
ar
X

iv
:1

50
1.

05
36

1v
2 

 [
m

at
h.

A
P]

  2
 J

ul
 2

01
5

Reconstruction of a fully anisotropic elasticity tensor from

knowledge of displacement fields
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Abstract

We present explicit reconstruction algorithms for fully anisotropic unknown elasticity
tensors from knowledge of a finite number of internal displacement fields, with applications
to transient elastography. Under certain rank-maximality assumptions satified by the strain
fields, explicit algebraic reconstruction formulas are provided. A discussion ensues on how to
fulfill these assumptions, describing the range of validity of the approach. We also show how
the general method can be applied to more specific cases such as the transversely isotropic
one.

1 Introduction

We consider the reconstruction of a fully anisotropic elasticity tensor C = {Cijkl}1≤i,j,k,l≤3 from
knowledge of a finite number of displacement fields {u(j)}j∈J , solutions of the system of linear
elasticity

∇ · (C : (∇u+ (∇u)T )) = 0 (X), u|∂X = g (prescribed). (1)

Applications for such a theory include the medical imaging modality called elastography.
Elastography is concerned with the reconstruction of the elastic properties in biological tissues. It
has been observed experimentally that certain biological tissues (e.g., muscle fiber [19], or white
matter inside the brain [18]) display anisotropic mechanical properties, and the present article
aims at giving access to these anisotropic features. The present approach to elastography consists
of two steps. A first step is the reconstruction of the internal elastic displacements, which are
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accurately modeled as solutions of the above system of linear elasticity. Two different methods
are typically used to reconstruct such displacements. One such method, called Ultrasound
Elastography, consists of probing the elastic displacements by sound waves. We refer the reader
to [20, 32, 33, 34] for more details on the method. A recent analysis of such reconstructions from
ultrasound measurements is performed in [11]. A second method, called Magnetic Resonance
Elastrography, leverages the displacement of protons by propagating elastic signals to reconstruct
the elastic waves by magnetic resonance imaging [21, 22, 30].

In this paper, we assume the first step done and consider the quantitative reconstruction of
elastic coefficients from knowledge of such elastic displacements. For references on this quanti-
tative step of elastography, we refer the reader to [15, 6, 27]. Here, we generalize earlier work
performed for scalar second-order equations [13, 12] to the case of systems, and we generalize
recent work on the Lamé system [6, 24] to the fully anisotropic setting. Other hybrid inversions
for elliptic systems can be found in the case of Maxell’s system in [8, 14] and in a more general
framework in [5].

The approach consists in deriving explicit algebraic formulas reconstructing the unknown
parameters locally, based on hypotheses of linear independence (or rank maximality) of func-
tionals of the measurements and their partial derivatives. A discussion then follows on what
regularity or property (e.g., the Runge approximation property) is required a priori on the un-
known parameters so that the hypotheses of reconstructibility may be fulfilled. The idea of
constructing local solutions fulfilling certain maximality conditions, which are then controlled
from the boundary of the domain via Runge approximation, was also used in the context of
reconstruction of conductivity tensors from knowledge of so-called power density functionals [29]
or current density functionals [9].

The above problem of reconstruction of coefficients in partial differential equations from
knowledge of internal functionals is sometimes referred to as a hybrid inverse problems; see
[2, 3, 4, 5, 23, 35] for reference for hybrid inverse problems in other imaging modalities. Note that
we do not consider here the inverse boundary elasticity problem, for which Lipschitz stability
estimates may be obtained only when the Lamé coefficients are piece-wise constant; see for
instance [16] for a recent reference on such a topic not covered here.

We now give the main results of the paper in the next section and give an outline of the
remainder of the paper there.

2 Main results

Preliminary notation and definitions. In what follows, we denote by M3(R) the vector
space of 3 × 3 real matrices with inner product A : B := tr (ABT ) =

∑3
i,j=1AijBij , with

respect to which we recall the orthogonal decomposition M3(R) = S3(R) ⊕ A3(R), where the
first (second) summand denotes (skew-)symmetric matrices.

Let us fix X ⊂ R
3 a bounded domain with smooth boundary for the remainder of the paper.

2



An elasticity tensor C is a fourth-order tensor satisfying the following symmetries

Cijkl = Cjikl, Cijkl = Cijlk, Cijkl = Cklij, 1 ≤ i, j, k, l ≤ 3,

characterized by 21 independent components (instead of 81), where the latter symmetry corre-
sponds to the assumption that C is hyperelastic. We assume below that C is uniformly pointwise
stable over X [26, Ch. 6, Def. 1.9] in the sense that there is a κ > 0 such that

1

2
ǫ : C(x) : ǫ ≥ κ ǫ : ǫ, ∀ x ∈ X, ∀ ǫ ∈ S3(R). (2)

For C = {Cijkl}i,j,k,l an elasticity tensor and ǫ ∈ S3(R), we denote C : ǫ := {
∑

k,l Cijklǫkl}i,j .
In some sections below, the tensor C will be represented in the non-tensorial Voigt notation,

an S6(R)-valued function c = {cαβ}1≤α,β≤6, where the correspondence of elements cαβ in terms
of the coefficients Cijkl is obtained via the double index mapping 11 7→ 1, 22 7→ 2, 33 7→ 3,
23, 32 7→ 4, 13, 31 7→ 5 and 12, 21 7→ 6 (for instance, c11 = C1111 and so on). Hooke’s law,
relating stress σ to strain tensors ǫ via the relation σ = C : ǫ, now reads in Voigt notation
σV = c ǫV , where we define

ǫV = (ǫ11, ǫ22, ǫ33, 2ǫ23, 2ǫ31, 2ǫ12)
T , σV = (σ11, σ22, σ33, σ23, σ31, σ12)

T . (3)

Most often, we will drop the subscript “V ” below as the context will tell us naturally what
representation to pick. For (ǫ(1), . . . , ǫ(6)) in S3(R), we define below

det
V

(ǫ(1), . . . , ǫ(6)) = det
R6

(ǫ
(1)
V , . . . , ǫ

(6)
V ). (4)

A crucial fact for further derivations is the following.

Lemma 2.1. Under assumption (2), there exists κ′ > 0 such that

det c(x) ≥ κ′, ∀ x ∈ X. (5)

Main results. Provided linear independence conditions that can be satisfied locally and
checked directly on the available measurements, we first provide an explicit reconstruction al-
gorithm for fully anisotropic elasticity tensors. Here and below, a typical displacement field
is denoted u : X → R

3 with corresponding strain tensor ǫ : X → S3(R) with components
ǫij =

1
2(∂iuj + ∂jui), or, in coordinate-free notation, ǫ = 1

2(∇u+ (∇u)T ).
We now formulate our main hypotheses in order to set up our reconstruction procedure. These
hypotheses, based on algebraic redundancies of various elasticity solutions, force the unknown
tensor to lie on the orthogonal of a space generated by a rich enough set of data. The hypotheses
below formulate how some functionals of the data set can be made to generate a hyperplane of
S6(R), a normal of which can be explicitely constructed and proved to be proportional to C,
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the proportionality factor being reconstructed at the end. As seen below, fulfilling this agenda
requires 6 + N solutions, where N ≥ d−1

3 and d denotes the number of scalar components of
C (the factor 3 accounts for the fact that each additional solution after the sixth one provides
three orthogonality constraints on C).

Hypothesis 2.2. Let Ω ⊂ X.

A. There exist 6 solutions u(1), . . . ,u(6) of (1) whose strain tensors form a basis of S3(R) at
every x ∈ Ω. This condition can be summarized as (detV is defined in (4))

inf
x∈Ω

det
V

(ǫ(1)(x), . . . , ǫ(6)(x)) ≥ c0 > 0, for some constant c0. (6)

B. Assuming A fulfilled, there exists N additional solutions u6+1, . . . ,u6+N giving rise to a
family M of 3N matrices whose expressions are explicit in terms of {ǫ(j), ∂αǫ

(j), 1 ≤ α ≤
3, 1 ≤ j ≤ 6 +N} (see (12) for detail), and such that they span a hyperplane of S6(R) at
every x ∈ Ω. This condition can be summarized as

inf
x∈Ω

∑

M ′⊂M, #M ′=20

N (M ′) : N (M ′) ≥ c1 > 0, for some constant c1, (7)

where N is an operator generalizing the cross-product, defined in (13).

Remark 2.3. It should be noted that these hypotheses are stable under smooth perturbation
of the boundary conditions generating the displacement fields u(1), . . . ,u(6+N). This is because
Hypotheses 2.2.A-B are expressed in terms of functionals which depend polynomially on the
components of displacement fields and their derivatives up to second order, which are in turn
continuous functionals of their boundary conditions (see, e.g., Sec. 5.2.1 for appropriate topolo-
gies).

Remark 2.4. In Hypothesis 2.2.B, the number N depends on the type of isotropy of the tensor
C. In the most general, 21-parameter case, spanning a hyperplane of S6(R) with 3N additional
constraints suggests N ≥ 7, and the total number of displacement fields needed is then 6+7 = 13.

On an open subset Ω ⊂ X where Hypotheses 2.2.A-B hold, we then derive an explicit
reconstruction algorithm, reconstructing C over Ω. This is done as follows: in Voigt notation,
decompose the S6(R)-valued function C as the product of a scalar function τ times a normalized
anisotropic structure C̃ such that C = τC̃ (C̃ is such that its Voigt counterpart c̃ has determi-

nant 1, so τ = (det c̃)
1
6 ). Algebraic manipulations allow us to obtain pointwise orthogonality

constraints which, under hypotheses (6)-(7), are numerous enough to reconstruct C̃ pointwise.
Once C̃ is reconstructed, an equation for ∇ log τ is derived over Ω, leading to the reconstruction
of τ by solving either a transport or a Poisson equation. Finally, once C = τC̃ is known, ad-
ditional stability is recovered on certain components of C by deriving equations reconstructing
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the third-order tensor div C (whose components may be written as ∂iCijkl, 1 ≤ j, k, l ≤ 3).
Such components, although linear combination of first-order derivatives of the components of C,
are reconstructed with the same stability as C itself. Such stability improvements have already
been observed in e.g. [10, 9].

The approach just described yields unique and stable reconstructions over Ω in the sense of
the following theorem.

Theorem 2.5. Suppose that over some open set Ω ⊂ X, hypotheses 2.2.A-B hold for two
families of displacement fields {u(j)}6+N

j=1 and {u
′(j)}6+N

j=1 corresponding to elasticity tensors C

and C ′. Then C and C ′ can each be uniquely reconstructed over Ω from knowledge of their
corresponding solutions, with the following stability estimate for every integer p ≥ 0

‖C − C ′‖W p,∞(Ω) + ‖div C − div C ′‖W p,∞(Ω) ≤ K

N+6∑

j=1

‖ǫ(j) − ǫ
′(j)‖W p+1,∞(Ω). (8)

Remark 2.6. Note that if the elasticity tensor is split into the product of an unknown scalar
function τ times a known anisotropic tensor, the stability of the problem of reconstructing τ

from fields u(j) is better-posed, i.e. involves the loss of one derivative instead of two, according
to the statement

‖τ − τ ′‖W p+1,∞(Ω) ≤ K

N+6∑

j=1

‖ǫ(j) − ǫ
′(j)‖W p+1,∞(Ω). (9)

In the context of this reconstruction approach, an elasticity tensor is then reconstructible
on some given open set Ω (or globally on X) if there exist displacement field solutions of (1)
fulfilling Hypotheses 2.2.A-B throughout Ω. In this context, classifying reconstructible elasticity
tensors then consists in finding out in what situations one can construct such displacement fields.
Two such situations are described in the following theorem: (i) a fully anisotropic tensor that
is close to constant is globally reconstructible from well-chosen displacement fields whose traces
are explicitly given, and (ii) an elasticity tensor with smooth enough components which satisfies
the Runge approximation property (see Section 5.2.3, in particular, Eq. (39)) is, in principle,
locally reconstructible from knowledge of its displacement fields.

Theorem 2.7 (Reconstructibility of elasticity tensors). In either of the following cases, there
exists a non-empty open set of smooth enough boundary conditions generating displacement fields
characterizing C uniquely and stably in the sense of Theorem 2.5.

(i) C is C3-close to constant.

(ii) C is smooth (at least of class C3) and satisfies the Runge approximation property.
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An application of particular interest is the reconstruction of transversely isotropic (TI) elas-
ticity tensors. Such tensors have, as of yet, the highest type of anisotropy for which the Runge
approximation has been proved (see [31]), so that they are covered in case (ii) of Theorem 2.7.
We also explain in Section 5.1 how to generate explicit boundary conditions reconstructing a
constant TI tensor which, by case (i) of Theorem 2.7, can be used to reconstruct a near-constant
TI tensor.

Outline. The rest of the paper is organized as follows. Section 3 covers the proof of Lemma
2.1. Section 4 covers the reconstruction procedure as well as its stability property (proof of
Theorem 2.5). Section 5 covers the two ways described in Theorem 2.7 to fulfill Hypotheses
2.2.A-B for certain classes of tensors, thereby establishing their unique and stable (in the sense
of Theorem 2.5) reconstructibility from displacement fields.

3 Proof of Lemma 2.1

Suppose the elasticity tensor C satisfies (2). In the study of elastic eigentensors in [28], it
is established that C can have at most six distinct eigencouples (ǫ, λ) such that the relation
C : ǫ = λǫ is satisfied. The symmetries of C and hypothesis (2) imply that the λ’s are real and
that all of them satisfy λ ≥ κ. It is also mentioned in [28] that the eigenvalues λ are precisely
the eigenvalues of the S6(R)-valued representation of C in the form

c′ = {2
χ(i)+χ(j)

2 cij}1≤i,j≤6, where χ(i) =

{
0 if i = 1, 2, 3,
1 if i = 4, 5, 6,

and where cij denotes the Voigt representation of C presented in the introduction. It is then
immediate that det c′ = 8det c. Moreover, as mentioned above, all eigenvalues of c′ match the
eigenvalues of C and therefore satisfy the estimate λ ≥ κ. Therefore

det c =
1

8
det c′ ≥

κ6

8
,

hence (5) holds with κ′ = κ6

8 .

4 Reconstruction algorithm and its stability

As seen in Theorem 2.5, the left hand side of (8) contains two terms whose product forms the
elasticity tensor C, reconstructed with stability estimates in different norms: we decompose C

into the product τC̃, where C̃ contains the rescaled anisotropic structure of C, defined by a
normalizing condition (specifically, if c̃ describes C̃ in Voigt notation, then det c̃ = 1) and τ is
the remaining scalar factor. That this is possible comes from estimate (5), which states that
det c is uniformly bounded away from zero throughout X. The next two sections focus on the
successive reconstruction of C̃, then τ upon assuming that Hypotheses 2.2.A-B holds.
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4.1 Reconstruction of the anisotropy

In this section, we will use the Voigt notation, so that strain tensors will be represented as R6-
valued funtions ǫ ≡ ǫV . In this notation, the elasticity tensor becomes an S6(R)-valued function,
characterized by 21 scalar functions c = {cαβ}1≤α,β≤6 satisfying cαβ = cβα and where Hooke’s
law is expressed as a regular matrix-vector product σV = c ǫV , with (σV , ǫV ) as in (3). This
makes the problem tractable via algebraic manipulations on matrices instead of 4-tensors.

Using the Voigt notation, the elasticity system (1) takes the form

DV · (c ǫ) = 0, DV :=




∂1 0 0 0 ∂3 ∂2
0 ∂2 0 ∂3 0 ∂1
0 0 ∂3 ∂2 ∂1 0


 , (10)

and where, for a M6(R)-valued function A and a scalar function f , we have the identity

DV · (fA) = (DV f) · A+ fDV ·A. (11)

As the reconstruction approach is local (even pointwise for the anisotropic part), we assume

to have 6 elasticity solutions {u(j)}1≤j≤6 whose corresponding strain tensors {ǫ
(j)
V (x)}1≤j≤6 form

a basis of R6 for every x of some subdomain Ω ⊂ X. Any additional solution u(p) with p ≥ 7 is
such that for x ∈ Ω, ǫ(p)(x) decomposes uniquely into the basis above as

ǫ(p)(x) =

6∑

j=1

µpj(x)ǫ
(j)(x), where µpj :=

detV (ǫ
(1)(x), . . . ,

j︷ ︸︸ ︷
ǫ(p)(x), . . . , ǫ(6)(x))

detV (ǫ(1)(x), . . . , ǫ(6)(x))
, 1 ≤ j ≤ 6.

Plugging this equality into the elasticity equation, we obtain that

0 = DV · (cǫ(p)) =
6∑

j=1

DV · (µpjcǫ
(j)(x0)) =

6∑

j=1

(DV µpj) · cǫ
(j) + µpjDV · (cǫ(j)),

which, since DV · (cǫ(j)) = 0, implies that

6∑

j=1

(DV µpj) · cǫ
(j) = 0.

This last equation can be seen as three scalar orthogonality constraints on the tensor c in the
inner product structure of S6(R) which we denote by A : B := tr (ABT ) =

∑6
i,j=1AijBij, where

the matrices that are othogonal to C are directly known from available measurements. The last
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equation is equivalent to

c : M (p),1 = c : M (p),2 = c : M (p),3 = 0, where

M (p),1 =

6∑

j=1

(∂1µpj 0 0 0 ∂3µpj ∂2µpj)⊗ ǫ(j),

M (p),2 =

6∑

j=1

(0 ∂2µpj 0 ∂3µpj 0 ∂1µpj)⊗ ǫ(j),

M (p),3 =

6∑

j=1

(0 0 ∂3µpj ∂2µpj ∂1µpj 0)⊗ ǫ(j).

(12)

Note that since c is orthogonal to A6(R), one could replace the matrices M (p),i with their
symmetrized versions. Notice that the components of these matrices are first partial derivatives
of rational functions of strain tensors.

If enough linear constraints of the form (12) are available from a rich enough set of measure-
ments, that is to say, if enough such matrices are available and form a hyperplane of S6(R) at x0,
then the tensor c(x0), constrained to be perpendicular to this hyperplane, will be determined
up to a multiplicative constant. The reconstruction can be done via a generalization of the
cross-product, as used for instance in [29] for similar purposes in the context of the conductivity
equation. Define {mj}21j=1 a basis of S6(R) and given M = {Mj}20j=1 ⊂ S6(R), define the oper-

ator N : S6(R)
20 → S6(R) by expanding the formal determinant below with respect to its last

row

N (M) :=
1

det(m1, · · · ,m21)

∣∣∣∣∣∣∣∣∣

M1 : m1 · · · M1 : m21
...

. . .
...

M20 : m1 · · · M20 : m21

m1 · · · m21

∣∣∣∣∣∣∣∣∣

. (13)

N is a 20-linear, alternating map that does not depend on the choice of basis for S6(R). N (M)
is a vector that is normal to the hyperplane spanned by M when M is linearly independent, zero
otherwise. In particular, if M is a family of matrices known to be orthogonal to a given matrix
m′, then N (M) is either zero (if dim span M < 20) or proportional to m′ (if dim span M = 20).

In light of this last comment, and assuming that a rich enough set of solutions of the elasticity
system (1) gives rise to a family of matrices M of the form (12), with cardinality greater than
20 and spanning a hyperplane of S6(R) at a given point x0 ∈ X, then for any given 20-uple

M ′ ⊂ M , N (M ′) is either zero or proportional to c(x0). Normalizing c̃(x0) = det(c(x0))
−1
6 c(x0)

and enforcing the condition c̃11 > 0 (this is because in the proof of Lemma 2.1, we notice that
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the top-left 3× 3 block of c matches that of c′ which is a symmetric positive definite matrix, so
one must have c11 > 0, c22 > 0 and c33 > 0), then we have the equality

(±)M ′N (M ′) = (det(N (M ′)))
1
6 c̃(x0),

for every 20-uple M ′ ⊂ M , where (±)M ′ is the sign of the top-left entry of N (M ′). This equation
is either trivial when M ′ is linearly dependent, or reconstructs c̃(x0) otherwise. Condition 7
ensures that at least one subfamily M ′ is linearly independent, so we sum the last equation over
all subfamilies and arrive at the formula

c̃(x0) =




∑

M ′⊂M, #M ′=20

(det(N (M ′)))
1
6




−1
∑

M ′⊂M, #M ′=20

(±)M ′N (M ′). (14)

Remark 4.1. The expliciteness of formula (14) is interesting in its own right and makes the
stability of the problem straighforward to assess. On the other hand, the computation of 20× 20
determinants can be expensive, and methods constructing a normal to a hyperplane without
implementing (14) might reveal more practical. For a 20-uple M , an example of a potentially
faster method for finding a scalar multiple of N (M) is to form a 20× 21 matrix whose rows are
the elements of M , and to find a vector in the nullspace of that matrix via Gaussian elimination.

Now that the anisotropic structure C̃ (or equivalently, c̃) is reconstructed, we now explain
how the multiplicative scalar τ can be reconstructed via a standard transport equation.

4.2 Reconstruction of the scalar factor τ

We now switch back to 4-tensor notation. Plugging the decomposition C = τC̃ into the elasticity
equation, where C̃ is assumed to be known from the previous step, we obtain, for each elasticity
solution considered,

(C̃ : ǫ)∇ log τ = −div (C̃ : ǫ), (15)

where (C̃ : ǫ) ∈ S3(R) is not necessarily invertible. However, under the assumption that {ǫ(j)}6j=1

is a basis of S3(R), by virtue of (5), so is {C̃ : ǫ(j)}6j=1. Therefore, the identity tensor I3

decomposes into this basis by means of some functions µj(x) such that

I3 =
6∑

j=1

µj(x) C̃ : ǫ(j).

If we denote Dij := (C̃ : ǫ(i)) : (C̃ : ǫ(j)) for 1 ≤ i, j ≤ 6, the S6(R)-valued function D = {Dij}

is known and invertible (as the Grammian matrix of the basis {C̃ : ǫ(j)}6j=1), and the entries of

9



its inverse are denoted by Dij . In this case, the functions µj take the explicit form

µj(x) =

6∑

i=1

Dij
I3 : (C̃ : ǫ(i)) =

6∑

i=1

Dij tr (C̃ : ǫ(i)).

Now taking a linear combination of (15) weighted by the functions µj, we obtain

∇ log τ = −
6∑

j=1

µj(x) div (C̃ : ǫ(j)). (16)

The right hand side of this equation is completely known and τ can therefore be reconstructed
via either (i) integration of (16), or, after taking divergence, (ii) solving a Poisson equation on
the domain Ω with known Neumann boundary conditions. As discussed in [7], the approach (ii)
may be more robust to noise than the former, as the integration of ordinary differential equations
in the presence of noisy measurements may strongly depend on the choice of integration path.
Moreover, taking divergence of (16) has the advantage of naturally removing the curl part of
noisy right-hand sides in (16).

4.3 Reconstruction of the tensor div C

Now that both C̃ and τ are reconstructed, we explain how to gain stability on the reconstruction
of the third-order tensor div C = ∂iCijkl ej ⊗ ek ⊗ el. Note that this tensor is symmetric in the
pair of indices (k, l). Now the elasticity equation can be rewritten as

(∂iCijkl)ǫkl + Cijkl∂iǫkl = 0, 1 ≤ j ≤ 3,

or in contracted notation,

(div C)j·· : ǫ = −Cijkl∂iǫkl, 1 ≤ j ≤ 3. (17)

For every 1 ≤ j ≤ 3, (div C)j·· can be seen as an S3(R)-valued function, and as such, using again
the assumption that {ǫ(j)}6j=1 is a basis of S3(R), upon defining Eij = ǫ(i) : ǫ(j) for 1 ≤ i, j ≤ 6,

the S6(R)-valued function E = {Eij} is uniformly invertible over Ω and we denote by Eij the
components of its inverse. With such notation, Cramer’s rule in S3(R) then reads

(div C)j·· = Epq((div C)j·· : ǫ
(p))ǫ(q), 1 ≤ j ≤ 3,

and combining this with (17), we obtain a reconstruction formula for the tensor div C

(div C)j·· = −Epq(Cijkl ∂iǫ
(p)
kl ) ǫ

(q), 1 ≤ j ≤ 3. (18)

10



4.4 Proof of Theorem 2.5

Uniqueness. Equations (14), (16) and (18) give us explicit algorithms to reconstruct c̃, τ and
div C explicitely, with the only indeterminacy that τ is defined up to a multiplicative constant.
This is because multiplying the elasticity system by a constant changes neither the equation, nor
its solutions. We can remove this indeterminacy by assuming that τ is known at a (boundary)
point or by fixing its value at a point. The constructive nature of the approach gives uniqueness.

Stability on C̃. The functional reconstructing c̃ is a rational function of strain tensors and
their first partial derivatives. If two sets of displacement fields {u(j)}6+N

j=1 and {u
′(j)}6+N

j=1 both
satisfy hypotheses 2.2.A-B over some Ω ⊂ X, the denominator of the right hand side of (14)
never vanishes, and its rational expression in terms of measurement components yields the local
estimate

‖C̃ − C̃ ′‖L∞(Ω) ≤ K

6+N∑

j=1

‖ǫ(j) − ǫ
′(j)‖W 1,∞(Ω), (19)

for some constant K > 0. More generally, if the strain tensors are in W p+1,∞(Ω) for some integer
p ≥ 0, the reconstruction formula (14) can be differentiated p times to yield stability estimates
in smoother norms of the form

‖C̃ − C̃ ′‖W p,∞(Ω) ≤ K

6+N∑

j=1

‖ǫ(j) − ǫ
′(j)‖W p+1,∞(Ω), p ≥ 0, (20)

where the constant K grows polynomially in terms of the maximum W p+1,∞(Ω) norm of the
strain tensors and the inverse of min(c0, c1, c

′
0, c

′
1) > 0, where (c0, c1, c

′
0, c

′
1) are the constants

defined in (6)-(7) corresponding to each system of measurements {u(j)}6+N
j=1 and {u

′(j)}6+N
j=1 .

Stability on the scalar factor τ . Equation (16) takes the form ∇ log τ = F (C̃,u) with F

a rational function of the components of C̃ and its first derivatives, and of strain tensors and
their first partial derivatives, one deduces

‖τ − τ ′‖W p+1,∞(Ω) ≤ K ′
6+N∑

j=1

‖ǫ(j) − ǫ
′(j)‖W p+1,∞(Ω) +K ′′‖C̃ − C̃ ′‖W p+1,∞(Ω), p ≥ 0. (21)

We see that when C̃ is known a priori, only one derivative is lost from the measurements to
the quantity τ . However, when considering joint reconstructions of (C̃, τ), we see that errors
‖C̃ − C̃ ′‖W p+1,∞(Ω) are controlled by measurement errors in ‖u(j) − u

′(j)‖W p+3,∞(Ω) norm, so
that the second term in the right hand side of (21) implies a loss of two derivatives from the
measurements to the quantity τ . This explains Remark 2.6.
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Stability on div C. The right-hand-side of (18) is a linear functional in the components of C,
rational in the components of the measurements and its partial derivatives up to second order
so that, as before, the stability on div C is of the form

‖div C − div C̃‖W p,∞ ≤ K ′

6+N∑

j=1

‖ǫ(j) − ǫ
′(j)‖W p+1,∞(Ω) +K ′′‖C − C ′‖W p,∞(Ω), p ≥ 0. (22)

This ends the discussion on stability and the proof of Theorem 2.5.

5 Reconstructible tensors - Fulfilling Hypotheses 2.2.A-B

5.1 The constant coefficient problem

We now show that, in the same way that harmonic polynomials up to second order uniquely
characterize a constant diffusion tensor in the scalar case, a constant elasticity tensor C is
uniquely characterized by elasticity solutions whose components are polynomials up to second
order.

Polynomial displacement fields. Assume that C is constant and let us denote by ci the
i-th row (or column) of c (i.e., C in Voigt notation).

It is straightforward to see that any displacement field u with linear components is a solution
to (1). These solutions in fact allow us to construct a basis of strain tensors, i.e. such that
ǫ(1), . . . , ǫ(6) is the natural basis of R6 for every x ∈ X. This can be achieved by considering the
following solutions

u(1)(x) = (x, 0, 0)T , u(2)(x) = (0, y, 0)T , u(3)(x) = (0, 0, z)T ,

u(4)(x) =
1

2
(0, z, y)T , u(5)(x) =

1

2
(z, 0, x)T , u(6)(x) =

1

2
(y, x, 0)T .

(23)

Second, a displacement field with quadratic components, of the form

u(x) =

(
1

2
x · Px,

1

2
x ·Qx,

1

2
x ·Rx

)
, P,Q,R ∈ S3(R), (24)

has a strain tensor, in Voigt notation, taking the form ǫ(x) = xV1 + yV2 + zV3, where we have
defined

V1 := (P11, Q21, R31, Q31 +R21, P13 +R11, P12 +Q11)
T ,

V2 := (P12, Q22, R32, Q32 +R22, P23 +R21, P22 +Q21)
T ,

V3 := (P13, Q23, R33, Q33 +R23, P33 +R31, P32 +Q13)
T .
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The correspondence (P,Q,R) 7→ (V1, V2, V3) is bijective, with inverse (Vij denotes the j-th
component of Vi)

P =




V11 V21 V31

· V26 − V12
1
2(V25 + V36 − V14)

sym · V35 − V13


 , Q =




V16 − V21 V12
1
2(V36 + V14 − V25)

· V22 V32

sym · V34 − V23


 ,

R =




V15 − V31
1
2(V14 + V25 − V36) V13

· V24 − V32 V23

sym · V33


 ,

(25)

so that prescribing one or the other is equivalent. Then the stress tensor is expressed as

σ = c ǫ = x c V1 + y c V2 + z c V3.

With this expression, u is an elasticity solution if and only if the three scalar conditions below
are fulfilled

c1 · V1 + c6 · V2 + c5 · V3 = 0,

c6 · V1 + c2 · V2 + c4 · V3 = 0,

c5 · V1 + c4 · V2 + c3 · V3 = 0.

(26)

This essentially leaves us with a 18-3 = 15-parameter family of quadratic solutions to the
constant-coefficient elasticity system, and we now show that these solutions suffice to char-
acterize C uniquely. Conditions (26) can be written in the form (12) where, defining {ei}

6
i=1 the

natural basis of R6, the matrices M1,M2,M3 take the form

M1 = V1 ⊗ e1 + V2 ⊗ e6 + V3 ⊗ e5,

M2 = V1 ⊗ e6 + V2 ⊗ e2 + V3 ⊗ e4,

M3 = V1 ⊗ e5 + V2 ⊗ e4 + V3 ⊗ e3.

(27)

We will show in the next paragraph that, for various choices of V1, V2, V3 satisfying (26), the
corresponding matrices (27) span the hyperplane {c}⊥ in M6(R), thereby imposing enough
orthogonality conditions on c to determine it uniquely up to a multiplicative constant.

Rank maximality of quadratic displacement fields. Since c is invertible, let us denote c⋆i
the i-th row (or column) of c−1, so that ci · c

⋆
j = δij . Since we can write c as c =

∑6
j=1 cj ⊗ ej,

using the identity

(U ⊗ V ) : (S ⊗ T ) = (U · S)(V · T ), U, V, S, T ∈ R
6,

13



we can show that the space {c}⊥, regarded as a hyperplane of M6(R) of dimension 35, is spanned
by the following family:

{c}⊥ = span
{
c⋆i ⊗ ej, 1 ≤ i, j ≤ 6, i 6= j, c⋆i ⊗ ei − c⋆i+1 ⊗ ei+1, 1 ≤ i ≤ 5

}
. (28)

Next, proceeding by exhaustion, we construct quadratic solutions giving rise to matrices
M1,M2,M3 spanning the family (28).

• We first consider quadratic displacement fields satisfying (26), and such that two vectors
among {V1, V2, V3} vanish identically.

– If V1 = V2 = 0, conditions (26) read V3⊥{c3, c4, c5}, so that V3 ∈ span {c⋆1, c
⋆
2, c

⋆
6},

thus leading to matrices M1,M2,M3 in the set {c⋆i ⊗ ej, i = 3, 4, 5, j = 1, 2, 6}.

– If V1 = V3 = 0, conditions (26) read V2⊥{c2, c4, c6}, so that V2 ∈ span {c⋆1, c
⋆
3, c

⋆
5},

thus leading to matrices M1,M2,M3 in the set {c⋆i ⊗ ej, i = 1, 3, 5, j = 2, 4, 6}.

– If V2 = V3 = 0, conditions (26) read V1⊥{c1, c5, c6}, so that V1 ∈ span {c⋆2, c
⋆
3, c

⋆
4},

thus leading to matrices M1,M2,M3 in the set {c⋆i ⊗ ej, i = 2, 3, 4, j = 1, 5, 6}.

• Secondly, we consider quadratic displacement fields satisfying (26) and such that one vector
among {V1, V2, V3} vanishes identically.

– If V1 = 0, conditions (26) read c6 ·V2+ c5 ·V3 = c2 ·V2+ c4 ·V3 = c4 ·V2+ c3 ·V3 = 0.
One way to achieve this is by writing, for some free parameters α, β, γ,

V2 = αc⋆6 + βc⋆2 + γc⋆4, V3 = −αc⋆5 − βc⋆4 − γc⋆3.

The matrices M1,M2,M3 thus constructed take the form

M1 = α(c⋆6 ⊗ e6 − c⋆5 ⊗ e5) + β(c⋆2 ⊗ e6 − c⋆4 ⊗ e5) + γ(c⋆4 ⊗ e6 − c⋆3 ⊗ e5),

M2 = α(c⋆6 ⊗ e2 − c⋆5 ⊗ e4) + β(c⋆2 ⊗ e2 − c⋆4 ⊗ e4) + γ(c⋆4 ⊗ e2 − c⋆3 ⊗ e4),

M3 = α(c⋆6 ⊗ e4 − c⋆5 ⊗ e3) + β(c⋆2 ⊗ e4 − c⋆4 ⊗ e3) + γ(c⋆4 ⊗ e4 − c⋆3 ⊗ e3).

– If V2 = 0, conditions (26) read c1 ·V1+ c5 ·V3 = c6 ·V1+ c4 ·V3 = c5 ·V1+ c3 ·V3 = 0.
One way to achieve this is by writing, for some free parameters α, β, γ,

V1 = αc⋆1 + βc⋆6 + γc⋆5, V3 = −αc⋆5 − βc⋆4 − γc⋆3.

The matrices M1,M2,M3 thus constructed take the form

M1 = α(c⋆1 ⊗ e1 − c⋆5 ⊗ e5) + β(c⋆6 ⊗ e1 − c⋆4 ⊗ e5) + γ(c⋆5 ⊗ e1 − c⋆3 ⊗ e5),

M2 = α(c⋆1 ⊗ e6 − c⋆5 ⊗ e4) + β(c⋆6 ⊗ e6 − c⋆4 ⊗ e4) + γ(c⋆5 ⊗ e6 − c⋆3 ⊗ e4),

M3 = α(c⋆1 ⊗ e5 − c⋆5 ⊗ e3) + β(c⋆6 ⊗ e5 − c⋆4 ⊗ e3) + γ(c⋆5 ⊗ e5 − c⋆3 ⊗ e3).
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Examining the five cases considered, we see that the set (28) can be spanned by matrices
M1,M2,M3 generated by either of the above cases. This concludes the discussion.

Remark 5.1. The number of solutions required here is not sharp. In fact, it would be enough
to construct a hyperplane (of dimension 20 instead of 35) of S6(R) using well-chosen solutions,
though it is not necessarily straightforward to find out which subfamily of (28) of cardinality 20
spans the orthogonal space to {c} in S6(R).

The transversely isotropic case. We treat here a particular example of anisotropy, where
the number of unknowns is reduced to 5, and we show how the general method can be adapted.
Assuming that the e3 (or “z”) direction is the constant direction of isotropy, we decompose a
transversely isotropic tensor, in Voigt notation, as

c =




a b c 0 0 0
b a c 0 0 0
c c d 0 0 0
0 0 0 e 0 0
0 0 0 0 e 0

0 0 0 0 0 a−b
2




Locally, four well-chosen orthogonality constraints are enough to locate c(x) in the five-
dimensional space describing it. As each displacement field gives rise to 3 orthogonality con-
strains, we expect that two well-chosen displacement fields u(7),u(8) in addition to the six ones
forming a basis of strain tensors should suffice.

As in the fully anisotropic case, the family of linear displacement fields (23) forms a basis
of strain tensors of elasticity solutions, and we now aim at finding two additional solutions in
the form of well-chosen quadratic polynomial displacement fields. Since the unknowns are now
the scalars (a, b, c, d, e), we can rewrite the conditions (26) for a quadratic displacement field to
be an elasticity solution as orthogonality constraints on the vector (a, b, c, d, e). In this set of
variables, a displacement field of the form (24) solves the system of elasticity if and only if




V11 +
1
2V26 V12 −

1
2V26 V13 0 V35

1
2V16 + V22 −1

2V16 + V21 V23 0 V34

0 0 V31 + V32 V33 V15 + V24







a

b

c

d

e



=




0
0
0


 .

The two additional quadratic solutions can be chosen as follows:

• u(7) is constructed so that



V11 +
1
2V26 V12 −

1
2V26 V13 0 V35

1
2V16 + V22 −1

2V16 + V21 V23 0 V34

0 0 V31 + V32 V33 V15 + V24


 =




−b a 0 0 0
0 −c b 0 0
0 0 −d c 0


 ,
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all other coefficients Vij being set to zero. One possible solution of this is

(V12, V11, V23, V33, V21, V31) = (a,−b, b, c,−c,−d),

(all other coefficients set to zero) which, upon using (25), yields the displacement field

u(7) = (−bx2 − 2cxy − ay2 − 2dxz, cx2 + 2axy − bz2, dx2 + 2byz + cz2).

• u(8) is constructed so that



V11 +
1
2V26 V12 −

1
2V26 V13 0 V35

1
2V16 + V22 −1

2V16 + V21 V23 0 V34

0 0 V31 + V32 V33 V15 + V24


 =




0 0 0 0 0
0 0 0 0 0
0 0 0 −e d


 ,

all other coefficients Vij being set to zero. One possible solution is

(V33, V15) = (−e, d),

(all other coefficients being set to zero) which, upon using (25), yields the displacement
field

u(8) = (0, 0, dx2 − ez2).

u(7) and u(8) were constructed to be solutions of the system of elasticity, and the orthogonality
constraints they generate saturate a hyperplane of R5. Satisfying such orthogonality constraints,
(a, b, c, d, e) are uniquely determined up to a constant, which is in turn determined following the
approach to reconstruct τ in the general case (see Sec. 4.2).

5.2 Proof of Theorem 2.7

5.2.1 Preliminaries: forward theory and interior regularity

Here and below, if u denotes a vector-valued function, we will loosely write u ∈ Hs(X) to mean
that u has components in the Sobolev space Hs(X). In order to prove Theorem 2.7, we will use
the following theorem (see e.g. [26, Chap. 6, Th. 1.11]): if C is smooth, uniformly pointwise
stable (as defined in Eq. (2)) and ∂X is smooth, then for every f ∈ L2(X) there exists a unique
solution u ∈ H2(X) to the problem

∇ · (C∇u) = f (X), u|∂X = 0. (29)

If f ∈ Hs(X) then u ∈ Hs+2(X) for s ≥ 0 with an estimate of the form

‖u‖Hs+2(X) ≤ C‖f‖Hs(X). (30)
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Such estimates also hold in Sobolev norms W s,p for every 1 < p < ∞. Using a lift operator, if
the boundary is smooth and problem (29) is replaced by a boundary value problem with f = 0

and u|∂X = g ∈ Hs+ 3
2 (∂X), one may obtain a similar inequality as (30) upon replacing ‖f‖Hs(X)

by ‖g‖
H

s+ 3
2 (∂X)

.

Additionally, we will use below that when the elasticity tensor C is smooth and uniformly
pointwise stable, interior regularity arguments as in [17, Theorem 1 p309] (in the case of scalar
elliptic PDEs) translate into the following: if u solves (29), then for V ⊂⊂ U ⊂ X, there exists
a constant C1(U, V,C) such that

‖ǫ‖H1(V ) ≤ C1(‖u‖L2(U) + ‖f‖L2(U))

(
ǫij =

1

2
(∂iuj + ∂jui)

)
. (31)

Finally, we note that for any Ω ⊂ X, the functionals F1 : [C1(Ω, S3(R))]
6 → C0(Ω) and

F2 : [C
1(Ω, S3(R))]

6+N → C0(Ω), defined by

{ǫ(j)}1≤j≤6 7→ F1(ǫ
(1), . . . , ǫ(6)) = det

V
(ǫ(1), . . . , ǫ(6)), (32)

{ǫ(j)}1≤j≤6+N 7→ F2(ǫ
(1), . . . , ǫ(6+N)) =

∑

M ′⊂M,#M ′=20

N (M ′) : N (M ′), (33)

are continuous as polynomials of the entries of the strain tensors and their first partial derivatives.

5.2.2 Near-constant elasticity tensors

We now use the constructions from the constant coefficient problem in Sec. 5.1 as well as the
continuity of displacement fields with respect to the elasticity coefficients in appropriate norms,
to establish reconstructibility of near-constant tensors.

Proof of Theorem 2.7(i). For two displacement fields u,u′ solutions of (1) with respective elas-
ticity tensors C,C ′ (both uniformly pointwise stable and at least C3-smooth) and the same

boundary condition g ∈ H
5
2 (∂X), the difference u− u′ satisfies the following PDE

∇ · (C∇(u− u′)) = ∇ · ((C ′ − C)u′) (X), (u− u′)|∂X = 0,

so that, using (30) with s = 2, we obtain that

‖ǫ− ǫ′‖H3(X) ≤ K‖C − C ′‖C3(X)‖u
′‖H3(X) ≤ K ′‖C − C ′‖C3(X)‖g‖

H
5
2 (∂X)

,

for some constants K,K ′. By Sobolev inequality H3(X) → C1, 1
2 (X) ⊂ C1(X), we arrive at the

estimate

‖ǫ− ǫ′‖C1(X) ≤ K‖C − C ′‖C3(X). (34)
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Now pick C ′ = C0 a tensor with constant coefficients and construct solutions {u
(j)
0 }6+N

j=1 sat-

isfying hypotheses 2.2, i.e. F1(ǫ
(1)
0 , . . . , ǫ

(6)
0 ) and F2(ǫ

(1)
0 , . . . , ǫ

(6+N)
0 ) are bounded away from zero

throughout X. We then see that combining the continuity of F1,F2 in (32)-(33) with estimate
(34) applied to ǫ(1), . . . , ǫ(6+N) shows that, if an elasticity tensor C is close enough to C0 in
C3(X)-norm, then upon defining {u(j)}6+N

j=1 solutions of ∇ · (C∇u(j)) = 0 with boundary condi-

tion u(j)|∂X = u
(j)
0 |∂X , the difference ‖ǫ(j) − ǫ

(j)
0 ‖C1(X) should be so small that F1(ǫ

(1), . . . , ǫ(6))

and F2(ǫ
(1), . . . , ǫ(6+N)) remain bounded away from zero throughout X, so that C can be ex-

plicitely reconstructed from these strain tensors. Theorem 2.7(i) is proved.

5.2.3 Runge approximation

We say that a differential operator L satisfies the Runge approximation property on X if for
every compact Ω ⊂ X, every solution v of Lv = 0 (Ω) can be approximated in L2(Ω) by solutions
u of Lu = 0 (X). Other approximation topologies can be used (e.g. H1(Ω) in [31, Theorem
3.3]), in fact here we will use a C2 approximation. The Runge approximation property is closely
related to the unique continuation property, see e.g. [25].

Unlike for scalar elliptic PDE’s, the literature on unique continuation results for elliptic
systems is sparse. In the context of elasticity, it has been proved for the Lamé system (and
more generally for elliptic systems with an iterated Laplacian as diagonal part) using doubling
inequalities in [1], and for the transversely isotropic case in [31].

When the Runge approximation is available, following ideas from the first and third author
presented in [13] and generalized in other contexts in e.g. [29, 9], one becomes able to fulfill
the hypotheses of reconstructibility 2.2 by constructing local solutions satisfying appropriate
qualitative behavior. This is what we now do in the proof of Theorem 2.7(ii).

Proof of Theorem 2.7(ii). We decompose the proof in three steps.

Step 1. Local solutions with constant coefficients: Fix x0 ∈ X and B3r ≡ B3r(x0) ⊂ X

a ball of radius 3r (r tuned hereafter) centered at x0, and denote C0 := C(x0). Following
the approach in section 5.1, we first construct solutions to the problem with frozen constant

coefficients, i.e. such solutions, which we denote {u
(j)
0 }6+N

j=1 (each with strain tensor ǫ
(j)
0 ), solve

∇ · (C0ǫ
(j)
0 ) = 0 (R3), 1 ≤ j ≤ 6 +N. (35)

This family is constructed so that Hypotheses 2.2.A-B are satisfied throughout B3r (in fact, they
fulfill these hypotheses globally).

Step 2. Local solutions with varying coefficients: From solutions {u
(j)
0 }6+N

j=1 , we con-

struct a second family of solutions {u
(j)
r }6+N

j=1 (each with strain tensor ǫ
(j)
r ) via the following
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equation

∇ · (Cǫ(j)r ) = 0 (B3r), u(j)
r |∂B3r = u

(j)
0 , 1 ≤ j ≤ 6 +N. (36)

The difference of both solutions satisfies, for 1 ≤ j ≤ 6 +N ,

∇ · (C(ǫ(j)r − ǫ
(j)
0 )) = ∇ · ((C0 − C)ǫ

(j)
0 ) (B3r), (u(j)

r − u
(j)
0 )|∂B3r = 0, (37)

where the right-hand side is smooth since C is assumed to be smooth and so is ǫ
(j)
0 . Then

using estimate (30) in high enough Sobolev norms combined with Sobolev inequalities [17, Th.
6 p270], we arrive at estimates of the form

‖u(j)
r − u

(j)
0 ‖

C2, 12 (B3r)
≤ C‖u(j)

r − u
(j)
0 ‖H4(B3r) ≤ C ′‖∇ · ((C0 − C)ǫ

(j)
0 )‖H2(B3r),

so that

lim
r→0

max
1≤j≤6+N

‖u(j)
r − u

(j)
0 ‖C2(B3r) = 0. (38)

Step 3. Runge approximation (control from the boundary ∂X): Assume r has been
fixed at this stage. By virtue of the Runge approximation property, for every δ > 0 and

1 ≤ j ≤ 6 +N , there exists g
(j)
δ ∈ H

1
2 (∂X) such that

‖u
(j)
δ − u(j)

r ‖L2(B3r) ≤ δ, where u
(j)
δ solves (1) with u

(j)
δ |∂X = g

(j)
δ . (39)

Since C is smooth and ∇ · (C(ǫ
(j)
δ − ǫ

(j)
r )) = 0 thoughout B3r, estimate (31) with f = 0 implies

that

‖ǫ
(j)
δ − ǫ(j)r ‖H1(B2r) ≤ C1(r)‖u

(j)
δ − u(j)

r ‖L2(B3r).

Moreover, using that ∇·(C∂pq(ǫ
(j)
δ −ǫ

(j)
r )) = −∇·((∂pqC)(ǫ

(j)
δ −ǫ

(j)
r )) for every 1 ≤ p ≤ q ≤ 3, and

assuming that C is at least of class C3, we can find a constant C2(r, C) (we drop the dependency
on C below) such that

‖ǫ
(j)
δ − ǫ(j)r ‖H3(Br) ≤ C2(r, C)‖ǫ

(j)
δ − ǫ(j)r ‖H1(B2r) ≤ C3(r)‖u

(j)
δ − u(j)

r ‖L2(B3r) ≤ C3(r)δ.

By Sobolev inequality H3 → C1, 1
2 ⊂ C1, we deduce that

‖ǫ
(j)
δ − ǫ(j)r ‖C1(Br) ≤ C4(r)δ, 1 ≤ j ≤ 6 +N.

Since r is fixed at this stage, we deduce that

lim
δ→0

max
1≤j≤6+N

‖ǫ
(j)
δ − ǫ(j)r ‖C1(Br) = 0. (40)
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Completion of the argument: Theorem 2.5 states that C is reconstructible if both func-
tionals F1,F2 are bounded away from zero for some properly chosen solutions. Fixing again

x0 ∈ X and Br, as above, Step 1 established that F1(ǫ
(1)
0 , . . . , ǫ

(6)
0 ) and F2(ǫ

(1)
0 , . . . , ǫ

(6+N)
0 ) were

bounded away from zero over Br, where the ǫ
(j)
0 ’s were strain tensors associated with a problem

with frozen coefficients. Due to limits (38) and (40), there exists a small r > 0, then a small δ > 0

and local solutions (u
(1)
δ , . . . ,u

(6+N)
δ ) such that max1≤j≤6+N ‖ǫ

(j)
δ −ǫ

(j)
0 ‖C1(Br(x0)) is so small that,

by continuity of F1 and F2 mentioned above, F1(ǫ
(1)
δ , . . . , ǫ

(6)
δ ) and F2(ǫ

(1)
δ , . . . , ǫ

(6+N)
δ ) remain

uniformly bounded away from zero over Br. Hypotheses 2.2 are thus satisfied over Br by the

family {u
(j)
δ }6+N

j=1 which is controlled by boundary conditions. C is thus reconstructible over Br

with a local stability as in Theorem 2.5. The proof of Theorem 2.7(ii) is complete.
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