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Abstract

Under some weak conditions, the first-passage time of the Brownian
motion to a continuous curved boundary is an almost surely finite stopping
time. Its probability density function (pdf) is explicitly known only in few
particular cases. Several mathematical studies proposed to approximate
the pdf in a quite general framework or even to simulate this hitting time
using a discrete time approximation of the Brownian motion. The authors
study a new algorithm which permits to simulate the first-passage time
using an iterating procedure. The convergence rate presented in this paper
suggests that the method is very efficient.

Key words and phrases: first-passage time, Brownian motion, potential the-
ory, randomized algorithm.
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Introduction
Modeling biological or physical systems often requires handling one-dimensional
diffusion processes. The marginal probability distribution of such processes, at
a fixed time, permits a quite precise description of the model. Nevertheless,
in many applications, this information is insufficient and the description of the
whole path becomes crucial. This is namely the case for a variety of problems
related to neuronal sciences, financial derivatives with barriers, ruin probability
of an insurance fund, optimal stopping problems,... In these frameworks, the
main task is the description of the first passage time densities for time-dependent
boundaries. Let us just mention some references in engineering reliability [14],
epidemiology [40], biology [34], mathematical finance [18, 36, 33] and references
concerning the framework of level-crossing problems [1, 3].

For instance, let us focus our attention on a simple interpretation of neural
transmission. When a neuron is stimulated by pressure, heat, light, or chemical
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information, its membrane voltage changes as time elapses and, as soon as it
reaches a constant threshold, the depolarization phenomenon occurs and the
voltage is reset to a resting potential. The family of integrate-and-fire spiking
neuron models is based on this simple interpretation. The firing time therefore
corresponds to the first-passage time of the membrane potential, represented by
a stochastic mean-reverting process (usually the Ornstein-Uhlenbeck process) to
the neural threshold (Giorno et al. [20], Lansky et al. [29], Wan and Tuckwell
[41], for an introduction to noise in the nervous system see Part I Chapter 5 in
[19], for the integrate-and-fire model see Chapter 10 in [15]).

Our main motivation is to emphasize an algorithmic approach in order to
approximate the first-passage time of the Brownian motion to curved bound-
aries. The field of application of such an algorithm at a first glance may appear
as quite restrictive since it concerns the Brownian motion but in fact a lot of
families of diffusion processes are concerned. Indeed it is possible to express
various stochastic paths as functions of Brownian paths in the spirit of Wang
and Pötzelberger [42]. Hence using simple time transformations, we are going
to present an application of the results to the Ornstein-Uhlenbeck process (see
Section 3).

In order to describe approximations of the first-passage time of the Brownian
motion, we assume that this stopping time is almost surely finite. In this way, we
introduce particular conditions for this property to be satisfied. Let us consider
a continuous function ϕ : R+ → R satisfying the following hypothesis:

ϕ(0) > 0 and lim sup
t→∞

ϕ(t)√
2t log log t

< 1. (H1)

We then define the hitting time

τϕ = inf{t > 0 : Bt = ϕ(t)} (0.1)

where (Bt, t ≥ 0) stands for a standard one-dimensional Brownian motion.
Under (H1), the a.s. finiteness of τϕ is an obvious consequence of the law of the
iterated logarithm (see e.g.[28, Th.9.23 p.112]). It is quite difficult to obtain
precise information about this stopping time in general situations.

The study of the approximation of the hitting times for Brownian motion
and general Gaussian Markov processes is an active area of research. Several
alternatives for dealing with the characterization of hitting times exist.

Approximation of the probability density function

For particular cases, the probability density function of the Brownian passage
time can be computed explicitly. Lerche [30] used the method of images in order
to obtain explicit expressions of the p.d.f. p defined by p(t) dt = P(τϕ ∈ dt).
However only few cases are concerned by such a study.

Durbin [12, 13] proposed to approximate the first-passage distribution p(t)
of the Brownian motion as follows: p can be represented by an expansion

p(t) =

k∑
j=1

(−1)j−1qj(t) + (−1)krk(t), k ≥ 1,

where qj for 1 ≤ j ≤ k and rk are defined by multiple integrals depending on the
boundary ϕ. The approximation simply consists in truncating the expansion.
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Let us note that the first term corresponds in fact to the tangent approximation
of Strassen [38] and Daniels [9], see also [16]. The convergence of the series and
the error bounds can be made precise if the curved boundary is wholly concave
or wholly convex. Many studies concern such a series expansion, let us mention
a few: Ferebee [17], Ricciardi et al. [35]; Giorno et al. [21], Sacerdote and
Tomassetti [37] to deal with more general diffusion processes. The numerical
approach proposed in [6] seems to be particularly efficient. In [11], the authors
proposed a comparison between the approximation developed by Durbin and an
other numerical resolution of the Volterra equation for Gaussian processes.

One method in approximating the passage time of a Brownian motion, or
even of a quite general diffusion, through a curved boundary is to replace the
initial boundary by an other one which is close and which leads to an explicit
expression of the hitting time probability. Such method permits to obtain some
bounds. It was first introduced for the Brownian motion in [4], and applied
for instance to piecewise continuous boundaries [42]. Finally an other method
consists in writing the p.d.f of the hitting time as the expectation of a par-
ticular functional of a three-dimensional Brownian bridge. It suffices then to
approximate this expectation through a Monte Carlo method [26].

Approximation of the first passage time.

All methods described so far concern the approximation of the pdf. It can be of
particular interest to simulate directly the first passage time τϕ or to compute
the probability for the hitting time to be smaller than some given T > 0, without
computing the pdf. The solution consists in using a time discretization of the
Brownian motion on [0, T ]. The time interval is then split into n small intervals
of the kind [(k − 1)T/n, kT/n], with 1 ≤ k ≤ n. It is therefore possible just
to simulate the hitting time of the corresponding Euler scheme. Of course this
should upper-bound the stopping time. One solution to overcome this problem
is to improve the algorithm by shifting the boundary to reach: we stop the Euler
scheme as soon as it exits from a suitable smaller domain. Let us note that this
general procedure can also be applied to diffusion processes. It has been first
introduced for geometrical Brownian motion (finance) in [5] and then extended
to general diffusions with nice coefficients in [25].

An other method in order to improve the approximation of the hitting time
consists in testing, at each endpoint kT/n, if the event BkT/n < ϕ(kT/n) is sat-
isfied and if the Brownian path on the small intervals, conditionally on its value
at the end point, hits the curved boundary. This method can also be applied
to diffusions and needs therefore precise asymptotics of hitting probabilities for
pinned diffusions. A first important study in that direction is [24] where the
coefficients of the diffusion are frozen at the starting point on each small in-
terval leading to asymptotics of the probabilities. Nevertheless the method can
become onerous if the observed time interval [0, T ] is large and sometimes gives
incorrect asymptotics: it has been pointed out, by the numerical treatment of
some precise examples, that the approximations produced by this method can
be far from the true ones. See for this point Giraudo and Sacerdote [22] (O.U.
process and Feller model), who also suggest some formulas for the computation
of the crossing probability, see also [23]. Baldi and Caramellino [2] presents
precise asymptotics for general pinned diffusions which permits to improve the
approximation of hitting times. Such results can be developed further in the
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particular gaussian framework for any dimension [8].

A new algorithm.

The aim of this study is to present a new method of approximation of τϕ. Let
us explain intuitively the simulation procedure. If ϕ is an increasing curve with
ϕ(0) > 0, then the Brownian motion needs to successively cross a sequence of
imaginary horizontal lines before hitting the boundary. The first line to cross
corresponds to the value ϕ(0) and needs a random time denoted by T1. At that
time, the value of the curved boundary is ϕ(T1). The Brownian motion therefore
needs to cross this second horizontal line, it shall happen at time T2 and the
new horizontal line to cross becomes ϕ(T2) and so on... Figure 1 (left) illustrates
this procedure. The sequence of stopping times (Tn) converges towards τϕ and
will be used in order to obtain an approximation. We shall introduce a stopping
procedure in this sequence of random times which depends on a small parameter
ε associated to the error size of the approximation: the sequence is stopped as
soon as the distance between two successive horizontal lines is smaller than
ε. The outcome of the algorithm corresponds therefore to a random variable
τ εϕ which can be exactly simulated and such that τ εϕ converges toward τϕ in
distribution as ε tends to 0.

The algorithm can be modified when the curved boundary ϕ does not satisfy
the monotonic property anymore. In such a slightly different context, it suffices
to tilt the successive imaginary horizontal lines in such a way that the common
slope corresponds to inft≥0 ϕ

′(t), see Figure 1 (right).
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Figure 1: Illustration of the algorithm for an increasing boundary ϕ with its
associated successive horizontal lines (left) and for a general boundary (right).

To sum up, two different families of sequences will be developed and the
associated convergence rates are estimated. The first algorithm developed in
Section 1 concerns increasing curved boundaries and the second one, Section 2,
permits us to deal with quite general boundaries provided that its derivative is
bounded. In the last section, we present different examples in order to illustrate
the algorithm efficiency.
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1 First-passage time to non-decreasing bound-
aries

Let us assume that the boundary ϕ satisfies (H1) and that the following addi-
tional conditions hold

ϕ : R+ → R is a non-decreasing C1-continuous function, (H2)

2ϕ′(t)
√

1 + t ≤ 1, ∀t ≥ 0. (H3)

We introduce the algorithm associated to the hitting time τϕ defined by (0.1).

Algorithm (A1). Let ε > 0 be a small parameter and (Gn)n≥0 a sequence of
independent standard Gaussian distributed random variables.
Initialization: T0 = 0, T1 = (ϕ(0)/G0)2 and Nε = 1.
While ϕ(T1)− ϕ(T0) > ε do:{

(T0, T1)←
(
T1, T1 + (ϕ(T1)− ϕ(T0))2/G2

Nε

)
Nε ← Nε + 1.

(1.1)

Outcome: τ εϕ ← T1 and Nε.

Let us just note that Algorithm (A1) is very simple to use since each step
only requires one Gaussian distributed random variable. Moreover it is a ap-
proximation of the first-passage time:

Theorem 1.1. 1. Let us assume that the boundary function ϕ satisfies (H1),
(H2) and (H3) then the random variable τ εϕ defined in Algorithm (A1)
converges in distribution towards τϕ defined by (0.1) as ε tends to zero.
More precisely

Fε(t− ε)−
3
√
ε√

2π
≤ F (t) ≤ Fε(t), for any t ≥ ε, (1.2)

where F (resp. Fε) is the cumulative distribution function of τϕ (resp.
τ εϕ).

2. There exists a constant C > 0 such that the random number of iterations
Nε defined in Algorithm (A1) satisfies:

E[Nε] ≤ C
√
| log ε|. (1.3)

The parameter ε describes the precision of the approximation. The number
of steps in the Algorithm (A1) is very small (even smaller than usual results
obtained for algorithms based on random walks on spheres, which are close
to Algorithm (A1), see [32]) : in fact the constant appearing in (1.3) can be
explicitly computed: for any constant 0 < κ < 1/2, there exists ε0(κ) > 0 such
that (1.3) is satisfied as soon as ε < ε0, with the particular constant

C =
1

mκ
, m = log(4) +

2
√

2√
π
µ

and
µ =

∫ ∞
0

(log |x|) e−x
2

dx. (1.4)
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The proof of Theorem 1.1 is based on a main argument developed in the following
proposition: each step of Algorithm (A1) has to be related to a particular part
of the Brownian paths before hitting the boundary.

Proposition 1.2. Let (Bt, t ≥ 0) be a standard one-dimensional Brownian
motion. We define the following sequence of stopping times: s0 = T0 = 0 and
for any n ≥ 1:

sn := inf
{
t ≥ 0 : Bt+Tn−1 = ϕ(Tn−1)

}
and Tn := s1 + . . .+ sn, (1.5)

where the function ϕ satisfies (H1), (H2) and (H3). Then the following proper-
ties hold:

1. (Tn)n≥0 is a non-decreasing sequence which almost surely converges to-
wards τϕ.

2. Let n ≥ 1, then the probability distribution of sn+1 given the σ-algebra
Fn := σ{s1 . . . , sn} is identical as (ϕ(Tn)−ϕ(Tn−1))2/G2

n where (Gn)n≥0
is a sequence of independent standard Gaussian random variables. More-

over s1
(d)
= (ϕ(0)/G0)2.

3. Let Mε := inf{n ≥ 1 : ϕ(Tn) − BTn ≤ ε}, then TMε
and τ εϕ, defined in

Algorithm (A1), are identically distributed, so areMε and Nε.

Let us note that the mean of each random variable sn defined by (1.5) is infi-
nite since E[G−2] = +∞ where G is a standard Gaussian variable. Proposition
1.2 suggests that the first-passage time can be obtained as a sum of positive
random variables of infinite average, we easily deduce E[τϕ] = +∞. In the
particular case of increasing boundaries ϕ, the sum has infinitely many terms.

Proof of Proposition 1.2.
Step 1. By construction, the sequence (Tn)n≥0 is non-decreasing and non-
negative: it converges almost surely to T∞. Since ϕ is a non-decreasing bound-
ary, Tn ≤ τϕ for any n ≥ 0. In particular T∞ is less than τϕ which is a finite
stopping time due to the law of the iterated logarithm, see (H1) followed by
discussion. Consequently, the random variable BT∞ is well defined. Since ϕ is
non-decreasing, we get BTn = ϕ(Tn−1) for any n ≥ 1. Taking the large n limit
leads to BT∞ = ϕ(T∞), the Brownian paths and the function ϕ being continu-
ous. We deduce that T∞ = τϕ.
Step 2. Let us first consider the stopping time s1. Using the reflection principle
of the Brownian paths and a scaling property, we obtain:

P(s1 > t) = P
(

sup
0≤u≤t

Bu < ϕ(0)
)

= P(|Bt| < ϕ(0))

= P(B2
1 < ϕ(0)2/t) = P(ϕ(0)2/G2

0 > t), t ≥ 0.

The general n-th case can be proven using similar arguments combined with the
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Markov property of the Brownian motion:

P(sn+1 > t|Fn) = P
(

sup
Tn≤u≤Tn+t

Bu < ϕ(Tn)
∣∣∣Fn)

= P
(

sup
0≤u≤t

Bu+Tn −BTn < ϕ(Tn)− ϕ(Tn−1)
∣∣∣Fn)

= P
(

sup
0≤u≤t

B̃u < ϕ(Tn)− ϕ(Tn−1)
∣∣∣Fn),

where B̃ is a Brownian motion independent of Fn.
Step 3. Using the results developed in Step 2, we observe that (sn)n∧Mε

and
the sequence of values T1, defined in Algorithm (A1), have the same distribution.
It is therefore obvious that TMε and τ εϕ are identically distributed. Indeed the
stopping time can be rewritten as follows:

Mε = inf{n ≥ 1 : ϕ(Tn)− ϕ(Tn−1) ≤ ε}. (1.6)

Proof of Theorem 1.1.
Step 1. Let us recall that Tn is defined by (1.5). By Proposition 1.2, Tn ≤ τϕ
for any n ≥ 0 and in particular TMε

≤ τϕ. Hence

P(TMε ≤ t) ≥ P(τϕ ≤ t), ∀t ≥ 0.

Since τ εϕ has the same distribution as TMε , we obtain

Fε(t) ≥ F (t), ∀t ≥ 0, (1.7)

where Fε and F are the associated cumulative distribution functions. Let us
now prove the second bound in (1.2). For t ≥ ε,

Fε(t− ε) = P(τ εϕ ≤ t− ε) = P(TMε
≤ t− ε)

≤ P(TMε ≤ t− ε, τϕ > t) + P(τϕ ≤ t)
≤ P(|TMε − τϕ| > ε) + F (t). (1.8)

Combining the Markov property of the Brownian motion and the reflection
principle leads to

Pε := P(|TMε − τϕ| > ε) ≤ 1− P
(

sup
0≤u≤ε

BTMε+u
≥ sup

0≤u≤ε
ϕ(TMε + u)

)
≤ 1− P

(
sup

0≤u≤ε
BTMε+u

−BTMε
≥ sup

0≤u≤ε
ϕ(TMε

+ u)− ϕ(TMε
) + ε

)
≤ 1− P

(
sup

0≤u≤ε
BTMε+u

−BTMε
≥ ϕ(TMε

+ ε)− ϕ(TMε
) + ε

)
≤ 1− P

(
sup

0≤u≤ε
B̃u ≥ sup

TMε≤θ≤TMε+ε
ϕ′(θ)ε+ ε

)
≤ 1− P

(
|B̃ε| ≥ sup

TMε≤θ≤TMε+ε
ϕ′(θ)ε+ ε

)
.
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Using Hypothesis (H3) and straightforward computations permits us to obtain

P(|TMε
− τϕ| > ε) ≤ 1− P(|B̃ε| ≥ 3ε/2) ≤ 3

√
ε

2π
. (1.9)

The lower bound in (1.2) holds due to both (1.8) and (1.9).
Step 2. Let us now focus our attention to the efficiency of this algorithm. We
need to estimate the number of steps which depends on the small parameter ε.
Using the third result presented in Proposition 1.2 on one hand and (1.6) on
the other hand, we obtain

P(Nε > n) = P(Mε > n) = P(ϕ(T1)− ϕ(T0) > ε, . . . , ϕ(Tn)− ϕ(Tn−1) > ε).

Hypothesis (H3) implies

P(Nε > n) ≤ P(s1 > 2ε, . . . , sn > 2ε). (1.10)

Step 2.1. Let us first estimate the previous upper-bound. We introduce a se-
quence of independent standard Gaussian random variables (Gn)n≥0 and define

Xn = log(4G2
n), Ξn =

n∑
k=0

Xk and Zn =

n∑
k=0

Ξk. (1.11)

Let us define Π(n, ε) := P(sn > 2ε). By Proposition 1.2, we know that the
random variables sn+1 are related to Gn and therefore

Π(1, ε) = P(2εG2
0 < ϕ(0)2) = P

(
log(4G2

0) < − log(ε) + log(2) + 2 logϕ(0)
)

= P
(
Z0 < − log(ε) + log(2) + 2 logϕ(0)

)
.

Let us prove that, for n ≥ 1, we have the general formula:

Π(n, ε) ≤ P
(
Zn−1 < − log(ε) + (2n− 1) log(2) + (2n) logϕ(0)

)
. (1.12)

By Proposition 1.2, we have for n ≥ 2,

Π(n, ε) = P
(

(ϕ(Tn−1)− ϕ(Tn−2))2 > 2εG2
n−1

)
. (1.13)

Since ϕ is a non decreasing function satisfying Hypothesis (H3), the following
upper-bound holds for n ≥ 2:

ϕ(Tn−1)− ϕ(Tn−2) ≤ Tn−1 − Tn−2
2
√

1 + Tn−2
≤ sn−1

2
√

1 + sn−2
. (1.14)

Hence for n = 2, (1.13) and (1.14) imply

Π(2, ε) ≤ P
(s21

22
> 2εG2

1

)
= P

(
ε(2G2

1)(2G2
0)2 < ϕ(0)4

)
= P(2X0 +X1 < − log(ε) + 3 log(2) + 4 logϕ(0))

= P(Z1 < − log(ε) + 3 log(2) + 4 logϕ(0)).
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Using the lower-bound 1+sn−1 ≥ sn−1 and similar arguments as those developed
previously, the general case is expressed as follows:

Π(n, ε) ≤ P
( s2n−1

22(1 + sn−2)
> 2εG2

n−1

)
≤ P

( s3n−2
2224s2n−3

> 2εG2
n−1G

4
n−2

)
≤ P

(sn−12

sn−21

> ε22224 . . . 22(n−2)G2
n−1G

4
n−2 . . . G

2(n−2)
2

)
≤ P

(( s21
22G2

1

)n−1 1

sn−21

> ε22224 . . . 22(n−2)G2
n−1G

4
n−2 . . . G

2(n−2)
2

)
≤ P

(
ϕ(0)2n > ε22224 . . . 22(n−1)G2

n−1G
4
n−2 . . . G

2n
0

)
≤ P

(
Zn−1 < − log(ε) + (2n− 1) log(2) + (2n) logϕ(0)

)
.

Step 2.2. By (1.10) and the arguments developed in Step 2.1, we obtain

P(Nε > n) ≤ P(sn > 2ε) ≤ P(Zn−1 − EZn−1 < η(ε, n)− EZn−1),

where
η(ε, n) := − log(ε) + (2n− 1) log(2) + (2n) logϕ(0).

Let us observe that, for any n ≥ 0, m := E[Xn] = log(4) + 2
√
2√
π
µ > 0 where µ is

defined by (1.4). Hence

E[Zn] =

n∑
k=0

E[Ξn] =

n∑
k=0

k∑
j=0

E[Xj ] = m

n∑
k=0

(k + 1) =
m(n+ 1)(n+ 2)

2
.

Thus, for n large enough, η(ε, n) − EZn−1 < 0. Introducing dn := |mn(n +
1)/2 − η(ε, n)|, we observe that, for any 0 < κ < 1/2 there exists ℵ(κ, ε) ∈ N
such that dn > mn2(1/2 − κ) for n sufficiently large that is n ≥ ℵ(κ, ε). After
straightforward computations, we can choose

ℵ(κ, ε) :=
⌊√ | log(2ε)|

mκ
+
∣∣∣ 1

2κ
− log(2ϕ(0))

mκ

∣∣∣⌋+ 1. (1.15)

Markov’s inequality leads to

P(Nε > n) ≤ P(|Zn−1 − E[Zn−1]| > dn) ≤ E[(Zn−1 − E[Zn−1])4]

d4n
. (1.16)

Let us note that Xj := Xj −m are i.i.d. random variables with finite moments
of any order. We denote mk := E[X

k

j ]. Therefore we obtain

Zn−1 := E[(Zn−1 − E[Zn−1])4] = E
[( n−1∑

k=0

k∑
j=0

Xj

)4]
= E

[( n−1∑
j=0

(n− j)Xj

)4]

=

n−1∑
j=0

(n− j)4m4 + 2
∑

0≤j<k≤n−1

(n− j)2(n− k)2m2
2

≤ m4

30
n(n+ 1)(6n3 + 9n2 + n− 1) +

m2
2

36
n2(n+ 1)2(2n+ 1)2. (1.17)
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Hence, there exist a constant C0 > 0 such that E[(Zn−1 − E[Zn−1])4] ≤ C0n
6.

Combining the previous inequality with (1.15) and (1.16) leads to

P(Nε > n) ≤ C0

m4(1/2− κ)4
1

n2
, for n ≥ ℵ(κ, ε).

Consequently, the following upper-bound holds

E[Nε] =
∑
n≥0

P(Nε > n) ≤ ℵ(κ, ε) +
C0

m4(1/2− κ)4

∑
n≥ℵ(κ,ε)

1

n2
.

In order to conclude, it suffices to note that ℵ(κ, ε) → ∞ as ε → 0, the second
term in the previous inequality therefore becomes small as ε → 0: the leading
term is finally ℵ(κ, ε) which is equivalent to

√
| log(2ε)|/(mκ) by (1.15).

2 First-passage time to boundaries with bounded
derivative

The algorithm presented in Section 1 is simple to achieve (it only requires inde-
pendent Gaussian random variables) and efficient: the averaged number of steps
is of the order

√
| log ε| where ε stands for the small parameter appearing in the

rejection sampling (see Theorem 1.1). In order to apply Algorithm (A1) the
curved boundary, the Brownian motion is going to hit, has to satisfies suitable
conditions: (H1), (H2) and (H3). Asking for the monotonicity of the function ϕ
is quite restrictive, that’s why we present an extension of the algorithm which
is of course less efficient (even if the average number of steps is still very small)
but which permits us to deal with more general boundaries. Let us introduce
the following assumption: there exist two constants ρ+ > 0 and ρ− > 0 such
that

ϕ : R+ → R is a C1-continuous function satisfying
sup
t≥0

ϕ′(t) ≤ ρ+ and inf
t≥0

ϕ′(t) ≥ −ρ−. (H4)

For such boundaries, we present an algorithm which permits us, for anyK ∈ R+,
to approximate the hitting time τKϕ = τϕ ∧K, where τϕ is defined in (0.1). Let
us introduce some notations: the inverse Gaussian distribution of parameters
µ > 0 and λ > 0 will be denoted by I(µ, λ) and is defined by its the probability
distribution function:

f(x) =

√
λ

2πx3
exp−

{λ(x− µ)2

2µ2x

}
1{x≥0}.

Algorithm (A2). Let ε > 0 be a small parameter and r > ρ− where ρ− is
defined in (H4).
Initialization: (T,H) = (0, ϕ(0)) and Nε,K = 0.
While H > ε and T < K, simulate Ĝ an inverse Gaussian random variable with
distribution I(H/r,H2) and do: H ← ϕ(T + Ĝ)− ϕ(T ) + r Ĝ,

T ← Ĝ+ T,
Nε,K ← Nε,K + 1.

(2.1)
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Outcome: τ ε,Kϕ ← T ∧K and Nε,K .

Algorithm (A2) is quite simple, it only requires the simulation of inverse
Gaussian distributed random variables. Let us recall the following scaling
property: if Ĝ ∼ I(H/r,H2) then HĜ/r ∼ I(1, rH). Moreover (rĜ−H)2

Ĝ
is

Chi-squared distributed with one degree of freedom (the square of a standard
Gaussian random variable). In order to simulate an inverse Gaussian random
variable, we suggest to use the algorithm introduced by Michael, Schucany and
Haas (see [31] or [10, p. 149]). Let us now state the efficiency of Algorithm (A2).
The inverse Gaussian distribution does not permit us to argue in a similar way
as in Section 1. That’s why we are going to use the general potential theory
in order to upper-bound the averaged number of steps. This kind of arguments
was already introduced in convergence results associated to the Random Walk
on Spheres algorithm which permits the approximation of the solution of the
Dirichlet problem, see for instance [32].

Theorem 2.1. 1. Let us assume that the boundary function ϕ satisfies (H4)
then the random variable τ ε,Kϕ defined in Algorithm (A2) converges in
distribution towards τKϕ = τϕ ∧K where τϕ is defined by (0.1) as ε tends
to zero. More precisely

Fε,K(t− ε)− (1 + ρ)

√
2ε

π
≤ FK(t) ≤ Fε,K(t), for any t ≥ ε, (2.2)

where FK (resp. Fε,K) is the cumulative distribution function of τKϕ (resp.
τ ε,Kϕ ).

2. There exist positive constants a, b, κ0, κ1 and ε0 such that: for any
ρ+ ≤ κ0 and any (K, r) satisfying (r + κ0)K ≤ κ1, the random num-
ber of iterations Nε,K defined in Algorithm (A2) satisfies the following
upper bound

E[Nε,K ] ≤ (a+ br)| log ε|, ∀ε ≤ ε0. (2.3)

3. For non increasing functions ϕ: there exists two positive constants a and
ε0 such that

E[Nε,K ] ≤ ar2K| log ε|, ∀ε ≤ ε0. (2.4)

This theorem is based on the following intermediate statement which is a
modification of Proposition 1.2.

Proposition 2.2. Let (Bt, t ≥ 0) be a standard one-dimensional Brownian
motion. We introduce the following stopping times: s0 = T K0 = 0 and for any
n ≥ 1:

sn := inf
{
t ≥ 0 : Bt+T Kn−1

= ϕ(T Kn−1)− rt
}

and T Kn := (s1 + . . .+ sn) ∧K,
(2.5)

where the boundary ϕ satisfies (H4). Then the following properties hold:

1. (T Kn )n≥0 is a non-decreasing sequence which almost surely converges to-
wards τKϕ .

11



2. On the event {s1+ · · ·+sn < K}, the probability distribution of sn+1 given
the σ-algebra Fn := σ{T K1 , . . . , T Kn } is the inverse Gaussian distribution
I(Hn/r,H2

n) with

Hn := ϕ(T Kn )− ϕ(T Kn−1) + rsn. (2.6)

3. LetMε := inf{n ≥ 1 : ϕ(T Kn )−BT Kn ≤ ε},M
K := inf{n ≥ 1, T Kn = K},

MK
ε = Mε ∧MK . then TMK

ε
and τ ε,Kϕ , defined in Algorithm (A2), are

identically distributed, so areMK
ε and Nε,K .

Proof of Proposition 2.2. The first and the third part of the proof are left to
the reader. They need similar arguments as those presented in Proposition 1.2.
Here the monotonicity property is just replaced by (H4) which permits us easily
to prove that T Kn ≤ τKϕ .
Let us now focus our attention to the second part of the statement. Due to the
definition of sn+1 and since {T Kn < K}, we get BT Kn = ϕ(T Kn−1)− rsn. Hence,
we have

sn+1 = inf{t ≥ 0 : Bt+T Kn −BT Kn = ϕ(T Kn )−BT Kn − rt}
= inf{t ≥ 0 : Wt = Hn − rt},

where Wt = Bt+T Kn − BT Kn is a standard Brownian motion independent of Fn
and the Fn adapted r.v. Hn is defined by (2.6). The distribution of sn+1 cor-
responds to the distribution of the first passage time of the standard Brownian
motion with drift at the constant level Hn. The probability distribution is well
known (see, for instance [28, p. 197]):

P(sn+1 ∈ dt|Fn) =
Hn√
2πt3

exp−
{ (Hn − rt)2

2t

}
dt,

we can consequently identify the inverse Gaussian distribution I(Hn/r,H2
n).

Proof of Theorem 2.1.
Step 1. We can prove the convergence in distribution of τ ε,Kϕ towards τKϕ using
similar arguments as those presented in the proof of Theorem 1.1. The upper-
bound in (2.2) is an adaptation of (1.7) which requires that T Kn ≤ τKϕ and that
τ ε,Kϕ and TMK

ε
are identically distributed. These conditions are satisfied, see

Proposition 2.2. For the lower-bound in (2.2), we obtain

Fε,K(t− ε) ≤ P(|TMK
ε
− τKϕ | > ε) + Fε,K(t),

see (1.8) for the details. Let us note that |τMK
ε
− τKϕ | > ε leads to the condition

τMK
ε
< K. HenceMK

ε =Mε. Using the Markov property, the following bound
holds:

P(|TMK
ε
− τKϕ | > ε) ≤ 1− P

(
sup

0≤u≤ε
B̃u ≥ ε+ sup

0≤u≤ε
ϕ(TMε

+ u)− ϕ(TMε
)
)
.

Here (B̃t, t ≥ 0) stands for a standard Brownian motion independent of TMε
.

Combining Hypothesis (H4) and the reflection principle of the Brownian motion
leads to

P(|TMε
− τKϕ | > ε) ≤ 1− P(|B̃ε| ≥ ε(1 + ρ+)) ≤ (1 + ρ+)

√
2ε

π
,
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and consequently to the lower bound (2.2).
Step 2. Let us now focus our attention to the averaged number of steps in
Algorithm (A2), denoted byNε,K . A rough description of the method: we aim to
construct a Markov chain and to describe the associated potential. The classical
potential theory then permits us to obtain the announced bound. We introduce
the Markov chain Rn := (Tn,Hn) for n ≥ 0. We recall that Tn = s1 + . . .+ sn is
defined by (2.5) and Hn by (2.6). The stopping timeMK

ε defined in Proposition
2.2 can also be interpreted as the first time the Markov chain (Rn, n ≥ 0) goes
out of the domain E := [0,K]×]ε,+∞].
Let us consider the function f(x, y) = log(y), defined on E, and denote by
P the infinitesimal generator associated to the Markov chain (Rn)n≥0. By
Proposition 2.2 and for any (t, h) ∈ E, we obtain

Pf(t, h) = E
[

log(ϕ(t+ Ĝ)− ϕ(t) + r Ĝ)
]
,

where Ĝ is an inverse Gaussian distributed random variable with the following
density function:

p(x) =
h√

2πx3
exp

{
− (h− rx)2

2x

}
, x ≥ 0.

By (H4), ϕ(t+ Ĝ)− ϕ(t) ≤ ρ+ Ĝ, we get

Pf(t, h)− f(t, h) ≤ log
(

1 +
ρ+
r

)
+ E

[
log
(rĜ
h

)]
. (2.7)

Let us find now an explicit upper bound of Pf − f . Using first the change of
variables u = rx/h and secondly u 7→ 1/u, we get

E
[

log
(rĜ
h

)]
=

∫ ∞
0

log
(rx
h

) h√
2πx3

exp− (h− rx)2

2x
dx

=

√
hr

2π

∫ ∞
0

log(u)

u3/2
exp−hr(1− u)2

2u
du

=

√
hr

2π

∫ ∞
1

(1− u) log(u)

u3/2
exp−hr(1− u)2

2u
du. (2.8)

It is then obvious that E
[

log
(
rĜ
h

)]
< 0. Let us now give a more precise upper-

bound. We set α = hr, then (2.8) emphasizes that E
[

log
(
rĜ
h

)]
only depends

on the parameter α, this dependence being continuous. Let us therefore denote
this function ψ(α) (see Figure 2 below representing ψ obtained with the Monte-
Carlo method sample size: 10 000).
Simple computations lead to

13



Figure 2: Monte Carlo approximation of the function ψ

ψ(α) := E
[

log
(rĜ
h

)]
= −

√
α

2π

∫ ∞
0

u log(1 + u)

(1 + u)3/2
exp− αu2

2(1 + u)
du (2.9)

≤ −
√

α

2π

∫ ∞
0

u log(1 + u)

(1 + u)3/2
exp−αu

2
du

≤ − 1√
2π

∫ ∞
0

w log(1 + w/α)

(α+ w)3/2
exp−w

2
dw

≤ − 1√
2π

∫ ∞
1/2

w log(1 + w/α)

(α+ w)3/2
exp−w

2
dw.

Using the inequality (α+ w) ≤ (1 + 2α)w, we get

ψ(α) ≤ − log(1 + (2α)−1)

(1 + 2α)3/2
√

2π

∫ ∞
1/2

1√
w

exp−w
2
dw

≤ − log(1 + (2α)−1)

(1 + 2α)3/2
P(G ≥ 1/2),

where G is a standard gaussian r.v. and so P(G ≥ 1/2) ≈ 0.3085
We deduce from the previous upper-bound that limα→0+ ψ(α) = −∞. Moreover
the right hand side is a non decreasing function with respect to the variable α.
Hence

ψ(α) ≤ − log(3/2)

3
√

3
P(G ≥ 1/2) ≈ −0.0241, for α ≤ 1. (2.10)

Let us observe what happens for large values of the variable α. The Laplace
method implies that

ψ(α) ∼ − 1

2α
as α→∞.

Let us prove now that there exists a constant c > 0 such that

ψ(α) ≤ − c
α
, for any α ≥ 1. (2.11)
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For α ≥ 1, we get

ψ(α) ≤ −
√

α

2π

∫ ∞
0

u log(1 + u)

(1 + u)3/2
exp−αu

2

2
du

≤ −
√

α

2π

∫ 1

0

u log(1 + u)

(1 + u)3/2
exp−αu

2

2
du.

Due to the convexity property of the logarithm function (log(1 + u) ≥ log(2)u)
and the Cauchy-Schwarz inequality, we obtain

ψ(α) ≤ − log(2)

α23/2

(1

2
E[G2]− E[G21{G≥

√
α}]
)

≤ − log(2)

α23/2

(1

2
−
√
E[G4]

√
P(G ≥

√
α)
)

≤ − log(2)

α23/2

(1

2
−
√

3

2
e−α

)
≤ − log(2)

α25/2
(1−

√
3e−1), for α ≥ 1.

We deduce that ψ(α) ≤ −c/α with c ≈ 0.0445 when α ≥ 1. Combining both
inequalities (2.10) and (2.11) leads to the existence of a constant c > 0 such
that

ψ(α) ≤ −c
( 1

α
∧ 1
)
. (2.12)

By (2.7), the following upper-bound holds: for f(x, y) = log(y),

Pf(t, h)− f(t, h) ≤ log
(

1 +
ρ+
r

)
− c
( 1

hr
∧ 1
)

≤ ρ+
r
− c
( 1

hr
∧ 1
)
, h ≥ 0, t ≥ 0. (2.13)

Due to the definition of ρ+, we know that

h ≤ ϕ(0) ∨ (r + ρ+)t ≤ ϕ(0) ∨ (r + ρ+)K,

where ϕ is the boundary the process has to hit. In other words, there exist two
constants κ0 > 0 and κ1 > 0 such that for any ρ+ ≤ κ0 and any (K, r) satisfying
(r + κ0)K ≤ κ1 the following bound holds ρ+ ≤ c

2

(
1
h ∧ r

)
. Hence:

Pf(t, h)− f(t, h) ≤ − c

2r

( 1

ϕ(0) ∧ κ1
∧ r
)

=: −R−1(r).

We deduce that the function g(t, h) defined by g(t, h) = R(r) (f(t, h) − log ε)
satisfies g(t, h) ≥ 0 for any (t, h) ∈ E and Pg(t, h) − g(t, h) ≤ −1 on E. The
potential theory therefore implies:

E[Nε,K ] ≤ g(0, ϕ(0)) ≤ R(r)(log(ϕ(0))− log(ε)).

We finally deduce the existence of a > 0 and b > 0 such that E[Nε,K ] ≤
(a+ br)| log ε| for ε small enough.
For the particular case of a non increasing boundary function it suffices to vanish
ρ+ in (2.13) and to apply the same arguments of the potential theory in order
to get (2.4)
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3 Examples and numerics.
In this section, we present three different examples which nicely illustrate the
efficiency of these new algorithms (A1) and (A2).

3.1 Brownian hitting time of ϕ(t) =
√
1 + αt

Let us first consider an application of Theorem 1.1. We observe that ϕ(t) =√
1 + αt is an increasing function satisfying (H1), (H2) and (H3) for α ∈ [0, 1].

Consequently Algorithm (A1) converges and permits us to obtain an approxi-
mation of the hitting time τϕ. In the figures, we present the link between the
averaged number of steps and ε which characterizes the approximation error
size.
The first figure (resp. the second one) concerns: α = 1 (resp. α = 0.01),
ε = 0.5n (n is represented on the horizontal axis) and the number of simulation
in order to estimate the averaged number of steps is 10 000.
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(b) α = 0.01

Figure 3: E(Nε): mean number of steps for ε = 0.5n as a function of n. The
boundary is ϕ(t) =

√
1 + αt.

Let us now present the approximate distribution of the hitting time.
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Figure 4: Empirical distribution of the approximate first hitting time of the
boundary ϕ(t) =

√
1 + αt.
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3.2 Brownian hitting time of ϕ(t) = α+ β cos(ωt)

Let us now consider the first time the Brownian motion hits the periodic bound-
ary ϕ(t) = α+ β cos(ωt). Since the boundary is not an increasing function, we
shall use Algorithm (A2). Theorem 2.1 ensures that the algorithm converges.
Let us therefore use the Monte-Carlo method in order to estimate precisely the
average number of steps. As explained in the previous section, the simulation
procedure permits to approximation of the stopping time τϕ∧K for some given
fixed time K. Figure 5 illustrates the approximation τϕ by τ ε,Kϕ , where the
parameters are fixed at α = 3.5, β = 3 and ω = π/2. The maximal time are
K = 20 on one hand and K = 100 on the other hand and the error rate is given
by ε = 0.5n, for 1 ≤ n ≤ 10. A sample of 10E8 paths has been simulated to
approximate the mean. We know that the mean number of steps is a decreasing

(a) E(N1/2n,K) versus n (b) Distribution of τ1/2
n,K

ϕ . n = 10, K = 20.

Figure 5: Approximation of τϕ with ϕ(t) = 3.5 + 3 cos(πt/2)

function of ε and an increasing function of K. Figure 6 gives the evolution of
the mean number of steps as a function of the truncation K. In practice, we

Figure 6: E(N ε,K
ϕ ) as a function of K.

obtained easily an impressively accurate approximation of τϕ.
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3.3 The first time the Ornstein Uhlenbeck process hits the
boundary ϕ(t) = α + β cos(ωt)

This last section concerns a particular framework where passage times play a
crucial role: the spiking neuron analysis. Let us roughly explain how neuronal
firing activities has been modeled. The potential difference that exists across
the cell membrane is modeled as an Ornstein-Uhlenbeck process. As soon as
this membrane potential exceeds a given threshold, the neuron releases a rapid
electrical signal called a spike and the membrane potential is directly reset to
an initial voltage. Hence the interspike interval is identify with the first hitting
time of an OU process whereas the spike train forms a renewal process. Such a
stochastic leaky integrate and fire (LIF) neuronal model is a good compromise
between realism and mathematical tractability [7, 19, 39, 40].

The standard OU process can be adapted when the inputs are time-dependent.
It especially concerns many situations where the sensory stimuli, like sound, con-
tain an oscillatory component. We observe then oscillating membrane potentials
in the neuron, generating rhythmic spiking patterns (see Iolov, Ditlevsen and
Longtin [27] and references therein).

In such a model with time-dependent forcing, the membrane voltage denoted
by (Vt, t ≥ 0) satisfies the following stochastic differential equation:

dVt =
(
χ(t)− Vt

τ

)
dt+ σ dBt,

until it reaches the voltage threshold Vth. Here χ represents a current acting on
the cell, τ is the membrane time constant, σ is the strength of the stochastic
fluctuations and finally (Bt, t ≥ 0) stands for the standard Brownian motion.
The length of the interspike interval is therefore directly related to the passage
time of the stochastic process (Vt) through the threshold Vth.

Let us introduce a simple change of variable, given by Xt = Vt − ϕ(t) with
ϕ the deterministic function satisfying:

ϕ′(t) = χ(t)− ϕ(t)

τ
, ϕ(0) = V0.

By straightforward computations, we can prove that Xt is a classical OU pro-
cess. In other words, the first passage time of the voltage Vt through the given
threshold Vth is almost surely equal to the first passage time of the OU pro-
cess (Xt) through the curved boundary ϕ. Simulating hitting times to curved
boundaries for OU processes is therefore a main task.

That’s why, we focus our attention to the last example which concerns the
one-dimensional Ornstein-Uhlenbeck process defined by:

dXt = dBt − λXt dt, X0 = x0. (3.1)

The aim is to approximate the first passage time through the particular simple
curved boundary ϕ(t) = α+ β cos(ωt) where ϕ(0) > x0.

Since the Ornstein-Uhlenbeck process can be represented as a time-changed
Brownian motion, the question is directly related to the main results of this
study. Indeed the solution of (3.1) is given by

Xt = e−λt
(
x0 +

∫ t

0

eλsdBs

)
, t ≥ 0.
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Using Levy’s theorem, (Xt, t ≥ 0) has the same distribution as (Yt, t ≥ 0)
defined by

Yt := e−λt
(
x0 +Wu(t)

)
, t ≥ 0,

with u(t) := 1
2λ (e2λt− 1) and W a standard Brownian motion. We deduce that

Tϕ := inf{t ≥ 0 : Xt = ϕ(t)}

has the same distribution as

T̂ϕ := inf
{
t ≥ 0 : e−λt

(
x0 +Wu(t)

)
= ϕ(t)

}
= inf

{
u−1(s) ≥ 0 : Ws = ϕ(u−1(s))eλu

−1(s) − x0
}

= u−1(τψ),

where

τψ := inf{t ≥ 0 : Wt = ψ(t)}, ψ(t) :=
√

1 + 2λt ϕ
( log(1 + 2λt)

2λ

)
− x0.

Consequently, in order to simulate the Ornstein-Uhlenbeck hitting time Tϕ ∧K
for some K, we simply use Algorithm (A2) and propose an approximation of
the Brownian hitting time τψ ∧ K̃ with K̃ := u(K) = (e2λK − 1)/(2λ).
Let us note that a straightforward computation leads to the following upper-
bound:

|ψ′(t)| ≤ λα+ λβ + ωβ√
1 + 2λt

≤ λα+ λβ + ωβ, t ≥ 0.

In other words, the continuous curve ψ satisfies Hypothesis (H4): Algorithm
(A2) therefore converges and Theorem 2.1 can be applied.
In the following numerical experiences, we will choose r = 0.5 + λα+ λβ + ωβ.
Figures 7 and 8 concern the following choice of parameters: x0 = 0, α = 2,
β = 1, ω = π/5, λ = 0.5. We have chosen K = 5 for Figure 7 and K = 10 for
Figure 8. In both cases, the first figure represents the average number of steps
as a function of n where the approximation parameter ε is chosen as 0.5n, for
n = 1, · · · , 10. The average has been estimated using 5.10E6 simulations. The
second figure represents the distribution of Tϕ ∧K for n = 10.

We observe that the change of time K̃ = (e2λK −1)/(2λ) increases very fast
with K and the number becomes quite large when K increases. Note however
that the number of random variables we have to simulate keeps relatively small
in comparaison with the use of a classical stopped Euler scheme usually used
to approximate Tϕ. Each Euler scheme introduces a bias, which goes to 0 as
the time discretization length goes to 0. We have plotted the error on Figure 9
for the approximation of E(T Kϕ ). We can observe that a simple Euler scheme
has an order of convergence 1/2. We illustrate the improvement of this rate
of convergence using two particular modifications of the scheme: the first one
from [24] (i.e. we take into account the first order term of the probability to
hit the boundary between two time successive time-steps), the second-one from
[25] (i.e. an adapted modification of the boundary). Both modifications yield
to a scheme of order 1.

The numerical cost of our algorithm increases very slowly as the parameter
ε goes to 0. The numerical comparisons are done with ε = 2−20, such that the
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error is almost negligible. The time we need is similar to the time for an Euler
scheme with step 0.01 and the Brownian bridge modification with time step
0.02. Empirically, we conclude that our scheme over performs previous ones if
one needs an accuracy larger than those obtained with an Euler scheme with
time step 0.01.

(a) E(N1/2n,K) versus n (b) Distribution of T K,εϕ (ε = 1/210).

Figure 7: First hitting time of ϕ(t) = α + β cos(ωt) by an Ornstein Uhlenbeck
process solution of (3.1) (α = 2, β = 1, ω = 2π, λ = 0.5, K = 5.)

(a) E(N1/2n,K) versus n (b) Distribution of T K,εϕ (ε = 1/210).

Figure 8: First hitting time of ϕ(t) = α + β cos(ωt) by an Ornstein Uhlenbeck
process solution of (3.1) (α = 2, β = 1, ω = 2π, λ = 0.5, K = 10).
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Figure 9: Bias for Euler schemes to approximate E(T Kϕ ), the mean first hitting
time of ϕ(t) = α+β cos(ωt) by an Ornstein Uhlenbeck process solution of (3.1)
(α = 2, β = 1, ω = 2π, λ = 0.5, K = 5).
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