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Abstract. We show that if µ is a probability measure with infinite support on the unit

circle having no singular component and a differentiable weight, then the corresponding

paraorthogonal polynomial Φn(z;β) solves an explicit second order linear differential equa-

tion. We also show that if τ 6= β, then the pair (Φn(z;β),Φn(z; τ)) solves an explicit first

order linear system of differential equations. One can use these differential equations to

deduce that the zeros of every paraorthogonal polynomial mark the locations of a set of

particles that are in electrostatic equilibrium with respect to a particular external field.
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1. Introduction

Given a positive probability measure µ with compact and infinite support in the com-

plex plane C, one can constuct the corresponding sequence of orthonormal polynomials

{ϕn(z;µ)}n≥0 where ϕn(z;µ) is a polynomial of degree exactly n having positive leading co-

efficient, which we denote by κn(µ). If we divide ϕn(z;µ) by κn(µ), then we obtain a monic

degree n polynomial, which we denote by Φn(z;µ). We will often suppress the µ dependence

in our notation if there is no possibility for confusion. Our study of these objects is motivated

by the fact that orthogonal polynomials have proven to be valuable tools in the study of

physical models.

The most well-studied collections of orthogonal polynomials come from measures of or-

thogonality supported on the real line and are known as orthogonal polynomials on the real

line (OPRL). Such polynomials have a variety of applications in spectral theory (see [31]),

potential theory (see [24]), and the theory of special functions (see [15]). One of the key

features of OPRL is the three-term recurrence formula satisfied by the orthonormal polyno-

mials. Many well-known families of OPRL (including the Hermite polynomials, the Laguerre

polynomials, and the Jacobi polynomials) are polynomial solutions to particular families of

linear second order differential equations with polynomial coefficients. This property makes

these particular families of polynomials especially applicable as we will discuss later in more

detail.

A second collection of well-studied orthogonal polynomials comes from measures of or-

thogonality supported on the unit circle and are known as orthogonal polynomials on the

unit circle (OPUC). Just as OPRL has a close connection with self-adjoint operators, OPUC
1
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has a close connection with unitary operators (see [31]). In analogy with the three-term

recurrence satisfied by the OPRL, the monic OPUC satisfy the Szegő recursion:

Φn+1(z;µ) = zΦn(z;µ)− ᾱnΦ∗n(z;µ),

where αn ∈ D := {z : |z| < 1} and Φ∗n(z) = znΦn(1/z̄). Therefore, to each infinitely sup-

ported probability measure µ on the unit circle, we can associate the sequence {αn}n≥0 of

Verblunsky coefficients. A theorem of Verblunsky states that such a sequence also deter-

mines an infinitely supported probability measure (see [28, Chapter 1]). The utility and

applicability of the Hermite, Laguerre, and Jacobi polynomials inspired interest in families

of OPUC that are solutions to linear second order differential equations. To this end, Ismail

and Witte proved the following result in [16]:

Theorem 1.1 (Ismail & Witte, 2001). Let w(z) = e−v(z) be differentiable in a neighborhood

of the unit circle, have moments of all integral orders, and assume that the integrals∫
|ζ|=1

v′(z)− v′(ζ)

z − ζ
ζnw(ζ)

dζ

iζ

exist for all integers n. Then the corresponding orthonormal polynomials satisfy the differ-

ential relation

ϕ′n(z) = n
κn−1
κn

ϕn−1(z)− iϕ∗n(z)

∫
|ζ|=1

v′(z)− v′(ζ)

z − ζ
ϕn(ζ)ϕ∗n(ζ)w(ζ)dζ

+ iϕn(z)

∫
|ζ|=1

v′(z)− v′(ζ)

z − ζ
ϕn(ζ)ϕn(ζ)w(ζ)dζ.

From this result, one can derive a second order differential equation to which ϕn(z) is a

solution; we refer the reader to [16] for details. The main purpose of our investigation is to

derive a comparable result for a related class of polynomials called paraorthogonal polynomials

on the unit circle (POPUC).

Given an infinitely supported probability measure µ on the unit circle and a complex

number β of modulus 1, we define the paraorthogonal polynomial Φn(z; β;µ) as the monic

degree n polynomial given by

Φn(z; β;µ) := zΦn−1(z;µ)− β̄Φ∗n−1(z;µ). (1)

Paraorthogonal polynomials and their zeros have received considerable recent attention from

the research community (see for example [2, 8, 17, 18, 19, 27, 29, 35, 37]). It is well-

known and easy to show that all of the zeros of Φn(z; β;µ) are distinct and lie on the unit

circle. Furthermore, if τ 6= β are distinct complex numbers of modulus 1, then the zeros of

Φn(z; β;µ) and Φn(z; τ ;µ) strictly interlace on the unit circle in that if x and y are two zeros

of Φn(z; β;µ) and [x, y] is the arc of the unit circle that runs from x to y in the counter-

clockwise direction, then [x, y]\{x, y} contains a zero of Φn(z; τ ;µ). Although paraorthogonal

polynomials are not orthogonal polynomials, they often serve as an appropriate analog of

OPRL in settings where the real line is replaced by the unit circle (see for example [18, 35]).

One of our main results is the next theorem, which can be thought of as an analog of the
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Ismail and Witte result that applies to paraorthogonal polynomials. In fact, the theorem

applies to any degree n monic polynomial satisfying the relation (1) for some complex number

β. As in [28], we write a measure on the unit circle as a measure in the variable θ ∈
[0, 2π). For brevity and because there is no possibility for confusion, we will suppress the

µ-dependence of various quantities in our notation.

Theorem 1.2. Suppose dµ(θ) = w(θ) dθ
2π

is a probability measure on the unit circle, where

w is continuous on [0, 2π] (mod 2π) and differentiable on (0, 2π) and let {αn}∞n=0 be the

corresponding sequence of Verblunsky coefficients. If β ∈ C, then the polynomial y(z) =

Φn(z; β) defined by (1) solves the following differential equation on any domain including

infinity or zero on which the coefficients are meromorphic:

0 = y′′(z) +

[
1− n
z
− h′n(z; β; β)

hn(z; β; β)

]
y′(z) (2)

+

[
W [hn(z; β; β), hn(z;−β; β)]

2β̄zhn(z; β; β)
− 1

z
((n+ zGn(z))Gn(z) + Jn(z)(Dn(z)− nαn−1))

]
y(z),

where

Gn(z) : = i

∫ 2π

0

|ϕ∗n−1(eiθ)|2w′(θ)
(z − eiθ)

dθ

2π

Dn(z) : = −iz
∫ 2π

0

ϕ∗n−1(e
iθ)2w′(θ)

(z − eiθ)einθ
dθ

2π

Jn(z) : = i

∫ 2π

0

ϕn−1(e
iθ)2w′(θ)

(z − eiθ)ei(n−2)θ
dθ

2π

hn(z;x; y) : = x̄(n(1− ȳαn−1) + zGn(z) + ȳDn(z))− z(Jn(z)− ȳGn(z)),

and W [f, g] denotes the Wronskian of f and g (that is, W [f, g] = fg′ − gf ′).

By allowing the parameter β to be arbitrarily chosen in C, we can apply our results to

a wide variety of polynomials including paraorthogonal polynomials and perturbations of

orthogonal polynomials without a precise understanding of the induced perturbation to the

measure of orthogonality.

In our applications of Theorem 1.2, we will focus on the case |β| = 1 so that the polynomial

Φn(z; β;µ) is a paraorthogonal polynomial. Notice that if we set β = αn−1, then Φn(z; β;µ)

is just the monic orthogonal polynomial Φn(z;µ). In this case, Theorem 1.2 yields a second

order differential equation solved by Φn(z;µ). If we set β = 0, then Theorem 1.2 yields

a second order differential equation solved by zΦn−1(z;µ), which can be rewritten as a

differential equation solved by Φn−1(z;µ). There is no reason to think that the second order

differential equations solved by Φn(z;µ) derived by these two methods will be the same as

each other or the same as the one produced by the results in [16] if those results apply. In

fact, we will see by example in Section 4.4 that these methods may yield different differential

equations. It is easy to see that the polynomial Φn(z;µ) satisfies many differential equations
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if one allows the complexity of the coefficients to grow with n. Indeed, if

Φ′′n(z;µ) + P (z)Φ′n(z;µ) +Q(z)Φn(z;µ) = 0,

and R(z) is any entire meromorphic function, then

Φ′′n(z;µ) + Φ′n(z;µ) (P (z) +R(z)Φn(z;µ)) + Φn(z;µ) (Q(z)−R(z)Φ′n(z;µ)) = 0.

In the next section we will discuss applications of Theorem 1.2 to electrostatics. In that

context, the coefficients in the second order differential equation determine the location of

charges that generate an electric field and the zeros of Φn(z; β;µ) mark the location of charges

in equilibrium with respect to that field. It is not surprising that a particular configuration

of charges can be in equilibrium with respect to different electric fields, so from a physical

perspective, the lack of uniqueness of the differential equation is also expected.

An intermediate step in the proof of Theorem 1.2 is of interest in its own right and can

be stated as follows:

Theorem 1.3. Suppose µ is as in Theorem 1.2 and τ, β are distinct complex numbers.

The polynomials u(z) := Φn(z; β, µ) and v(z) := Φn(z; τ, µ) solve the following system of

differential equations on any domain containing infinity or zero on which the coefficients are

meromorphic:

u′(z) = v(z)

(
hn(z; β; β)

z(β̄ − τ̄)

)
− u(z)

(
hn(z; τ ; β)

z(β̄ − τ̄)

)
(3)

v′(z) = v(z)

(
hn(z; β; τ)

z(β̄ − τ̄)

)
− u(z)

(
hn(z; τ ; τ)

z(β̄ − τ̄)

)
. (4)

The main restriction in the applicability of Theorems 1.2 and 1.3 is the requirement that

the measure be given by a continuous and differentiable weight function. However, for any

fixed n ∈ N and β ∈ ∂D, the map from measures to degree n paraorthogonal polynomials

that map 0 to β̄ is far from injective. In fact, in the pre-image of any such paraorthogonal

polynomial is a measure that satisfies the hypotheses of the above theorems. Indeed, we

have the following result, which is a consequence of the Bernstein-Szegő Theorem (see [28,

Theorem 1.7.8])

Theorem 1.4. Let µ be a probability measure with infinite support on the unit circle and

suppose β ∈ ∂D. Then

Φn(z; β;µ) = Φn

(
z; β;

ei(n−1)θ

ϕn−1(eiθ)ϕ∗n−1(e
iθ)

dθ

2π

)
where ϕn−1(z) = ϕn−1(z;µ).

The following result will be relevant for our applications and is especially useful when

combined with Theorem 1.4.

Proposition 1.5. Suppose w is as in Theorem 1.2.
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i) If w′(θ) = f(eiθ) where f is analytic in a neighborhood of the unit circle, then the

functions Gn, Dn, and Jn (defined in Theorem 1.2) can be analytically continued from

{z : |z| > 1} to {z : |z| > r} for some r < 1.

ii) If w′(θ) = f(eiθ) where f is a rational function without poles on the unit circle,

then the functions Gn, Dn, and Jn (defined in Theorem 1.2) can be meromorphically

continued from {z : |z| > 1} to all of C as rational functions with no poles except

possibly at zero and the poles of f inside D.

Proof. i) We present the proof for Gn; the proof in the other two cases is even easier. We

will make use of the fact that

|ϕ∗n(eiθ)|2 = ϕ∗n(eiθ)ϕn(eiθ)e−inθ.

Therefore, we can write

Gn(z) = i

∫ 2π

0

ϕ∗n−1(e
iθ)ϕn−1(e

iθ)f(eiθ)

(z − eiθ)einθ
dθ

2π
=

∫
|ζ|=1

ϕ∗n−1(ζ)ϕn−1(ζ)f(ζ)

(z − ζ)ζn+1

dζ

2π
. (5)

If |z| > 1, then our hypotheses allow us to move the contour of integration to the circle

{ζ : |ζ| = r} for some r < 1 and hence we obtain an analytic continuation of Gn(z) to the

exterior of this circle.

ii) Given the form of Gn, Dn, and Jn, it suffices to show that if R(t) is a rational function

of t without poles on the unit circle, then when |z| > 1∫ 2π

0

R(eiθ)

z − eiθ
dθ

2π

is a rational function of z with no poles except possibly at 0 and the poles of R inside D.

By using the partial fraction decomposition of R, this follows from the fact that if P is a

polynomial and m is a non-negative integer, then∫ 2π

0

P (eiθ)

z − eiθ
dθ

2π
=
P (0)

z
, |z| > 1,∫ 2π

0

1

(z − eiθ)(eiθ − x)m
dθ

2π
=

{
1

z(−x)m , |z| > 1, |x| > 1,
1

z(z−x)m , |z| > 1, |x| < 1.

�

By combining the previous two results, we conclude that every paraorthogonal polynomial

is a solution on all of C to a differential equation of the form (2) that has rational coefficients.

This will be especially relevant for our applications.

In the next section, we will discuss an application of polynomial solutions to linear second

order differential equations. In Section 3 we will prove Theorems 1.2 and 1.3. The key idea

will be to use the Szegő recursion in several places to simplify various formulas. Finally, in

Section 4 we present some detailed examples that highlight the applications discussed in the

next section.
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2. Applications

In this section, we will highlight some important consequences and applications of the

main results of the previous section.

2.1. Electrostatics. Orthogonal polynomials have proven to be useful tools when studying

the equilibrium positions of electrons that repel each other via the two-dimensional Coulomb

interaction. It was Stieltjes work that lead to the discovery that if n ≥ 3 particles are confined

to the interval [−1, 1] interacting by means of a logarithmic (i.e. Coulomb) potential, then

the unique energy minimizing configuration consists of one particle located at 1, one located

at −1, and the other n − 2 particles located at the (distinct) zeros of a particular Jacobi

polynomial (see [32, 33, 34] and see [36] for a proof). The key step in the proof of this

fact is rewriting the equilibrium condition on a collection of points as a second order linear

differential equation that is solved by the polynomial with zeros at precisely those points

and then recognizing that a Jacobi polynomial with the appropriate choice of parameters

is a solution to this differential equation (see [36] for details). Further developments in the

electrostatic interpretation of zeros of orthogonal polynomials on the real line can be found

in [3, 4, 12, 13, 14, 20].

Our main application of the results in Section 1 will be to demonstrate that the zeros of

certain families of POPUC are the locations of points that are in electrostatic equilibrium.

We will use the convention (as in [11]) that if a particle of charge q is located at a point

a ∈ C and a particle of charge p is located at a point b ∈ C, then the force on the particle

at b due to the particle at a is 2pq/(b̄− ā).

We will consider the problem of creating an electric field that will keep identical charges at

fixed points on the unit circle stationary. More precisely, suppose we are given a collection

{x1, . . . , xn} ⊆ ∂D. We will demonstrate a way to find a number m, a collection of points

{ai}mi=1 ⊆ C \ {x1, . . . , xn}, and a set of real charges {qi}mi=1 so that if a particle of charge

+1 is placed placed at each xj (j = 1, . . . , n) and a particle of charge qi is placed at ai
(i = 1, . . . ,m), then the total force on the particle at each xj is zero (j = 1, . . . , n). In

other words, if we have a collection of identically charged particles all lying on a concentric

circle, we will demonstrate a way to construct an electric field that will keep these particles

stationary. The points {ai}mi=1 and charges {qi}mi=1 comprise what we call a set of electric

field generators (in the language of [7], the charged particles at {xj}nj=1 would be called

mobile charges and the charged particles at {ai}mi=1 would be called impurity charges). It

is important to keep in mind that the charged particles at the points {xj}nj=1 interact with

each other as well as with the electric field generators.

With our motivation now clearly stated, we provide the following definitions:
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Definition. i) Given a set of electric field generators {ai}mi=1 and {qi}mi=1, we will say that

a collection of points {x1, . . . , xn} located on a smooth curve Γ is in Γ-normal electrostatic

equilibrium if for each j = 1, . . . , n, the force at xj is normal to Γ at xj.

ii) Given a set of electric fields generators {ai}mi=1 and {qi}mi=1, we will say that a collection

of points {x1, . . . , xn} ⊆ ∂D is in total electrostatic equilibrium if for each j = 1, . . . , n,
n∑

k=1
k 6=j

1

xj − xk
+

m∑
i=1

qi
xj − ai

= 0. (6)

Notice that if Γ is the unit circle, then the Γ-normal electrostatic equilibrium condition

can be rewritten as

Im

xj
 n∑

k=1
k 6=j

1

xj − xk
+

m∑
i=1

qi
xj − ai


 = 0, j = 1, 2, . . . , n, (7)

so it is clear that a collection of points on the unit circle that is in total electrostatic equi-

librium is also in ∂D-normal electrostatic equilibrium, but the converse is false. Indeed, it is

well-known and easy to show that n particles of identical non-zero charge placed at the nth

roots of unity and subject to no external force are in ∂D-normal electrostatic equilibrium,

but are not in total electrostatic equilibrium.

The formula (7) is a restatement of the fact that if we place particles of charge +1 at each

xj (j = 1, . . . , n) and a particle of charge qi at each ai (i = 1, . . . ,m), then the condition (7)

is satisfied if and only if the force exerted on the particle at xj is normal to the unit circle

at xj for each j = 1, . . . , n (see [11, 22]). Similarly, the condition (6) is satisfied if and only

if the force exerted on the particle at xj is equal to zero for each j = 1, . . . , n (see [23]).

As in the case of the interval, orthogonal polynomials are a useful tool when studying

electrostatic equilibria on the circle. In [6], Forrester and Rogers use Jacobi polynomials to

find a collection of 2n points on the unit circle that is in ∂D-normal electrostatic equilibrium

when the electric field generators consist of a particle with charge p at 1 and a particle with

charge q at −1. Their result assumes the added symmetry condition that each arc of the

unit circle connecting 1 to −1 contains an equal number of points.

Our main application is the following result:

Theorem 2.1. Given any collection of n ≥ 2 distinct points {x1, . . . , xn} ⊆ ∂D, there exists

a set of electric field generators so that the collection {x1, . . . , xn} is in total electrostatic

equilibrium.

In fact, given any n distinct points {x1, . . . , xn} ⊆ ∂D, we can write down an explicit

algorithm for finding the electric field generators. We proceed as follows:

• Step 1: Define the measure µn on ∂D by

µn =
1

n

n∑
j=1

δxj ,
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and define β := (−1)n+1
∏n

j=1 x̄j.

• Step 2: Perform Gram-Schmidt orthogonalization on the linearly independent set

{1, z, . . . , zn−1} in L2(∂D, µn) to arrive at the sequence of orthonormal polynomials

{1, ϕ1(z;µn), . . . , ϕn−1(z;µn)}.
• Step 3: Define the probability measure

dνn :=
1

|ϕn−1(eiθ;µn)|2
dθ

2π
.

• Step 4: Calculate the quantity hn(z; β; β) for the measure νn in the domain {z : |z| >
1}. By Proposition 1.5, it will be a rational function S1(z)/S2(z) for some polynomials

S1 and S2.

• Step 5: Place a particle of charge −1/2 at each zero of S1, a particle of charge +1/2

at each zero of S2, and a particle of charge 1
2
(1− n) at zero.

The validity of the above algorithm will follow from the proof of Theorem 2.1. In order to

prove Theorem 2.1, we need to translate the equilibrium problem into a differential equation

so that we may apply the results of Section 1. The appropriate differential equation in this

setting is called a Lamé equation, which we now discuss.

2.2. The Lamé Equation. A generalized Lamé differential equation is a differential equa-

tion of the form

y′′(z) +

(
m∑
i=1

ti
z − wi

)
y′(z) +

S(z)∏m
j=1(z − wj)

y(z) = 0, (8)

where S(z) is a polynomial of degree at most m−2. Suppose we can find a polynomial P (z)

of degree N with distinct zeros that solves (8) and also satisfies P (wi) 6= 0 for i = 1, . . . ,m.

Let {pj}Nj=1 be the zeros of P . It is easy to verify that

P ′′(pj)

P ′(pj)
=

N∑
k=1
k 6=j

2

pj − pk
,

so setting y = P and z = pj in (8) shows

N∑
k=1
k 6=j

1

pj − pk
+

m∑
i=1

ti/2

pj − wi
= 0 j = 1, . . . , N.

We recognize this as the condition for total electrostatic equilibrium with external field

generated by a collection of charged particles located at {wi}mi=1, where the particle at wi
carries charge ti/2. We will see that the proof of Theorem 2.1 follows from applying the above

reasoning to the differential equation in Theorem 1.2 under the appropriate hypotheses. To

this end, Proposition 1.5 will be essential.

There is an extensive literature on the topic of generalized Lamé differential equations and

their relevance to electrostatics. We refer the reader to the references [4, 20, 21, 22, 23, 25, 26]



9

for further information. We also refer the reader to [3, 5, 9, 10] for further results concerning

applications of polynomial solutions to second order differential equations.

3. Proofs and Calculations

Proof of Theorems 1.2 and 1.3. Our proof begins very much in the same spirit as the proof

of [16, Theorem 2.1]. We begin by writing

Φ′n(z; β) =
n−1∑
k=0

ϕk(z)

∫ 2π

0

Φ′n(eiθ; β)ϕk(eiθ)w(θ)
dθ

2π

=
n−1∑
k=0

ϕk(z)

∫ 2π

0

ieiθΦ′n(eiθ; β)eiθϕk(eiθ)w(θ)
dθ

2πi

=
n−1∑
k=0

ϕk(z)

∫ 2π

0

d

dθ
[Φn(eiθ; β)]eiθϕk(eiθ)w(θ)

dθ

2πi
.

We then integrate by parts to rewrite this as

Φ′n(z; β) = −
n−1∑
k=0

ϕk(z)

∫ 2π

0

Φn(eiθ; β)
d

dθ
[eiθϕk(eiθ)w(θ)]

dθ

2πi

= i
n−1∑
k=0

ϕk(z)

∫ 2π

0

Φn(eiθ; β)
[
eiθϕk(eiθ)w

′(θ)− iw(θ)e2iθϕ′k(e
iθ) + eiθϕk(eiθ)

] dθ
2π
.

where we used the continuity properties of w. For each m ∈ N, let us define Km(z, t) :=∑m
j=0 ϕj(z)ϕj(t) to be the reproducing kernel for the measure µ and polynomials of degree

at most m. By [37, Section 2.2], we can rewrite the above expression as

Φ′n(z; β) = i

∫ 2π

0

Φn(eiθ; β)Kn−1(z, e
iθ)e−iθw′(θ)

dθ

2π

+ ϕn−1(z)

∫ 2π

0

(
eiθϕn−1(eiθ) + e2iθϕ′n−1(e

iθ)
)

Φn(eiθ; β)w(θ)
dθ

2π

= i

∫ 2π

0

Φn(eiθ; β)Kn−1(z, e
iθ)e−iθw′(θ)

dθ

2π
+ nΦn−1(z)(1− β̄αn−1), (9)

It follows from [37, Section 2.3] that (with ζ = eiθ)

Kn−1(z, ζ) =
κn−1ϕn−1(ζ)Φn(z; βζ)

z − ζ
, where β̄ζ =

ζΦn−1(ζ)

Φ∗n−1(ζ)
.
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If we plug this into (9) and simplify (using also the fact that ϕn−1(ζ) = ζ1−nϕ∗n−1(ζ) when

|ζ| = 1), we get

Φ′n(z; β) = Φn−1(z)

(
n(1− β̄αn−1) + izκn−1

∫ 2π

0

Φn(eiθ; β)w′(θ)ϕ∗n−1(e
iθ)

(z − eiθ)einθ
dθ

2π

)
− iκn−1Φ∗n−1(z)

∫ 2π

0

Φn(eiθ; β)w′(θ)ϕn−1(e
iθ)

(z − eiθ)ei(n−1)θ
dθ

2π

= Φn−1(z)(n(1− β̄αn−1) + zGn(z) + β̄Dn(z))− Φ∗n−1(z)(Jn(z)− β̄Gn(z)), (10)

One can also derive (10) from (9) by using the Christoffel-Darboux formula (see [30, Section

3]) to replace Kn−1(z; eiθ).

The relation (10) holds for all values of β ∈ C. Let τ ∈ C be distinct from β. Equation

(1) easily implies

Φn−1(z) =
β̄Φn(z; τ)− τ̄Φn(z; β)

z(β̄ − τ̄)
, Φ∗n−1(z) =

Φn(z; β)− Φn(z; τ)

τ̄ − β̄
.

If we plug this into (10), we get the following system of ODE’s:

Φ′n(z; β) = Φn(z; τ)

(
β̄(n(1− β̄αn−1) + zGn(z) + β̄Dn(z))

z(β̄ − τ̄)
+

(Jn(z)− β̄Gn(z))

τ̄ − β̄

)
(11)

− Φn(z; β)

(
τ̄(n(1− β̄αn−1) + zGn(z) + β̄Dn(z))

z(β̄ − τ̄)
+

(Jn(z)− β̄Gn(z))

τ̄ − β̄

)
Φ′n(z; τ) = Φn(z; τ)

(
β̄(n(1− τ̄αn−1) + zGn(z) + τ̄Dn(z))

z(β̄ − τ̄)
+

(Jn(z)− τ̄Gn(z))

τ̄ − β̄

)
(12)

− Φn(z; β)

(
τ̄(n(1− τ̄αn−1) + zGn(z) + τ̄Dn(z))

z(β̄ − τ̄)
+

(Jn(z)− τ̄Gn(z))

τ̄ − β̄

)
.

This completes the proof of Theorem 1.3. We continue with the proof of Theorem 1.2.

Equation (11) yields the following formula for Φn(z; τ):

z(β̄ − τ̄)Φ′n(z; β) + Φn(z; β)
(
τ̄(n(1− β̄αn−1) + zGn(z) + β̄Dn(z))− z(Jn(z)− β̄Gn(z))

)
β̄(n(1− β̄αn−1) + zGn(z) + β̄Dn(z))− z(Jn(z)− β̄Gn(z))

.

(13)

We can use (13) to write

Φ′n(z; τ) =

(
Φ′′n(z; β)z(β̄ − τ̄)hn(z; β; β)+

Φ′n(z; β)
(
(β̄ − τ̄)W [hn(z; β; β), z] + hn(z; β; β)hn(z; τ ; β)

)
(14)

+ Φn(z; β)W [hn(z; β; β), hn(z; τ ; β)]

)
hn(z; β; β)−2
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If we substitute (14) into (12), then the resulting differential equation is

z(β̄ − τ̄)

hn(z; β; β)2

(
Φ′′n(z; β)z(β̄ − τ̄)hn(z; β; β) + Φ′n(z; β)

(
(β̄ − τ̄)W [hn(z; β; β), z]

+ hn(z; β; β)hn(z; τ ; β)
)

+ Φn(z; β)W [hn(z; β; β), hn(z; τ ; β)]

)
(15)

=
hn(z; β; τ)(z(β̄ − τ̄)Φ′n(z; β) + Φn(z; β)hn(z; τ ; β))

hn(z; β; β)
− Φn(z; β)hn(z; τ ; τ).

This ODE holds for all τ ∈ ∂D (even at β if |β| = 1), so we can integrate both sides of this

differential equation around ∂D with respect to dτ/(2πi). To do so, we will use the fact that

τ̄ = 1/τ and apply the Cauchy Integral Formula. Performing this lengthy calculation gives

the ODE:

0 =− 2β̄z2Φ′′n(z; β) + zΦ′n(z; β)

[
−2β̄W [hn(z; β; β), z]

hn(z; β; β)
− hn(z;−β; β)

+ β̄
(
n(1 + β̄αn−1)− β̄Dn(z)− zJn(z)/β̄

) ]
+ Φn(z; β)

[
−zW [hn(z; β; β), hn(z;−β; β)]

hn(z; β; β)
+ hn(z; β; β) [n+ zGn(z)]

− β̄
((

n(1− β̄αn−1) + zGn(z) + β̄Dn(z)
) (
n− zJn(z)/β̄

)
+ z(Jn(z)− β̄Gn(z)) (nαn−1 −Dn(z))

)]
.

After some simplification, this can be rewritten as (2). �

In the proof of Theorem 1.2, the calculations up to equation (10) are very similar to those

in the proof of [16, Theorem 1.2]. However, our approach involving the system of first order

equations given by (11) and (12) differs from the approach used in [16], which involves raising

and lowering operators. In the next section we will see how these differing approaches result

in different differential equations (even in the case β = αn−1), exemplified by the fact that

the differential equation we derive depends on whether one chooses |z| < 1 or |z| > 1 when

evaluating the required integrals.

Proof of Theorem 2.1. First recall from [28, Theorem 2.2.13] that any collection of n distinct

points on the unit circle is the zero set of a paraorthogonal polynomial on the unit circle.

By Theorem 1.4, we may assume that the measure of orthogonality satisfies the hypotheses

of Proposition 1.5ii.

If µ is a measure that satisfies the hypotheses of Proposition 1.5ii, then all of the coefficients

in the differential equation in Theorem 1.2 are rational functions. Therefore, the ODE (2)

can be written

0 = Φ′′n(z; β) +

[
1− n
z
− h′n(z; β; β)

hn(z; β; β)

]
Φ′n(z; β) +

Q1(z)

Q2(z)
Φn(z; β), (16)
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for some polynomials Q1(z) and Q2(z). Since hn(z; β; β) is also a rational function, we can

write it as S1(z)/S2(z) for some polynomials S1 and S2. With this notation, we can rewrite

(16) as

0 = Φ′′n(z; β) +

[
1− n
z
− S ′1(z)

S1(z)
+
S ′2(z)

S2(z)

]
Φ′n(z; β) +

Q1(z)

Q2(z)
Φn(z; β).

If {kj,m}
deg(Sj)
m=1 are the zeros of Sj (j = 1, 2), then we have

0 = Φ′′n(z; β) +

1− n
z
−

deg(S1)∑
m=1

1

z − k1,m
+

deg(S2)∑
m=1

1

z − k2,m

Φ′n(z; β) +
Q1(z)

Q2(z)
Φn(z; β).

(17)

Once we show that Φn(z; β) and Q2(z) do not share any common zeros, then our discussion

in Section 2.2 implies the desired result.

Notice that since µ satisfies the hypotheses of Proposition 1.5ii, we can rewrite (16) as

0 = Φ′′n(z; β) +

[
1− n
z
− h′n(z; β; β)

hn(z; β; β)

]
Φ′n(z; β) +

[
R1(z)h′n(z; β; β)

hn(z; β; β)
+R2(z)

]
Φn(z; β), (18)

where R1 and R2 are rational functions without poles on the unit circle. Now, suppose for

contradiction that Q2 has a zero z0 ∈ ∂D that also satisfies Φn(z0; β) = 0. It follows that

Q1/Q2 has a pole at z0, which implies h′n(z; β; β)/hn(z; β; β) has a pole at z0 (since R1 and

R2 have no poles on ∂D). Notice that h′n(z; β; β)/hn(z; β; β) must have a simple pole at z0
and hence [

R1(z)h′n(z; β; β)

hn(z; β; β)
+R2(z)

]
Φn(z; β)

has a removable singularity at z0. However,[
1− n
z
− h′n(z; β; β)

hn(z; β; β)

]
Φ′n(z; β)

has a simple pole at z0 (by the Gauss-Lucas Theorem), and hence the right-hand side of (16)

is a rational function with a pole at z0, which means it is not the zero function. This is our

desired contradiction. �

We conclude this section by providing an explicit justification for the algorithm for finding

the set of electric field generators outlined at the end of Section 2. From [28, Theorem

2.2.13], we know that with µn and β defined as in Step 1 of the algorithm, the polynomial

zΦn−1(z;µn)−β̄Φ∗n−1(z;µn) vanishes precisely at {x1, . . . , xn}. The Bernstein-Szegő Theorem

implies Φn−1(z;µn) = Φn−1(z; νn) (νn is defined in Step 3 of the algorithm). Therefore

zΦn−1(z;µn)− β̄Φ∗n−1(z;µn) = Φn(z; β; νn).

Since νn satisfies the hypotheses of Proposition 1.5ii, we can make the conclusion as in Step

4 of the algorithm, and (17) shows that Φn(z; β; νn) solves an ODE of the proper form to

justify the placement of charges as in Step 5.
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4. Examples

In this section, we will consider applications of the results in Section 2 to specific proba-

bility measures on the unit circle.

4.1. Example: Lebesgue Polynomials. Let µ be Lebesgue measure on the circle. In this

case αn−1 = 0 and w is constant so w′ = 0. Let us also assume β = 1, so that Φn(z; β) = zn−1

and hn(z; β; β) = n. With this choice, the right-hand side of (2) becomes

n(n− 1)zn−2 + nzn−1
(

1− n
z

)
= 0,

exactly as predicted. We see that particles of charge +1 located at the nth roots of unity are

in total electrostatic equilibrium when the external field is generated by a charge of 1
2
(1−n)

located at the origin.

4.2. Example: Degree One Bernstein-Szegő Polynomials. In this case, let us write

dµ(θ) =
1− |ζ|2

|1− ζeiθ|2
dθ

2π
, |ζ| < 1.

Some properties of this measure are given on [28, page 85], but there are some typos in the

information there, which we will correct. If one sets ζ = reiϕ and defines the Poisson kernel

by

Pr(x, y) :=
1− r2

1 + r2 − 2r cos(x− y)

as on [28, page 27], then it holds that dµ(θ) = Pr(θ,−ϕ) dθ
2π

. From this, it is easy to verify

by direct computation that the Verblunsky coefficients satisfy α0 = ζ and αn = 0 for n ≥ 1.

The orthonormal polynomials {ϕn(z;µ)}n≥0 for this measure satisfy

ϕn(z;µ) =
zn − ζ̄zn−1√

1− |ζ|2
.

We can explicitly calculate the ODE satisfied by Φn(z; β), though for notational conve-

nience, we will specialize to the case ζ = 1/2. The computations are lengthy, but each step

can be handled using only simple contour integration and Fourier expansions. Indeed, if we

assume |z| > 1, then we calculate:

Gn(z) =
1

z(2z − 1)
, Dn(z) =

2(z2 − 1)

(2z − 1)2zn−1
, Jn(z) = 0.

With this knowledge of Gn, Dn, and Jn, we can write

hn(z; β; β) = β̄
nzn(2z − 1)2 + 2(2z − 1)zn + 2zβ̄(z2 − 1)

zn(2z − 1)2
=: β̄

P1,n(z)

P2,n(z)
,

where

P1,n(z) = zn(2z − 1)(n(2z − 1) + 2) + 2zβ̄(z2 − 1), P2,n(z) = zn(2z − 1)2,
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If we write

P1,n(z) = 4nz
n+1∏
j=1

(z − pj,n),

then we can apply formula (17) and write

0 = Φ′′n(z; β) +

(
2

z − 1/2
−

n+1∑
j=1

1

z − pj,n

)
Φ′n(z; β) +

Q1,n(z)

Q2,n(z)
Φn(z; β), (19)

where Q1,n and Q2,n are polynomials. Theorem 2.1 implies that if we place a particle with

charge +1 at 1/2 and a particle with charge −1/2 at each point {pj,n}n+1
j=1 , then n particles

with charge +1 located at the zeros of Φn(z; β) will be in total electrostatic equilibrium.

Figure 1 is a Mathematica plot illustrating this phenomenon when n = 22 and β = −1.
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Figure 1. The squares show the location of the zeros of Φ22(z;−1) and the

circles show the non-zero zeros of P1,22(z) when β = −1. The point {1/2} is

marked by a diamond.

Notice that the functions Gn(z), Dn(z), and Jn(z) are all holomorphic on D also. If we

assume |z| < 1 and n ≥ 2, then we calculate

Gn(z) =
1

2− z
, Dn(z) = 0, Jn(z) =

2zn−2(z2 − 1)

(z − 2)2
.

With this knowledge of Gn, Dn, and Jn, we can write

hn(z; β; β) =
β̄z(z − 2)(n(z − 2)− 2z)− 2zn(z2 − 1)

z(z − 2)2
=:

P1,n(z)

P2,n(z)
,

where

P1,n(z) = β̄z(z − 2)(n(z − 2)− 2z)− 2zn(z2 − 1), P2,n(z) = z(z − 2)2,
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If we write

P1,n(z) = −2z
n+1∏
j=1

(z − pj,n),

then we can apply formula (17) and write

0 = Φ′′n(z; β) +

(
2− n
z

+
2

z − 2
−

n+1∑
j=1

1

z − pj,n

)
Φ′n(z; β) +

Q1,n(z)

Q2,n(z)
Φn(z; β), (20)

where Q1,n and Q2,n are polynomials. Reasoning as above, we conclude that particles of

charge +1 located at the zeros of Φn(z; β) are in total electrostatic equilibrium when subject

to the external field generated by a charge of +1 at 2, a charge of −1/2 at each pj,n, and a

charge of 1
2
(2−n) at the origin. Figure 2 is a Mathematica plot illustrating this phenomenon

when n = 22 and β = −1.
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Figure 2. The squares show the location of the zeros of Φ22(z;−1) and the

circles show the non-zero zeros of P1,22(z) when β = −1. The point {2} is

marked by a triangle and the origin is marked by a diamond.

Since a charged particle at the origin exerts a force on a charged particle on the circle that

is normal to the unit circle at that point, then if we remove the charged particle at zero from

this example, the zeros of Φn(z; β) are still in ∂D-normal electrostatic equilibrium.

4.3. Example: Sieved Degree One Bernstein-Szegő Polynomials. In this case, we

consider measures of the form

dµ(θ) =
1− |ζ|2

|1− ζeiMθ|2
dθ

2π
, |ζ| < 1, M ∈ N.
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For this measure, the Verblunsky coefficients satisfy αM−1 = ζ and αn = 0 for n 6= M − 1

(see1 [28, page 84]). Again, for the sake of clarity, we will specialise to the case of ζ = 1/2

and derive the second order ODE for Φn(z; β). The calculations are very similar to those

in Example 4.2, so we present fewer details here. The only additional tricks we use are the

formulas

1

ξ(ξM − x)
=

M∑
j=1

1

Mx

(
1

ξ − x1/Me2πij/M
− 1

ξ

)
,

M

xM − 1
=

M∑
j=1

1

xe2πij/M − 1
,

which are easily checked. When |z| > 1 and n > M , we have

Gn(z) =
M

z(2zM − 1)
, Dn(z) =

2M(z2M − 1)

(2zM − 1)2zn−M
, Jn(z) = 0,

hn(z; β; β) = β̄

(
n+

2M

2zM − 1
+

2Mβ̄(z2M − 1)

(2zM − 1)2zn−M

)
.

If we perform an analysis similar to that of the previous example, then we deduce the

existence of a polynomial P1,n(z) given by

P1,n(z) := CzM
n+M∏
j=1

(z − pj,n)

for some C ∈ C so that Φn(z; β) satisfies

Φ′′n(z; β)+

(
M∑
j=1

2

z − 2−1/Me2πij/M
+

1−M
z
−

n+M∑
j=1

1

z − pj,n

)
Φ′n(z; β)+

Q1,n(z)

Q2,n(z)
Φn(z; β) = 0,

where Q1,n and Q2,n are polynomials. Therefore, particles located at the zeros of Φn(z; β)

- each carrying charge +1 - are in total electrostatic equilibrium when the external field is

created by a particle of charge +1 at each of {2−1/Me2πij/M}Mj=1, a particle of charge −1/2 at

each of {pj,n}n+Mj=1 , and a particle of charge 1
2
(1−M) at the origin. If we remove the charge

at the origin, then the zeros of Φn(z; β) are in ∂D-normal electrostatic equilibrium.

4.4. Example: Single Non-Trivial Moment. In this case, we consider the measure given

by

dµ(θ) = (1− cos(θ))
dθ

2π
=
|1− eiθ|2

2

dθ

2π
.

For this measure, the Verblunsky coefficients satisfy αn = −(n + 2)−1 (see [28, page 86]).

The monic orthogonal polynomials are given by

Φn(z) =
1

n+ 1

n∑
j=0

(j + 1)zj

1As in the previous example, we use the table on page 85 in [28] with Pr(θ, ϕ) replaced by Pr(θ,−ϕ).
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From this, it follows that

Φn(z;−1) =
zn+1 − 1

z − 1
,

which has zeros located at the (n+ 1)st roots of unity, except one. This means that particles

of charge +1 located at the zeros of Φn(z;−1) are in ∂D-normal electrostatic equilibrium

when the external field is generated by a single particle of charge +1 located at 1 (see also

[6] or [1, Theorem 3] with p = 1 and q = 0).

With the above formulas, and the fact that κn =
√

2n+2
n+2

, we calculate (for |z| > 1)

Gn(z) =
1

n(n+ 1)z

n∑
k=1

k2 − n− n2

zk
,

Dn(z) =
−1

n(n+ 1)

[
n2 +

n∑
k=1

n2 + 2n− 2kn− k2

zk
− n2

zn+1

]
,

Jn(z) =
−1

zn(n+ 1)

[
n−1∑
k=0

(n− k)2

zk

]
.

With this knowledge of Gn, Dn, and Jn, we can write down hn(z; β; β) as a ratio of two

polynomials, but the expression is extremely lengthy. For notational convenience, we consider

only the case β = −1:

hn(z;−1;−1) = −n(nzn+2 − (n+ 2)zn+1 + z + 1)

(n+ 1)zn+1(z − 1)
=:

P1,n(z)

P2,n(z)
,

where

P1,n(z) = −n(nzn+2 − (n+ 2)zn+1 + z + 1), P2,n(z) = (n+ 1)zn+1(z − 1).

If we write

P1,n(z) = −n2(z − 1)
n+1∏
j=1

(z − pj,n),

then the differential equation of Theorem 1.2 becomes

0 = Φ′′n(z;−1) +

(
2

z
−

n+1∑
j=1

1

z − pj,n

)
Φ′n(z;−1) +

Q1,n(z)

Q2,n(z)
Φn(z;−1),

where Q1,n and Q2,n are polynomials. Reasoning as above, we conclude that particles of

charge +1 located at the zeros of Φn(z;−1) are in total electrostatic equilibrium when the

external field is generated by particles of charge −1/2 at each pj,n and a particle of charge

+1 at the origin. Figure 3 is a Mathematica plot illustrating this phenomenon when n = 14.

For the sake of comparison with the results in [16], let us compute the differential equation

from Theorem 1.2 when setting β = αn−1 so that Φn(z; β) = Φn(z). This example was

considered in [16, Example 1] and it was shown there that the polynomial Φn(z) satisfies

Φ′′n(z) + Φ′n(z)

(
−n
z
− 3

1− z

)
+ Φn(z)

2n

z(1− z)
= 0.
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Figure 3. The squares show the location of the zeros of Φ14(z;−1) and the

circles show the zeros of P1,14(z) except z = 1. The diamond is located at the

origin.

In our calculations, we find (using Mathematica to simplify the expressions)

hn

(
z;
−1

n+ 1
;
−1

n+ 1

)
=
n(zn+3(n+ 1)2 − zn+2(2n2 + 6n+ 3) + zn+1(n+ 2)2 − z − 1)

zn+1(n+ 1)3(z − 1)3
.

One can then calculate

h′n
(
z; −1

n+1
; −1
n+1

)
hn
(
z; −1

n+1
; −1
n+1

) =
1

z
+

3

1− z
+

(zn+2(n+ 1)− zn+1(n+ 2) + 1)(z(n+ 1) + (n+ 2))

z(zn+3(n+ 1)2 − zn+2(2n2 + 6n+ 3) + zn+1(n+ 2)2 − z − 1)

and observe that the differential equation we derive is different than the one found in [16].

As mentioned in Section 1, this distinction is not unexpected.

If we define Gn, Jn, and Dn for z ∈ D, then for n ≥ 2 we have

Gn(z) =
−1

n(n+ 1)

[
n−1∑
k=0

(
zk(n2 + n− (k + 1)2)

)]
,

Dn(z) =
z

n(n+ 1)

[
n−2∑
k=0

(
zk(k − 3n+ 1)2

)]
,

Jn(z) =
−1

n(n+ 1)

[
n2zn +

n−1∑
k=0

(
zk((k + n+ 1)2 − 2n− 2n2)

)]
.

With this knowledge of Gn, Dn, and Jn, we can write down hn(z; β; β) as a ratio of two

polynomials, but the expression is extremely lengthy. For notational convenience, we consider

only the case β = −1:

hn(z;−1;−1) =
n(zn+2 + zn+1 − (n+ 2)z + n)

(n+ 1)(z − 1)
=:

P1,n(z)

P2,n(z)
,
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where

P1,n(z) = n(zn+2 + zn+1 − (n+ 2)z + n), P2,n(z) = (n+ 1)(z − 1),

If we write

P1,n(z) = n(z − 1)
n+1∏
j=1

(z − pj,n),

then the differential equation of Theorem 1.2 becomes

0 = Φ′′n(z;−1) +

(
1− n
z
−

n+1∑
j=1

1

z − pj,n

)
Φ′n(z;−1) +

Q1,n(z)

Q2,n(z)
Φn(z;−1),

where Q1,n and Q2,n are polynomials. Reasoning as above, we conclude that particles of

charge +1 located at the zeros of Φn(z;−1) are in total electrostatic equilibrium when the

external field is generated by particles of charge −1/2 at each pj,n and a particle of charge
1
2
(1 − n) at the origin. Figure 4 is a Mathematica plot illustrating this phenomenon when

n = 14.
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Figure 4. The squares show the location of the zeros of Φ14(z;−1) and the

circles show the zeros of P1,14(z) except z = 1. The diamond is located at the

origin.
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[9] D. Gómez-Ullate, N. Kamran, and R. Milson, A conjecture on exceptional orthogonal polynomials,

Found. Comput. Math. 13 (2013), no. 4, 615–666.
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polynomials: old, new, and some open problems, J. Comput. Appl. Math. 207 (2007), no. 2, 258–272.

[21] M. Marden, Geometry of Polynomials, American Mathematical Society, 1966.
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