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Abstract

A phase-field free-energy functional for the solvation of charged molecules (e.g., proteins) in 

aqueous solvent (i.e., water or salted water) is constructed. The functional consists of the solute 

volumetric and solute-solvent interfacial energies, the solute-solvent van der Waals interaction 

energy, and the continuum electrostatic free energy described by the Poisson–Boltzmann theory. 

All these are expressed in terms of phase fields that, for low free-energy conformations, are close 

to one value in the solute phase and another in the solvent phase. A key property of the model is 

that the phase-field interpolation of dielectric coefficient has the vanishing derivative at both 

solute and solvent phases. The first variation of such an effective free-energy functional is derived. 

Matched asymptotic analysis is carried out for the resulting relaxation dynamics of the diffused 

solute-solvent interface. It is shown that the sharp-interface limit is exactly the variational 

implicit-solvent model that has successfully captured capillary evaporation in hydrophobic 

confinement and corresponding multiple equilibrium states of underlying biomolecular systems as 

found in experiment and molecular dynamics simulations. Our phase-field approach and analysis 

can be used to possibly couple the description of interfacial fluctuations for efficient numerical 

computations of biomolecular interactions.
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1. Introduction

The solvation of charged molecules such as DNAs and proteins in aqueous solvent (i.e., 

water or salted water) is a fundamental biological process. Implicit-solvent models provide 

efficient predictions of the solvation free energies and equilibrium conformations of 

underlying molecular systems [35]. In such a model, the solvent molecules and ions are 

treated implicitly and their effects are coarse-grained. In a large class of implicit-solvent 
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models, the solute-solvent interface that separates the solvent region from solutes is used to 

calculate the surface energy and electrostatic energy. The later is often done by solving 

Poisson’s or the Poisson–Boltzmann equation with the dielectric coefficient close to 1 and 

80 in the solute and solvent regions, respectively [7,16,27,38]. In a variational implicit-

solvent model (VISM) [19,20,44], one determines the solvation free energies and stable 

equilibrium conformations by minimizing a macroscopic free-energy functional of all 

possible solute-solvent interfaces, i.e., dielectric boundaries.

Let us denote by Ω ⊂ ℝ3 the region of an underlying solvation system; cf. Figure 1.1. 

Assume that there are total N solute atoms located at x1, …, xN inside Ω and carrying partial 

charges Q1, …, QN, respectively. Assume also that there are M ionic species in the solvent, 

and denote by  and qj = zje the bulk concentration and charge for the jth ionic species, 

respectively, where zj is the valence and e elementary charge. Let Γ be a closed and smooth 

surface, a possible solute-solvent interface, that encloses all x1, …, xN and that divides Ω 

into two regions: the solute region Ωp (p stands for protein) and the solvent region Ωw (w 

stands for water). The VISM solvation free-energy functional is then defined for all such 

solute-solvent interface Γ by

(1.1)

The first term here is the energy of creating a solute cavity in the solvent against the pressure 

difference P between the solvent liquid and solute vapor. The second term is the surface 

energy with γ0 being the constant surface tension. For simplicity, we neglect the Tolman 

correction to the surface tension [40]. The third term is the energy of the van der Waals 

(vdW) type interaction between the solute atoms xi (1 ≤ i ≤ N) and continuum solvent, where 

ρw is the constant bulk solvent density. The interaction potential U is often defined by

where each

is a Lennard-Jones potential, and all the parameters εi of energy and σi of length are given.

The last term is the electrostatic free energy, where ψ is the electrostatic potential, εΓ is the 

coefficient of permittivity, ρf is a fixed charge density approximating the solute point 

charges  with δxi being the Dirac delta function at xi, χw is the characteristic 

function of the solvent region Ωw, and V(ψ) describes the ionic contribution to the 
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electrostatic interaction. Here, ions are assumed to be in an equilibrium macroscopically; 

and the equilibrium ionic concentrations are given by the Boltzmann distributions through 

the electrostatic potential ψ [7, 27]. The potential ψ is the solution to a boundary-value 

problem of the dielectric-boundary Poisson–Boltzmann equation

(1.2)

(1.3)

where ψ∞ is a given function on the boundary ∂Ω. The coefficient εΓ is defined by

(1.4)

where εp and εw are the dielectric coefficients (relative permitivities) of the solute and 

solvent regions, respectively, and ε0 is the vacuum permittivity. In general, εp ≈ 1 and εw ≈ 

80. In the classical Poisson–Boltzmann theory,

where β = 1/(kBT) is the inverse thermal energy with kB the Boltzmann constant and T 

absolute temperature. Different forms of V (ψ) can be used for the linearized or size-

modified Poisson–Boltzmann equation [26, 45]. More complicated forms V = V(ψ, ∇ψ) 

involving both ψ and ∇ψ can be used to model effects such as the ionic concentration 

dependent dielectric response but can also be more complicated for implementation 

[2,23,29].

Cheng et al. [9,10,12,41,44] developed a highly accurate, compact coupling interface 

method for solving the dielectric-boundary Poisson–Boltzmann equation and a robust level-

set method to minimize the VISM functional (1.1). The normal velocity in the level-set 

formulation is the (normal component of) effective boundary force defined to be the 

negative variational derivative −δΓF [Γ] : Γ → ℝ of the free-energy functional F[Γ] with 

respect to the location change of interface Γ. Let n denote the unit normal to the interface Γ 

pointing from the solvent region Ωw to solute region Ωp. We have [5,9–11,28,44]

(1.5)

where H is the mean curvature that is positive if Ωp is a sphere and ∇Γ = (I − n ⊗ n) ∇, with 

I the identity matrix, is the surface gradient along Γ.
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While successful initially [9, 12, 22, 41, 44], the sharp-interface VISM needs to be improved 

in several aspects. The most critical one is to include the description of fluctuations, both 

around the solute-solvent interface and in the bulk solvent. Such fluctuations are particularly 

crucial in the transition of one equilibrium conformation to another and in sampling different 

states to accurately predict the free energies of underlying biomolecular systems. It is 

certainly possible to describe interfacial fluctuations within a sharp-interface framework. 

But several implementational difficulties can arise. For instance, the extension of normal 

velocity in the level-set method can be hard for a moving fluctuating interface. Moreover, 

fluctuations can nucleate and coalesce small bubbles (water regions) inside solutes, making 

it hard to solve the dielectric boundary Poisson–Boltzmann equation in a sharp-interface 

formulation. In seeking for an alternative approach, we notice that initial theoretical and 

computational studies of interfacial fluctuations using a diffused-interface approach seem 

promising [3,17,24]. We therefore propose in this work a diffused-interface approach to the 

solvation of charged molecules. In a slight different language, this is a phase-field approach 

as it is well appreciated that the solvent-solute interface in a biomolecular system resembles 

a liquid-vapor interface, and the solvent and solute can be regarded as two different phases 

[6,42]. The phase-field approach has been widely used in studying interface problems 

arising in many scientific areas, such as materials physics, complex fluids, biomembranes, 

and cell motility, cf. e.g., [1, 13, 18, 25, 31, 37] and the references therein.

Our phase-field model is governed by the free-energy functional

(1.6)

for all phase fields ϕ : Ω → ℝ, where the electrostatic potential ψϕ is the solution to the 

boundary-value problem of Poisson–Boltzmann equation with a diffused dielectric boundary

(1.7)

(1.8)

Here ξ > 0 is a small number. With a low free energy, a phase field ϕ should be close to two 

values, say, 0 and 1, respectively, in the solvation region Ω, except a thin transition layer that 

represents the dielectric boundary. The sets {ϕ ≈ 0} and {ϕ ≈ 1} represent the solvent and 

solute regions, respectively. With such a convention, the first term in (1.6) corresponds to 

that in (1.1), describing the volumetric energy. The second term in (1.6), in which,

approximates the surface energy [30, 33, 39]. The third term in (1.6) corresponds to that in 

(1.1), describing the energy of solute-solvent interaction. Finally, the last term in (1.6) 

corresponds to that in (1.1), describing the electrostatic free energy. In this term, ε(ϕ) is 
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defined to be a smooth function of ϕ that interpolates the piecewise constant dielectric 

coefficient: ε(0) = εwε0 and ε(1) = εpε0. We shall require that ε′(0) = ε′(1) = 0. Note that the 

electrostatic potential ψϕ depends on ϕ.

We study our proposed phase-field solvation free-energy functional (1.6), and the 

corresponding relaxation dynamics. Our main results are as follows:

1. We prove the well-posedness of the boundary-value problem of Poisson–

Boltzmann equation (1.7) and (1.8), and obtain some bounds for the electrostatic 

potential; cf. Theorem 2.1;

2. We derive, first intuitively and then rigorously, the first variation of the phase-field 

free-energy functional (1.6)

cf. Theorem 3.1;

3. We consider the relaxation dynamics ∂tϕ = −δϕF[ϕ] for ϕ = ϕ (x, t) with t denoting 

the time variable. Using the method of matched asymptotic analysis [4, 14, 15, 34, 

36], we show that, in the sharp-interface limit, the normal velocity of the solute-

solvent interface is exactly the boundary force (1.5) in the original sharp-interface 

variational approach; cf. Theorem 5.1.

Several remarks are in order. First, our diffuse-interface model (1.6) differs from our 

previous one [30,43] significantly in that we use the Poisson–Boltzmann equation, rather 

than the Coulomb-field approximation [8, 41] which requires no solution of partial 

differential equations, to describe the electrostatic interaction. Second, our relaxation 

dynamics ∂tϕ = −δϕF[ϕ] is a non-conservative dynamics with respect to the phase-field 

function ϕ. In fact, the relaxation process can change the volume of solute region {ϕ ≈ 1}. 

The amount of ions, however, are controlled through their bulk concentrations 

 that are input parameters. Third, the surface energy term described by the 

gradient-square and double-well terms in our phase-field energy functional (1.6) coincides 

with the part in an effective Hamiltonian for the large-scale solvent density in the Lum–

Chandler–Weeks theory of solvation [32].

The rest of the paper is organized as follows: In Section 2, we prove the existence and 

uniqueness of, and provide bounds for, the solution to the Poisson–Boltzmann equation with 

a diffused dielectric boundary that is given by a phase field. In Section 3, we derive the first 

variation of the phase-field free-energy functional. In Section 4, we use the matched 

asymptotic analysis to study the relaxation dynamics in a fast and the regular time scales. In 

Section 5, we continue our matched asymptotic analysis for a slow time scale to show that 

the sharp-interface limit of the relaxation dynamics is exactly the same as in the original 

sharp-interface variational model.
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2. Poisson–Boltzmann Electrostatics with a Diffused Dielectric Boundary

We make the following assumptions:

(A1) The solvation region Ω is a bounded, connected, open set with a sufficiently 

smooth boundary ∂Ω. All x1, …, xN are given points in Ω. All P, γ0, ρw, εp, and 

εw are positive constants with εp < εw. The function ρf ∈ L∞(Ω). The function 

ψ∞ ∈ W1,∞ (Ω);

(A2) The function U : ℝ3 \ {x1, …, xN} → ℝ is continuously differentiable and 

bounded below. Moreover, limx→xiU(x) = +∞ for each i (1 ≤ i ≤ N) and limx→∞ 

U(x) = 0;

(A3) The function ε ∈ C1(ℝ). There exist positive numbers εmin, εmax, and  such 

that εmin ≤ ε(ϕ) ≤ εmax and  for all ϕ ∈ ℝ. Moreover, ε(0) = εwε0, 

ε(1) = εpε0, ε′(0) = ε′(1) = 0, and ε′(ϕ) ≠ 0 if 0 < ϕ < 1;

(A4) The function V ∈ C2(ℝ). It is strictly convex. Moreover, V (0) = mins∈ℝ V(s) < 

V(s) for any s ≠ 0, V(±∞) = +∞, and V′(±∞) = ±∞.

Here are two examples of the function ε = ε(ϕ) with all the desired properties.

Example 1.

In fact, this is a C∞-function. Moreover, for any integer m ≥ 1, ε(m)(ϕ) = 0 for all ϕ ∉ (0, 1) 

and ε(m)(ϕ) ≠ 0 for all ϕ ∈ (0, 1).

Example 2.

In what follows, we shall denote by C a generic constant that may depend on Ω, ρf, ψ∞, and 

ε but is independent of . We shall also denote by C(ϕ) a generic constant that can 

depend on ϕ in addition to Ω, ρf, ψ∞, and ε. The following theorem is our main result in this 

section:

Theorem 2.1

For any  there exists a unique weak solution ψϕ ∈ H1(Ω) to the boundary-value 

problem (1.7) and (1.8), i.e., ψϕ = ψ∞ on ∂Ω in the sense of trace and
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(2.1)

Moreover, ψϕ ∈ L∞(Ω) and

(2.2)

(2.3)

(2.4)

Proof—We divide our proof in three steps.

Step 1: Let ψ̂
ϕ ∈ H1(Ω) be the unique weak solution to the boundary-value problem −∇ · 

ε(ϕ)∇ψ̂
ϕ = ρf in Ω and ψ̂

ϕ = ψ∞ on ∂Ω. This means that ψ̂
ϕ is the unique function in H1(Ω) 

such that ψ̂
ϕ = ψ∞ on ∂Ω and

(2.5)

Since 0 < εmin ≤ ε(ϕ) ≤ εmax for all ϕ ∈ ℝ, we have by the standard elliptic theory (cf. 

Theorem 8.3 and Theorem 8.16 in [21]) that ψ̂
ϕ ∈ H1(Ω) ∩ L∞(Ω), and

(2.6)

Step 2: We define I:  by

It is easy to see that  is finite. By the direct method in the calculus of 

variations, there exists a unique minimizer  of I over .

By our assumption (A4) on the function V and by (2.6), there exists λ > 0, independent of ϕ, 

such that V′ (λ + ψ̂
ϕ) > 1 and V′(−λ + ψ̂

ϕ) < −1 a.e. on Ω. We prove that

(2.7)

Define uλ : Ω → ℝ by
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Since I[uλ] ≥ I[u] and |∇uλ| ≤ |∇u| a.e. Ω, we have

Consequently, it follows from the convexity of V and our choice of λ that

This leads to (2.7).

The minimizer u of I:  is the weak solution to the Euler–Lagrange 

equation

i.e.,

(2.8)

This is true by (2.7) and the Lebesgue Dominated Convergence Theorem if 

. For a general , this is also true, since (ϕ − 1)2V′(u+ψ̂
ϕ) ∈ 

L4(Ω) by (2.7) and since  is dense in . The convexity of V implies 

that the weak solution  defined by (2.8) is unique.

If we choose η = u in the equation of (2.8), we obtain by (2.6), (2.7), and Poincaré’s 

inequality that
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leading to

(2.9)

It now follows from the regularity theory (cf. Theorem 8.16 in [21]), (2.6), (2.7), and the 

imbedding H1(Ω) ↪ L4(Ω) that

(2.10)

Step 3: Let ψϕ = u + ψ̂
ϕ. Then ψϕ = ψ∞ on ∂Ω. Moreover, (2.5) and (2.8) imply (2.1). The 

uniqueness of ψϕ follows from the convexity of V and a usual argument. The estimates 

(2.2)–(2.4) follow from (2.6), (2.9), (2.7), and (2.10).

3. First Variation of Free-Energy Functional

We calculate the first variation of the free-energy functional Fξ defined by (1.6). The first 

variation of each of the first three parts in the functional Fξ can be obtained by routine 

calculations. So, we focus on the electrostatic part

(3.1)

where ψϕ is the unique solution to the boundary-value problem (1.7) and (1.8). Heuristically, 

if we denote by δϕ the “derivative” with respect to ϕ and δϕ the variation of ϕ, and 

“differentiate” both sides of the above equation, then we obtain by the chain rule and 

product rule for differentiation that

where in the last step we used the weak form (2.1) of the Poisson–Boltzmann equation with 

η = δϕψϕ. We then identify δϕFele,ξ[ϕ] as
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We remark that −δϕFele,ξ [ϕ] is an approximation of the electrostatic part of the boundary 

force −δΓF [Γ] in (1.5) if ϕ ≈ 0 in the solvent region and ϕ ≈ 1 in the solute region. In fact, 

the V-terms are similar, since the perturbation δϕ is localized at the interface. With our 

notation, the unit normal n ≈ −∇ϕ/|∇ϕ|. Moreover, ε(ϕ) ≈ εΓ. Therefore,

The final result is exactly the corresponding part in (1.5).

We now give a rigorous justification of our derivation. We recall that if  is a 

functional and if ϕ, , then the first variation of G at ϕ in the “direction” η is 

defined to be

if the limit exists.

Theorem 3.1

Let . Let ψϕ ∈ H1(Ω) be the weak solution of the corresponding boundary-value 

problem (1.7) and (1.8). Let . Then

(3.2)

To prove the theorem, we need the following lemma:

Lemma 3.2

Let  and . Let t ∈ ℝ with |t| ≤ 1. Let ψϕ and ψϕ+tη be the 

weak solutions to the boundary-value problems of Poisson–Boltzmann equation (1.7) and 

(1.8) corresponding to ϕ and ϕ + tη, respectively. Then there exists a constant C = C(ϕ, η) > 

0 that may depend on both ϕ and η such that
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Proof—By the weak form for ψϕ and that for ψϕ+tη, cf. (2.1), we have for any 

that

It follows from these two equations with ζ = ψϕ+tη − ψϕ, the property of ε, and the convexity 

of V that

Since |t| ≤ 1, we have by (2.2) and (2.4) that both ||ψϕ+tη||H1(Ω) and ||V′(ψϕ + tη)||L∞(Ω) are 

bounded by some constants that can depend on ϕ and η. An application of Poincaré’s 

inequality then implies the desired inequality.

Proof of Theorem 3.1—For any t with |t| ≪ 1, we denote by ψϕ+tη the weak solution to 

the boundary-value problem (1.7) and (1.8) with ϕ + tη replacing ϕ. Setting 

 as the test function in the corresponding weak formulation for ψϕ+tη, 

we obtain

Consequently, by the definition of the functional Fele,ξ (cf. (3.1)), we have
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(3.3)

where Λi(t) (i = 1, …, 4) denote the corresponding integrals.

By Lemma 3.2, we have

(3.4)

Since η ∈ L∞(Ω), we have for a.e. x ∈ Ω that

where θ = θ(x) ∈ [0, 1]. The Lebesgue Dominated Convergence Theorem then implies that

(3.5)

Similarly, since ψϕ ∈ L∞(Ω) by Theorem 2.1,

(3.6)

Let a ∈ ℝ and define g(b) = V (b) − V (a) − V′(b)(b − a) for all b ∈ ℝ. Note that g(a) = 0 and 

g′(b) = −V″(b)(b − a). By Taylor’s expansion,

where μ = μ(b) ∈ [0, 1]. With a = ψϕ and b = ψϕ+tη, we obtain by (2.4), the Cauchy–Schwarz 

inequality, the imbedding H1(Ω) ↪ L4(Ω), and Lemma 3.2 that
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(3.7)

Now (3.2) follows from (3.3)–(3.7).

The next theorem provides the formula of first variation of the solvation free-energy 

functional Fξ defined in (1.6). It follows from Theorem 3.1 and routine calculations. We 

thus omit the proof.

Theorem 3.3

Let  and  be such that

Let ψϕ ∈ H1(Ω) be the unique weak solution to the boundary-value problem (1.7) and (1.8) 

corresponding to ϕ. Then

If in addition ϕ ∈ H2(Ω) then the integral of ∇ϕ · ∇η becomes that of −Δϕη. Therefore, we 

shall denote

(3.8)

and call it the first variation of Fξ at ϕ.

4. Relaxation Dynamics: Fast and Regular Time Scales

We now consider the relaxation dynamics ∂tϕ = −δϕFξ[ϕ]. By Theorem 3.3, this dynamics is 

described by the following initial-boundary-value problem for the phase field ϕ = ϕ(x, t) and 

the corresponding electrostatic potential ψ = ψ(x, t):

(4.1)

(4.2)
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(4.3)

(4.4)

together with some initial condition for ϕ. If the solution ϕ = ϕ(x, t) and ψ = ψ(x, t) are 

smooth, then we have by (1.6), (3.8), the chain rule, and integration by parts that

where the vanish of the second integral follows from the weak formulation for (4.2) with the 

test function ∂tψ. Therefore, the energy decays, explaining the terminology “relaxation 

dynamics”.

Assume 0 < ξ ≪ 1. We expect that, after a short time period, the solution ϕ will take the 

value close to 0 or 1 in most of the region Ω, due to the fast reaction described by the term 

−(1/ξ)W′(ϕ). Moreover, in the regions {ϕ ≈ 0} and {ϕ ≈ 1}, the leading-order term of the 

electrostatic potential should solve the boundary-value problem (4.2) and (4.4), as the 

electrostatic relaxation is instantaneous: there is no ∂tψ term. In the subsequent long time 

period, the relaxation dynamics is mainly the motion of the interface that separates the two 

regions {ϕ ≈ 0} and {ϕ ≈ 1}. It is reasonable to assume that the early fast time scale is 

determined by the basic reaction-diffusion equation

as again the electrostatic relaxation is instantaneous. Perturbing the unstable constant 

equilibrium solution ϕ0(x) = 1/2 by δ exp (ik · x + ωt) with |δ| ≪ 1, we find the most 

unstable mode kc = 0 and the corresponding fastest growth rate ω(kc) = O(1/ξ). Therefore, 

the fast time scale is t/ξ. The next time scales are the regular time scale t, a slow time scale 

ξt, and so on.

Let us first consider the fast time scale T = t/ξ. We assume that

(4.5)

(4.6)

where ϕi = ϕi(x, T) and ψi = ψi(x, T) (i = 0, 1, …) are smooth and bounded functions 

satisfying the boundary conditions
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(4.7)

Substitute ϕ and ψ in (4.1) by these expansions and match terms with the same orders of ξ. 

At the leading order O(ξ−1), we obtain ∂T ϕ0 = −γ0W′(ϕ0). This equation has two stable 

fixed points 0 and 1. So,

(4.8)

Similarly, placing our expansions into (4.2), we obtain the leading-order O(1)-equation

(4.9)

This is exactly (4.2), as expected. More equations corresponding to other higher powers of ξ 

can be obtained but they provide less useful information. We therefore need to examine the 

next time scale, the regular time scale.

We assume that, at the regular time scale, the solution ϕ and ψ have the expansions

where ϕi = ϕi(x, t) and ψi = ψi(x, t) (i = 0, 1, …) are smooth and bounded functions that 

satisfy the boundary conditions (4.7). Note that these are functions of (x, t), different from 

those of (x, T) in (4.5) and (4.6). Substituting ϕ and ψ in (4.1) by these expansions and 

matching the terms with the same orders of ξ, we obtain the first two equations

(4.10)

(4.11)

Note that Eq. (4.2) does not involve any time derivatives. Thus, substituting ϕ and ψ in (4.2) 

by their expansions, we obtain the same equation (4.9) in the leading order.

Eq. (4.10) implies that ϕ0 = 0, 1, or 1/2. By (4.8), we must have ϕ0 = 0 or 1. Since ϕ0 = 0 on 

∂Ω, we have ϕ0 = 0 near ∂Ω. By the assumption (A2) on the function U in Section 2 and 

(4.11), ϕ0 cannot be identically 0 in Ω. Thus, both {ϕ0 = 0} and {ϕ0 = 1} are nonempty. But 

ϕ0 is a continuous function. This means that our above expansions for ϕ and ψ are valid only 

in the outer region, i.e., the union of  and 

. The region  contains all the points xi (1 ≤ i ≤ N). The 

boundary of the region  contains the boundary of Ω.
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We assume the inner region, a thin transition layer of width O(ξ) that is complement to the 

outer region, centers around the closed and smooth interface Γξ(t) = {x ∈ Ω : ϕ(x, t) = 1/2} 

enclosing . This interface is the perturbation of a closed and smooth interface Γ(t) that 

is also inside the inner region and that does not depend on ξ. We assume that all the 

principal curvatures of these interfaces are O(1) with respect to ξ → 0. For a given point x in 

the inner region, we denote by s(x, t) the signed distance from x to Γξ(t), positive interior and 

negative exterior of the interface. This is a smooth function depending on ξ such that |∇s(x, 

t)| = 1. Let Ptx ∈ Γξ(t) be the projection of x onto Γξ(t), defined by |s(x, t)| = ||x − Ptx||. (We 

use the Euclidean norm and distance.) The projection Pt depends on ξ. For ξ > 0 small 

enough, one can expect that the projection Ptx ∈ Γξ(t) is unique. We shall assume so. 

Consequently, the vector x − Pt(x) is normal to Γξ(t) at Ptx.

We shall show that, to the leading order with respect to ξ → 0, the interface Γ(t), or 

equivalently the interface Γξ(t), does not move at this time scale. To this end, let us 

introduce a local coordinate system for the inner region [14, 15]. Consider an open 

neighborhood D(t) in ℝ3 that covers an O(ξ)-neighborhood of a part of Γξ(t). Let Q(t) ⊂ ℝ2 

be a smooth domain and Φ(·, t) : Q(t) → D(t) ∩ Γξ(t) a smooth parameterization of the patch 

of interface D(t) ∩ Γξ(t) such that the coordinate lines yi = 0 (i = 1, 2) are exactly the lines of 

principal curvature and the coordinates y1 and y2 of y = (y1, y2) ∈ Q(t) are the corresponding 

arc lengths of these lines on Γξ(t). Then any point x ∈ D(t) of the inner region can be 

expressed uniquely as

(4.12)

where Φ(y, t) is exactly the projection of x onto Γξ(t), z(t) = s(x, t)/ξ, and n(y, t) = ∇xs(x, t) is 

the unit normal to the interface Γξ(t) at the projection Φ(y, t), pointing from the exterior to 

interior of the interface Γξ(t). We shall denote by J = J (y, t) the Jacobian matrix of the 

mapping Φ(·, t) : Q(t) → D(t) ∩ Γξ(t). This is a 3 × 2 matrix at each point y = (y1, y2) with 

the jth column being the vector ∂yj Φ(y, t) (j = 1, 2). These columns are orthonormal vectors 

and are tangent to the surface Γξ(t). Note that all D(t), Φ(y, t), J (y, t), z(t), and n(y, t) can 

depend on ξ. Both Φ(y, t) and J(y, t) are O(1) with respect to ξ → 0. Note also that the z 

component of the (z, y) coordinate is a global variable, independent of the parameterization 

Φ(·, t) of the patch of interface D(t) ∩ Γξ(t).

The relation (4.12) determines locally y = y(x, t) and z = z(x, t) as smooth functions of x and 

t. In particular, z(x, t) = s(x, t)/ξ. Let v = v(y, t) and H = H(y, t) be the normal velocity and 

mean curvature of the point Φ(y, t) ∈ Γξ(t) defined by v(y, t) = ∂tΦ(y, t) · n(y, t) and H(y, t) = 

∇y · n(y, t)/2, respectively. We have for any x related to (z, y) by (4.12) that

(4.13)

(4.14)
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(4.15)

(4.16)

Eq. (4.13) follows from n(y, t) = ∇xs(x, t) and ξz(x, t) = s(x, t). Eq. (4.14) follows from the 

fact that ∂yjn is the jth column of J multiplied by the jth principal curvature; cf. (2.3) in [15]. 

Fixing x and replacing z(t) by s(x, t) in (4.12), differentiating both sides of this equation with 

respect to t, and then dotting with the unit vector n = n(y, t), we then obtain (4.15). Finally, 

Eq. (4.16) follows from a formula for ∇xy in Lemma 2.1 of [15]. With these, we further 

obtain by a series of calculations that, for any smooth functions f = f(x, t) and f̃ = f̃(z, y, t) 

that satisfy f(x, t) = f̃(z, y, t) with x and (z, y) related by (4.12),

(4.17)

(4.18)

(4.19)

We now assume that the solutions ϕ = ϕ(x, t) and ψ = ψ(x, t) have the following expansions 

in the intersection of D(t) and the inner region [4, 34, 36]:

where x and (z, y) are related by (4.12), and all ϕ̃
i = ϕ̃

i(z, y, t) and ψ̃
i = ψ̃

i(z, y, t) (i = 0, 1, …) 

are smooth and bounded functions. Substitute ϕ and ψ in (4.1) with these inner expansions, 

apply (4.17)–(4.19), and group terms of the same orders in terms of powers of ξ.

Equating the terms of the order O(ξ−2), we get ε′(ϕ̃
0)(∂z ψ0̃)2 = 0. Since ϕ0 = 0 or 1 in the 

outer region, we can assume that the set of points in the inner region at which ϕ̃ = 0 or 1 has 

the Lebesgue measure zero. Thus, by our assumption (A3) in Section 2, ε′(ϕ̃
0) ≠ 0 almost 

everywhere in the inner region. Consequently, ∂z ψ0̃ = 0 in the inner region. With this, we 

obtain at the next order O(ξ−1) that

(4.20)

By matching the inner and outer solutions, we have ϕ̃
0(z, y, t) → 0 if z → −∞ and ϕ̃

0(z, y, t) 

→ 1 if z → +∞. Moreover, since ϕ̃
0 is smooth and bounded, we have also that ∂z ϕ̃

0 → 0 as 

z → −∞ or ∞. Therefore, multiplying both sides of (4.20) by ∂z ϕ̃
0 and integrating over z 

from −∞ and ∞, we obtain
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Hence v = v(y, t) = 0. Therefore, at the leading order of ξ, the interface does not move at the 

regular time scale. However, in the next long time period measured by a slow time scale, the 

interface still moves. Note that all these results depend only on the global variable z but not 

on the local variable y, i.e., not on the parametrization Φ(·, t) : Q(t) → D(t) ∩ Γξ(t).

5. Relaxation Dynamics: Slow Time Scale and Sharp-Interface Limit

We now consider the slow time scale τ = ξt and obtain the leading order of the normal 

velocity for this interface motion. Based on the previous analysis, we assume at each τ the 

system region Ω is divided by a closed and smooth interface Γ(τ) into two regions Ω−(τ) and 

Ω+(τ), outside and inside of Γ(τ), respectively. We assume the principal curvatures at any 

point of Γ(τ) are of order O(1) with respect to ξ → 0. We have ϕ ≈ 0 in Ω−(τ) and ϕ ≈ 1 in 

Ω+(τ). Moreover, all xi ∈ Ω+(τ) (1 ≤ i ≤ N). Hence Ω+(τ) approximates the solute region Ωp 

and Ω−(τ) approximates the solvent region Ωw.

We assume that in the outer region—the region outside an O(ξ) neighborhood of Γ(τ)—the 

solutions ϕ and ψ have the expansions

where ϕi = ϕi(x, τ) and ψi = ψi(x, τ) with τ = ξt are smooth and bounded functions that 

satisfy the boundary conditions (4.7). Plugging these into (4.1) and comparing the terms of 

the same orders of ξ, we obtain

(5.1)

Similarly, we have by (4.2) that

(5.2)

By (5.1) and the boundary condition for ϕ0, we get ϕ0 = 0 in the Ω−(τ) part of the outer 

region and ϕ0 = 1 in the Ω+(τ) part of the outer region. In particular, as ξ → 0, ϕ0 converges 

to 1 and 0, inside and outside Γ(τ), respectively.

We now consider the solutions ϕ and ψ in the inner region, an O(ξ)-neighborhood of Γ(τ). 

As before, we introduce a local coordinate system for the inner region. Let s(x, τ), Pτ(x), 

D(τ), Q(τ), Φ = Φ(y, τ), J = J(y, τ), z = z(τ), n = n(y, τ), H = H(y, τ), and v = v(y, τ) be all the 

same as those in Section 4 with τ replacing t and Γ(τ) replacing Γξ(t), respectively. We 

relate a point x ∈ D(τ) in the inner region to the local coordinates (z, y) by
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(5.3)

We still have (4.13), (4.14), and (4.16) with t replaced by τ. Eq. (4.15) is changed now to 

∂tz(x, τ) = −v(x, τ). If f(x, τ) and f̃(z, y, τ) are two smooth functions and f(x, τ) = f̃(z, y, τ) 

with x and (z, y) related by (5.3), then (4.17) and (4.18) still hold true; but (4.19) is changed 

to ∂tf = (ξ∂τ − v∂z) f̃.

We assume now the following local expansions in the inner region:

where ϕ̃
i = ϕ̃

i(z, y, τ) and ψ̃
i = ψ̃

i(z, y, τ) (i = 0, 1, …) are smooth and bounded functions, and 

x and (z, y) are related by (5.3). We also have by (5.3) that

where Ũ0(y, τ) = U(Φ(y, τ)). If x = Φ(y, τ) ∈ Γ(τ) then Ũ0(y, τ) = U(x).

Plug these expansions into (4.1) and equate the terms with the same power of ξ to obtain

(5.4)

(5.5)

(5.6)

In obtaining (5.4), we use the fact that ϕ0 = 0 or 1 in the outer region to assume that ϕ̃
0 ∈ (0, 

1) and hence ε′(ϕ̃
0) ≠ 0 almost everywhere in the inner region. Eq. (5.4) is used to obtain 

(5.5) and (5.6). By (5.4), ψ0̃(z, y, τ) = ψ̃
0(0, y, τ) is the value of ψ̃

0 at the point Φ(y, τ) ∈ 

Γ(τ). Note that the surface graident term ∇Γ(τ)ψ̃
0 in (5.6) is an O(ξ)-approximation of J∇yψ0̃ 

by (4.16) and the fact that columns of J are orthogonal to n:

Similarly, plugging the inner expansions of ϕ and ψ into (4.2), we obtain by (5.4) and the 

fact that columns of J = J(y, τ) are orthogonal to the normal n = n(y, τ) that
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(5.7)

Fix x = Φ(y, τ) ∈ Γ(τ). Let us employ the following matching conditions [4, 34, 36]:

(5.8)

(5.9)

(5.10)

where  and . 

Since ϕ0 = 0 in Ω−(τ) and ϕ0 = 1 in Ω+(τ), we have by (5.5) and (5.8) that

(5.11)

We now derive the following matching condition that will be used later:

(5.12)

Let us rewrite the matching condition (5.10) as

for some smooth functions g+ = g+(z, y, τ) (z > 0) and g− = g−(z, y, τ) (z < 0) such that g±(z, 

y, τ) = o(1) as z → ±∞, respectively. Thus

(5.13)

By (5.7), we have ∂zψ̃
1(z, y, τ) = h(y, τ)/ε(ϕ̃

0(z)) for some smooth and bounded function h = 

h(y, τ) independent of z. This and (5.13) imply that ∂zg± are bounded as z → ±∞. Moreover, 

with these two equations and (5.11), we obtain

Consequently, for any A2 > A1 > 0,
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as A1, A2 → ∞. Therefore, (∂zg+)2 → a+ as z → ∞ for some a+ ≥ 0. We must have a+ = 0, 

since g+ → 0 as z → ∞. Therefore ∂zg+ → 0 as z → ∞. Similarly ∂zg− → 0 as z → −∞. 

Hence (5.12) follows from (5.13).

We now show that ψ0 solves the Poisson–Boltzmann equation with the dielectric boundary 

Γ(τ). By (5.4), ψ̃
0 is independent of z. Therefore, (5.2), the matching condition (5.9), and the 

boundary condition ψ0 = ψ∞ on ∂Ω allow us to determine ψ0 in the outer region. Moreover, 

the matching condition (5.9) implies that  on Γ(τ). Integrating both sides of Eq. 

(5.7) over z from −∞ to ∞, we obtain by (5.12) that  on Γ(τ). 

These, together with (5.2) and (4.7), imply that ψ0 is the solution to the elliptic interface 

problem

(5.14)

This is equivalent to the boundary-value problem of the Poisson–Boltzmann equation (1.2) 

and (1.3) with ψ replaced by ψ0 [27].

We finally derive the motion law for the interface Γ(τ). For notational simplicity, let us skip 

writing the variables y and τ for a moment. Multiplying both sides of (5.6) by  and 

integrating over z from −∞ to ∞, we obtain that

(5.15)

where by (5.11)

(5.16)

Since Ũ0 and V(ψ̃
0) are independent of z, we have
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(5.17)

where we have on Γ(τ) that Ũ0 = U, and that ψ0̃ = ψ0 by (5.4) and (5.9).

By integration by parts and the fact that , we have

Therefore, by (5.16) and (5.5), we have

(5.18)

Now, since  on Γ(τ), we have . 

Consequently,

(5.19)

Rewrite (5.7) as . With this and (5.12), we have

Note that the last term on the right-hand side doubles the term on the left-hand side. This 

and the third equation in (5.14) then lead to

(5.20)

where εΓ(τ) is defined in (1.4) with Γ(τ) replacing Γ.

Finally, it follows from (5.15)–(5.20) that
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Since our normal n points from the interior to exterior and mean curvature H = ∇ · n/2, 

opposite to that in the sharp-interface model (cf. the description above Eq. (1.5)), this is 

exactly the normal velocity vn = −δΓF[Γ] in the sharp-interface model (cf. (1.5)).

We summarize our analysis in the following:

Theorem 5.1

Assume as above the existence of a closed and smooth interface Γ(τ), the outer and inner 

expansions for the solutions ϕ and ψ to the initial-boundary-value problem (4.1)–(4.4), and 

the corresponding matching conditions. Then the following are true:

1. As ξ → 0, the leading order of the phase-field function ϕ converges to 1 in Ω+(τ) 

and 0 in Ω−(τ), respectively;

2. The leading-order of the electrostatic potential is the unique solution to the 

boundary-value problem of the Poisson–Boltzmann equation (1.2) and (1.3);

3. As ξ → 0, the normal velocity of the interface Γ(τ) converges to the boundary force 

−δΓF[Γ] in (1.5), with Γ(τ) replacing Γ, as in the sharp-interface model.
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Fig. 1.1. 
A schematic view of a solvation system with an implicit solvent. A solute-solvent interface 

Γ separates the solute region ΩP (p stands for protein) from the solvent region ΩW (w stands 

for water). Dots represent solute atoms located at xi carrying partial charges Qi(i = 1, …, N).
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