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MESOSCALE MODELS AND APPROXIMATE SOLUTIONS FOR
SOLIDS CONTAINING CLOUDS OF VOIDS*

V. G. MAZ’YAT, A. B. MOVCHAN?}, AND M. J. NIEVES?

Abstract. For highly perforated domains the paper addresses a novel approach to study mixed
boundary value problems for the equations of linear elasticity in the framework of mesoscale approx-
imations. There are no assumptions of periodicity involved in the description of the geometry of the
domain. The size of the perforations is small compared to the minimal separation between neigh-
boring defects and here we discuss a class of problems in perforated domains, which are not covered
by the homogenization approximations. The mesoscale approximations presented here are uniform.
Explicit asymptotic formulas are supplied with the remainder estimates. Numerical illustrations,
demonstrating the efficiency of the asymptotic approach developed here, are also given.
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1. Introduction. Mesoscale approximations have been introduced and rigor-
ously studied in [20, 24, 26]. Physical applications in composite systems in electro-
magnetism were also addressed in the earlier papers [8, 9]. The study of Green’s
kernels as well as asymptotic analysis of solutions to eigenvalue problems for dense
arrays of spherical obstacles was performed in [30]. Compared to classical homoge-
nization approaches (see [3, 32, 12]), the mesoscale approximation does not require
any constraints on periodicity of the microstructure, and it is uniformly valid across
the whole domain, including neighborhoods of singularly perturbed boundaries.

We also would like to cite the classical work on homogenization approximations of
composite media, published in [11, 5, 31]. This work includes efficient homogenization-
based constitutive models for periodic composites, and significant extension to the case
of nonlinear solids. In our case, discussed in the present paper, we pursue a different
target, for configurations where homogenization, in the classical sense, is simply im-
possible, and instead of addressing a model of an averaged medium, we propose an
efficient asymptotic approach of pointwise uniform approximations, which work up to
the boundaries of small impurities. This approach extends to configurations where
the number of small inclusions becomes large, and hence no standard asymptotic
approximations for dilute media would apply.

Prior to the development of the mesoscale asymptotic approach, many papers
and monographs (see, for example, [6, 7, 13, 14]) have appeared which model singular
perturbations of various domains. Examples include domains with irregular bound-
aries, thin components, or domains containing either a single small defect or several
defects. The method of compound asymptotic expansions of solutions to such prob-
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lems is described in [28, 29]. In particular, for domains with small defects, asymptotic
approximations have proven to be superior to the finite element method (FEM), even
when the overall number of defects is chosen to be large [21]. For domains with per-
forations, the approximations presented in [28, 29] use model problems posed in the
domain without defects and problems posed in unbounded domains, in the exterior
of individual inclusions. Integral characteristics of the defects are used here in con-
nection with the energy of model fields in the exterior domains. For rigid inclusions
we refer to the capacity of the inclusions, whereas for voids we use the dipole matrix,
that correspond to the Dirichlet and Neumann boundary conditions, respectively.

The method of compound asymptotic expansions has also led to the development
of uniform approximations for Green’s kernels for domains with small defects for
the Laplacian, corresponding to a variety of boundary value problems involving rigid
inclusions [16, 17], voids [19], and soft inclusions [23]. Approximations for Green’s
kernels in long rods have also appeared in [18]. There exist several approximations for
Green’s tensors of vector elasticity for solids with rigid inclusions [21, 22] and holes
with traction free boundaries [25]. Mesoscale approximations of Green’s function for
the Laplacian in a solid with rigid boundaries has been derived in [20].

A systematic presentation of the theory of mesoscale approximations in densely
perforated domains is given in the recent monograph [25]. In particular, it was demon-
strated that uniform mesoscale asymptotic approximations are of high importance for
the analysis of fields in solids containing nonuniformly distributed clouds of small
voids or inclusions. In such configurations, the traditional computational approaches
like FEM are inefficient.

Recently, the method used to develop mesoscale approximations for scalar prob-
lems posed in solids with many small voids and inclusions has been extended to the
Dirichlet problem of elasticity in solids with a cloud of rigid inclusions [26]. The ele-
gant algorithm, presented in that paper, refers to capacitary potentials centered at the
small impurities, and the evaluation of intensities of the sources associated with these
capacitary potentials was a significant challenge in the mesoscale regime when the
number of inclusions becomes large. We meet a different challenge, when the bound-
ary conditions at the surfaces of small impurities are replaced from the Dirichlet to
the Neumann type, i.e., when tractions (or surface forces) are set on the boundaries
of the small impurities. As the stress concentration reduces significantly, compared to
the Dirichlet case, the problem of pointwise approximation of the displacement field
involves dipole tensors rather than capacitary potentials, and hence the asymptotic
procedure changes significantly. In the mesoscale regime, such a problem has never
been addressed for problems of vector elasticity, and this new study is the main focus
of our present paper.

Here the approach of [25] is applied to a mixed boundary value problem of vector
elasticity in an elastic solid, which contains a cloud of many voids whose boundaries are
traction free. The number of voids is denoted by N > 1. Each void is a concentrator
of stress, and analysis of boundary layers is carried out in terms of special classes
of dipole fields, which characterize the shape of voids and elastic properties of the
material. The schematic representation of the porous solids with a cloud of N voids is
shown in Figure 1. Two small parameters are introduced as the normalized diameter
of a void and the minimal distance between neighboring voids within the cloud.

Let Q be a bounded domain in R? representing an elastic solid. Contained in
are many small voids, ng), 1 < j < N, whose diameters are characterized by the
small parameter € and that occupy a set w C 2 representing a cloud of voids. The

sets Q0 and ng), j=1,...,N, are assumed to have smooth boundaries. In addition,
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The solid Q

The collection of voids wéj), 1<j<N

Fic. 1. The solid Qn containing a cloud w of voids.

the minimum distance between the centers O(k), 1 < k < N, of each void is connected
with another small parameter d. The geometry of the elastic solid with many small

perforations will be described by the set Qn = Q\ Uj-vzl w.

In the framework of vector elasticity, the Lamé operator and the operator con-
nected with the application of external tractions will be denoted by L(Vx) and T'(V),
respectively.

The displacement field uy satisfies the governing equations of static elasticity:

(1.1) L(Vx)uN(x) —+ f(x) =0 , X€E QN ,
uy(x) =0, x€9N,
T(Vaun(x) =0, xcdwl) 1<j<N.

In (1.1), f € Loo(2n) is a vector function representing the action of body forces inside
the perturbed solid. The formal asymptotic approximation of the solution, presented
in the paper, is generic and works for the arbitrary loads from L.,. However, the
remainder estimate carefully addressed here, requires an additional technical atten-
tion to the cases when f can be extended inside the cloud. Since the procedure is
fairly standard, and it is based on the introduction of the special set of cut-off func-
tions near small impurities and treating accordingly the commutators of L and the
cut-off functions (similar to [25]), we would like to present an algorithm for a simpler
configuration. Such a presentation will not embrace the reader into additional tech-
nical derivations, while the main ideas of the proofs are presented in every detail and
the steps of technical formal derivations are clear and well explained. Hence, here
we assume that the body force term f is chosen in such a way that w N supp f =
@ and dist(supp f,0w) > C, with C being a positive constant independent of &
and d.
The construction of the approximation for uy presented here depends on several

model fields:

1. the solution u of the problem in ) without any voids;

2. the regular part H of Green’s tensor in 2;
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3. a matrix function Q) that solves a Neumann problem in the exterior of the
scaled void w® whose columns are known as the dipole fields for the elastic
void; a rescaling is applied to obtain ng) for the small void wgk);

4. a constant matrix M%), called the dipole matrix of the scaled void w®), that
characterizes the void’s shape and the elastic material properties. The dipole
matrix Mgk) for the small void w. is constructed from M) by rescaling.
The geometry of the voids is assumed to be chosen so that the maximum

and minimum eigenvalues /\Eﬂx and A respectively, of the matrix —Mgk)

min’
satisfy the inequalities
(1.4) Cie? < A% and B < e
for k=1,..., N, where C; and Cs represent different positive constants.

For convenience of notation, we also use the vector E of normalized elastic strain,
corresponding to the displacement field u, so that E(u) = E(Vx)u, where E is the
linear matrix differential operator.

The constant vector V and matrices M and S are also used in the approximation

for uy:
V= ((E(Vx)TU(X))T x:o(N))T ’

oy BTG

M = diag{M®P ... MM} |

and

E(VX)T(E(V}’)TG(yax))T x=0( it 7& .7 ’
S = y=00

Osx6 otherwise ,

where Qgxg is the 6 x 6 null matrix; also in the text below II,,«, will stand for the
n x n identity matrix.

The main result of this article is the uniform asymptotic approximation of the
displacement field uy, as presented in the following theorem.

THEOREM 1. Let the small parameters € and d satisfy the inequality

(1.5) e<cd

with ¢ being a sufficiently small constant. Then the approximation for uy is given by

}C(k)+RN(x) ,

z=0Q (k)

N
(1.6) un(x) = u(x)+y_ {Qﬁk) (%)~ (E(V2)"H(z,x)"MP
k=1

where C = (CNT ... (CNNIT solves the linear algebraic system
(1.7) -V = (]IGNX(;N—FSM)C ,
and for the remainder Ry, the energy estimate holds

(1.8) /QN tr(o (R )e(Ruy))dx < Const {alld*“ + 55d*3}||E(u)||2Lm(Q) .

Here Const in the above right-hand side is independent of € and d.
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3.

F1a. 2. A configuration of N = 2176 voids arranged according to the description presented in
section 8.1.

This representation (1.6) is uniform and it engages several classes of model fields,
which are independent of the small parameters e and d (also see [25]).

The structure of the paper is as follows. Main notations are introduced in sec-
tion 2. Model problems used to approximate uy are introduced in section 3. The
formal approximation of uy is then provided in section 4. This approximation relies
on the solution of the algebraic system (1.7) and the solvability of this system is stud-
ied under the constraint (1.5) in section 5. Then, in section 6, the energy estimate
(1.8) for the remainder of the approximation is proved. Simplified asymptotic approx-
imations for uy are then given in section 7. The asymptotic approach is applicable to
nonperiodic clusters of voids as shown, for example, in Figure 2 and in section 8 we
demonstrate the efficiency of the approach presented here against benchmark finite
element computations in COMSOL. Following this, conclusions and discussion are
given in section 9. Appendix A contains a local regularity estimate used in the proof
of the energy estimate (1.8). In Appendix B, a detailed proof of intermediate steps
used to show the solvability of (1.7) is presented. Finally, in Appendix C, we show
that for certain geometries, dipole characteristics can be constructed in the closed
form for the case of spherical cavities and explicit representations are given.

2. Geometry of the perforated domain and main notations. A domain
Q C R? will be used to denote the set corresponding to an elastic solid without holes,
with smooth frontier Q2. For a small positive parameter ¢ > 0, the open set ng ) is
defined in such a way that it contains an interior point O), has smooth boundary
8w§j ), and a diameter characterized by €. The collection of sets w(j ), 1<j57 <N, will
represent the small voids contained inside the set € that are subject to some further

geometric constraints discussed below. In this way, we define the perturbed geometry

Qn = O\ Uj-vzl w? . Tt is also assumed that a small parameter d characterizes the

minimum distance between points in the array {O(j)}évzl, and that this minimum

distance is 2d. Another geometric constraint is the assumption of the existence of a
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set w that satisfies

N N
U wéj) Cuw, dist U wéj),ﬁw >2d, and dist(Ow,00Q)>1.
j=1

j=1
It is also useful to introduce the matrix functions:

z; 0 0 2—1/2332 2—1/2333 0
(21) E(X) - 0 To 0 271/2.@1 0 271/2‘@3
0 0 x5 0  2°Y2p 271/2,

and
100 272 2-1/24, 0
(2.2) Ex)=(01 0 —27Y2 0 27124
001 0 —9= 124, _9=1/2y,

These matrices satisfy the conditions
E(VX)TE(X) =I6x6 E(Vx)TE(X) = O6x6 »

where I,,«x, and OQ,x, are the n x n identity and null matrices, respectively. For
square null matrices and for identity matrices we also use the notation involving a
single subscript index, i.e., I, and Q.

The matrices £ and E also lead to a compact form of the first-order Taylor ap-
proximation for a vector function u about x = O

u(x) = £(x)€(Vx) u(0) + E(x)E(Vx) u(0) + O(|x*) ,
and allow the Lamé operator L(Vy) to be defined as

L(Vy) = E(Vx)AE(V,)T

with
B @3><3 /\—|—2u A A
A= o B=[ A at2u A
O3x3 2uls A A A+2u

The corresponding traction operator T, (V) is then
T, (Vx) := E(m)AE(Vx)",

which will be applied on the boundary of an open set with n being the unit outward
normal to the set.

The strain tensor e(v) = [e;;(V)]? ;—;, stress tensor o/(v) = [04;(v)]?;_,, and the
tensor of rotations n(v) = [n;; (V)]ijzl for a vector field v takes the forms

e(v) = %((V @v)+(Vav)h), o) =Ar(e));+2ue(v),
and

n(v) = 5(Vev) -~ (Vev)?).
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The matrix J = [J®]3_, | where J is the ith column of this matrix, is

0 —x3 €T
(2.3) Jx)=—1| 23 0 —z1 |,
—XT2 X 0

and this plays a role in the description of the overall moment acting on an elastic
body. It is noted that

-1

0
0 0|,
0

-1

0
n(JW) = , () =10
1

o O O
o = O
o O O

0
and n(J®)=[ -1
0

OO =
o O O

The strain and stress vectors denoted by E and N, respectively, are defined by

E = (e11, €92, €33, V2e12, V2e13, V2€93)T |

(2.4)
N = (011,092, 033, V2012, V2013, V2093)T

and can also be introduced through the matrix operator (2.1) as
(2.5) E(v) = E(Vx)Vv and N(v) = AE(Vx)V

for a vector function v. Note that the quantity S(U) = tr(e(U)e(U)) can also be
represented as

I; O
(2.6) S(U) =E(U)T ’ ’ E(U).
(OF 271]13

3. Model fields. In this section, we discuss the model fields used in the meso-
scale approximation of uy in detail. We begin with an introduction of fields defined
in the unperturbed set €:

1. The solution of the exterior Dirichlet problem. The vector field u is a solution

of
(3.1) L(Vxu(x)+f(x) =0, xeQ,
(3.2) ulx) =0, x€9Q,

where f satisfies the same conditions as in the statement of problem (1.1)-
(1.3), and the same notation will be used to represent the extension of f by
zero inside the voids wéj ), 1<j<N.

2. The Green’s tensor for the solid 2. The notation G will refer to the Green’s
tensor in the domain €2 that is a solution of

(33) L(VX)G(X7Y) + 6(X - y)]I3 = @3 , X, ¥ € Q )
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and satisfies the homogeneous Dirichlet condition
(34) G(X3Y):@37 xe@Q,yEQ

The regular part H of this tensor is represented by

where I' is the Kelvin—Somigliana tensor
(3.6)
1 1 (X—y)®(x—y)}
I'(x,y) = A+ 3u)I5 + (N + 7
%) = ST ey L W+ O T
and

L(Vx)l'(x,y) +d(x —y)I3 =03 .

The above problem then implies that H(x,y) = (H(y,x))7, x,y € Q.
Next, we introduce the boundary layer fields for the small voids, known as
the dipole fields [19, 27].

3. The dipole fields for the voids. In the construction of the boundary layers
in the asymptotic algorithm, in the vicinity of the void wg , the physical
fields known as dipole fields will play an essential role. They are defined as
functions of the scaled variable §; = e~ 1(x — 0W) outside of the scaled set
wd = {¢; 1 e€;+ 00 € WY )} The dipole fields form the columns of the
3 x 6 matrix Q) where

(3.7) L(Ve, )Q(”(S )= 0356, & €RNw@,
(3.8) T,(Ve,)QY (&) =EmUA, & € 0w,
(3.9) Q(”(E ) = Osxg, as  |€;] = oo,

where n¥) is the unit outward normal to R*\w(@) and Qs is the 3 x 6 null
matrix.
The right-hand sides in the Neumann boundary condition (3.8) are subjected to
the constraints that the total force on boundary dw?) and the resultant moments are
ZEro:

(3.10) | Tu(Ve)Q0 (€ )dse, = O
Ow(d)
(3.11) | T€IT(Te)Q0 (€ dse, = D

A special matrix M) with constant entries, is also required to construct the leading-
order behavior of the matrix Q) at infinity and this is called the dipole matrix. The
behavior of QW) far away from the void w?) is described in the next lemma (see
19, 27)).

LEMMA 1. For [§;| > 2 the matriz QY) admits the form

(3.12) QU (&)) = —(E(Ve,)T(§;,0)"™™Y + O(l¢;| ) .
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4. Formal mesoscale approximation for up. In this section, the derivation
of the mesoscale asymptotic approximation for uy in Theorem 1 is formally derived.
First we note that in what follows, we will need the matrices Qg )(x) =ecQU(¢ ;) and
ng) = 3MU). According to [19, 27], the dipole matrix M) is symmetric negative
definite.

In the next lemma and the following text the notation Const will represent dif-
ferent positive constants independent of the parameters ¢, d, and N.

The mesoscale approximation for the displacement field uy is now defined by the
following.

LEMMA 2. The formal approximation of uy is given in the form

N
(1) ) = uGo-+3 {QP 60— (E(V) Hzx)™MP|  ACH 4 Ry(),

where the coefficients CY) satisfy
(4.2)

E(Vy) u(x) c® =0

o, HCO 3 BV (EV) G M

k#j x=0)
1<k<N

for 1 < 5 < N. The remainder Ry is a solution of the boundary value problem for
the homogeneous Lamé equation in Qn, with the mized boundary conditions

Ry(x) = ¢(x) on 09 and T,(Vy)Ry(x) = ¢V (x) onx € wl) |1 < j <N,

where the right-hand sides satisfy the estimates

X etew)
(4.3) |¢p(x)| < Const kz_:l m 7 x € 99,
and
j . 141k
(44) |9V (%) < Const | e(1+2CO)+ - e 7
— |x- Ok)|4
el

x€cdwd 1<j<N,
and the ¢>(j), 1 < j <N, fulfill the orthogonality conditions

(4.5) o dWdsx =0, / PRICE 0MepWds, =0, 1<j<N.
dwg’ dwg’

Proof. The orthogonality conditions (4.5) follow from (4.1), the Betti formula,
and the model problems introduced in section 2.
According to problem 1, section 2, the vector function

(4.6) R = uy(x) - u(x)

satisfies the homogeneous Lamé equation for x € Qy. Since both uy(x) and u(x)
satisfy the homogeneous Dirichlet condition on 9f2, then R%)(X) = O for x € 90.
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Next consider the tractions of the R(l) on 8w§j ). This condition, using Taylor’s

expansion about x = OU) | takes the form

Tn(Vx)R%) =Tn(Vx)(un(x) —u(x)) = —Tn(Vx)u(x) ,
(4.7) = —Tu(V)u(x)| _5; +0(), x€dwl? 1<j<N.

An approximation for R%) is then sought as

N
(4.8) = {Qm — (B(V,) H(z,x))"TM®)
k=1

(k)
z=0(k) }C T RN (X) ’

The goal is now to determine the vector coefficients C*), 1 < k < N, to complete the
formal approximation. It is noted that the remainder in (4.8) is a solution of

L(VX)RN(X):O, XEQN s

and from the boundary condition for the regular part H of Green’s tensor (see (3.3)-
(3.5)), the exterior Dirichlet condition for Ry is

N
=Y {60 - (E(V)T@x)™MP | Ae®
1 z=0()
N ook
3 E [C™]
(49) =0 2 m) , X€E o0 s

where Lemma 1 has also been used. Here in addition to using (3.12), we have also
employed the identity

(E(Vx)T(x, 09)T = ~(E(V,) T(x,2)"|,_o0)

which explains the sign “—” in the right-hand side of (4.9) and (4.1). In order to derive
the vector coefficients C(9), 1 < j < N, the tractions on the interior boundaries for

Ry should be considered. For x € 80.)(] ) according to (4.7)

T, (V)R (x) = =T}, (Vy )u(x)|x om — Tn(Vx)QY) (x)CW

- Y TV{QW () — (B(V,) H(zx) M

k#j
1<k<N

+0(e) + O(E®ICY))), xedwl ,1<j<N.

}Cac)
z=0(k)

Condition (3.8) and Lemma 1 then provide a simplified form of the above traction
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condition on 8w§j ).

+ Y BV EV) G MY e

#J
1<k<N

31() 54|C(k)|

xedw [ 1<j<N.
Applying the Taylor expansion once more about x = O gives

Tn(Vx)Rn(Xx)

= -Em)AL E(V) ux)| _g, +CY

+ E(Vx) (B(V2)"G(z,x)"MP)| _ ,,Cc?
k#j x=00)
1<k<N
310G ef|CW] i
102N

Thus, we can remove the leading-order discrepancy in the preceding boundary condi-
tion by allowing CY) to satisfy the system of equations

(4.11) E(Vy)Tu(x) o(_)+c<ﬂ'>
+ Y B(V)T(E(VL) Gzx)™™MP| _,,cP =0
k#j x=00)
1<k<N

for 1 < j < N. Combining (4.6), (4.8), and (4.9)—(4.11) completes the proof of the
lemma. |

5. Algebraic system for CU) and its solvability. Before presenting the en-
ergy estimate for the remainder Ry, the solvability of the algebraic system (4.2) is
discussed in this section under the constraint that € < cd. We first introduce some
notations to simplify the analysis.
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Using the following vectors,
C=(CUHT .. (N  and
V = ((E(Vx) ux)" A

T
<
L

=
£
\J
3

x=0Mm’ "’
and the 6N x 6N symmetric matrices:
M = diag{M® ... MM}

E(VX)T(E(V}’)TG(yax))T x=0 if ] 7& k )
S= =0
Osg otherwise ,

(4.2) can be written as
(51) -V = (HGNX§N+SM)C .

5.1. Solvability of the algebraic system (5.1). Here, a result concerning the
solvability of the system (5.1) is proved.
LEMMA 3. Let the parameters € and d satisfy the inequality

(5.2) e<cd,

where ¢ is a sufficiently small constant. Then, the linear algebraic system (5.1) is
solvable and

3

x=00)

N ) N
(5.3) > ICUP < Const Y [Blu(x))?|

where the strain vector E(u(x)) is defined in (2.4).
Proof. By taking the scalar product of (5.1) with MC and using the Cauchy
inequality we deduce

(54)  (—MC,C) — (MC,SMC) = (MC, V) < (-MC, C)Y/2(—-MV, V)¥/2 .
Note that the term (MC,SMC) admits the form
N
(5.5) (MC,SMC)=> (M C)"
j=1

J
k<N

H
IA o

In Appendix B, it is shown that (5.5) satisfies
(5.6) |(MC,SMC)| < Const d~2(MC,MC) .
Returning to (5.4), this can then be used to establish that

12 (MC,SMC)
(-MC, C)1/2
(MC, MC)
(-MC,C)1/2

(-MV, V)2 > (-MC, C)

> (~MC, C)'/2 — Const d—3
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We note that

max

(MC,MC) = (-MC,-MC) < Const max \}) (-MC,C)
1<k<N

and since the eigenvalues of the dipole matrices —Mgk), 1 < k < N, are O(&3)
according to (1.4), it follows

(=MV, V)¥/2 > (1 — Const £3d~%)(—MC, C)*/?

Estimate (5.3) now follows from (5.2) and (2.5). The proof is complete. O

6. Energy estimate for the remainder Ry. With the formal mesoscale
asymptotic approximation of uy in place, the energy estimate for the remainder
term Ry in Theorem 1 is now obtained.

LEMMA 4. Let the parameters € and d satisfy the inequality

e <cd,

where ¢ is a sufficiently small constant. Then the remainder term Ry satisfies the
enerqy estimate

(6.1) /Q tr(o(Ry)e(Ry))dx < Const {s“d‘“ + €5d_3}||E(u)||2LDO(Q) ,

where the constant in the right-hand side is independent of € and d.
Prior to the proof of Lemma 4 and Theorem 1 we introduce several auxiliary
notations.

6.1. Auxiliary functions. In this part of the proof, auxiliary functions will be
introduced that will allow the remainder Ry to be estimated. First, cutoff functions
will be considered whose supports are located in the vicinity of the boundaries of Q.

Namely, the cutoff function ng) € C{)’"(Bé?), 1 < k < N, will be used that is
equal to 1 inside the ball Bé?. A cutoff function xg is also required and will allow for
certain domains of integration to be concentrated near the boundary 0€2. With the
set Vs = {x € Q:0 < dist(x,0) < ¢} we define xo € C5°(V), where V =V 5. The
function o is equal to 1 on V), /4, and zero when x € Q\V.

Now vector functions ¥y, £k = 0,1,..., N, are introduced that satisfy the condi-
tions
(6.2) Uy(x) = —Rpy(x) for x € 09,
and

(6.3) T (Vi) ¥, (x) = —T, (Vo) Ry(x) forxecdw® p=1,...,N.

Such functions will take the representations

(64) o) = > {QY(x) ~ (E(Tw) T(w,x) "ML

Jj=1

} cW
w=0(0)
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and for 1 < k<N

‘I’k(X)
=u(x) — &(x — O(k))(s(v")Tu(x))’x:mm —E(x — 0M)(E(Vx) u(x)) O

— (D(VW)TH(W, X))TMgk)C(k) ‘ —o

4 ; {Qgﬁ(x) — (B(Vw)TH(w,x))"MY o } cv
1§jj§N

65) — 3 Bx - OM)E(V,)T(=(Tw) Glw, ) TMICH|
= w=0

1<j<N

With these choices for the functions ¥y, 0 < k < N, it can be verified that they
indeed satisfy (6.2) and (6.3).

Also note that for k = 1,..., N it can be checked that
(6.6)

/ L T(V)i(x)dS, = O and / L 30— OW)T, (V)W (x)dx = O
Bwek Bwek

In what follows, we also use the same notation Ry to denote the extension of the
remainder into the regions wgk), 1 <k < N, similarly to [33].
Later, the constant vectors

1
(6.7) rt) = B0 /Bm J(Vx)Ry(x)dx, 1<k<N,
3e 3e
and
N 1
(6.8) Ry - B /Bm Ry(x) +Ix—0")rM)dx , 1<k <N,
3e 3e

will also be required. Using these constants, a rigid body displacement can be con-
structed in the form Ry ' + J(x — O®)r(¥) that satisfies

(69) / - ’I’](RN(X) + J(X — O(k))r(k))dx =03
By,
and
(6.10) /( (Ray(x) + I(x— 0®)r®) — Ry)dx=0.
B k

6.2. Estimate for the energy in terms of the functions W;. Here it is
shown that

(6.11) /Qtr(a(RN)e(RN))dx

N
< Const /|\Ilo|2dx+/ |E(\Ilo)|2dx+2/ |E(®,)%dx p .
v v =17 Bs2
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First, set

N
(6.12) W=Ry+y¥ and U=Ry+> xPu,.
k=1

Note that according to (6.2) and (6.3), W = O for x € 9Q and T,,(Vx)U = O for
X € u{j:lawg“). As a result, after applying Betti’s formula, it is possible to show that

/ tr(oc(W)e(U))dx = — W - L(Vx)Udx .
Qn QN

Recall the supports of the cutoff functions y and xgk), k=1,...,N, donot intersect,
and Ry satisfies the homogeneous Lamé equation in . Thus after replacing U and
W with their definitions in (6.12), the preceding identity reduces to

N
(613) A tr <0’(RN + X()‘I’Q)e <RN + Z ng)l:[lk>> dx

k=1
=- ) (k)
Z~/B(k> WRN L(Vyx)(x" ¥y )dx

which can be further simplified by expanding the left-hand side using the linearity of
the stress and strain tensors to give the inequality

(6.14) / tr(oc(Ry)e(Ry))dx < ¥1 + Xo + X3
Qn
where

3

Y= /Vtr(a(XOlIlo)e(RN))dx
Lo = Z/Bm\ @) L(V) (6 i)

(6.15) N3 = Z/Bm\ - Rv)e(x®®,))dx

Next, to derive (6.11), 3;, j = 1,2, 3, is estimated.

6.2.1. Estimate for X;. The term X;, by the Cauchy inequality and the
Schwarz inequality, admits the estimate

3

< /V [tx( (x0 o) (x0 o)) /2 [S (Roy)]/2dx

(6.16) < ( /V (o (xoWo)or (xoWo) dx> < / S(Rx) dx>

Here, the quantity S(U) is defined in (2.6). Since the inequalities

/2

(BA+2u)? Hf0<v<1/2,

(6.17) tr(e(v)o(v)) <cS(v), where ¢ = {4M2 i 1<u<0)
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and

| 2u ifo<v<1/2,
(6.18)  tr(o(v)e(v)) > c28(v), where ¢ = {3/\ Lou i —1<v<0,

hold for a vector function v, it can then be asserted from (6.17), (6.18), and (6.16)
that

1/2 1/2
(6.19) %4 < Const </ S(XO\IIO)dX) </ tr(a’(RN)e(RN))dx) .
v QN
6.2.2. Estimate for X5. Note that
(6.20) / _ (I(x—0M® _RyMY . Lv ) (B )dx =0,
BT

where the definitions of r*) and R—N(k) are found in (6.7) and (6.8). Identity (6.20)

appears as a result of the application of the Betti formula in Bé’;)\wgk) as follows:
—(k
[,y o306 0N R (T i
B \w
= / W, LV (I (x — 0W)r® — Ry yax
By \w®

*/ _ {@x—0W)® —Ry™) . 1, (V) (D)
(BN
(6.21) X T (V) (I (x — 00 ®) — Ry ™ )ydsy .

The first integral on the right is zero since all rigid body displacements are solutions
of the homogeneous Lamé system. They also produce zero traction and this together

with the definition of stk), 1 <k < N, shows that

/ (J(x —OF))r*) — R—N(k)
(k) (k)
Bj.  \we

——(k
= / (k)(J(x — O(k))r(k) _ RN( )) T (Vi)W rdsy
Owe

and owing to (6.6) the right-hand side is zero.
In addition to (6.20), the next identity is also true:
(6.22)

— (k I
/B<k>\w<RN(X>+J (x~0®)r® Ry ™). L(V,0) (¢ (I (x—0®)pp® ~F))dx = 0.,
3e \We

where similarly to (6.7) and (6.8)

1
) = _/ I(V)Tu(x)dsx, 1<k<N,
|BSY| S
and
1
vy, = |B(k)| ~/B(k>(‘1’k(x) +J(x - O(k))"»b(k))dx , L<E<N.
3e 3e
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Here (6.22) follows from applying the Betti formula inside Bélz)\wék), making use of
the fact that Ry is a solution of the homogeneous Lamé equation in Qp, and that it
satisfies the conditions (4.5).

Therefore, the term Y9 in (6.15), in combination with (6.20) and (6.22), is also
written as

N(x) + I(x — 0E)® _Ry™)

“ JB{ Nl <k>

(6.23) L(Vi) (XM (W4 (x) + I(x — OF)p ™ —))dx

The Schwarz inequality followed by the Cauchy inequality shows that Yo is majorized

N 1/2
Const (Z / - [(Ry(x) + J(x — O(k))r(k) _ R—N(k))|2dx>
k=1" Bs:

- 1/2
X (Z /B(’“) |L(Vx)(xgk)(\pk(x) + J(X _ O(k))w(k) _ ‘I’_k))|2dx> 7

where R has been smoothly extended inside wgk). Then Poincaré’s inequality shows

that in B, k=1,... N,
1/2
(6.24) </B<k> (R (x) + J(x — OF))r(®) — R§5>)|2dx>

3e
< Const ¢ </
B

3e

1/2
V(R (x) + J(x — O(k))r(k))|2dx> .

Next as a result of condition (6.9), the Friedrichs inequality can be used, similarly to
[10], to give the estimate
(6.25)

1/2
/ V(R (%) + I(x — OF ) 2dx | < Const e / S(Rox)dx
B§Y B§Y

This argument together with (6.18) and (6.23) shows that

1/2

1/2
Y5 < Const € <Z ~/B(k) Je(Ry))dx )

1/2
(6.26) (Z/m X (B (x) + I (x — OW))pH) —\Il_k))|2dx> .

By computing derivatives and taking into account the definition of the cutoff functions
Xk, K =1,..., N, an estimate for the second integrand on the right can be established
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in the form

IL(V) (P (T (x) + T(x)p ™ — Ty))|?
< Const 5_2{|V(\Ilk(x) + J(x — OF))qpR)y 2

(6.27) T2 (x) + J(x — OW))gp(#) —\p_k|2},

where L(Vx)®¥, = O for x € Bé? has been used.
Thus, (6.27) together with the application of the Poincaré inequality and the

Friedrichs inequality inside B:g];) leads to

S 1/2
<Z /B(k) IL(Vs) ¢ (W ,(x) + T(x — OR))gp®) — ‘I’_k))|2dx>

N 1/2
. < st et .
(6.28) < Const ¢ (; /B " S(‘I’k)dx>

Combined with (6.26) and the fact that

<i /B(’“) tr(U(RN)e(RN))dX> " < (/QN tf(U(RN)e(RN))dX)1/2 )

(6.28) then yields

12 / N 1/2
tr(a(RN)e(RN))dx> <Z /B(’“‘) S(\I%)dx) :
k=1 3e

6.2.3. Estimate for 3. Owing to the Betti formula, Lemma 2, and the as-

sumption that the support of the cutoff function xgk) is contained in Bélz), we deduce

(6.29) Yo < Const (/
Q

N

[y (o Ra)ex 13— 05— T ax
B{\wl
T / B I(x— 0M)p™® T} - L(Vi)Rydx =0 .
B{\wl®
It then follows that
(k)

[ o RIS 2

(6.30) = /(k) _tr(e(Ry)e(x (¥ + I (x — 0™ — T }))dx .
BS; \we

The symmetry of the functional on the right-hand side implies

[ ) o (o (Rl — 3~ O — T

BI\

030 = [ 6o+ 3 - 0)gY - T e(Ra)ix
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After applying the Cauchy and Schwarz inequalities to (6.31) and combining the result
with (6.30), it can be derived that

(k)
[ il Rae(x @)
Bj, \we

1/2
< </ _ S(RN)dx>
BN

< [ G L 36 09 - Ty
BT
1/2
(6.32) x o (XF{ @), + I(x — 0F)p*) — E}))dx) :
where S(U) is given in (2.6). Then (6.17) and (6.18) provide
(k)
/ o T TR B

1/2
< Const </( : ST, + I(x — OF))yp®) — ‘I’_k})dx>
By

1/2
(6.33) X (L(k)\mtr(o(RN)e(RN))dX> .

Here, as a result of the inequality
S(uv) < Const{|Vu*|v|* +u?S(v)}

for any vector function v and scalar function u, it can be asserted that

Sy + I(x — OW)p™ — T })dx

(k)
3e

< Const 672/ W), 4+ J(x — O™ — T 12dx —l—/ S(¥r)dx p .
BgY BgY

Again applying the Poincaré inequality and the Friedrichs inequality in Bé? to the
first integral on the above right-hand side (similarly to (6.24) and (6.25)) gives

S { W), +I(x — 0W)p®) —F, })dx < Const/ S(Wy)dx .
B5Y B§®

This estimate together with (6.33) yields

N 1/2 1/2
(634) 23 S Const ; <Ag§) S(lIlk)dx> (/B tI‘(O’(RN)e(RN))dX> .

k k
Do
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6.2.4. Proofof (6.11). Therefore (6.14), (6.15), (6.19), (6.29), and (6.34) assert
that

N
(6.35) / tr(o(Ry)e(Ry))dx < Const / Sxo®o)dx + > / S(W)dx p .
Qn % k=1 Bé:)
As a result of (2.6), for a vector function v
S(v) < Const |E(v)|?

and this with the definition of x¢ and (6.35) yields (6.11).

6.3. Proof of Lemma 4 and Theorem 1. Estimation of the energy for
R . The inequality (6.11) leads to

(6.36) /Q tr(c(Ry)e(Ry))dx < Const {K+ L+ M+ N},

where

(6.37) K=/|‘I’o|2dx+/ [E(¥o)|*dx
% %

2
} ‘ dx ,
x=O (k)

- [ (k)
= u(x) — E(x — 0M) (= Tu(x
63 £=3 o [B 000 =0 - 0 @) i)

O (x) — (B(T)T )
M= Z | 2 @0 - @] de
1)<
- > Ex-0W)
Ny
WS 9
(6.39) x B(Vy) T (B(Ve)TG(w, x))TM(J)C(J)‘ om || ax.

w= O(J)

2
T AR (k)
Vo) H(w,x)TM® C ‘Wom)‘ dx

(6.40) N = Z/W

Owing to the representation of ¥g in (6.4) and Lemma 1, the term K admits the
estimate

2 2

L .8 [CY] [CY)]
I < Const ¢ /v Z|X—O(J)|3 Z|X—O(3)|4 dx
N N 1
< Const ® Y |C))2 {/ dx+/ %dx} ,
21T R + O
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where the last estimate has been obtained through the Cauchy inequality. Since
dist(99, Ow) > 1, the final estimate for K, after applying Lemma 3, is

N
(6.41) K < Const e3d™> Z |ICY |2 < Const 88d76||E(u)||2LOO(Q) .

Jj=1

To estimate £, the Taylor approximation is used to expand the first-order derivatives
of the function u about x = O®) as follows:

N
L=
> [

N
< Const &° Z HV ® Elu(x)]

p=1

2

Efu(x)] — E[u(x)]

]

x=0(k)

2

x=0Q(k)

A local regularity estimate for the second-order derivatives of the components of u
inside w then (see Appendix A) leads to

(6.42) L < Const 55d*3|\E(u)H%x(Q) .

By using the boundary condition for the regular part H (see section 3), the term
M can be written in the form

weots)

M= Z / o1 2 [B(QV) - @7l TTw )|

J;ﬁk
1<5<N

_E ((E(VW)TG(W,X))T‘WZO(j))

] MDcW| gx .
x=0m] ¢

Next, using Lemma 1 and the Taylor expansion about x = O*) of the second-order
derivatives of the components of G, establishes the estimate

2

- Y C9]
M =~ Const € Z Z m dx
k=1| j#k

1<G<N

(6.43) < Const &'t Z |c®)2 Z Z 00 — 00 °

k=1 j#k
1<j<N

Lemma 3 then yields the final estimate for M:

dxdy
M < Const Slld GZ |C(:D)|2 //wxw —7y|8

[x—y|>d

(6.44) < Const e''d—8 Z |CP|2 < Const 511d_11HE(u)H%m(Q) .

p=1
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Since the derivatives of the components of H are bounded within the cloud w, we
deduce

N
(6.45) N < Const &” " [CH[? < Const £%d°||E(u)[|7_ (g, -
k=1

The energy estimate contained in Lemma 4 is then proved by combining (6.41), (6.42),
(6.44), (6.45), and (6.36). O

Now we prove Theorem 1. It remains to consider the formal approximation for
uy in Lemma 2, which relies on the solvability of a particular algebraic system (1.7).
The solvability of this system was proved in Lemma 3, which together with the energy
estimate in Lemma 4, proves Theorem 1. ad

7. Illustration: Simplified asymptotic formulas. In this section, we present
simplified asymptotic formulas for uy in the far-field region away from the cloud
of voids and also in the case when an infinite elastic medium containing the cloud
is considered. It is also shown in Appendix C that for spherical voids, the model
boundary layers of problem 3 of section 3 can be constructed explicitly in the closed
form, along with the dipole matrices for these spherical cavities.

7.1. Far-field approximation to upn. Given the dipole matrices Mgk), 1<
k < N, the asymptotic formula (1.6) of Theorem 1 is simplified under the constraint
that the point of measurement of the displacement is distant from the cloud of voids.

COROLLARY 1. Let dist(x,w) > 1. The asymptotic formula for uy admits the
form

C® L Fy(x),

N
(7.1)  un(x) =u(x)+ Z(E(VZ)TG(z,x))TMgm o

k=1

where the C®) | k=1,..., N, satisfy the system (1.7)

and Ry satisfies (1.8).

Proof. Formula (7.1) follows from Lemma 1. O

It is noted that in the simplified representation (7.1) for uy, information about
the small voids is contained in their dipole characteristics represented by Mgk), 1<
k < N. In particular, if the voids are spherical cavities of radius agk) with center
O®), 1 <k < N, then the dipole matrix is given by

(7.2) M® _ Q207 MO 0y
) (N 4 144) 0; M®
with
m m —40p® m — 40u>
MY = m—40p>  m om—40p? |, m = 9N+ 20\ + 367,

MP = 40215 .
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It is noted that the matrix Mgk) for the spherical cavity in the infinite space is negative
definite. Thus (7.2), (7.3), together with Corollary 1 gives the far-field approximation
for uy in an elastic solid containing a cloud of arbitrary spherical cavities.

7.2. Far-field approximation for uy in an infinite elastic medium with
a cloud of voids. Here we consider the problem when Q = R3, so that Qy =

R3\U ,10.)& ) is the infinite space containing a cloud of voids.
In this scenario, we search for the approximation to uy which is now a solution
of the problem

(7.4) L(Vx)uy(x) +f(x) =0, xe€Qn,
(7.5) T(Vx)un(x) =0, xcdwl 1<j<N,
(7.6) un(x) = O(]x|™%) for |x| —o0.

The vector function f is also supplied with the conditions that

f(x)dx =0, / x x f(x)dx = O,
QN

QN

and the support of f, as before, is chosen to satisfy dist(dw,supp f) = O(1).
Finally, before stating results concerning the approximation of uy, we further
introduce some model quantities. We require the field u which solves the problem

(3.1) and that is also supplied with the additional condition of decay at infinity (7.6).
The matrix

E(VX)T(E(V)’)TF(y7 X))T x=0( it 75] )
P= y—0

Ogxe otherwise ,

is also needed in the next result. We note that in the considered case the regular part
H =0, so that Green’s tensor in 2 is G = I, the Kelvin—Somigliana tensor, which is
defined in (3.6).

First, as a direct consequence of Corollary 1 we have the following.

COROLLARY 2. Let dist(x,w) > 1, then the asymptotic formula for uy admits
the form

z:omc(’“ +Rn(x),

N
(7.7) un(x )+ D (B(V2)T(z,x)) " MP
k=1

where

etlc®|
<Z x k)|4>+RN’
C=((CNT, ... (CNNIT solves the linear algebraic system

(78) -V = (]IGNXGN + PM)C s

and Ry satisfies (1.8).

Once again, the dipole matrix for a spherical cavity (see (7.2), (7.3)) can be used
with (7.7) to describe the far-field behavior of uy in an infinite elastic space containing
a cloud of spherical cavities.
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7.3. Uniform approximation for upy in the infinite elastic space con-
taining a cloud of voids. Corollary 2 can be extended to a uniform approximation

uy, satisfying (7.4)—(7.6), inside Qn = R3\U§V:1w§j):

COROLLARY 3. Let the small parameters € and d satisfy the inequality
(7.9) e<cd,

where ¢ is a sufficiently small constant. Then the approximation for uy is given by

N

(7.10) uy(x) =u(x)+ Y Q¥ (x)C® + Ry(x),
k=1

and Ry satisfies (1.8).

Matrices such as ng) can be constructed in the explicit closed form for certain
geometries. For spherical voids, the representation of this matrix is given in Ap-
pendix C. Thus, if the cloud w is composed of a nonperiodic arrangement of spherical
voids ng ), 1 < j < N, then the approximation stated in the previous Corollary, to-

gether with the representation of the matrix ng ) in Appendix C is readily applicable
here.

8. Numerical illustrations for bodies with clouds of voids. Here, we use
the asymptotic formula (7.10) in illustrative examples that demonstrate the efficiency
of the asymptotic approach developed here for an infinite solid containing a cloud of
small voids. We begin by introducing the computational setup for the simulations
in section 8.1. In section 8.2, we explain the benchmark finite element simulations
produced in COMSOL and the use of formula (7.10).

8.1. Problem and geometry for the numerical scheme. We consider the
infinite space and inside this we embed a cloud of spherical voids that populate a
sphere of radius 1 contained in the cube w with side length 2. Both the latter objects
have their center at (2,2,2)7.

We look for the function uy as a solution of (7.4) and (7.5) that is also supplied
with the condition that

T
uy—> | 0 as |x| = oo .
0

In this case, formula (7.10) is still applicable with u = (21,0,0)7 and the matrices
QY and M™, 1 < k < N, taken from Appendix C and (7.2)—(7.3), respectively.

The centers of voids Ojji = (ijl,z, Og,z, Og’,l)T, 1 <1i,7,k < Ny, are then chosen
according to the rule

2j - 1)

y _ (2i-1) 2) _
o) = +1,  0F) =

2k —1
1

Ny ke Ny ’
under the additional constraint that
|0k — (2,2,2)T] < 1.

The distance between the centers of nearest neighbors in this array is 2/Nj.



162 V. G. MAZ’YA, A. B. MOVCHAN, AND M. J. NIEVES

Next we define R;;; as

L {E sin <ijk7r> J ifi>j
R — 100 | NV, N3 ’
R 1 190 | L (ijkn N
100 {E sin <—N13 ) J ifi<y.

A spherical void is then chosen with center at O;;, and assigned the radius 7
satisfying

(2N1)71 if Rijk < (4N1)71 R
Tijk =
Rijx otherwise .

The voids form a nonperiodic cluster with the center of the voids contained in the
sphere of radius 1 and center at (2,2,2)7. The material occupying the exterior of
this cluster is assumed to be cast iron, having Young’s modulus £ = 140 GPa and
Poisson’s ratio v = 0.25.
In relation to the parameters € and d, we define them as
1<igien; Ik

E= — d
diam w ’

B 2
T Nidiam w

Now we describe the computational window implemented in the finite element
package COMSOL. A cube with center (0,0,0)7 and side length 5 was programmed

in COMSOL. In addition we prescribed the displacement boundary conditions on the
cube in the form

T
uy(x)=1 0 forz1 =—-5and z1 =5, —-5<uz; <5, j=2.3.
0
On the other faces of the cube the traction conditions are set as
T (A +2p)n4
T.(Vxun(x) =T, (V<) | 0 | = Ang
0 )\TL3
forzg = -bandzp =5, —-5<z; <5, j=1,3,
and
T (A +2p)n,
T,.(Vxun(x) =T, (V<) | 0 | = Ano
0 )\TL3
forzz =—-5andz3 =5, —-5<x; <5, j=1,2,

where n = (n1,n2,n3)7 is the unit outward normal to the faces of the cube. For the
computations in COMSOL, we set in the above N7 = 3. In this case, the number
of voids N considered in the finite element computations was 19 and is shown in

Figure 3. In addition, for the considered arrangement of voids, ¢ = 20%%/5 ~ 0.083
— 2

Other examples of arrays of voids arranged according to the above description are
shown in Figure 2 for N = 2176, (N7 = 16) and the asymptotic formulas presented
here are also applicable to this configuration.
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K

2.5 |

I3 2|
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Fi1G. 3. The configuration of N = 19 holes (N1 = 3) implemented in the simulations of section 8.2.

8.2. Comparison of the asymptotic approximation with the numeri-
cal solution. The computations produced in COMSOL were carried out on a mesh
containing 1,251,287 elements. The total displacement for the resulting solution is
displayed in the contour plots of Figures 4(a), 4(c), and 4(e) taken on the planes
x3 = 4/3,2, and 8/3, respectively, which intersect the cloud of voids in Figure 3.
In Figures 4(b), 4(d), and 4(f), we show the total displacement along the planes
x3 = 4/3,2, and 8/3, respectively, produced by the analytical approximation (7.10)
to uy in MATLAB. These computations were produced on a laptop and ran for a
duration of 40 minutes. On the other hand, the COMSOL computations could not
be computed on the same laptop. Instead, those generated in COMSOL were run on
a 64-core parallel computing cluster for a duration of 3 hours. It can be seen that
the plots are remarkably similar. Maximum absolute errors between computations
in Figures 4(a) and 4(b), Figures 4(c) and 4(d), and Figures 4(e) and 4(f) were also
obtained and found to be 0.0301, 0.045, and 0.0365, respectively. Thus the approxi-
mation (7.10) provides an excellent agreement with those produced in COMSOL, and
capture accurately the interaction between voids in a mesoscale cloud. This example
is a clear illustration that the asymptotic method can be used for a configuration
where standard computational resources would not be sufficient.

9. Concluding remarks. A uniform asymptotic representation for a solution
of a mixed boundary value problem of elasticity has been constructed and justified
for a solid containing a cloud of many voids. This extends significantly the results of
the papers [20, 24, 26] on mesoscale asymptotic approximations of fields in domains
with multiple defects. It is worth noting that the asymptotic representation (1.6)
of Theorem 1 contains important information about the dipole fields of a mesoscale
cloud of voids. In addition to the sum of individual contributions from the dipole
fields of small voids, we have also obtained a term characterizing a mutual interaction
between the voids, which is often neglected in the dilute approximation procedures.
This result is significant in the area of applications linked to nondestructive testing of
porous solids, where a position of a cloud and its composition can be identified through
the use of the asymptotic formula (1.6) accompanied by the boundary measurements
for different test loading conditions.
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F1G. 4. Figures 4(a), 4(c), and 4(e) show contour plots of the total displacement |un| produced
along various planes intersecting the cloud of Figure 3 using data from COMSOL. Figures 4(b), 4(d),
and 4(f) show the computations produced by the formula in (7.10) on the same planes. Computations
have been carried out along the plane defined by x3 = 4/3 in Figures 4(a) and 4(b), z3 = 2 in

Figures 4(c) and 4(d), and z3 = 8/3 in Figures 4(e), and 4(f).
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The mesoscale approach developed here also provides excellent agreement with
computations produced by finite element packages such as COMSOL. It is also es-
sential to note that the mesoscale approximation (1.6) is valid for different shapes of
small voids when € < Const d, for a sufficiently small constant, and this surpasses the
range of applicability of the homogenization approximations.

Appendix A. Local regularity of solutions to the homogeneous Lamé
system. Here, a result concerning the estimate for the derivatives of the solution to
the homogeneous Lamé system via their antiderivatives is derived.

LEMMA 5. Let w = {w;}3_; be a solution of the homogeneous Lamé system in a
domain Q and let Br C Q, with Bg = {x : |x| < R}, then the estimate

8wi

(A1) T

(O)} < Const R™*sup |w]|
R
holds.
The proof of the last estimate uses the mean value theorem for vector functions
satisfying the homogeneous Lamé system, as discussed below and in [4].
LEMMA 6. Let w = {w;}3_; be a solution of the homogeneous Lamé system in a
domain Q and Br C Q, with B = {x : [x| < R}, then
(i)
(A.2)
1500+ 1) 300~ ) /
i(0) = —%1v—— iTjwi(X)dsx — —F5 "~ i(X)dsx
wilO) = SR + 4m) /BBRx 20 s = g 4] Sy, U

(ii) "
B0+ 150\ — 1)
w;(0) = SO T 40 /BR Tizjwj(X)dx — SO\ + A7) /BR |x[*wi (x)dx .

Proof. (i) The mean value theorem of (A.2) was proved in [4]. (ii) To derive
(A.3), apply (A.2) inside the ball B, C 2. Then multiplying through the resulting
equation by r* and integrating both sides with respect to r between zero and R yields
(A.3). O

Proof of (A.1). The mean value theorem (A.3) is applied in B to the function
g:}i as follows:

(A4)
ow; _ T5(A+p) / w; 15(\ — ) / 5 Ow;
8a:k( )= 8TRO(N +4u) Jp, il Oxy, (x)dx 8TRO(N+4p) Jp, I Oxy,

Integration by parts then yields the two identities

(x)dx .

(A.5) / xixj%(x)dX:—/ (5ikxjwj+xiwk)dx+/ NEL;T;w;dsx
Br Oxy, Br OBr

(A.6) / |x|2%(x)dx:—2/ a:kwjdx—l—/ ng|x[*w;dsy .
Br Oy, Br 9Br

Then (A.5) and (A.6) give the estimates
8wj
;0 — (X)dx
[, g0

811)'
2 J
x|®=—(x)dx
/BR| | axk( )

< Const R* sup|w| and
Br

< Const R* sup |w|,
Br
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and combining these with (A.4) yields the local regularity estimate (A.1). The proof
is complete. O

Appendix B. Proof of (5.6). Here, the proof of (5.6) is carried out by first
developing an identity which will lead to an integral representation of (5.5) in sec-
tion B.1. Then we prove some auxiliary integral identities in section B.2 that are used
to complete the proof of (5.6) in section B.3.

B.1. Poisson-type representation of the second-order derivatives of
Green’s tensor. The proof of the next lemma uses the mean value theorem for
solutions of the homogeneous Lamé system inside disjoint balls denoted by BU) =
{x:|x—0W|<d/4},j=1,...,N.

According to [4] and Lemma 10 of [26], the next result holds.

LEMMA 7. For j #k, 1 < j,k <N, the identity

1

(MC,SMC) = (MY CD), AZH (M CH),

N
1 N . N
(B.1) — E :(MQ)C(J))pB;{Z’J)(MS)C(ﬂ))q

is valid, where
AR = 362(\ + 4p) 2 TR 1+ 90(\ + dp) (A + p) TP 4 F2kD)
—18(A +4p)(A = TG + TG D] + 225\ + ) T3
23k k, Jyk
(B.2) —45(\? — [ T8IR) + FERD] 4 9N — p)2 T8k

the terms j 5:3:k) for 1 <s<6 are

jp(;j’k):/ / Eap(V2)Z0q(VW)Gab(Z, W) dWdZ
BG) J B(k)

, N _
J,Sq?ﬂ”“):/ / (Z—O(J))taz (Bap(V2Z)Z0q (Vw)Gio(Z, W)) dWdZ
BG) JB(k) a

(8.3:k) / / (Z —0W), 0 (Eap(V2Z)Z0q(VW)Gab(Z, W)) dWdZ ,
BG) B(k) 07,

Tk = / / (Z — 09D),(W — 0®)),
B) (k)

X 37 8Wb —— (Z0p(V2)Z0g (VW) G5 (Z, W) dWZ

TER = / / ~ 09),(W — 0B,
BG) B(k)

5Z 8W a7 (Bap(VZ)E0g(VW)G1p(Z, W)) dWdZ

qu k) / / ()(J) )s(W — O(k))t
BW <k>

8Z 3Wt (“‘GP(VZ)Hbq (VW)Gab(Z7 W)) deZ y
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and
B =150 +p) [ (200, (2 - 00,
OB
x Emp(vz)anq(vw)am(z,W)‘W:O(k)dsz
30w [ (z-0W),z -0,
OB
(B.3) x Emp(Vz)Enq(Vw)Gmn(Z,W)‘W:O(k)dSz .

Before presenting the proof, it is noted that (B.1) is also a connected with the clas-
sical results of [1, 2] on estimates for solutions of elliptic partial differential equations
(e.g., see Theorems 7.3 in [1] and Theorem 9.3 in [2]).

Proof. First note (5.5) can be written as

N N
:Z Z (ng)C(j))pEmp(VZ)Enq(VW)Gmn(ZvW) Z—0W) (Mgk)c(k))qv
i=1 kZj w=0"
1<k<N

where repeated subscript indices are the indices of summation. Using the Kronecker
delta, we have

(B.5) Emp(vz)znq(vw)amn(z,vv)‘

7Z=0W)

w=0®
:5ma5thmp(vZ)Enq(vw)Gab(ZaW) 7z—00)
w=0®

From here, the term Z,,,(Vz)Znq(VW)Gab(Z, W)| ,_o may be considered as en-

w=0®
tries of the matrix
(B.6) Znp(V2) s (TW)G(Z W) o
w=0®

which satisfies the homogeneous Lamé equation for Z € BU). As a result, the mean
value theorem (A.2) of Lemma 6 can be applied, with (B.5), to give

—_ — 1 L
S S (T VWG 2 W 0y = (ot
Next, substitution of this into (B.4) gives
(MC, SMC) — 1 ii(M(j)Cm) BUHR (MBI )
; (8#)(%)4(/\4—4#) ot € PPpgq e q
(B.7) _ 1 i(MU)c(j)) BUA) (M) C0))
Bm(PIA+ap) =~ !
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The transpose of the matrix in (B.6) also satisfies the homogenous Lamé equation
for W € B%) | k # j. Therefore, it is also possible to apply the mean value theorem
(A.2), with respect to the variable W inside the ball B®*) with center W = O)
to the second-order derivatives of Green’s matrix contained in B(j7k), 1 <5 <N,
1 < k < N. Thus, repeating the steps of the proof of Lemma 10 in [26], this can
be applied to the double sum of (B.7) to arrive at the relation (B.1). The proof is
complete. a

B.2. Auxiliary integral identities. Now that the Poisson-type representa-
tions for the second-order derivatives of Green’s tensor are in place, further identities
are now derived which are used in the proof of Lemma 9, in the next section. From
here, we will also make use of the vector and matrix functions

MY cl)  ifx € BO)
B.8 P = € ’
(B-8) (x) { 0) otherwise ,

and

(B.9) O(x) = { MYCO) @ (x—0W) ifxe BG,

Ogx3 otherwise,

respectively, where Qg3 is the 6 x 3 null matrix.
LEMMA 8. The identities

(B.10) /Q@mt(Z) 82 (Bap(V2z)Gio(Z, W) dZ = 0 ,
(B.11) / ®,(Z)Z0p(Z)Gra(W,Z) dZ = 0 ,
Q

hold.
Proof. We prove (B.10) and note that the identity (B.11) is proved in a similar
way with obvious modifications. Set

F(W) = /Q S Eun(V2)G(W. )07 (2)dz.

which is the same as the left-hand side in (B.10). Note in the preceding equation the
indices a,n, and p are free indices. The matrix function f is then a 3 x 6 matrix whose
columns satisfy the homogeneous Lamé system. Indeed, after an application of the
Lamé operator, it is possible to retrieve, through the definition of G,

LOWIW) = [ 5 (20, (T2)3(W - 2)1)07 (Z)d2

o0 _
- / (2~ W) —E,(V2)® (22

Now, when considering the cases W € UYL BU) and W € Q\ UL, BU), the definition
of ® shows that the above right-hand side is equal to Q3.

Again the definition of G also ensures that f(W) = Q3xg for W € 9Q. An
application of Betti’s formula to f(W) and Green’s matrix G in  then shows that
F(W) = O3y for W € Q and the proof of (B.10) is complete. O
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B.3. The estimate for (5.5). Relation (5.6) is then a result of the next lemma.

LEMMA 9. The relation

h
(B.12) (MC,SMC) = —
(Bm) ()N +4p)
is valid, where
N
(B.13) h= Z B(JJ (M(J)C(J))

Jj=1

with repeated subscript indices being regarded as the indices of summation and

(B.14) |(MC, SMC)| < Const d*(MC, MC) .

Proof. Representations (B.12) and (B.13). The combination of (B.1), (B.8), and

(B.9) then delivers the expression

h

(B.15) (MC,SMC) = g

8m2(D5(A +4p)2  (8m)2(D)*(A +4p)

where h is defined in (B.13) and g admits the form

g =362\ 4 4u)2 KD 4180\ + 4p) (N + 1)K — 36(\ + 4p) (A — )L
2

(B.16)  + 225\ + u)2L® —90(A2 — p2)K®) + 9(\ — p)2K©

where

K(l)://q>p(z)q>q(W)Eap(vz)qu(vw)Gab(Z,W)deZ,
QJQ

K(Q)://@Pt(z)q)q(w 0 (Hap(VZ)qu(vW)th(Z’W))deZ’

97,
@ _ / / 0,.(Z )63 (Zan(V2) 0 (V) G (Z, W) dWdZ |
) — / / 0,12 )azagwb(Hap(vz)abq(vw)ats(z,w»dez,
K0 = [ [ en@onmw) azasw (Zup(V2) 550 (V) G (Z, W) dWAZ,
K0 = [ [ 0nz0uw) 325;%( (V2)Z00 (V)G (2. W) AW

Now, the term K is rewritten using the Kronecker delta as

9
K® = / SmpOan®y(W)Zpe (V) / Ot (Z T(Hap(vz)atb(z W)) dZdW

Z

where as shown in Lemma 8, the inner integral is zero. Thus K
conversions and Lemma 8 also show that the terms K1) and K£U),

3 <

0.
7 < 6, are

Similar
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equal to zero. In this way, we have shown that g = 0. The proof of (B.12) and (B.13)
is complete.
Estimate for h. Next, to prove (5.6), the estimate for the quantity h

|h] < Const d (MC, MC)

is proved.

To show this, an estimate for the terms Byg (-3 ) in (B.3), is needed that make use
of the fact that for x,y € Q, |G(x,y)| = (|x - y|*1). Employing this, a majorant
for BI%J ) is given by

y dSz
B.17 By < C tl/ ——2 < Const d.
( ) s} < Cons ) Z— 00T = ons
Next, consider the term
N
Z(M( )W), B(JJ MP W),
j=1

Recalling that subscript indices are the indices of summation, and repeatedly applying
the Cauchy inequality, the above admits the inequality

N N 3 1/2
Z 2L ei2)! BZ%J)(MgJ)C(J) Z MY W < Z (3;){17]))2) i
Jj=1 j=1 p,q=1
The preceding combines with (B.17) to show that
Z(ng)C(]))plgé]qd)(MéJ)C(]))q < Const dz MY )2
j=1 j=1

Therefore, consulting (B.12) it can be asserted that (B.14) holds. Thus the proof of
the present lemma and (5.6) is complete. O

Appendix C. Explicit representation of dipole fields for spherical cav-
ities. It is shown in this section that for certain geometries, model fields used in
the asymptotic approximations presented here can be constructed in the closed form.

Here, it is assumed that the voids ng ), 7 =1,..., N, are spherical cavities. The matrix

2’“ for a spherical cavity wgk), with radius agk) and center at OF) = {O(k)}Z 1, inan
infinite solid can be reconstructed using the approach presented in [15] that makes use
of the Papkovich—Neuber potential representation for solutions to three-dimensional
elasticity problems.

In this case, the matrix takes the form

=Z(x — 0



MESOSCALE APPROXIMATIONS FOR ELASTICITY 171

Here the dipole matrix M™ is given in (7.2), (7.3), and the matrices le(,k), 1<p<s3,
are

311
Ql(k) _ _3(/\ + ,u)(agk))5 %(1) (OB %(1) - 1131
1 ON+1dp | O3 2037 113
(k)\5 001
15v/2
) — 5V2(A + p)(ac”) (05 B@], 8®=|01 0],

ah _ 300+ p)@) 05 0y
3 9N+ 14p 03 I

Also the matrix functions in (C.1), ) and 9, are given as

22 0 0
Mx)=|0 23 0
0 0 23

and

X) = )
V) 9N+ 14p 03 O3
2 23 23 111
Dx)= |2} 23 23| =11 1|Mx)
x? 2% 23 111
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