where λ0 or λ1 = 0, resulting
in







Lϕ0 + µ = 0
ϕ0(ŝ0) = 0, ϕ′

0(ŝ1) + χ̂ϕ0(ŝ1) = 0
∫ ŝ1
ŝ0

r̂ϕ0dŝ = 0
(6)

for axisymmetric perturbations and
{

(L − 1/r̂2)ϕ1 = 0
ϕ1(ŝ0) = 0, ϕ′

1(ŝ1) + χ̂ϕ1(ŝ1) = 0
(7)

for non-axisymmetric perturbations, where

χ =
k1ℓ cos θc − kpℓ

sin θc
at ℓ, (8)

L ≡ d2

dŝ2
+

r̂′

r̂

d

dŝ
+

[

(

q̂ − ẑ′

r̂

)2

+

(

ẑ′

r̂

)2
]

(9)

with q̂ = qr0, χ̂ = r0χ, and k1ℓ, kpℓ the first principal curvatures of the interface
and plate at the contact line ℓ. The solutions of Eqs. (6) and (7) can be written

ϕ0(ŝ) = C1w1(ŝ) + C2w2(ŝ) + µw3(ŝ), (10)
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ϕ1(ŝ) = C4w4(ŝ) + C5w5(ŝ) (11)

for axisymmetric and non-axisymmetric perturbations, respectively [19]. These
satisfy the following differential equations and their initial conditions

Lw1 = 0, w1(0) = 0, w′

1(0) = 1, (12)

Lw2 = 0, w2(0) = 1, w′

2(0) = 0, (13)

Lw3 + 1 = 0, w3(0) = −1/4, w′

3(0) = 0, (14)

(L − 1/r̂2)w4 = 0, w4(0) = 0, w′

4(0) = 1, (15)

(L − 1/r̂2)w5 = 0, w5(0) = 1, w′

5(0) = 0, (16)

where w1, w4 are odd and w2, w3, w5 are even functions. Note that the initial
conditions in Eq. (14) can be arbitrarily chosen because they do not affect
the conditions describing the critical states of equilibrium surfaces (Eqs. (17)
and (20)). The homogeneous solution of Eq. (14) is obtained from a linear
combination of w1 and w2. From Eq. (10), the homogeneous part of w3 makes
no independent contribution to the general solution of ϕ0. Therefore, the initial
conditions for w3 are chosen such that the general solution for w3 comprises
only the particular part.

The critical state of an equilibrium surface is identified by the existence of
a non-trivial solution for ϕ0 or ϕ1. These existence conditions can be obtained
from Eqs. (10) and (11) as

χ̂0 = −

∣

∣

∣

∣

∣

∣

w1(ŝ0) w2(ŝ0) w3(ŝ0)
w′

1(ŝ1) w′

2(ŝ1) w′

3(ŝ1)
∫ ŝ1
ŝ0

r̂w1dŝ
∫ ŝ1
ŝ0

r̂w2dŝ
∫ ŝ1
ŝ0

r̂w3dŝ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

w1(ŝ0) w2(ŝ0) w3(ŝ0)
w1(ŝ1) w2(ŝ1) w3(ŝ1)
∫ ŝ1
ŝ0

r̂w1dŝ
∫ ŝ1
ŝ0

r̂w2dŝ
∫ ŝ1
ŝ0

r̂w3dŝ

∣

∣

∣

∣

∣

∣

, (17)

χ̂1 = −

∣

∣

∣

∣

w4(ŝ0) w5(ŝ0)
w′

4(ŝ1) w′

5(ŝ1)

∣

∣

∣

∣

∣

∣

∣

∣

w4(ŝ0) w5(ŝ0)
w4(ŝ1) w5(ŝ1)

∣

∣

∣

∣

. (18)

Here, χ̂0 and χ̂1 are the critical χ̂ corresponding to axisymmetric and non-
axisymmetric perturbations, respectively. Note that χ̂ =max{χ̂0, χ̂1} identifies
a critical state. For a fixed Γgl, the minimum eigenvalue of the Sturm-Liouville
problem is monotonically increasing with χ. Hence, λi > 0 for χ > χi (i = 0, 1).
It follows that an equilibrium surface is unstable with respect to axisymmetric
(non-axisymmetric) perturbations if χ̂1 < χ̂0 (χ̂1 > χ̂0) when χ̂ <max{χ̂0, χ̂1}.
Moreover, fixed contact lines can be represented as the limiting case of free
contact lines when χ → ∞. Therefore, for a fixed Γgl, λ → −∞ as χ → −∞
and λ → ν as χ → ∞; here, λ is the smallest eigenvalue of the Sturm-Liouville

5



problem, and ν is the smallest eigenvalue of a similar problem with ϕi = 0 at ℓ.
Hence,

λ ≤ ν, (19)

implying that the stability region of capillary surfaces with free contact lines is a
subset of the corresponding stability region for the same capillary surfaces with
fixed contact lines1. The latter is termed the maximal stability region (MSR),
a concept introduced by Slobozhanin and Tyuptsov [30]. The critical states are
determined by

D0 =

∣

∣

∣

∣

∣

∣

w1(ŝ0) w2(ŝ0) w3(ŝ0)
w1(ŝ1) w2(ŝ1) w3(ŝ1)
∫ ŝ1
ŝ0

r̂w1dŝ
∫ ŝ1
ŝ0

r̂w2dŝ
∫ ŝ1
ŝ0

r̂w3dŝ

∣

∣

∣

∣

∣

∣

, (20)

D1 =

∣

∣

∣

∣

w4(ŝ0) w5(ŝ0)
w4(ŝ1) w5(ŝ1)

∣

∣

∣

∣

. (21)

For a fixed ŝ0, the first ŝ1 along the meridian curve at which D0 = 0 (D1 = 0)
corresponds to a critical state of the MSR with respect to axisymmetric (non-
axisymmetric) perturbations. Note that the MSR coincides with the stability
region for capillary surfaces with only pinned contact lines. Moreover, deter-
mining the MSR for capillary surfaces with free contact lines prior to testing
the stability criteria given by Eqs. (17) and (18) is necessary, since χ̂ = χ̂0 and
χ̂ = χ̂1 generally have more than one solution. Therefore, χ̂ >max{χ̂0, χ̂1} indi-
cates stability only for surfaces belonging to the MSR. All equilibrium surfaces
outside the MSR are unstable. A summary of Myshkis’s method is given by
Bostwick and Steen [31].

3 Results and discussion

3.1 Equilibrium solution

Solving Eq. (3) for q = 0 furnishes the equilibrium meridian curve

{

r̂(ŝ) =
√
ŝ2 + 1

ẑ(ŝ) = − ln(ŝ+
√
ŝ2 + 1)

(22)

with

Λ =
1

√

ŝ20 + 1
ln

(

ŝ1 +
√

ŝ21 + 1

ŝ0 +
√

ŝ20 + 1

)

, (23)

V =
ŝ1
√

ŝ21 + 1− ŝ0
√

ŝ20 + 1 + Λ
√

ŝ20 + 1

2Λ(ŝ20 + 1)3/2
, (24)

1What ‘the same’ means here depends on how a capillary surface is specified. For example,

as will be discussed in section 3.1, a catenoid, such as the one shown in Fig. 1, is uniquely

specified by ŝ0 and ŝ1. Hence, catenoids with free contact lines are being compared to those

with the same ŝ0 and ŝ1, but fixed at ŝ1.
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θd = tan−1(1/ŝ0), (25)

θc = tan−1(−1/ŝ1). (26)

Equations (23)-(26) furnish four constraints on Λ, V , θc, θd, ŝ0, and ŝ1, leaving
two degrees of freedom. Fixing two variables, the other four and the catenoid
geometry, as shown in Fig. 1, are completely specified. Therefore, among these
six, one can select two variables to represent stability and equilibrium data
as two-dimensional phase diagrams. Furthermore, Eqs. (25) and (26) provide
a one-to-one correspondence between (ŝ0, ŝ1) and (θc, θd). Thus, they can be
interchanged without affecting phase diagram characteristics, albeit (θc, θd) are
preferred to (ŝ0, ŝ1) as they vary in a finite range. In this paper, the catenoid
equilibrium solution and stability region are presented with respect to Λ, V , θc,
and θd subject to various constraints.

The cylindrical volume and slenderness are the two favourable quantities
with which stability regions have been represented in the literature [19, 32–36]
because they can be readily measured experimentally. We refer to (Λ, V ) as
‘favourable parameters’ and the respective phase diagram as the ‘favourable
phase diagram’. Moreover, Eqs. (23)-(26) are single-valued functions of ŝ0 and
ŝ1. Consequently, the left-hand-side parameters characterizing a catenoid de-
scribed in Fig. 1 are uniquely specified with respect to ŝ0 and ŝ1. Thus, (ŝ0, ŝ1)
are more convenient for representing the MSR and stability region. We refer to
(ŝ0, ŝ1) or (θc, θd), as ‘canonical parameters’ and the respective phase diagram
as the ‘canonical phase diagram’.

Identifying the existence-region boundary is necessary to properly represent
equilibrium solutions with respect to the favourable and canonical parameters.
This is straightforward for the canonical parameters because θd ∈ (π− θc, π] for
θc ∈ [0, π]. However, determining the existence-region boundary with respect
to the favourable parameters is non-trivial. One may naturally suppose that
V (ŝ0, ŝ1,Λ) has a minimum for a given Λ. Therefore, the cylindrical volume
given by Eq. (24) is to be minimized subject to a constant slenderness Λ, leading
to

(

∂V

∂ŝ0

)

ŝ1,Λ

+ ϑ

(

∂Λ

∂ŝ0

)

= 0, (27)

(

∂V

∂ŝ1

)

ŝ0,Λ

+ ϑ

(

∂Λ

∂ŝ1

)

= 0, (28)

Λ(ŝ0, ŝ1) = const., (29)

where ϑ is a Lagrange multiplier. Moreover, Eqs. (27)-(29) define the existence-
region boundary in the Λ-V space, also furnishing a lower bound on V .

Figure 2 shows equilibrium isocontours and existence region with respect to
the favourable parameters. The Om curve (dashed line) is the existence-region
boundary that corresponds to (Λ, V ) satisfying Eqs. (27)-(29). No catenoid can
be found with volume and slenderness below this curve.
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Figure 2: Equilibrium solution and existence region (above dashed line) with
respect to the favourable parameters; (a) constant-dihedral angle isocontours
(labels denote θd in degrees), (b) constant-contact angle isocontours (labels
denote θc in degrees), and (c) constant-dihedral and contact angle isocontours.

Iso-θd curves are plotted in Fig. 2(a), facilitating the representation of so-
lution multiplicity with respect to Λ, V , and θd. Isocontours can be viewed
as the level curves of a multivalued function θd = θd(Λ, V ). For example, the
level curves with θd = 110◦ and θd = 170◦ intersect at A, implying that two
equilibrium solutions exist for the corresponding (Λ, V ). The isocontour with
θd = π/2 is a special case that asymptotes to Om. It can be proved that

lim
Λ→∞

V (ŝ0, ŝ1)|(ŝ0,ŝ1)∈Zu = lim
Λ→∞

V (ŝ0, ŝ1)|(ŝ0,ŝ1)∈Om = lim
Λ→∞

sinh2 Λ

2Λ
= ∞,

(30)
where Zu is the isocontour with θd = π/2. Figure 2(b) can be similarly inter-
preted. Here, isocontours can be viewed as the level curves of a multivalued
function θc = θc(Λ, V ). Isocontours with θc = 150◦ and θc = 170◦ intersect at
B, implying that two equilibrium solutions exist for the corresponding (Λ, V ).
For a given θc, there is a slenderness above which there are no catenoids. Two
equilibrium solutions exist for smaller slendernesses. Iso-θd and iso-θc curves
are plotted together in Fig. 2(c). This figure demonstrates that isocontour in-
tersections do not always correspond to equilibrium solutions. For example, the
isocontours with θd = 170◦ and θc = 130◦ intersect at A, C, and D correspond-
ing to three different (Λ, V ). However, D is the only intersection representing
an equilibrium at θd = 170◦ and θc = 130◦. Note that these isocontours are
projections of the corresponding level curves onto the (Λ, V ) plane. Here, A and
C lie at the intersections of the projections and do not represent equilibrium
solutions. Hence, the space (Λ, V ) is unsuitable for representing the stability
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of catenoids because it cannot be partitioned into mutually exclusive regions of
stability and instability.

Figure 3 shows equilibrium isocontours and the existence region with respect
to the canonical parameters. As previously discussed, equilibrium solutions for
catenoids cannot be conveniently represented with respect to the favourable pa-
rameters because isocontour intersections are not always associated with equi-
librium solutions. Moreover, two solutions may correspond to the same point
(Λ, V ) in the existence region. In contrast, the canonical parameters furnish a
one-to-one correspondence between points in the existence region and equilib-
rium solutions. Here, the existence region is the upper triangle indicated by
Z ′Z ′′U . Note that the existence-region boundary Z ′Z ′′ does not correspond to
Om in Fig. 2. Iso-Λ and iso-V curves are plotted in Figs. 3(a) and (b). Iso-
contours are the level curves of the single-valued functions Λ = Λ(θc, θd) and
V = V (θc, θd) given by Eqs. (23) and (24). Iso-Λ and iso-V curves are overlaid
in Fig. 3(c). Here, unlike the favourable parameters, every isocontour intersec-
tion uniquely represents an equilibrium solution. Interesting to note are the
two equilibrium solutions corresponding to the point A in Fig. 2, which are de-
noted by A and A′, and are distinctly represented with respect to the canonical
parameters.

3.2 Stability

Several factors affect the equilibrium state and stability of capillary surfaces,
including fluid inertia, external fields (e.g., gravitational and centrifugal forces),
and boundary conditions at contact lines. The latter differentiates contact-
drop dispensing applications from classical liquid bridge problems where the
equilibrium surface is pinned to two coaxial discs. The contact-line condition
can be easily accounted for in the equilibrium solution by integration constants
of the integral curve obtained from Eq. (3). The influence on stability, however,
is not straightforward. It affects the eigenvalues of the Sturm-Liouville problem
through the boundary condition at ℓ. This plays a far more significant role
in the stability of capillary surfaces. For example, the notion of wavenumber
introduced for classifying equilibrium solution branches and characterizing the
bifurcation of liquid bridges [35, 37] is directly related to the conditions at the
contact lines. Before proceeding to catenoids, we elucidate the contact-line
condition effect on the stability limit of cylindrical liquid bridges.

3.2.1 Cylinder

Johns and Narayanan [38] determined the static stability limit of cylindrical liq-
uid bridges with a pinned and a free contact line using perturbation techniques.
Here, we derive the stability criteria using Myshkis’s variational method. Con-
sider the cylindrical liquid bridge between two plates shown in Fig. 4. Plateau [1]
theoretically obtained the stability region Λ < 2π for cylindrical liquid bridges
pinned at two equal coaxial discs (Fig. 4 (left)). In this section, the correspond-
ing stability limit is obtained for cylindrical liquid bridges that are pinned to a

9
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Figure 3: Equilibrium solution and existence region (above dash-dotted line)
with respect to the canonical parameters; (a) constant-slenderness isocontours
(label denote Λ), (b) constant-cylindrical volume isocontours (labels denote V ),
and (c) constant-slenderness and cylindrical volume isocontours.
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Figure 4: Cylindrical liquid bridge: equilibrium surface is pinned to both discs
(left); equilibrium surface is pinned at the upper disc and free to move on the
lower plate (right).

disc and free to move on a plate (Fig. 4 (right)). All the lengths are scaled with
q as

ρ = |q|r, ξ = qz, τ = |q|s (31)

with

L ≡ L

q̂2
=

d2

dτ2
+

ρ′

ρ

d

dτ
+

[

(

1− ξ′

ρ

)2

+

(

ξ′

ρ

)2
]

(32)

used in Eqs. (12)-(16) instead of L . The solutions of Eqs. (12)-(16) are

w1(τ) = sin τ, w2(τ) = cos τ, w3(τ) = −1 (33)

for axisymmetric and
w4(τ) = τ, w5(τ) = 1 (34)

for non-axisymmetric perturbations. These furnish

D0(∆τ) = −∆τ sin∆τ + 2(1− cos∆τ), (35)

D1(∆τ) = ∆τ, (36)

χ̃0(∆τ) =
∆τ cos∆τ − sin∆τ

−∆τ sin∆τ + 2(1− cos∆τ)
, (37)

χ̃1(∆τ) = − 1

∆τ
, (38)

where ∆τ = τ1 − τ0 and χ̃ = χ/|q|. The MSR boundary is determined
by D0(∆τ) = 0 and D1(∆τ) = 0 with respect to axisymmetric and non-
axisymmetric perturbations, respectively. The first root of Eq. (35) occurs
where ∆τ0MSR = 2π, whereas Eq. (36) has no non-trivial root. This implies
that all cylindrical bridges with ∆τ > 2π are unstable to axisymmetric pertur-
bations, irrespective of the contact-line condition at s1. Note that the MSR of
Fig. 4 (right) is equivalent to the stability region of Fig. 4 (left), and, therefore,
the foregoing condition coincides with Plateau’s stability criterion. The first
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non-trivial root of χ̃0 = χ̃ and χ̃1 = χ̃ inside the respective MSR identifies the
stability region with respect to axisymmetric and non-axisymmetric perturba-
tions, respectively. The former gives ∆τ0cr ≃ 4.4934, whereas the latter has no
non-trivial root. For cylindrical liquid bridges, Λ and ∆τ are equal; thus, the
MSR and stability region can be summarized as Λ < 2π and Λ < 4.4934 where
axisymmetric perturbations are the most dangerous. Note that the stability
region of cylindrical liquid bridges with two free contact lines is Λ < π [39],
which clearly indicates the destabilizing effect of free contact lines.

3.2.2 Catenoid

Here, we apply the same procedure as for cylindrical liquid bridges. Solving
Eqs. (12)-(16) using the integral curve of Eq. (22) gives

w1(ŝ) =
ŝ√

ŝ2 + 1
, (39)

w2(ŝ) = 1− ŝ√
ŝ2 + 1

ln(ŝ+
√

ŝ2 + 1), (40)

w3(ŝ) = − ŝ2 + 1

4
, (41)

w4(ŝ) =
ŝ

2
+

ŝ

2
√
ŝ2 + 1

ln(ŝ+
√

ŝ2 + 1), (42)

w5(ŝ) =
1√

ŝ2 + 1
. (43)

Substituting Eqs. (39)-(43) into Eqs. (17), (18), (20), and (21) furnishes D0,
D1, χ̂0, and χ̂1 as functions of ŝ0 and ŝ1. These, unlike for cylinders, cannot
generally be represented as functions of only ∆ŝ, implying that the stability
of catenoids demands two independent parameters to be completely specified.
This is consistent with the equilibrium solution discussed in section 3.1.

Erle et al. [21] showed that catenoids pinned to two equal coaxial discs are
unstable to axisymmetric perturbations when ∆ŝ/2 > 4.6395. We will deter-
mine the stability region for catenoids with a free contact line as shown in Fig. 1
and demonstrate that they lose stability to axisymmetric perturbations. This
can be accomplished by showing that D1 = 0 and χ̂1 = χ̂ have no non-trivial
root (proved in Appendix A). Accordingly, the MSR and stability region with
respect to non-axisymmetric perturbations coincide with the existence region.
Moreover, one can prove that D0 = 0 has a non-trivial root only when θc > π/2
(Appendix A). This is clearly illustrated in Fig. 5. Here, D0(θc, θd) is plotted
in Fig. 5 (left) for θc ≤ π/2 and θd ∈ (π − θc, π]. For a given θc, D

0 → 0−

as θd → π − θc and D0 → −∞ as θd → π. Thus, no ŝ0 can be found along
the integral curve where D0 vanishes, and the MSR spans the entire existence
region. In contrast, for a given θc > π/2, there exists a θd (or ŝ0) at which D0

vanishes, as indicated in Fig. 5 (right). Here, D0 → 0− as θd → π − θc and
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Figure 5: The effect of contact angle θc on D0; left panel: θc = 10, 20, 30, 50, 70◦
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Figure 6: Canonical phase diagram; (a) axisymmetric perturbations: constant-
χ̂0 isocontours (thin-solid lines, labels denote χ̂0), vanishingly small catenoids as
χ̂0 → −∞ (thick-dash-dotted line), the MSR boundary as χ̂0 → ∞ (thick-solid
line), and the stability region boundary (dashed line); (b) non-axisymmetric
perturbations: constant-χ̂1 isocontours (thin-solid lines, labels denote χ̂1), and
vanishingly small catenoids as χ̂1 → −∞ (thick-dash-dotted line).
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D0 → ∞ as θd → π. Note that θc ≃ 168.75◦ is a special case because D0 and
∂D0/∂θd vanish simultaneously at θd ≃ 162.07◦.

Figure 6(a) shows the canonical phase diagram representing the MSR and
stability region for axisymmetric perturbations. The regions confined by Z ′Z ′′mT ′TU ′Z ′

and Z ′Z ′′mTZ ′ represent the MSR and stability region, respectively. The MSR
boundary mT ′TU ′ and stability-region boundary mTZ ′ are determined, re-
spectively, by D0(ŝ0, ŝ1) = 0 and χ̂0(ŝ0, ŝ1) = χ̂(ŝ1). The meridian curve for
catenoids corresponding to points on the MSR boundary satisfies ν = 0, and
that corresponding to points on the stability region boundary satisfies λ = 0.
All the catenoids corresponding to points outside the MSR mUU ′TT ′m are,
regardless of the contact-line condition at ŝ1, unstable to axisymmetric per-
turbations. D0 and ∂D0/∂θc vanish simultaneously at T where (θc, θd) ≃
(162.07◦, 168.75◦). Similarly, D0 and ∂D0/∂θd vanish simultaneously at T ′

where (θc, θd) ≃ (168.75◦, 162.07◦). Note that the MSR here is equivalent to
the stability region of catenoids pinned to two unequal coaxial discs. Hence,
Fig. 6(a) also allows a comparison between two stability problems: (1) Catenoids
pinned to a disc and free to move on a plate (Fig. 1), and (2) catenoids pinned
to two unequal coaxial discs with exactly the same ŝ0 and ŝ1. The region
confined by mT ′TU ′Z ′Tm represents the catenoids that are unstable to ax-
isymmetric perturbations in the first problem, but stable in the second. Iso-χ̂0

curves are thin solid black lines approaching Z ′Z ′′ (mT ′TU ′) as χ̂0 → −∞
(χ̂0 → ∞). Therefore, catenoids corresponding to points in the close vicin-
ity of Z ′Z ′′ (mT ′TU ′) are highly stable (unstable) since χ̂0 ≪ χ̂ (χ̂0 ≫ χ̂).
Figure 6(b) shows the canonical phase diagram representing the MSR and sta-
bility region for non-axisymmetric perturbations. Here, D1(ŝ0, ŝ1) = 0 and
χ̂1(ŝ0, ŝ1) = χ̂(ŝ1) have no non-trivial solution. Thus, the MSR and stability
region coincide with the existence region, implying that catenoids are always
stable with respect to non-axisymmetric perturbations. Iso-χ̂1 curves are plot-
ted as thin solid black lines approaching Z ′Z ′′ as χ̂1 → −∞. Note that χ̂1

does not approach infinity for isocontours near the existence-region boundary
Z ′UZ ′′.

Figure 6 also illustrates how the catenoid geometrical symmetry is reflected
in its phase diagram. Catenoids that are pinned to two equal coaxial discs
[21] have equatorial symmetry, resulting in a one-dimensional phase digram in
∆ŝ. Even though catenoids bridging two unequal coaxial discs generally have
no equatorial symmetry, and they require a two-dimensional phase diagram,
a symmetric stability region can be constructed by choosing a proper set of
parameters. For instance, one may choose the ratio of the lower and upper
disc diameters K to represent the phase diagram (the second parameter can
arbitrarily be selected). These catenoids are reflectively symmetric with respect
to K. Clearly, inverting this ratio has no effect on the stability limit. Hence, the
stability-region boundary must be invariant with respect to the transformation
K = 1/K̄. Alternatively, one can choose the dihedral angle that the catenoid
forms with the upper disc θd and the lower one θc. The foregoing transformation
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can equivalently be written
{

θc = θ̄d
θd = θ̄c

, (44)

which is why the MSR boundary in Fig. 6 (left) is symmetric with respect to
the phase diagram minor diagonal described by θd = θc. This is formally proved
in Appendix B. Note that the stability-region boundary has no such symmetry
since the contact line condition at ℓ (see Fig. 1) completely breaks the equatorial
and reflective symmetries.

Figure 7(a) shows the existence-region boundary UTm in the favourable
phase diagram (Om in Fig. 2) and stability-region boundary Z ′Tm. The curve
UTm is the locus of points at which an iso-θd curve is tangent to an iso-θc curve.
The curve corresponding to the existence-region boundary with respect to the
favourable parameters UTm intersects the stability region boundary at T where
(θc, θd) ≃ (162.07◦, 168.75◦). This is the point at which the slope of the MSR
boundary is zero, as discussed for Fig. 6(a). Figure 7(a) clearly demonstrates
that all the points on the segments UT and Tm correspond to unstable and
stable catenoids, respectively. Figure 7(b) shows isocontours in the canonical
phase diagrams. Selecting two variables among Λ, V , θc, and θd, this figure
describes the equilibrium solution and stability of the corresponding catenoids.
Consider the point (Λ, V ) ≃ (1.0518, 1.0264) in the favourable diagram, for ex-
ample. It lies at the intersection of θc = 130◦ and θd = 110◦. This can be
located in the canonical phase diagram, as shown in Fig. 7(b). The correspond-
ing point A is inside the stability region, indicating that the respective catenoid
is stable. Furthermore, the second equilibrium solution can be determined by
identifying the other intersection point of the same iso-Λ and iso-V . This oc-
curs at A′, where (θc, θd) ≃ (177.08◦, 170.1◦). The second solution lies outside
the stability region, which corresponds to an unstable catenoid. Consider the
point (Λ, V ) ≃ (0.5555, 0.1742) in the favourable diagram. The two equilibrium
solutions are represented in Fig. 7(b) by D at (θc, θd) = (130◦, 170◦) and D′ at
(θc, θd) ≃ (175.32◦, 174.96◦). Both equilibrium solutions lie outside the stability
region and correspond to unstable catenoids.

Volume-controlled catenoids (constrained) are exposed to a smaller set of
disturbances than pressure-controlled catenoids (unconstrained). Therefore, the
former is more constrained and stable. Using Maddocks’ theorems [40], Akbari
et al. [41] showed that catenoids lose stability with respect to constant-pressure
perturbations at turning points in Λ along iso-θc curves (see Fig. 2(b)). Accord-
ingly, the upper and lower segments of these isocontours respectively correspond
to stable and unstable catenoids. Figure 7(b) compares constant-volume and
constant-pressure stability regions. Here, the region confined between the long-
dashed and dashed-dotted lines is the constant-pressure stability region and
that between the thick-short-dashed and dashed-dotted lines is the constant-
volume stability region. As expected, the constant-pressure stability region is
completely contained inside the constant-volume stability region, indicating that
constrained catenoids are more stable than unconstrained catenoids.
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4 Concluding remarks

We have examined the equilibrium and stability of catenoids bridging a circular
disc and plate where the equilibrium surface is pinned at one contact line to the
disc edge with the other free to move on the plate. Drawing on the second vari-
ation of potential energy, the existence, maximal stability, and stability regions
were analytically determined. The equilibrium solution multiplicity subject to
various constraints was discussed in detail. The results showed that all catenoids
are stable with respect to non-axisymmetric perturbations; for a fixed contact
angle, there exists a critical volume below which catenoids are unstable to ax-
isymmetric perturbations. The canonical phase diagram furnishes a one-to-one
correspondence between points in the existence region and equilibrium solutions
where the stability-region boundary separates the points corresponding to stable
catenoids from those corresponding to unstable ones. No such correspondence
can be established in the favourable phase diagram. Furthermore, the canonical
phase diagram conveniently demonstrates how the catenoid geometrical sym-
metry affects the stability regions. For example, the maximal stability region
symmetry with respect to the phase diagram minor diagonal indicates the re-
flective symmetry (with respect to the ratio of lower and upper disc diameters)
of catenoids with two pinned contact lines. Moreover, the asymmetric shape
of the stability region shows how a catenoid free contact line with a substrate
breaks the equatorial and reflective symmetries. The stability limit presented
here is a limiting case for the minimum volume stability limit of liquid bridges
when the mean curvature approaches zero [41]. The static stability limits are
useful for predicting the transition of the time scale from the quasi-static to the
intermediate phases of contact-drop dispensing.
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Appendix A Stability with respect to non-axisymmetric

perturbations

We shall prove that all catenoids are stable with respect to non-axisymmetric
perturbations. First, we show that D1(ŝ0, ŝ1) = 0 has no non-trivial root.
Substituting Eqs. (39)-(43) into Eq. (21) yields

ŝ1

√

ŝ21 + 1 + ln(ŝ1 +
√

ŝ21 + 1) = ŝ0

√

ŝ20 + 1 + ln(ŝ0 +
√

ŝ20 + 1), (A.1)

where we seek an ŝ0 ∈ (−∞, ŝ1) for a fixed ŝ1. Equation (A.1) is obviously
satisfied for the trivial solution ŝ0 = ŝ1. Denoting the left-hand side by f(ŝ1),
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Eq. (A.1) can be rewritten as

g(ŝ0) = ŝ0

√

ŝ20 + 1 + ln(ŝ0 +
√

ŝ20 + 1)− f(ŝ1) = 0 (A.2)

with
dg

dŝ0
=
√

ŝ20 + 1 +
ŝ20

√

ŝ20 + 1
+

1
√

ŝ20 + 1
. (A.3)

All the terms on the right-hand side of Eq. (A.3) are positive, indicating that
dg/dŝ0 > 0 on (−∞, ŝ1). The continuity of g(ŝ0) implies that g is a mono-
tonically increasing function such that g → −∞ as ŝ0 → −∞ and g → 0− as
ŝ0 → ŝ1. Therefore, ŝ0 = ŝ1 is the only solution of Eq. (A.2).

Next, we prove that χ̂1(ŝ0, ŝ1) − χ̂(ŝ1) = 0 has no non-trivial root. Substi-
tuting Eqs. (39)-(43) into Eq. (18) results in

ŝ1
ŝ21 + 1

[

√
ŝ2
1
+1(ŝ21+2)

ŝ1
− sinh−1 ŝ1 + ŝ0

√

ŝ20 + 1 + sinh−1 ŝ0

ŝ1
√

ŝ21 + 1 + sinh−1 ŝ1 − ŝ0
√

ŝ20 + 1− sinh−1 ŝ0
+ 1

]

= 0. (A.4)

Note that the denominator of the fraction in the square bracket is non-zero for
ŝ0 ∈ (−∞, ŝ1). Two casesmust be considered separately: (1) ŝ1 6= 0 and (2)
ŝ1 → 0. The first leads to

√

ŝ21 + 1 + (ŝ21 + 1)3/2 + ŝ21

√

ŝ21 + 1 = 0. (A.5)

A pair (ŝ0, ŝ1) that satisfies Eq. (A.4) must also satisfy Eq. (A.5). Equa-
tion (A.5) clearly shows that Eq. (A.4) has no non-trivial root since it is inde-
pendent of ŝ0. In addition, no ŝ1 can be found that satisfies Eq. (A.5) because
the left-hand side is always greater than zero. From the second case,

2

ŝ0
√

ŝ20 + 1− sinh−1 ŝ0
= 0, (A.6)

which holds only when ŝ0 → −∞. This indicates that, for any given contact
angle, only infinitely large catenoids may lose stability to non-axisymmetric
perturbations, and the stability-region boundary coincides with the existence-
region boundary in the canonical phase diagram.

One can apply the same procedure as the two previous cases to prove that
D0(ŝ0, ŝ1) = 0 has no non-trivial root for θc ≤ π/2. However, the expressions
are cumbersome and the analysis is tedious. We only demonstrate the limiting
behaviour discussed in section 3.2.2. The Taylor-series expansion of D0 is used
for the small-interface limit:

D0 = − ǫ4

12
+O(ǫ5), ǫ ≪ 1, (A.7)

where ǫ = ŝ1 − ŝ0. It follows that

lim
ǫ→0+

D0 = 0−. (A.8)
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In the other limit, where catenoids are infinitely large, one can show that

lim
ŝ0→−∞

D0 = sign(ŝ1)×∞, (A.9)

implying that there is at least one ŝ0 ∈ (−∞, ŝ1) at which D0(ŝ0, ŝ1) = 0 for
θc > π/2. These limits are clearly illustrated in Fig. 5.

Appendix B Symmetry of D-functions

We prove that D0 and D1 are symmetric with respect to the canonical phase
diagram minor diagonal. Consider the following transformation

{

ŝ0 = −¯̂s1
ŝ1 = −¯̂s0

, (B.1)

which is equivalent to Eq. (44). Given that w1, w4 are odd and r, w2, w3, w5

are even functions, we have

D0(¯̂s0, ¯̂s1) =

∣

∣

∣

∣

∣

∣

−w1(ŝ1) w2(ŝ1) w3(ŝ1)
−w1(ŝ0) w2(ŝ0) w3(ŝ0)

−
∫ ŝ1
ŝ0

r̂w1dŝ
∫ ŝ1
ŝ0

r̂w2dŝ
∫ ŝ1
ŝ0

r̂w3dŝ

∣

∣

∣

∣

∣

∣

, (B.2)

D1(¯̂s0, ¯̂s1) =

∣

∣

∣

∣

−w4(ŝ1) w5(ŝ1)
−w4(ŝ0) w5(ŝ0)

∣

∣

∣

∣

. (B.3)

Taking the determinant row exchange rules into consideration, it follows that

D0(¯̂s0, ¯̂s1) = D0(ŝ0, ŝ1), (B.4)

D1(¯̂s0, ¯̂s1) = D1(ŝ0, ŝ1). (B.5)

This completes the proof.
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