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GLOBAL FINITE ENERGY WEAK SOLUTIONS TO THE COMPRESSIBLE

NEMATIC LIQUID CRYSTAL FLOW IN DIMENSION THREE

JUNYU LIN, BAISHUN LAI, AND CHANGYOU WANG

Abstract. In this paper, we consider the initial and boundary value problem of a simplified
compressible nematic liquid crystal flow in Ω ⊂ R3. We establish the existence of global weak
solutions, provided the initial orientational director field d0 lies in the hemisphere S2

+
.

1. Introduction

The continuum theory of liquid crystals was developed by Ericksen [3] and Leslie [7] during
the period of 1958 through 1968, see also the book by De Gennes [2]. Since then there have been
remarkable research developments in liquid crystals from both theoretical and applied aspects. When
the fluid containing nematic liquid crystal materials is at rest, we have the well-known Oseen-Frank
theory for static nematic liquid crystals, see Hardt-Lin-Kinderlehrer [8] on the analysis of energy
minimal configurations of nematic liquid crystals. In general, the motion of fluid always takes place.
The so-called Ericksen-Leslie system is a macroscopic continuum description of the time evolution
of the material under influence of both the flow velocity field u and the macroscopic description of
the microscopic orientation configurations d of rod-like liquid crystals.

When the fluid is an incompressible, viscous fluid, Lin [10] first derived a simplified Ericksen-Leslie
system (i.e. ρ = 1 and divu = 0 in the equation (1.1) below) modeling liquid crystal flows in 1989.
Subsequently, Lin and Liu [11, 12] have made some important analytic studies, such as the global
existence of weak and strong solutions and the partial regularity of suitable weak solutions, of the
simplified Ericksen-Leslie system, under the assumption that the liquid crystal director field is of
varying length by Leslie’s terminology or variable degree of orientation by Ericksen’s terminology.
When dealing with the system (1.1) with ρ = 1 and divu = 0, in dimension two Lin-Lin-Wang [13]
and Lin-Wang [14] have established the existence of a unique global weak solution, that has at most
finitely many possible singular time, for the initial-boundary value problem in bounded domains (see
also Hong [9], Xu-Zhang [36], and Lei-Li-Zhang [15] for some related works); and in dimension three
Lin-Wang [18] have obtained the existence of global weak solutions very recently when the initial
director field d0 maps to the hemisphere S

2
+.

When the fluid is compressible, the simplified Ericksen-Leslie system (1.1) becomes more compli-
cate, which is a strongly coupling system between the compressible Navier-Stokes equation and the
transported harmonic map heat flow to S

2. It seems worthwhile to be explored for the mathematical
analysis of (1.1). We would like to mention that there have been both modeling study, see Morro [24],
and numerical study, see Zakharov-Vakulenko [25], on the hydrodynamics of compressible nematic
liquid crystals under the influence of temperature gradient or electromagnetic forces.

Now let’s introduce the simplified Ericksen-Leslie system for compressible nematic liquid crystal
flow. Let Ω ⊂ R

3 be a bounded, smooth domain, S2 ⊂ R
3 be the unit sphere, and 0 < T ≤ +∞. We

will consider a simplified version of the three dimensional hydrodynamic flow of the compressible
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nematic liquid crystal flow in Ω× (0, T ), i.e., (ρ, u, d) : Ω× (0, T ) → R+ × R
3 × S

2 solves





∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) + a∇ργ = Lu −∇ ·
(
∇d⊙∇d− 1

2 |∇d|2I3
)
,

∂td+ u · ∇d = △d+ |∇d|2d,
(1.1)

under the initial and boundary condition:
{
ρ(x, 0) = ρ0(x), ρu(x, 0) = m0(x), d(x, 0) = d0(x), x ∈ Ω,

u(x, t) = 0, d(x, t) = d0(x), x ∈ ∂Ω, t > 0,
(1.2)

where ρ : Ω× [0, T ) → R+ denotes density function of the fluid, u : Ω× [0, T ) → R
3 denotes velocity

field of the fluid, d : Ω× [0, T ) → S
2 denotes direction field of the averaged macroscopic molecular

orientations, ∇· denotes the divergence operator in R
3, I3 is the 3× 3 identity matrix, P (ρ) = aργ ,

with a > 0 and γ > 1, denotes the pressure function associated with an isentropic fluid, L is the
Lamé operator defined by

Lu = µ△u+ (µ+ λ)∇(∇ · u),
where µ and λ represent the shear viscosity and the bulk viscosity coefficients of the fluid respectively,
which satisfy the natural physical condition:

µ > 0, µ̃ := µ+ λ ≥ 0, (1.3)

∇d⊙∇d denotes the 3× 3 matrix valued function whose (i, j)-entry is 〈∂xi
d, ∂xj

d〉 for 1 ≤ i, j ≤ 3,

and u⊗ u = (uiuj)1≤i,j≤3.
Throughout this paper, we denote S2+ =

{
y = (y1, y2, y3) ∈ S

2 : y3 ≥ 0
}
as the upper hemisphere,

χE denote the characteristic function of a set E ⊂ R
3,

H1(Ω, S2) =
{
d ∈ H1(Ω,R3) : d(x) ∈ S

2 a.e. x ∈ Ω
}
,

and A : B =

3∑

i,j=1

AijBij denotes the scalar product of two 3× 3 matrices. For 0 < T ≤ +∞, denote

QT = Ω× (0, T ), ∂pQT = (Ω× {0}) ∪ (∂Ω× (0, T )), D′(QT ) = (C∞
0 (QT ))

′.

We say (ρ, u, d) : Ω× [0, T ) → R+×R
3×S

2 is a finite energy weak solution of the initial-boundary
value problem (1.1)-(1.2) if the following properties hold:

(i) ρ ≥ 0, ρ ∈ L∞((0, T ), Lγ(Ω)), u ∈ L2((0, T ), H1(Ω,R3)), and d ∈ L2((0, T ), H1(Ω, S2)).
(ii) the system (1.1) holds in D′(QT ), (1.1)1 also holds in D′(R3 × (0, T )) provided (ρ, u) is

prolonged by zero in R
3 \ Ω, (ρ, ρu, d)(x, 0) = (ρ0(x),m0(x), d0(x)) for a.e. x ∈ Ω, and

(u, d)(x, t) = (0, d0(x)) on ∂Ω× (0, T ) in the sense of traces.
(iii) (ρ, u) satisfies (1.1)1 in the sense of the renormalized solutions introduced by DiPerna-Lions

[26], that is, (ρ, u) satisfies

∂t
(
b(ρ)

)
+∇ · (b(ρ)u) +

(
b′(ρ)ρ− b(ρ)

)
∇ · u = 0, (1.4)

in the sense of distributions in R
3 × (0,+∞) for any b ∈ C1((0,+∞)) ∩ C([0,+∞)) such

that

b′(z) = 0 for all z ∈ (0,+∞) large enough, say z ≥M, (1.5)

where the constant M > 0 may vary for different functions b’s. Here (ρ, u) is prolonged by
zero outside Ω.

(iv) (ρ, u, d) satisfies the following energy inequality

E(t) +

ˆ t

0

ˆ

Ω

(
µ|∇u|2 + µ̃|∇ · u|2 + |△d+ |∇d|2d|2

)
≤ E(0), (1.6)
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for almost all 0 < t < T . Here

E(t) :=

ˆ

Ω

(1
2
ρ|u|2 + aργ

γ − 1
+

1

2
|∇d|2

)
(t) (1.7)

is the total energy of (ρ, u, d) at time t > 0, and

E(0) =

ˆ

Ω

( |m0|2
2ρ0

χ{ρ0≥0} +
aρ

γ
0

γ − 1
+

1

2
|∇d0|2

)
(1.8)

is the initial energy.

There have been some earlier results on (1.1). In dimension one, the existence of global strong
solutions and weak solutions to (1.1) has been obtained by [28] and [29] respectively. In dimension
two, the existence of global weak solution of (1.1), under the condition that the image of d0 is
contained in S

2
+, was obtained by [33]. In dimension three, the local existence of strong solutions of

(1.1) has been studied by [30] and [31]. The compressible limit of compressible nematic liquid crystal
flow (1.1) has been studied by [32]. We also mention a related work [34]. When considering the
compressible nematic liquid crystal flow (1.1) under the assumption that the director d has variable
degree of orientations, the global existence of weak solutions in dimension three has been obtained
by [27] and [35] respectively.

In this paper, we are mainly interested in the existence of finite energy weak solutions of (1.1)-(1.2)
in dimension three. Our main states as follows.

Theorem 1.1. Assume γ > 3
2 and the condition (1.3) holds. If the initial data (ρ0,m0, d0) satisfies

the following condition:

0 ≤ ρ0 ∈ Lγ(Ω), (1.9)

m0 ∈ L
2γ

γ+1 (Ω), m0χ{ρ0=0} = 0,
|m0|2
ρ0

χ{ρ0>0} ∈ L1(Ω), (1.10)

and

d0 ∈ H1(Ω, S2), with d0(x) ∈ S
2
+ a.e. x ∈ Ω. (1.11)

Then there exists a global finite energy weak solution (ρ, u, d) : Ω× [0,+∞) → R+ × R
3 × S

2 to the
initial and boundary value problem (1.1)-(1.2) such that

(i) d = (d1, d2, d3) ∈ L∞((0,+∞), H1(Ω, S2)) and d3(x, t) ≥ 0 a.e. (x, t) ∈ Ω× (0,+∞).
(ii) it holds
ˆ ∞

0

η(t)

ˆ

Ω

(
∇d⊙∇d− 1

2
|∇d|2I3

)
: ∇X +

ˆ ∞

0

η(t)

ˆ

Ω

〈
∂td+ u · ∇d,X · ∇d

〉
= 0, (1.12)

for any X ∈ C1
0 (Ω,R

3) and η ∈ C1
0 ((0,+∞)).

The main ideas of proof of Theorem 1.1 rely on (i) the precompactness results, due to Lin-Wang
[18], on approximated Ginzburg-Landau equations {dǫ} with bounded energies, bounded L2-tension
fields, and the condition |dǫ| ≤ 1 and d3ǫ ≥ −1+δ for δ > 0, and (ii) suitable adaption of compactness
properties of renormalized solutions of compressible Navier-Stokes equations established by Lions
[26] and Feireisl and his collaborators [4], [5], and [6].

For any global finite energy weak solutions of (1.1) and (1.2) that satisfies the properties stated in
Theorem 1.1, we are able to establish the following preliminary result on its large time asymptotic
behavior.

Corollary 1.2. Under the same assumptions of Theorem 1.1, let (ρ, u, d) : Ω × [0,+∞) → R+ ×
R

3 × S
2 be any global finite energy weak solution of (1.1) and (1.2) that satisfies the properties of

Theorem 1.1. Then there exist tn → ∞ and a harmonic map d∞ ∈ H1 ∩ C∞(Ω, S2+), with d∞ = d0
on ∂Ω, such that

(
ρ(·, tn), u(·, tn), d(·, tn)

)
→

(
ρ0,∞, 0, d∞

)
in Lγ(Ω)× Lp(Ω)×H1

loc(Ω), (1.13)
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for any 1 < p < 6, where ρ0,∞ :=
1

|Ω|

ˆ

Ω

ρ0 > 0 is the average of the initial mass.

Remark 1.3. It is a very interesting question to ask whether the convergence in (1.13) holds for
t → +∞. We plan to address it in a future work. We would like to point out that such a property
has been established by [5] for the compressible Navier-Stokes equation. For the compressible flow
of nematic liquid crystals with variable degree of orientations, see Wang-Yu [35] for the large time
asymptotic behavior of global weak solutions.

The paper is written as follows. In section 2, we provide some preliminary estimates of (1.1).
In section 3, we briefly review a compactness theorem due to Lin and Wang [18]. In section 4, we
review the main results by Wang-Yu [35] on nematic liquid crystal flows with variable lengths of
directors. In section 5, we prove Theorem 1.1. In section 6, we prove Corollary 1.2.

2. Global energy inequality and estimates based on the maximum principle

In this section, we will provide several basic properties of the hydrodynamic flow of compressible
nematic liquid crystals (1.1) and (1.2). First, we will derive an energy equality for sufficiently smooth
solutions of (1.1) and (1.2).

Lemma 2.1. Assume the conditions (1.3), (1.9), (1.10), and (1.11) hold. For 0 < T ≤ +∞, if
(ρ, u, d) ∈ C1(QT ,R+)×C2(QT ,R

3)×C2(QT , S
2) is a solution of (1.1) and (1.2), then the following

energy equality

E(t) +

ˆ t

0

ˆ

Ω

(
µ|∇u|2 + µ̃|∇ · u|2 + |△d+ |∇d|2d|2

)
= E(0), (2.1)

holds for any 0 ≤ t < T , where E(t) and E(0) are given by (1.7) and (1.8) respectively.

Proof. Multiplying (1.1)2 by u, integrating the resulting equation over Ω, applying integration by
parts, and using (1.1)1, we obtain

d

dt

ˆ

Ω

(
1

2
ρ|u|2 + aργ

γ − 1

)
+

ˆ

Ω

(
µ|∇u|2 + µ̃|∇ · u|2

)

= −
ˆ

Ω

∇ · (∇d⊙∇d− 1

2
|∇d|2I3)u, (2.2)

where we have used the fact
ˆ

Ω

ργ∇ · u =

ˆ

Ω

ργ−1ρ∇ · u = −
ˆ

Ω

(∂tρ+ u · ∇ρ)ργ−1 = − d

dt

ˆ

Ω

ργ

γ
+

ˆ

Ω

ργ

γ
∇ · u,

so that

−a
ˆ

Ω

ργ∇ · u =
d

dt

ˆ

Ω

aργ

γ − 1
.

Direct calculations show

∇ · (∇d⊙∇d− 1

2
|∇d|2I3) = 〈△d,∇d〉.

Note also, since |d| = 1, that we have

〈∂td, d〉 = 〈∇d, d〉 = 0,

and hence

−
ˆ

Ω

∇ · (∇d · ∇d− 1

2
|∇d|2I3)u = −

ˆ

Ω

u · 〈∆d+ |∇d|2d,∇d〉. (2.3)

Multiplying (1.1)3 by −(△d+ |∇d|2d) and integrating over Ω yields that

d

dt

ˆ

Ω

1

2

∣∣∇d
∣∣2 +

ˆ

Ω

∣∣△d+ |∇d|2d
∣∣2 =

ˆ

Ω

u · 〈△d+ |∇d|2d,∇d〉. (2.4)
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Putting (2.2), (2.3), and (2.4) together implies

d

dt
E(t) +

ˆ

Ω

(
µ|∇u|2 + µ̃|∇ · u|2 + |△d+ |∇d|2d|2

)
= 0. (2.5)

This, after integrating over t, implies (2.1). �

In order to construct global finite energy weak solutions to (1.1)-(1.2), we need some important
estimates of transported Ginzburg-Landau equations based on the maximum principle.

Lemma 2.2. For ǫ > 0, T > 0, and uǫ ∈ L2([0, T ], L∞(Ω,R3)), assume dǫ ∈ L2([0, T ], H1(Ω,R3)),
with (1− |dǫ|2) ∈ L2(QT ), solves the transported Ginzburg-Landau equation:

{
∂tdǫ + uǫ · ∇dǫ = △dǫ + 1

ǫ2
(1 − |dǫ|2)dǫ, in QT ,

dǫ = gǫ, on ∂pQT .
(2.6)

If gǫ ∈ H1(Ω,R3) satisfies |gǫ(x)| ≤ 1 for a.e. x ∈ Ω, then

|dǫ(x, t)| ≤ 1 for a.e. (x, t) ∈ QT .

Proof. We will follow the proof of Lemma 2.1 of Lin-Wang [18] with some modifications. For any
k > 1, define fk

ǫ : QT → R+ by

fk
ǫ =






k2 − 1, if |dǫ(x, t)| > k,

|dǫ(x, t)|2 − 1, if 1 < |dǫ(x, t)| ≤ k,

0, if |dǫ(x, t)| ≤ 1.

By direct calculations, we have that fk
ǫ satisfies, in the sense of distributions,

{
∂tf

k
ǫ + uǫ · ∇fk

ǫ = △fk
ǫ − 2χ{1<|dǫ|≤k}

(
|∇dǫ|2 + 1

ǫ2
(|dǫ|2 − 1)|dǫ|2

)
≤ △fk

ǫ in QT ,

fk
ǫ = 0 on ∂pQT .

(2.7)

Multiplying (2.7) by fk
ǫ and integrating over Ω, we obtain

d

dt

ˆ

Ω

|fk
ǫ |2 + 2

ˆ

Ω

|∇fk
ǫ |2 ≤ 2

ˆ

Ω

uǫ · ∇fk
ǫ f

k
ǫ

≤
ˆ

Ω

|∇fk
ǫ |2 + ‖uǫ(t)‖2L∞(Ω)

ˆ

Ω

|fk
ǫ |2.

Hence we have

d

dt

ˆ

Ω

|fk
ǫ |2dx ≤ 2‖uǫ(·)‖2L∞(Ω)

ˆ

Ω

|fk
ǫ |2dx. (2.8)

Since uǫ ∈ L2([0, T ], L∞(Ω)) and fk
ǫ (x, 0) = 0 for a.e. x ∈ Ω, applying Gronwall’s inequality to (2.8)

yields that fk
ǫ = 0 a.e. in QT . By the definition of fk

ǫ , this implies that dǫ ≤ 1 a.e. in QT . �

We also have the following lemma.

Lemma 2.3. For ǫ > 0, T > 0, and uǫ ∈ L2([0, T ], L∞(Ω,R3)), assume dǫ ∈ L2([0, T ], H1(Ω,R3)),
with (1−|dǫ|2) ∈ L2(QT ), solves the transported Ginzburg-Landau equation (2.6). If gǫ ∈ H1(Ω,R3)
satisfies

|gǫ(x)| ≤ 1 and g3ǫ (x) ≥ 0 for a.e. x ∈ Ω,

then

|dǫ(x, t)| ≤ 1 and d3ǫ (x, t) ≥ 0 for a.e. (x, t) ∈ QT .
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Proof. We will modify the proof of Lemma 2.2 by Lin-Wang [18]. First it follows from Lemma 2.2
that

0 ≤ 1

ǫ2
(1− |dǫ|2) ≤

1

ǫ2
.

Set d̃3ǫ := e−
t

ǫ2 d3ǫ . Then we have

∂td̃3ǫ + uǫ · ∇d̃3ǫ −△d̃3ǫ = hǫd̃3ǫ ,

where

hǫ(x, t) =
( 1

ǫ2
(1− |dǫ|2)−

1

ǫ2

)
≤ 0 a.e. (x, t) ∈ QT .

Since d̃3ǫ ≥ 0 on ∂pQT , we have that (d̃3ǫ)
− := −min

{
d̃3ǫ , 0

}
satisfies

{
∂t(d̃3ǫ )

− + uǫ · ∇(d̃3ǫ )
− −△(d̃3ǫ )

− = hǫ(d̃3ǫ )
−, in QT ,

(d̃3ǫ)
− = 0, on ∂pQT .

(2.9)

Multiplying (2.9)1 by (d̃3ǫ )
− and integrating the resulting equation over Ω, we have

d

dt

ˆ

Ω

|(d̃3ǫ )−|2 + 2

ˆ

Ω

|∇(d̃3ǫ )
−|2

= −2

ˆ

Ω

uǫ · ∇(d̃3ǫ )
−(d̃3ǫ )

− + 2

ˆ

Ω

hǫ|(d̃3ǫ )−|2

≤ −2

ˆ

Ω

uǫ · ∇(d̃3ǫ )
−(d̃3ǫ )

−

≤
ˆ

Ω

|∇(d̃3ǫ )
−|2 + ‖uǫ(t)‖2L∞(Ω)

ˆ

Ω

|(d̃3ǫ )−|2,

where we have used the fact that hǫ(x, t) ≤ 0 a.e. (x, t) ∈ QT . Thus we have

d

dt

ˆ

Ω

|(d̃3ǫ)−|2 ≤ ‖uǫ(t)‖2L∞(Ω)

ˆ

Ω

|(d̃3ǫ)−|2.

Applying Gronwall’s inequality and using the initial condition (d̃3ǫ )
−(x, 0) = 0 a.e. x ∈ Ω, we obtain

that (d̃3ǫ )
− = 0 a.e. in QT . Therefore d

3
ǫ ≥ 0 a.e. QT . This completes the proof of Lemma 2.3. �

3. Review of Lin-Wang’s compactness results

In order to show that a family of global finite weak solutions (ρǫ, uǫ, dǫ) to the Ginzburg-Landau
approximation of compressible nematic liquid crystal flow converges to a global finite weak solution
(ρ, u, d) of the compressible nematic liquid crystal flow (1.1) and (1.2), we need to establish the com-
pactness of dǫ in L

2
loc([0, T ], H

1
loc(Ω,R

3)). Under suitable conditions, this has recently been achieved
by Lin-Wang [18] in their studies of the existence of global weak solutions to the incompressible
nematic liquid crystal flow.

Since such a compactness property also plays a crucial role in this paper, we will state it and refer
the interested readers to the paper [18] for more detail. For a ∈ (0, 2], denote

S
2
−1+a =

{
y = (y1, y2, y3) ∈ S

2
∣∣ y3 ≥ −1 + a

}
.

For any a ∈ (0, 2], L1 > 0 and L2 > 0, let X(L1, L2, a; Ω) denote the set consisting of all maps
dǫ ∈ H1(Ω,R3), with ǫ ∈ (0, 1], that are solutions of

△dǫ +
1

ǫ2
(1− |dǫ|2)dǫ = τǫ in Ω, with τǫ ∈ L2(Ω,R3), (3.1)

such that for all 0 < ǫ ≤ 1, the following properties hold:

(i) |dǫ| ≤ 1 and d3ǫ ≥ −1 + a for a.e. x ∈ Ω.

(ii) Eǫ(dǫ) :=

ˆ

Ω

(1
2
|∇dǫ|2 +

3

4ǫ2
(1− |dǫ|2)2

)
≤ L1.
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(iii)
∥∥τǫ

∥∥
L2(Ω)

≤ L2.

We have

Theorem 3.1. ([18]) For any a ∈ (0, 2], L1 > 0, and L2 > 0, the set X(L1, L2, a; Ω) is pre-
compact in H1

loc(Ω,R
3). In particular, if for ǫ → 0, {dǫ} ⊂ H1(Ω,R3) is a sequence of maps in

X(L1, L2, a; Ω), then there exists a map d ∈ H1(Ω, S2−1+a) ∩Y(L1, L2, a; Ω) such that after passing

to possible subsequences, dǫ → d in H1
loc(Ω,R

3) and

eǫ(dǫ) dx :=
(1
2
|∇dǫ|2 +

(1− |dǫ|2)2
4ǫ2

)
dx ⇀

1

2
|∇d|2 dx

as convergence of Radon measures.

The idea of proof of Theorem 3.1 is based on: (1) almost energy monotonicity inequality of
dǫ ∈ X(L1, L2, a; Ω); (2) an δ0-regularity and compactness property of dǫ ∈ X(L1, L2, a; Ω); (3) the
blowing-up analysis of dǫ ∈ X(L1, L2, a; Ω) as ǫ → 0 in terms of both the concentration set Σ and
the defect measure ν, motivated by that of harmonic maps by Lin [16] and approximated harmonic
maps [20, 21, 22]; and (4) the ruling out of possible harmonic S

2’s generated at Σ.
In order to study the large time behavior of global finite energy weak solutions to the compress-

ible nematic liquid crystal flow (1.1) and (1.2), we also need the following compactness result on
approximated harmonic maps to S

2
−1+a for 0 < a ≤ 2.

For 0 < a ≤ 2, L1 > 0, and L2 > 0, let Y(L1, L2, a; Ω) be the set consisting of maps d ∈ H1(Ω, S2)
that are approximated harmonic maps, i.e.,

∆d+ |∇d|2d = τ in Ω, with τ ∈ L2(Ω,R3), (3.2)

that satisfy the following properties:

(i) d3(x) ≥ −1 + a for a.e. x ∈ Ω.

(ii) F(d) :=
1

2

ˆ

Ω

|∇d|2 ≤ L1.

(iii)
∥∥τ

∥∥
L2(Ω)

≤ L2.

(iv) (almost energy monotonicity inequality) for any x0 ∈ Ω and 0 < r ≤ R < d(x0, ∂Ω),

ΨR(d, x0) ≥ Ψr(d, x0) +
1

2

ˆ

BR(x0)\Br(x0)

|x− x0|−1
∣∣ ∂d

∂|x− x0|
∣∣2, (3.3)

where

Ψr(d, x0) :=
1

r

ˆ

Br(x0)

(1
2
|∇d|2 − 〈(x− x0) · ∇d, τ〉

)
+

1

2

ˆ

Br(x0)

|x− x0||τ |2.

Theorem 3.2. ([18]) For any a ∈ (0, 2], L1 > 0, and L2 > 0, the set Y(L1, L2, a; Ω) is precompact
in H1

loc(Ω, S
2). In particular, if {di} ⊂ H1(Ω,R3) is a sequence of approximated harmonic maps

in Y(L1, L2, a; Ω) with tension fields {τi}, then there exist τ0 ∈ L2(Ω,R3) and an approximated
harmonic map d0 ∈ Y(L1, L2, a; Ω) with tension field τ0 such that after passing to possible subse-
quences, di → d0 in H1

loc(Ω, S
2) and τi ⇀ τ0 in L2(Ω,R3). In fact, {di} is bounded in H2

loc(Ω, S
2).

In particular, d0 ∈ H2
loc(Ω, S

2).

4. Ginzburg-Landau approximation of compressible nematic liquid crystal flow

In this section, we will consider the Ginzburg-Landau approximation of compressible nematic
liquid crystal flow and state the existence of global weak solutions, which is an improved version of
an earlier result obtained by Wang-Yu [35] (see also [27]).
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For ǫ > 0 and 0 < T ≤ +∞, the Ginzburg-Landau approximation equation of (1.1) and (1.2)
seeks (ρǫ, uǫ, dǫ) : QT → R+ × R

3 × R
3 that satisfies:






∂tρǫ +∇ · (ρuǫ) = 0,

∂t(ρǫuǫ) +∇ · (ρǫuǫ ⊗ uǫ) + a∇ργǫ
= Luǫ −∇ ·

(
∇dǫ ⊙∇dǫ − (12 |∇dǫ|2 + 1

4ǫ2 (1− |dǫ|2)2)I3
)
,

∂tdǫ + uǫ · ∇dǫ = △dǫ + 1
ǫ2
(1 − |dǫ|2)dǫ,

(4.1)

along with the initial and boundary condition (1.2). We would like to point out that the notion of
finite energy weak solutions of (4.1) and (1.2) can be defined in the same way as that of (1.1) and
(1.2) given in §1.
Theorem 4.1. Assume γ > 3

2 and the condition (1.3), and (ρ0,m0, d0) satisfies (1.9), (1.10),

(1.11). Then there exists a global finite energy weak solution (ρǫ, uǫ, dǫ) : Ω×[0,+∞) → R+×R
3×R

3

to the system (4.1), under the initial and boundary condition (1.2), such that

(i) dǫ = (d1ǫ , d
2
ǫ , d

3
ǫ ) ∈ L∞((0,∞), H1(Ω,R3)), with |dǫ| ≤ 1 and d3ǫ ≥ 0 for a.e. (x, t) ∈

Ω× (0,∞).
(ii) (ρǫ, uǫ, dǫ) satisfies the global energy inequality

d

dt
Fǫ(t) +

ˆ

Ω

(
µ|∇uǫ|2 + µ̃|∇ · uǫ|2 + |△dǫ +

1

ǫ2
(1 − |dǫ|2)dǫ|2

)
(t) ≤ 0 (4.2)

in D′((0,+∞)), where

Fǫ(t) :=

ˆ

Ω

(1
2
ρǫ|uǫ|2 +

aργǫ
γ − 1

+
(1
2
|∇dǫ|2 +

1

4ǫ2
(1− |dǫ|2)2

))
(t).

Proof. The existence of finite energy weak solutions has been established by Wang-Yu [35], which
uses a three level approximation scheme similar to that of compressible Navier-Stokes equation by
[4] and [6]. It consists of Faedo-Galerkin approximation, artificial viscosity, and artificial pressure.
The reader can consult the proof of [35] Theorem 2.1 for the detail.

Here we only indicate the proof of (i). Let ǫ > 0 be fixed. Recall that the first level of Faedo-
Galerkin’s approximation involves to solve the initial and boundary value problems of (4.1) as
follows. For any α > 0, δ > 0, and 0 < T < +∞, we first approximate the initial data (ρ0,m0, d0)
by

(
ρ0,δ,m0,δ, d0,δ

)
∈ C2(Ω,R+ × R

3 × R
3
+) such that the following conditions hold:





δ ≤ ρ0,δ ≤ δ−1 in Ω,
∂ρ0,δ

∂ν

∣∣
∂Ω

= 0, and ρ0,δ → ρ0 in Lγ(Ω),

m0,δ → m0 in L
2γ

γ+1 (Ω),
|m0,δ|

2

ρ0,δ
→ |m0|

2

ρ0
χ{ρ0>0} in L1(Ω),

|d0,δ(x)| ≤ 1, d30,δ(x) ≥ 0 a.e. x ∈ Ω, d0,δ → d0 in H1(Ω,R3),

(4.3)

as δ → 0.
For u ∈ C1([0, T ], C2

0 (Ω,R
3)), with u

∣∣
t=0

= u0,δ ≡ m0,δ

ρ0,δ
, let dδ = dδ([u]) ∈ C1([0, T ], C2(Ω,R3))

be the unique solution of (see [35] Lemma 3.1 and Lemma 3.2):
{
∂td+ u · ∇d = ∆d+ 1

ǫ2
(1− |d|2)d in QT ,

d = d0,δ on ∂pQT .
(4.4)

Since |d0,δ(x)| ≤ 1 and d30,δ(x) ≥ 0 for x ∈ Ω, it follows from Lemma 2.2 and Lemma 2.3 that dδ
satisfies

|dδ(x, t)| ≤ 1 and d3δ(x, t) ≥ 0, ∀ (x, t) ∈ QT . (4.5)

Now let ρα,δ = ρα,δ([u]) ∈ C1([0, T ], C2(Ω)) be the unique solution of the problem:





∂tρ+∇ · (ρu) = α∆ρ in QT ,

ρ(x, 0) = ρ0,δ(x) in Ω,
∂ρ
∂ν

= 0 on ∂Ω× (0, T ).

(4.6)



COMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOW 9

While for u, it involves to employ first the Galerkin method and then the fixed point theorem to
solve u = uα,δ([u]) to the problem: for some β > max{4, γ},






∂t(ρα,δu) +∇ · (ρα,δu⊗ u) + a∇
(
ρ
γ
α,δ

)
+ δ∇

(
ρ
β
α,δ

)
+ α∇u · ∇ρα,δ

= Lu −∇ ·
[
∇dδ ⊙∇dδ −

(
1
2 |∇dδ|2 + 1

4ǫ2 (1 − |dδ|2)2
)
I3

]
, in QT ,

u = u0,δ on ∂pQT .

(4.7)

Since the global weak solution (ρǫ, uǫ, dǫ) to the system (4.1), under the initial and boundary condi-
tion (1.2), constructed in [35], was obtained as a strong limit of (ρα,δ, uα,δ, dδ) in L

γ(QT )×L2(QT )×
L2([0, T ], H1(Ω,R3)) for any 0 < T < +∞, as viscosity coefficients α → 0 first and then artificial
pressure coefficients δ → 0. It is readily seen that dǫ satisfies the property (ii). �

5. Existence of global weak solutions

In this section, we will prove Theorem 1.1 by studying in depth the convergence of sequences of
solutions (ρǫ, uǫ, dǫ), constructed by Theorem 4.1, as ǫ→ 0+.

Proof of Theorem 1.1.

To prove the existence of global finite energy weak solutions to (1.1), let (ρǫ, uǫ, dǫ) : Ω×[0,+∞) →
R+ ×R

3 × R
3, 0 < ǫ ≤ 1, be a family of finite energy weak solutions to the system (4.1), under the

initial and boundary condition (1.2), constructed by Theorem 4.1. Since |d0| = 1 and d30 ≥ 0 a.e. in
Ω, (ρǫ, uǫ, dǫ) satisfies all these properties in Theorem 4.1. In particular, it follows from (4.2) that

sup
ǫ>0

[
sup

0<t<∞

ˆ

Ω

(1
2
ρǫ|uǫ|2 +

a

γ − 1
ργǫ + (

1

2
|∇dǫ|2 +

1

4ǫ2
(1− |dǫ|2)2)

)
(t)

+

ˆ ∞

0

ˆ

Ω

(
µ|∇uǫ|2 + µ̃|∇ · uǫ|2 + |△dǫ +

1

ǫ2
(1− |dǫ|2)dǫ|2

)]

≤
ˆ

Ω

( |m0|2
2ρ0

χ{ρ0>0} +
a

γ − 1
ρ
γ
0 +

1

2
|∇d0|2

)
:= E(0). (5.1)

By (5.1), we may assume that there exists (ρ, u, d) : Ω × [0,+∞) → R+ × R
3 × S

2 such that after
passing to a subsequence,





ρǫ ⇀ ρ weak∗ in L∞([0, T ], Lγ(Ω)),

uǫ ⇀ u in L2([0, T ], H1
0(Ω)),

dǫ ⇀ d weak∗ in L∞([0, T ], H1(Ω)),

(5.2)

as ǫ→ 0, for any 0 < T < +∞.
We will prove that (ρ, u, d) is a global finite energy weak solution to (1.1) and (1.2). The proof

will be divided into several subsections.

5.1. dǫ → d strongly in L2([0, T ], H1
loc(Ω)). This will be achieved by applying Theorem 3.1, similar

to that of [18]. First it follows from the equation (4.1)3 and the inequality (5.1) that ∂tdǫ ∈
L2([0, T ], L

3
2 (Ω)) + L2([0, T ], L2(Ω)) so that ∂tdǫ ∈ L2([0, T ], H−1(Ω)) and

sup
0<ǫ≤1

∥∥∂tdǫ
∥∥
L2(0,T ;H−1(Ω))

< +∞. (5.3)

By Aubin-Lions’ lemma, we conclude that

dǫ → d in L2(QT ) and ∇dǫ ⇀ ∇d in L2([0, T ], L2(Ω)). (5.4)

By Fatou’s lemma, (5.1) implies that
ˆ T

0

lim inf
ǫ→0

ˆ

Ω

∣∣△dǫ +
1

ǫ2
(1− |dǫ|2)dǫ

∣∣2 ≤ E(0). (5.5)
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For sufficiently large Λ > 1, define the set of good time slice, GT
Λ , by

GT
Λ :=

{
t ∈ [0, T ]

∣∣∣ lim inf
ǫ→0

ˆ

Ω

∣∣△dǫ +
1

ǫ2
(1− |dǫ|2)dǫ

∣∣2(t) ≤ Λ
}
,

and the set of bad time slices, BT
Λ , by

BT
Λ := [0, T ]\GT

Λ =
{
t ∈ [0, T ]

∣∣∣ lim inf
ǫ→0

ˆ

Ω

∣∣△dǫ +
1

ǫ2
(1− |dǫ|2)dǫ

∣∣2(t) > Λ
}
.

It is easy to see from (5.5) that
∣∣∣BT

Λ

∣∣∣ ≤ E(0)

Λ
. (5.6)

By (5.1) and (5.6), we obtain
ˆ

BT
Λ

ˆ

Ω

[
|∇dǫ −∇d|2 + 1

ǫ2
(1 − |dǫ|2)2(t)

]
≤ C

∣∣BT
Λ

∣∣ sup
0<t<T

Fǫ(t) ≤
CE(0)

Λ
. (5.7)

For any t ∈ GT
Λ , set τǫ(t) =

(
△dǫ +

1

ǫ2
(1− |dǫ|2)dǫ

)
(t). Then it follows from the definition of GT

Λ

that there exists τ(t) ∈ L2(Ω,R3) such that, after passing to a subsequence, τǫ(t) ⇀ τ(t) in L2(Ω).
Since

{
dǫ(t)

}
⊂ X(E(0),Λ, 1; Ω), Theorem 3.1 implies that there exists d(t) ∈ Y(E(0),Λ, 1; Ω) such

that after passing to a subsequence, dǫ(t) → d(t) strongly in H1
loc(Ω) and 1

ǫ2
(1 − |dǫ(t)|2)2 → 0 in

L1
loc(Ω).
Now we want to show that, after passing to a subsequence,

∇dǫ → ∇d in L2
loc(Ω×GT

Λ). (5.8)

This can be done similarly to Claim 8.2 of [18]. Here we provide it. Suppose (5.8) were false. Then

there exist a subdomain Ω̃ ⊂⊂ Ω, δ0 > 0, and ǫi → 0 such that
ˆ

Ω̃×GT
Λ

|∇(dǫi − d)|2 ≥ δ0. (5.9)

Note that from (5.4) we have

lim
ǫi→0

ˆ

Ω×GT
Λ

|dǫi − d|2 = 0. (5.10)

By Fubini’s theorem, (5.9), and (5.10), we have that there exists ti ∈ GT
Λ such that

lim
ǫi→0

ˆ

Ω

|dǫi(ti)− d(ti)|2 = 0, (5.11)

and
ˆ

Ω̃

∣∣∇(dǫi(ti)− d(ti))
∣∣2 ≥ 2δ0

T
. (5.12)

It is easy to see that
{
dǫi(ti)

}
⊂ X(E(0),Λ, 1; Ω) and

{
d(ti)

}
⊂ Y(E(0),Λ, 1; Ω). It follows from

Theorem 3.1 and Theorem 3.2 that there exist d1, d2 ∈ Y(E(0),Λ, 1; Ω) such that

dǫi(ti) → d1 and d(ti) → d2 in L2(Ω) ∩H1(Ω̃).

This and (5.12) imply that
ˆ

Ω̃

∣∣∇(d1 − d2)
∣∣2 ≥ 2δ0

T
. (5.13)

On the other hand, from (5.11), we have that
ˆ

Ω

|d1 − d2|2 = 0. (5.14)
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It is clear that (5.13) contradicts (5.14). Hence (5.8) is proven. Similar to Lemma 4.1, Claim 4.4 in
[18], we also have

ˆ

Ω̃×GT
Λ

1

ǫ2
(1− |dǫ|2)2 → 0 as ǫ→ 0. (5.15)

Combining (5.7), (5.8), with (5.15), we obtain

lim
ǫ→0

[
‖dǫ − d‖

L2([0,T ],H1(Ω̃)) +

ˆ

Ω̃×[0,T ]

(1− |dǫ|2)2
ǫ2

]
≤ CΛ−1. (5.16)

Since Λ > 1 can be chosen arbitrarily large, we conclude that

dǫ → d in L2([0, T ], H1
loc(Ω)) and

(1− |dǫ|2)2
ǫ2

→ 0 in L1([0, T ], L1
loc(Ω)). (5.17)

5.2. ρǫuǫ → ρu in the sense of distributions. By (5.1),
√
ρǫ is bounded in L∞([0, T ], L2γ(Ω))

and
√
ρǫuǫ is bounded in L∞([0, T ], L2(Ω)). Thus ρǫuǫ is bounded in L∞([0, T ], L

2γ
γ+1 (Ω)) and

∂tρǫ = −∇ · (ρǫuǫ) is bounded in L∞([0, T ],W−1, 2γ
γ+1 (Ω)). Applying [26] Lemma C.1, we have

ρǫ → ρ in C([0, T ], Lγ
weak(Ω)). (5.18)

Since Lγ(Ω) ⊂ H−1(Ω) is compact, we conclude that

ρǫ → ρ in C([0, T ], H−1(Ω)). (5.19)

Thus we show that

ρǫuǫ → ρu in D′(QT ). (5.20)

5.3. Higher integrability estimates of ρǫ. There exist θ > 0 and C > 0 depending only on γ

and T such that for any 0 < ǫ ≤ 1, it holds
ˆ T

0

ˆ

Ω

ργ+θ
ǫ ≤ C. (5.21)

By Theorem 4.1, (ρǫ, uǫ) is a renormalized solution of (4.1)1. Let (ρǫ, uǫ) : R
3× (0, T ) → R+×R

3

be the extension of (ρǫ, uǫ) from Ω such that (ρǫ, uǫ) = (0, 0) in R
3 \ Ω. Then (ρǫ, uǫ) satisfies, in

the sense of distributions, that

∂t(b(ρǫ)) +∇ · (b(ρǫ)uǫ) +
(
b′(ρǫ)ρǫ − b(ρǫ)

)
∇ · uǫ = 0 in R

3 × (0, T ), (5.22)

for any bounded function b ∈ C1((0,+∞)) ∩ C([0,+∞)) (see, e.g., [6]).
As in [4], [6] and [35], we can employ suitable approximations so that (5.22) also holds for

b(ρǫ) = ρθǫ for 0 < θ < 1. Note that ρθǫ ∈ L
γ
θ (QT ). For m ≥ 1, let Sm(f) = η 1

m
∗ f denote the

standard mollification of f ∈ L1(R3). Then we have

∂t
(
Sm(ρθǫ)

)
+∇ ·

(
Sm(ρθǫ )uǫ

)
− (1− θ)Sm

(
ρθǫ∇ · uǫ

)
= qm in R

3 × (0, T ), (5.23)

where

qm = ∇ · (Sm(ρθǫ )uǫ)− Sm(∇ · (ρθǫuǫ)).
By virtue of [26] Lemma 2.3, ρθǫ ∈ L∞([0, T ], L

γ
θ (Ω)), and uǫ ∈ L2([0, T ], H1

0 (Ω)), we have that

lim
m→∞

∥∥qm
∥∥
L2([0,T ],Lλ(R3))

= 0, with
1

λ
=
θ

γ
+

1

2
, (5.24)

provided θ < γ
2 .

As in [4] and [26], define the (inverse of divergence) operator

B :
{
f ∈ Lp(Ω)

∣∣
ˆ

Ω

f = 0
}
7→W

1,p
0 (Ω,R3)
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such that for any 1 < p < +∞,
{
∇ · B(f) = f in Ω, B(f) = 0 on ∂Ω,∥∥B(f)

∥∥
W

1,p
0 (Ω)

≤ C(p)
∥∥f

∥∥
Lp(Ω)

.
(5.25)

Set

˛

Ω

f =
1

|Ω|

ˆ

Ω

f. For ϕ ∈ C∞
0 ((0, T )), with 0 ≤ ϕ ≤ 1, let

φ(x, t) = ϕ(t)B
[
Sm(ρθǫ)−

˛

Ω

Sm(ρθǫ)
]
(x, t).

By (5.1), we see that for sufficiently small θ,
[
Sm(ρθǫ )−

˛

Ω

Sm(ρθǫ )
]
∈ C([0, T ], Lp(Ω)), ∀ p ∈ (1,+∞).

By (5.25) and the Sobolev embedding theorem, we have that φ ∈ C(QT ). Thus we can test the
equation (4.1)2 by φ and obtain

a

ˆ T

0

ˆ

Ω

ϕ(t)ργǫ Sm(ρθǫ)

= a

ˆ T

0

ϕ(t)
( ˆ

Ω

ργǫ
)( ˛

Ω

Sm(ρθǫ)
)

−
ˆ T

0

ˆ

Ω

ϕ′(t)ρǫuǫB
[
Sm(ρθǫ)−

˛

Ω

Sm(ρθǫ)
]

+

ˆ T

0

ˆ

Ω

ϕ(t)(µ∇uǫ − ρǫuǫ ⊗ uǫ)∇B
[
Sm(ρθǫ )−

˛

Ω

Sm(ρθǫ )
]

+

ˆ T

0

ˆ

Ω

ϕ(t)µ̃∇ · uǫ∇ · B
[
Sm(ρθǫ )−

˛

Ω

Sm(ρθǫ )
]

+(1− θ)

ˆ T

0

ˆ

Ω

ϕ(t)ρǫuǫB
[
Sm(ρθǫ∇ · uǫ)−

˛

Ω

Sm(ρθǫ∇ · uǫ)
]

+

ˆ T

0

ˆ

Ω

ϕ(t)
(
△dǫ +

1

ǫ2
(1− |dǫ|2)dǫ

)
· ∇dǫB

[
Sm(ρθǫ)−

˛

Ω

Sm(ρθǫ)
]

−
ˆ T

0

ˆ

Ω

ϕ(t)ρǫuǫB
[
∇ · (Sm(ρθǫ)uǫ)

]

+

ˆ T

0

ˆ

Ω

ϕ(t)ρǫuǫB
[
qm −

˛

Ω

qm
]

=

7∑

i=1

Lm
i +

ˆ T

0

ˆ

Ω

ϕ(t)ρǫuǫB
[
qm −

˛

Ω

qm
]
.

Since ρǫuǫ is bounded in L∞([0, T ], L
2γ

γ+1 (Ω)) and qm satisfies (5.24), it follows from (5.25), the
Sobolev embedding theorem, and the Hölder inequality that

lim
m→∞

ˆ T

0

ˆ

Ω

ϕ(t)ρǫuǫB
[
qm −

˛

Ω

qm
]
= 0.

Hence, after taking m→ ∞, we have

ˆ

(0,T )×Ω

ϕργ+θ
ǫ ≤ lim sup

m→∞

7∑

i=1

Lm
i . (5.26)

Now we estimate Lm
1 , · · · , Lm

7 as follows.
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(1) For Lm
1 , we have that

∣∣ lim
m→∞

Lm
1

∣∣ =
∣∣∣a
ˆ T

0

ˆ

Ω

ϕργǫ (

˛

Ω

ρθǫ)
∣∣∣ ≤ C

( ˆ T

0

ˆ

Ω

ργǫ

)∥∥∥ρǫ
∥∥∥
θ

L∞([0,T ],Lγ(Ω))

is uniformly bounded.
(2) For Lm

2 , we have that

|Lm
2 | =

∣∣∣
ˆ T

0

ˆ

Ω

ϕ′(t)ρǫuǫB
[
qm −

˛

Ω

qm
]∣∣∣

≤ C

ˆ T

0

∥∥ρǫuǫ
∥∥
L

2γ
γ+1 (Ω)

∥∥B
[
qm −

˛

Ω

qm
]∥∥

L
2γ

γ−1 (Ω)
dt

≤ C

ˆ T

0

∥∥B
[
qm −

˛

Ω

qm
]∥∥

W 1,λ(Ω)
dt

≤ C

ˆ T

0

∥∥qm −
˛

Ω

qm
∥∥
Lλ(Ω)

dt

≤ C
∥∥∥qm

∥∥∥
L2([0,T ],Lλ(Ω))

→ 0 as m→ +∞,

provided θ < γ
3 − 1

2 .
(3) For Lm

3 , we have

∣∣Lm
3

∣∣ ≤ C

ˆ T

0

{∥∥uǫ
∥∥
H1(Ω)

∥∥B
[
ρθǫ −

˛

ρθǫ
]∥∥

H1(Ω)

+
∥∥ρǫ

∥∥
Lγ(Ω)

∥∥uǫ
∥∥2

L6(Ω)

∥∥B
[
ρθǫ −

˛

ρθǫ
]∥∥

W
1,

3γ
2γ−3 (Ω)

}
dt

≤ C

ˆ T

0

(∥∥uǫ
∥∥
H1(Ω)

∥∥ρǫ
∥∥θ
L2θ(Ω)

+
∥∥ρǫ

∥∥
Lγ(Ω)

∥∥uǫ
∥∥2

H1(Ω)

∥∥ρǫ
∥∥θ
L

3γθ
2γ−3 (Ω)

)
dt

is uniformly bounded, provided θ < min
{

γ
2 ,

2γ
3 − 1

}
.

(4) For Lm
4 , we have

∣∣Lm
4

∣∣ =
∣∣∣
ˆ T

0

ˆ

Ω

µ̃ϕ∇ · uǫ∇ · B
[
ρθǫ −

˛

Ω

ρθǫ
]∣∣∣

=
∣∣∣
ˆ T

0

ˆ

Ω

µ̃ϕ∇ · uǫ
(
ρθǫ −

˛

Ω

ρθǫ
)∣∣∣

≤ C
∥∥∥uǫ

∥∥∥
L2([0,T ],H1(Ω))

∥∥∥ρǫ
∥∥∥
θ

L∞([0,T ],L2θ(Ω))

is uniformly bounded, provided θ ≤ γ
2 .

(5) For Lm
5 , we have

∣∣Lm
5

∣∣ = (1− θ)
∣∣∣
ˆ T

0

ˆ

Ω

ϕρǫuǫB
[
ρθǫ∇ · uǫ −

˛

Ω

ρθǫ∇ · uǫ
]∣∣∣

≤ C

ˆ T

0

∥∥ρǫ
∥∥
Lγ(Ω)

∥∥uǫ
∥∥
L6(Ω)

∥∥B
[
ρθǫ∇ · uǫ −

˛

Ω

ρθǫ∇ · uǫ
]∥∥

L
6γ

5γ−6 (Ω)
dt

≤ C

ˆ T

0

∥∥ρǫ
∥∥
Lγ(Ω)

∥∥uǫ
∥∥
L6(Ω)

∥∥ρθǫ∇ · uǫ
∥∥
L

6γ
7γ−6 (Ω)

dt

≤ C

ˆ T

0

∥∥ρǫ
∥∥
Lγ(Ω)

∥∥uǫ
∥∥
H1(Ω)

∥∥ρǫ
∥∥θ
L

3γθ
2γ−3 (Ω)

∥∥∇ · uǫ
∥∥
L2(Ω)

dt

is uniformly bounded, provided θ < 2γ
3 − 1.
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(6) For Lm
6 , we have

∣∣Lm
6

∣∣ =
∣∣∣
ˆ T

0

ˆ

Ω

ϕ
(
△dǫ +

1

ǫ2
(1− |dǫ|2)dǫ

)
· ∇dǫB

[
ρθǫ −

˛

Ω

ρθǫ
]∣∣∣

≤ C
∥∥∥△dǫ +

1

ǫ2
(1− |dǫ|2)dǫ

∥∥∥
L2(QT )

·
∥∥∥∇dǫ

∥∥∥
L∞([0,T ],L2(Ω))

∥∥∥B
[
ρθǫ −

˛

Ω

ρθǫ
]∥∥∥

L2([0,T ],L∞(Ω))

≤ C
∥∥∥
∥∥B

[
ρθǫ −

˛

Ω

ρθǫ
]∥∥

W
1,

γ
θ (Ω)

∥∥∥
L2([0,T ])

≤ C sup
0<t≤T

∥∥∥ρθǫ
∥∥∥
L

γ
θ (Ω)

≤ C
∥∥∥ρǫ

∥∥∥
θ

L∞([0,T ],Lγ(Ω))
,

provided θ < γ
3 , where we have used the energy inequality (5.1) and the Sobolev embedding theorem

W 1, γ
θ (Ω) ⊂ L∞(Ω).

(7) For Lm
7 , we have

∣∣Lm
7

∣∣ =
∣∣∣
ˆ T

0

ˆ

Ω

|ϕρǫuǫB
[
∇ · (ρθǫuǫ)

]∣∣∣

≤ C

ˆ T

0

∥∥ρǫ
∥∥
Lγ(Ω)

∥∥uǫ
∥∥
L6(Ω)

∥∥B
[
∇ · (ρθǫuǫ)

]∥∥
L

6γ
5γ−6 (Ω)

dt

≤ C

ˆ T

0

∥∥ρǫ
∥∥
Lγ(Ω)

∥∥uǫ
∥∥
L6(Ω)

∥∥ρθǫuǫ
∥∥
L

6γ
5γ−6 (Ω)

dt

≤ C

ˆ T

0

∥∥ρǫ
∥∥
Lγ(Ω)

∥∥uǫ
∥∥2
L6(Ω)

∥∥ρǫ‖θ
L

3γθ
2γ−3 (Ω)

dt

is uniformly bounded, provided θ < 2γ
3 − 1.

It is clear that we can choose sufficiently small θ > 0 depending only on γ such that all these
estimates on Lm

i , i = 1, · · · , 7, hold. Therefore, by putting together (1), · · · , (7), we obtain the
estimate (5.21).

5.4. ρǫuǫ⊗uǫ → ρu⊗u in the sense of distributions. As ρǫuǫ is bounded in L∞([0, T ], L
2γ

γ+1 (Ω)),
it follows from the section 5.3 that

ρǫuǫ ⇀ ρu weak∗ in L∞([0, T ], L
2γ

γ+1 (Ω)). (5.27)

Meanwhile, since

∂t(ρǫuǫ) = −∇ · (ρǫuǫ ⊗ uǫ) + a∇ργǫ

+Luǫ −∇ ·
[
∇dǫ ⊙∇dǫ −

(1
2
|∇dǫ|2 +

(1− |dǫ|2)2
4ǫ2

)
I3

]

∈ L2([0, T ],W−1, 6γ
4γ+3 (Ω)) + L

γ+θ
γ ([0, T ],W−1, γ+θ

γ (Ω))

+L2([0, T ], H−1(Ω)) + L∞([0, T ],W−2,5
4 (Ω)),

we have that

ρǫuǫ → ρu in C([0, T ], L
2γ

γ+1

weak(Ω)) and ρǫuǫ → ρu in C([0, T ], H−1(Ω)). (5.28)

Hence we obtain

ρǫuǫ ⊗ uǫ → ρu⊗ u in D′(QT ). (5.29)
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It follows from §5.1, §5.2, §5.3, and §5.4 that, after sending ǫ → 0+ in the equation (4.1), (ρ, u, d)
satisfies the following system:





∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) + a∇ργ = Lu−∇ ·
[
∇d⊙∇d− 1

2 |∇d|2I3
]
,

∂td+ u · ∇d = △d+ |∇d|2d,
(5.30)

in the sense of distributions, where ργ is a weak limit of ργǫ in L
γ+θ
γ (QT ).

It is straightforward that (ρ, u, d) satisfies the first two equations of (5.30). To see (u, d) solves
the third equation of (5.30), we employ the standard technique, due to Chen [1], as follows. Let ×
denote the cross product in R

3. Then the equation (4.1)3 for (uǫ, dǫ) can be rewritten as

(∂tdǫ + uǫ · ∇dǫ)× dǫ = ∆dǫ × dǫ, in D′(QT ).

After taking ǫ→ 0, we have that (u, d) satisfies

(∂td+ u · ∇d)× d = ∆d× d, in D′(QT ). (5.31)

Since |d| = 1, the equation (5.31) is equivalent to (5.30)3.
In order to identify ργ , we need to establish the strong convergence of ρǫ to ρ in Lγ(QT ). To do

it, we need to have fine estimates of the effective viscous flux, which has played important rules in
the study of compressible Navier-Stokes equations (see [4] and [26]).

For k ≥ 1, define Tk(z) = kT ( z
k
) : R → R, where T (z) ∈ C∞(R) is a concave function such that

T (z) =

{
z, if z ≤ 1,

2, if z ≥ 3.

5.5. Fine estimates of effective viscous flux Hǫ := aργǫ − µ̃∇ · uǫ. For any fixed k ≥ 1, there
holds

lim
ǫ→0

ˆ T

0

ˆ

Ω

ψφ
(
aργǫ − µ̃∇ · uǫ

)
Tk(ρǫ) =

ˆ T

0

ˆ

Ω

ψφ
(
a(ργ)− µ̃∇ · u

)
Tk(ρ), (5.32)

for any ψ ∈ C∞
0 ((0, T )) and φ ∈ C∞

0 (Ω). By density arguments, similar to [4], it is not hard to see
that (5.32) remains to be true for φ = ψ = 1.

Since (ρǫ, uǫ) is a renormalized solution to (4.1)1 in QT , it is clear that if we extend (ρǫ, uǫ) to
R

3 by letting it to be zero in R
3 \ Ω, then (ρǫ, uǫ) is also a renormalized solution of (4.1)1 in R

3.
Replacing b(z) by Tk(z) in (4.1)1 yields

∂t
(
Tk(ρǫ)

)
+∇ · (Tk(ρǫ)uǫ) +

(
T ′(ρǫ)ρǫ − Tk(ρǫ)

)
∇ · uǫ = 0 in D′(R3 × (0, T )). (5.33)

Since Tk(ρǫ) is bounded in L∞(QT ), we have

Tk(ρǫ)⇀ Tk(ρ) weak∗in L∞(QT ).

This, combined with the equation (5.33), implies that for any p ∈ (1,+∞),

Tk(ρǫ) → Tk(ρ) in C([0, T ], Lp
weak(Ω)) and in C([0, T ], H−1(Ω)). (5.34)

Hence, after sending ǫ→ 0 in the equation (5.33), we have

∂tTk(ρ) +∇ · (Tk(ρ)u) +
(
T ′
k(ρ)ρ− Tk(ρ)

)
∇ · u = 0 in D′(QT ), (5.35)

where
(
T ′
k(ρ)ρ− Tk(ρ)

)
∇ · u is a weak limit of

(
T ′
k(ρǫ)ρǫ − Tk(ρǫ)

)
∇ · uǫ in L2(QT ).

Now we need to estimate the effective viscous flux (aργǫ − µ̃∇ · uǫ). Define the operator A =
(A1,A2,A3) by letting

Ai = ∂xi
△−1



16 J. LIN, B. LAI, AND C. WANG

for i = 1, 2, 3, where △−1 denote the inverse of the Laplace operator on R
3 (see [6]). By the Lp

regularity theory of the Laplace equation, we have





∥∥Av
∥∥
W 1,s(Ω)

≤ C
∥∥v

∥∥
Ls(R3)

, 1 < s < +∞,
∥∥Av

∥∥
Lq(Ω)

≤ C
∥∥v

∥∥
Ls(R3)

, 1
q
≥ 1

s
− 1

3 ,∥∥Av
∥∥
L∞(Ω)

≤ C
∥∥v

∥∥
Ls(R3)

, s > 3,

(5.36)

where C > 0 depends only on s and Ω.
Testing the equation (5.33) by Ai[ϕ] for ϕ ∈ C∞

0 (QT ) yields

∂t
(
Ai[Tk(ρǫ)]

)
+∇ ·

(
Ai[(Tk(ρǫ)uǫ)]

)
+Ai

[
(T ′

k(ρǫ)ρǫ − Tk(ρǫ))∇ · uǫ
]
= 0, (5.37)

in D′(R3 × (0, T )) ∩ L2(R3 × (0, T )). This implies ∂t
(
Ai[Tk(ρǫ)]

)
∈ L2(R3 × (0, T )). Hence we can

test the equation (4.1)2 by ψφA[Tk(ρǫ)], for φ ∈ C∞
0 (Ω) and ψ ∈ C∞

0 ((0, T )), and obtain

ˆ T

0

ˆ

Ω

ψφ(aργǫ − µ̃∇ · uǫ)Tk(ρǫ)

=

ˆ T

0

ˆ

Ω

ψ(µ̃∇ · uǫ − aργǫ )∇φA[Tk(ρǫ)]

+µ

ˆ T

0

ˆ

Ω

ψ
{
∇φ∇uiǫAi[Tk(ρǫ)]− uiǫ∇φ∇Ai[Tk(ρǫ)] + uǫ∇φTk(ρǫ)

}

−
ˆ T

0

ˆ

Ω

φρǫuǫ
{
∂tψA[Tk(ρǫ)] + ψA[(Tk(ρǫ)− T ′

k(ρǫ)ρǫ)∇ · uǫ]
}

−
ˆ t

0

ˆ

Ω

ψρǫu
i
ǫu

j
ǫ∂jφAi[Tk(ρǫ)]

+

ˆ T

0

ˆ

Ω

ψuiǫ
{
Tk(ρǫ)Rij [φρǫu

i
ǫ]− φρǫu

j
ǫRij [Tk(ρǫ)]

}

−
ˆ T

0

ˆ

Ω

ψ∇ ·
{
∇dǫ ⊙∇dǫ − [

1

2
|∇dǫ|2 +

1

4ǫ2
(1− |dǫ|2)2]I3

}
· φA[Tk(ρǫ)], (5.38)

where Rij = ∂xj
Ai is the Riesz transform.

Similarly, we can test the equation (5.30)2 by ψφAi[Tk(ρ)] and obtain

ˆ T

0

ˆ

Ω

ψφ(aργ − µ̃∇ · u)Tk(ρ)

=

ˆ T

0

ˆ

Ω

ψ
(
µ̃∇ · u− aργ

)
∇φA[Tk(ρ)]

+µ

ˆ T

0

ˆ

Ω

ψ
{
∇φ∇uiAi[Tk(ρ)]− ui∇φ∇Ai[Tk(ρ)] + u∇φTk(ρ)

}

−
ˆ T

0

ˆ

Ω

φρu
{
∂tψA[Tk(ρ)] + ψA[(Tk(ρ)− T ′

k(ρ)ρ)∇ · u]
}

−
ˆ t

0

ˆ

Ω

ψρuiuj∂jφAi[Tk(ρ)]

+

ˆ T

0

ˆ

Ω

ψui
{
Tk(ρ)Rij [φρu

i]− φρujRij [Tk(ρ)]
}

−
ˆ T

0

ˆ

Ω

ψ∇ ·
[
∇d⊙∇d− 1

2
|∇d|2I3

]
· φA[Tk(ρ)]. (5.39)
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To prove (5.32), it suffices to show that each term in the right hand side of (5.38) converges to the
corresponding term in the right hand side of (5.39). Since the convergence of the first five terms in
the right hand side of (5.38) can be done in the exact same way as in [6] (see also [35]), we only
indicate how to show the convergence of the last term in the right hand side of (5.38), namely,

ˆ T

0

ˆ

Ω

ψ∇ ·
[
∇dǫ ⊙∇dǫ − (

1

2
|∇dǫ|2 +

1

4ǫ2
(1− |dǫ|2)2)I3

]
· φA[Tk(ρǫ)]

→
ˆ T

0

ˆ

Ω

ψ∇ ·
[
∇d⊙∇d− 1

2
|∇d|2I3

]
· φA[Tk(ρ)] as ǫ→ 0. (5.40)

To see this, first observe that Tk(ρǫ) is bounded in L∞(QT ) and hence we have, by (5.37), that (see
also [6])

A[Tk(ρǫ)] → A[Tk(ρ)] in C(Ω× [0, T ]). (5.41)

Secondly, observe that a.e. in QT , there holds

∇ ·
[
∇dǫ ⊙∇dǫ − (

1

2
|∇dǫ|2 +

1

4ǫ2
(1− |dǫ|2)2)I3

]
=

(
∆dǫ +

1

ǫ2
(1− |dǫ|2)dǫ

)
· ∇dǫ

=
(
∂tdǫ + uǫ · ∇dǫ

)
· ∇dǫ.

By the energy inequality (5.1), we see that
(
∂tdǫ + uǫ · ∇dǫ

)
is bounded in L2(QT ) and hence there

exists v ∈ L2(QT ) such that (
∂tdǫ + uǫ · ∇dǫ

)
⇀ v in L2(QT ). (5.42)

On the other hand, since dǫ → d in L2([0, T ], H1
loc(Ω)) and uǫ ⇀ u in L2([0, T ], H1

0 (Ω)), we have
that (

∂tdǫ + uǫ · ∇dǫ
)
→

(
∂td+ u · ∇d

)
in D′(QT ).

Hence we have

v = ∂td+ u · ∇d in QT . (5.43)

By (5.41) and the local L2-convergence of ∇dǫ to ∇d in QT , we know that

∇dǫφA[Tk(ρǫ)] → ∇dφA[Tk(ρ)] in L2(QT ).

Hence we obtain
ˆ T

0

ˆ

Ω

ψ∇ ·
[
∇dǫ ⊙∇dǫ − (

1

2
|∇dǫ|2 +

1

4ǫ2
(1− |dǫ|2)2)I3

]
· φA[Tk(ρǫ)]

→
ˆ T

0

ˆ

Ω

ψ(∂td+ u · ∇d)∇d · φA[Tk(ρ)] as ǫ→ 0. (5.44)

Applying the equation (5.30)3 and the fact that 〈|∇d|2d,∇d〉 = 0 a.e. in QT , we obtain
ˆ T

0

ˆ

Ω

ψ(∂td+ u · ∇d)∇d · φA[Tk(ρ)]

=

ˆ T

0

ˆ

Ω

ψ(∆d+ |∇d|2d)∇d · φA[Tk(ρ)]

=

ˆ T

0

ˆ

Ω

ψ∆d∇d · φA[Tk(ρ)]

=

ˆ T

0

ˆ

Ω

ψ∇ ·
[
∇d⊙∇d− 1

2
|∇d|2I3

]
· φA[Tk(ρ)]. (5.45)

It is easy to see that (5.40) follows from (5.44) and (5.45).
In order to show the strong convergence of ρǫ, we also need to estimate on the oscillation defect

measure of (ρǫ − ρ) in Lγ(QT ).
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5.6. Estimate of oscillation of defect measures. There exists C > 0 such that for any k ≥ 1,
there holds

lim sup
ǫ→0

∥∥∥Tk(ρǫ)− Tk(ρ)
∥∥∥
γ+1

Lγ+1(QT )
≤ lim

ǫ→0

ˆ T

0

ˆ

Ω

[
ργǫ Tk(ρǫ)− ργTk(ρ)

]
≤ C, (5.46)

where Tk(ρ) is a weak∗ limit of Tk(ρǫ) in L
∞(QT ).

Following the lines of argument presented in [6] and using (5.32), we obtain

lim sup
ǫ→0

∥∥∥Tk(ρǫ)− Tk(ρ)
∥∥∥
γ+1

Lγ+1(QT )

≤ lim
ǫ→0

ˆ T

0

ˆ

Ω

[
ργǫTk(ρǫ)− ργTk(ρ)

]

=
µ̃

a
lim
ǫ→0

ˆ T

0

ˆ

Ω

[
(∇ · uǫ)

(
Tk(ρǫ)− Tk(ρ)

)]

≤ C
(
sup
ǫ>0

∥∥∇uǫ
∥∥
L2(QT )

)
lim sup

ǫ→0

[∥∥Tk(ρǫ)− Tk(ρ)
∥∥
L2(QT )

+
∥∥Tk(ρ)− Tk(ρ)

∥∥
L2(QT )

]

≤ C lim sup
ǫ→0

∥∥Tk(ρǫ)− Tk(ρ)
∥∥
L2(QT )

,

this implies (5.46) by applying Young’s inequality and using γ + 1 > 2.
We now want to show

Claim 1. (ρ, u) is a renormalized solution to the equation (5.30)1.
Observe that (5.35) also holds for (ρǫ, uǫ) in R

3 provided it is set to be zero in R
3 \Ω. Hence we

have

∂tTk(ρ) +∇ · (Tk(ρ)u) +
(
T ′
k(ρ)ρ− Tk(ρ)

)
∇ · u = 0 in D′(R3 × (0, T )). (5.47)

As in the step 3, we can mollify (5.47) and obtain

∂t
(
Sm

[
Tk(ρ)

])
+∇ ·

(
Sm

[
Tk(ρ)

]
u
)
+ Sm

[
[T ′

k(ρ)ρ− Tk(ρ)]∇ · u
]
= qm, (5.48)

where

qm := ∇ ·
(
Sm

[
Tk(ρ)

]
u
)
− Sm

[
∇ · (Tk(ρ)u)

]
→ 0 in L2([0, T ], Ls(Ω)), as m→ ∞,

for any s ∈ [1, 2), by virtue of Lemma 2.3 in [26].
Let b be a test function in the definition of renormalized solutions of (5.30)1. Multiplying (5.48)

by b′
(
Sm

[
Tk(ρ)

])
yields

∂t
(
b(Sm

[
Tk(ρ)

]
)
)
+∇ ·

(
b
(
Sm

[
Tk(ρ)

])
u
)
+
(
b′(Sm

[
Tk(ρ)

]
)Sm

[
Tk(ρ)

]
− b(Sm

[
Tk(ρ)

]
)
)
∇ · u

= −b′(Sm

[
Tk(ρ)

]
)Sm

(
[T ′(ρ)ρ− Tk(ρ)]∇ · u

)
+ b′(Sm

[
Tk(ρ)

]
)qm.

Sending m→ +∞ in the above equation yields that

∂t
(
b
(
Tk(ρ)

))
+∇ ·

(
b
(
Tk(ρ)

)
u
)
+
(
b′
(
Tk(ρ)

)
Tk(ρ)− b

(
Tk(ρ)

))
∇ · u

= −b′
(
Tk(ρ)

)[
T ′(ρ)ρ− Tk(ρ)

]
∇ · u in D′

(
R

3 × (0, T )
)
. (5.49)

On the other hand, for p ∈ [1, γ), we have
∥∥Tk(ρ)− ρ

∥∥p
Lp(QT )

≤ lim inf
ǫ→0

∥∥Tk(ρǫ)− ρǫ
∥∥p
Lp(QT )

. (5.50)
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On the other hand, we have

∥∥Tk(ρǫ)− ρǫ
∥∥p
Lp(QT )

≤
ˆ

{ρǫ≥k}

∣∣kT (ρǫ
k
)− ρǫ

∣∣p

≤ 2p
ˆ

{ρǫ≥k}

∣∣ρǫ
∣∣p (

since kT (
ρǫ

k
) ≤ ρǫ

)

≤ 2pk−γ+p

ˆ

{ρǫ≥k}

ργǫ

≤ Ck−γ+p → 0, as k → +∞, uniformly in ǫ. (5.51)

It follows from (5.50) and (5.51) that

lim
k→+∞

∥∥∥Tk(ρ)− ρ
∥∥∥
Lp(QT )

= 0, for p ∈ [1, γ). (5.52)

For any M > 0 so large that b′(z) = 0 for z ≥M , we set

Qk,M :=
{
(x, t) ∈ QT

∣∣ Tk(ρ) ≤M
}
.

Then
ˆ T

0

ˆ

Ω

∣∣∣b′
(
Tk(ρ)

)[
T ′
k(ρ)ρ− Tk(ρ)

]
∇ · u

∣∣∣

=

ˆ

Qk,M

∣∣∣b′
(
Tk(ρ)

)[
T ′
k(ρ)ρ− Tk(ρ)

]
∇ · u

∣∣∣

≤ sup
Qk,M

∣∣∣b′(Tk(ρ))
∣∣∣
ˆ

Qk,M

∣∣∣
[
T

′

k(ρ)ρ− Tk(ρ)
]
∇ · u

∣∣∣

≤ sup
0≤z≤M

∣∣b′(z)
∣∣ lim inf

ǫ→0

ˆ

Qk,M

∣∣∣
[
T ′
k(ρǫ)ρǫ − Tk(ρǫ)

]
∇ · uǫ

∣∣∣

≤ C lim inf
ǫ→0

∥∥∇uǫ
∥∥
L2(QT )

∥∥T ′
k(ρǫ)ρǫ − Tk(ρǫ)

∥∥
L2(Qk,M )

≤ C lim inf
ǫ→0

∥∥T ′
k(ρǫ)ρǫ − Tk(ρǫ)

∥∥ 1
2
− 1

2γ

L1(QT )

∥∥T ′
k(ρǫ)ρǫ − Tk(ρǫ)

∥∥ 1
2
+ 1

2γ

Lγ+1(Qk,M ). (5.53)

Now we can estimate
∥∥T ′

k(ρǫ)ρǫ − Tk(ρǫ)
∥∥
L1(QT )

≤ 2k1−γ sup
ǫ

‖ρǫ‖γLγ ≤ Ck1−γ → 0, as k → ∞. (5.54)

On the other hand, since Tk(z) is a concave function and T ′′
k (z) ≤ 0, we have, by Taylor’s expansion,

that

0 = Tk(z)− T ′
k(z)z +

1

2
T ′′(ξz)z2 for some ξ ∈ (0, 1).

In particular, we have T ′
k(z)z ≤ Tk(z) and hence

∥∥T ′
k(ρǫ)ρǫ − Tk(ρǫ)

∥∥
Lγ+1(Qk,M )

≤ 2
∥∥Tk(ρǫ)

∥∥
Lγ+1(Qk,M )

≤ 2
(∥∥Tk(ρǫ)− Tk(ρ)

∥∥
Lγ+1(Qk,M )

+
∥∥Tk(ρ)− Tk(ρ)

∥∥
Lγ+1(Qk,M )

+
∥∥Tk(ρ)

∥∥
Lγ+1(Qk,M )

)

≤ 2
(∥∥Tk(ρǫ)− Tk(ρ)

∥∥
Lγ+1(QT )

+
∥∥Tk(ρ)− Tk(ρ)

∥∥
Lγ+1(QT )

+M |Qk,M | 1
γ+1

)
.

Applying (5.46), we then obtain that there exists C > 0 independent of k such that

lim sup
ǫ→0

∥∥T ′
k(ρǫ)ρǫ − Tk(ρǫ)

∥∥
Lγ+1(Qk,M )

≤ C
(
1 +M |Qk,M | 1

γ+1

)
≤ C. (5.55)

Substituting (5.54) and (5.55) into (5.53) yields

lim
k→∞

ˆ T

0

ˆ

Ω

∣∣∣b′
(
Tk(ρ)

)[
T ′
k(ρ)ρ− Tk(ρ)

]
∇ · u

∣∣∣ = 0. (5.56)
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Sending k → ∞ into the equation (5.49) and applying (5.52), (5.56), we conclude that (ρ, u) is a
renormalized solution of the equation (5.30). This proves Claim 1.

5.7. ρǫ → ρ strongly in Lp(QT ) for any 1 ≤ p < γ + θ. Hence ργ = ργ a.e. in QT . It suffices
to show that ρǫ → ρ in L1(QT ). This can be done in the exactly same lines as in [6]. Here we sketch
it for the readers’ convenience. Let Lk(z) ∈ C1(0,+∞) ∩ C([0,+∞)) be defined by

Lk(z) =

{
z ln z, 0 ≤ z ≤ k,

z ln k + z
´ z

k

Tk(s)
s2

ds, z > k.

Note that for z large enough, Lk(z) is a linear function, i.e., for z ≥ 3k,

Lk(z) = βkz − 2k, with βk = ln k +

ˆ 3k

k

Tk(s)

s2
ds+

2

3
.

Therefore bk(z) := Lk(z) − βkz ∈ C1(0,+∞) ∩ C([0,+∞)) satisfies b′k(z) = 0 for z large enough.
Moreover, it is easy to see

b′k(z)z − bk(z) = Tk(z).

Since (ρǫ, uǫ) is a renormalized solution of the equation (4.1)1 and (ρ, u) is a renormalized solution
of the equation (5.30)2, we can take b(z) = bk(z) in the definition of the renormalized solutions to
get that

∂tLk(ρǫ) +∇ ·
(
Lk(ρǫ)uǫ

)
+ Tk(ρǫ)∇ · uǫ = 0, in D′(QT ), (5.57)

and

∂tLk(ρ) +∇ · (Lk(ρ)u) + Tk(ρ)∇ · u = 0, in D′(QT ). (5.58)

Subtracting (5.57) from (5.58) gives

∂t
(
Lk(ρǫ)− Lk(ρ)

)
+∇ ·

(
Lk(ρǫ)uǫ − Lk(ρ)u

)
+
(
Tk(ρǫ)∇ · uǫ − Tk(ρ)∇ · u

)
= 0, (5.59)

in D′(QT ).
Since Lk(z) is a linear function for z sufficiently large, we have that Lk(ρǫ) is bounded in

L∞([0, T ], Lγ(Ω)), uniformly in ǫ. Thus we have

Lk(ρǫ)⇀ Lk(ρ) weak∗ in L∞([0, T ], Lγ(Ω)), as ǫ→ 0.

This, combined with the equation (5.58), implies

Lk(ρǫ)⇀ Lk(ρ) in C([0, T ], Lγ
weak(Ω)) ∩ C([0, T ], H−1(Ω)), as ǫ→ 0. (5.60)

In particular, we have

Lk(ρǫ), Lk(ρ) ∈ C([0, T ], Lγ
weak(Ω)). (5.61)

Hence we can multiply the equation (5.59) by φ ∈ C∞
0 (Ω) and integrate the resulting equation over

Qt, 0 < t ≤ T , to obtain
ˆ

Ω

[Lk(ρǫ)− Lk(ρ)](t)φ

=

ˆ t

0

ˆ

Ω

{
[Lk(ρǫ)uǫ − Lk(ρ)u] · ∇φ+ [Tk(ρ)∇ · u− Tk(ρǫ)∇ · uǫ]φ

}
,

where we have used the fact that [Lk(ρǫ) − Lk(ρ)]
∣∣
t=0

= 0. Taking ǫ → 0 in the above equation
yields

ˆ

Ω

[
Lk(ρ)− Lk(ρ)

]
(t)φ =

ˆ t

0

ˆ

Ω

[
Lk(ρ)− Lk(ρ)

]
u · ∇φ

+ lim
ǫ→0

ˆ t

0

ˆ

Ω

[
Tk(ρ)∇ · u− Tk(ρǫ)∇ · uǫ

]
φ. (5.62)
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As in [6], we can choose φ = φm ∈ C∞
0 (Ω) in (5.62), which approximates the characteristic function

of Ω, i.e.,
{
0 ≤ φm ≤ 1, φm(x) = 1 for x ∈ Ω with dist(x, ∂Ω) ≥ 1

m
,

φm → 1 in Ω as m→ ∞ and |∇φm(x)| ≤ 2m for all x ∈ Ω.
(5.63)

We then obtain that for 0 < t ≤ T , it holds
ˆ

Ω

[
Lk(ρ)− Lk(ρ)

]
(t) = lim

ǫ→0

ˆ t

0

ˆ

Ω

[
Tk(ρ)∇ · u− Tk(ρǫ)∇ · uǫ

]
.

Hence we have
ˆ

Ω

[
Lk(ρ)− Lk(ρ)

]
(t)

=

ˆ t

0

ˆ

Ω

Tk(ρ)∇ · u− lim
ǫ→0

ˆ t

0

ˆ

Ω

Tk(ρǫ)∇ · uǫ

=

ˆ t

0

ˆ

Ω

Tk(ρ)∇ · u+
1

µ̃
lim
ǫ→0

ˆ t

0

ˆ

Ω

(aργǫ − µ̃∇ · uǫ)Tk(ρǫ)−
a

µ̃
lim
ǫ→0

ˆ t

0

ˆ

Ω

ργǫ Tk(ρǫ)

=

ˆ t

0

ˆ

Ω

Tk(ρ)∇ · u+
1

µ̃

ˆ t

0

ˆ

Ω

(
aργ − µ̃∇ · u

)
Tk(ρ)−

a

µ̃
lim
ǫ→0

ˆ t

0

ˆ

Ω

ργǫ Tk(ρǫ)
(
by

(
5.32)

)

=

ˆ t

0

ˆ

Ω

[
Tk(ρ)− Tk(ρ)

]
∇ · u− a

µ̃
lim
ǫ→0

ˆ t

0

ˆ

Ω

[
ργǫTk(ρǫ)− ργTk(ρ)

]

≤
ˆ t

0

ˆ

Ω

[
Tk(ρ)− Tk(ρ)

]
∇ · u

(
by (5.46)

)

≤
∥∥∥Tk(ρ)− Tk(ρ)

∥∥∥
L2({ρ≥k})

∥∥∥∇ · u
∥∥∥
L2({ρ≥k})

+
∥∥∥Tk(ρ)− Tk(ρ)

∥∥∥
L2({ρ≤k})

∥∥∥∇ · u
∥∥∥
L2({ρ≤k})

≤ C
(∥∥∥∇ · u

∥∥∥
L2({ρ≥k})

+
∥∥∥Tk(ρ)− Tk(ρ)

∥∥∥
L2({ρ≤k})

)

≤ C
(∥∥∥∇ · u

∥∥∥
L2({ρ≥k})

+
∥∥∥Tk(ρ)− Tk(ρ)

∥∥∥
γ−1

2γ

L1({ρ≤k})

∥∥∥Tk(ρ)− Tk(ρ)
∥∥∥

γ+1

2γ

Lγ+1({ρ≤k})

)

≤ C
(∥∥∥∇ · u

∥∥∥
L2({ρ≥k})

+
∥∥∥Tk(ρ)− Tk(ρ)

∥∥∥
γ−1

2γ

L1({ρ≤k})

)
,

where we have used (5.46) that guarantees
∥∥∥Tk(ρ)− Tk(ρ)

∥∥∥
Lγ+1(QT )

≤ lim inf
ǫ→0

∥∥∥Tk(ρǫ)− Tk(ρ)
∥∥∥
Lγ+1(QT )

≤ C,

uniformly in k.

Since Tk is concave, it follows Tk(ρ) ≤ Tk(ρ). By the definition of Tk, we also have Tk(ρ) ≤ ρ.
Hence we have∥∥∥Tk(ρ)− Tk(ρ)

∥∥∥
L1({ρ≤k})

≤
∥∥∥ρ− Tk(ρ)

∥∥∥
L1({ρ≤k})

≤
∥∥∥ρ− Tk(ρ)

∥∥∥
L1(QT )

→ 0 as k → ∞
(
by (5.52)

)

Since ∇ · u ∈ L2(QT ), it follows that

lim
k→∞

∥∥∇ · u
∥∥
L2({ρ≥k})

= 0.

Therefore we obtain

lim
k→∞

ˆ

Ω

[
Lk(ρ)− Lk(ρ)

]
(t) ≤ 0, t ∈ (0, T ). (5.64)
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It follows from the definition of Lk that
ˆ T

0

ˆ

Ω

∣∣Lk(ρ)− ρ ln ρ
∣∣ ≤

∥∥∥Lk(ρ)− ρ ln ρ
∥∥∥
L1({ρ≥k})

≤
ˆ ˆ

{ρ≥k}

|ρ ln ρ| → 0, as k → +∞, (5.65)

and
∥∥∥Lk(ρǫ)− ρǫ ln ρǫ

∥∥∥
L1(QT )

≤
ˆ ˆ

{ρǫ≥k}

∣∣Lk(ρǫ)− ρǫ ln ρǫ
∣∣

≤
ˆ ˆ

{ρǫ≥k}

|Lk(ρǫ)|+ |ρǫ ln ρǫ|
ρ
γ
ǫ

ργǫ

≤ C(δ)

ˆ ˆ

{ρǫ≥k}

ργǫ

ρ
γ−1−δ
ǫ

(
δ > 0 is sufficiently small

)

≤ Ck−γ+1+δ → 0, as k → +∞, uniformly in ǫ, (5.66)

so that by the lower semicontinuity we have

lim
k→∞

∥∥∥Lk(ρ)− ρ ln ρ
∥∥∥
L1(QT )

≤ lim
k→∞

lim inf
ǫ→0

∥∥∥Lk(ρǫ)− ρǫ ln ρǫ

∥∥∥
L1(QT )

= 0. (5.67)

Combining (5.64), (5.66), (5.66), with (5.67) implies that
ˆ

Ω

[
ρ ln ρ− ρ ln ρ

]
(t) ≤ 0, t ∈ (0, T ).

Since ρ ln ρ ≥ ρ ln ρ a.e. in QT , this implies that

ρ ln ρ = ρ ln ρ a.e. in QT .

By the convexity of the function ω(z) = z ln z : (0,+∞) → R, this implies that

ρǫ → ρ in L1(QT ).

Since ρǫ is bounded in Lγ+θ(QT ), it follow from a simple interpolation that

ρǫ → ρ in Lp(QT ) for any 1 ≤ p < γ + θ.

Thus ργ = ργ a.e. in QT .
The energy inequality (1.6) for (ρ, u, d) follows from the energy inequality (4.2) for (ρǫ, uǫ, dǫ). In

fact, (4.2) implies that for almost all 0 < t <∞, it holds

Fǫ(t) +

ˆ t

0

ˆ

Ω

(
µ|∇uǫ|2 + µ̃|∇ · uǫ|2 + |∆dǫ +

1

ǫ2
(1− |dǫ|2)dǫ|2

)
≤ Fǫ(0) = E(0). (5.68)

On the other hand, by the lower semicontinuity, we have that for almost all t ∈ (0,+∞)

E(t) +

ˆ t

0

ˆ

Ω

(
µ|∇u|2 + µ̃|∇ · u|2 + |∆d+ |∇d|2d|2

)

≤ lim inf
ǫ→0

{
Fǫ(t) +

ˆ t

0

ˆ

Ω

(
µ|∇uǫ|2 + µ̃|∇ · uǫ|2 + |∆dǫ +

1

ǫ2
(1− |dǫ|2)dǫ|2

)}
, (5.69)

where we have used the observation that

∆dǫ +
1

ǫ2
(1− |dǫ|2)dǫ = ∂tdǫ + uǫ · ∇dǫ ⇀ ∂td+ u · ∇d = ∆d+ |∇d|2d in L2(Qt).

It is clear that (5.68) and (5.69) imply (1.6).
After these steps, we conclude that (ρ, u, d) is a global finite energy weak solution of the system

(1.1), under the initial and boundary condition (1.2), that satisfies the properties (i) of Theorem
1.1.
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The property (ii) for (u, d) follows from the strong convergence of dǫ to d in L
2
loc((0,+∞), H1

loc(Ω)).
In fact, it is easy to see that dǫ ∈ L2

loc((0,+∞), H2
loc(Ω)). For any X ∈ C1

0 (Ω,R
3) and η ∈

C1
0 ((0,+∞)), we can multiply the equation (4.1)3 by η(t)X(x) · ∇dǫ(x) and integrate the result-

ing equation over Ω× (0,+∞) and apply the integration by parts a few times to obtain
ˆ ∞

0

η(t)

ˆ

Ω

(
eǫ(dǫ)∇ ·X −∇dǫ ⊙∇dǫ : ∇X

)
=

ˆ ∞

0

η(t)

ˆ

Ω

〈
∂tdǫ + uǫ · ∇dǫ, X · ∇dǫ

〉
, (5.70)

where eǫ(dǫ) :=
1

2
|∇dǫ|2 +

1

4ǫ2
(1 − |dǫ|2)2. Since

∂tdǫ + uǫ∇dǫ ⇀ ∂td+ u · ∇d in L2(Ω× (0,+∞)), as ǫ→ 0,

we obtain, by sending ǫ→ 0 in (5.70) and applying both Theorem 3.1 and 5.1, that
ˆ T

0

η(t)

ˆ

Ω

(1
2
|∇d|2∇ ·X −∇d⊙∇d : ∇X

)
=

ˆ T

0

η(t)

ˆ

Ω

〈
∂td+ u · ∇d,X · ∇d

〉
. (5.71)

The proof of Theorem 1.1 is now complete. �

6. Large time behavior of finite energy solutions and proof of corollary 1.2

In this section, we will study the large time asymptotic behavior of the global finite energy weak
solutions obtained in Theorem 1.1 and give a proof of Corollary 1.2.

Proof of Corollary 1.2:

First it follows from (1.6) that

esssupt>0E(t) +

ˆ ∞

0

ˆ

Ω

(
µ|∇u|2 + |∆d+ |∇d|2d|2

)
≤ E(0). (6.1)

For any positive integer m, define (ρm, um, dm) : Q1 → R+ × R
3 × S

2 by




ρm(x, t) = ρ(x, t+m),

um(x, t) = u(x, t+m),

dm(x, t) = d(x, t+m).

Then (ρm, um, dm) is a sequence of finite energy weak solutions of (1.1) in Q1. It follows from (6.1)
that

∥∥ρm
∥∥
L∞([0,1],Lγ(Ω))

+
∥∥ρ

1
2
mum

∥∥
L∞([0,1],L2(Ω))

+
∥∥ρmum

∥∥
L∞([0,1],L

2γ
2γ+1 (Ω))

+
∥∥dm

∥∥
L∞([0,1],H1(Ω))

≤ C(E(0)), (6.2)

and

lim
m→∞

ˆ 1

0

(∥∥∇um
∥∥2
L2(Ω)

+
∥∥∆dm + |∇dm|2dm

∥∥2
L2(Ω)

)
= 0. (6.3)

After passing to a subsequence, we may assume that as m→ ∞,

ρm ⇀ ρ∞ in Lγ(Q1), um ⇀ u∞ in L2([0, 1], H1
0 (Ω)), dm ⇀ d∞ in L2([0, 1], H1(Ω)).

Applying (6.3) and the Poincaré inequality, we have

lim
m→∞

ˆ 1

0

∥∥um
∥∥2
L2(Ω)

= 0,

and hence u∞ = 0 a.e. in Q1.
Sending m→ ∞ in (1.1)3, we see that d∞ solves

∂td∞ = ∆d∞ + |∇d∞|2d∞ in Q1.
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On the other hand, by the lower semicontinuity and (6.3) we have
ˆ 1

0

ˆ

Ω

∣∣∆d∞ + |∇d∞|2d∞
∣∣2 = 0.

Hence ∂td∞ = 0 in Q1 and d∞(x, t) = d∞(x) ∈ H1(Ω, S2+) is a harmonic map, with d∞ = d0 on ∂Ω.
By Hölder’s inequality, (6.2), and (6.3), we have

lim
m→∞

ˆ 1

0

(∥∥ρmum
∥∥2
L

6γ
γ+6 (Ω)

+
∥∥ρm|um|2

∥∥2
L

3γ
γ+3 (Ω)

)
= 0. (6.4)

Since (ρm, um, dm) solves (1.1)1 in Q1, we have

∂t(ρmum) +∇ · (ρmum ⊗ um) + a∇ργm = µ∆um + µ̃∇(∇ · um)− (∆dm + |∇dm|2dm) · ∇dm in Q1,

which, after sending m→ ∞ and applying (6.2), (6.3), (6.4), and Claim 3 below, implies

∇ργ∞ = 0 in Q1.

Hence ρ∞ is x-independent in Q1. On the other hand, since ρ∞ is a weak solution of

∂tρ∞ +∇ · (ρ∞u∞) = 0 in Q1,

so that ∂tρ∞ = 0 and ρ∞ is t-independent in Q1. Thus ρ∞ is a constant.
It remains to show (ρm, dm) → (ρ∞, d∞) in Lγ(Q1)×L2([0, 1], H1

loc(Ω)). This is divided into two
separate claims.

Claim 2. dm → d∞ in L2([0, 1], H1
loc(Ω)). The idea is based on the compactness Theorem 3.2, and

the argument is similar to that given in §5.1 and [18] Theorem 1.3. For the convenience of readers,
we sketch it here. As in §5.1, for Λ > 1 define

GΛ =
{
t ∈ [0, 1]

∣∣∣ lim inf
m→∞

ˆ

Ω

∣∣∣∆dm + |∇dm|2dm
∣∣2 ≤ Λ

}
,

and
BΛ = [0, 1] \GΛ.

From (6.3), we have

∣∣BΛ

∣∣ ≤ Λ−1 lim inf
m→∞

ˆ 1

0

ˆ

Ω

∣∣∣∆dm + |∇dm|2dm
∣∣2 = 0. (6.5)

Since dm satisfies (1.12) for any X ∈ C1
0 (Ω) and η ∈ C1

0 ((0, 1)), it is not hard to check that there
exists a subset Z ⊂ GΛ, with |Z| = 0, such that for any t ∈ GΛ \ Z, it holds

ˆ

Ω

(
∇dm ⊙∇dm − 1

2
|∇dm|2I3

)
(t) : ∇X = −

ˆ

Ω

〈
(∂tdm + um · ∇dm)(t), X · ∇dm(t)

〉

= −
ˆ

Ω

〈
(∆dm + |∇dm|2dm)(t), X · ∇dm(t)

〉 (
by (1.1)3

)
(6.6)

It is standard (see [23]) that (6.6) implies that dm(t), t ∈ GΛ \ Z, satisfies the almost energy
monotonicity inequality (3.3), i.e., x0 ∈ Ω and 0 < r ≤ R < d(x0, ∂Ω),

ΨR(dm(t), x0) ≥ Ψr(dm(t), x0) +
1

2

ˆ

BR(x0)\Br(x0)

|x− x0|−1
∣∣ ∂dm(t)

∂|x− x0|
∣∣2, (6.7)

where

Ψr(dm(t), x0) =
1

r

ˆ

Br(x0)

(1
2
|∇dm|2(t)− 〈(x− x0) · ∇dm(t), τm(t)〉

)
+

1

2

ˆ

Br(x0)

|x− x0||τm(t)|2,

and
τm(t) = (∆dm + |∇dm|2dm)(t).

From the definition of GΛ, we have
∥∥τm(t)

∥∥
L2(Ω)

≤ Λ, ∀t ∈ GΛ \ Z. (6.8)
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From (6.2), we see

E(dm(t)) =
1

2

ˆ

Ω

|∇dm(t)|2 ≤ C(E(0)). (6.9)

Note also that

d3m(x, t) ≥ 0 a.e. x ∈ Ω, ∀ t ∈ GΛ \ Z. (6.10)

From (6.7), (6.8), (6.9), and (6.10), we conclude that {dm(t)}m≥1 ⊂ Y(C(E(0)),Λ, 0; Ω) for any
t ∈ GΛ\Z. Hence, by Theorem 3.2, we have that {dm}m≥1 is bounded in H2

loc(Ω, S
2) and precompact

in H1(Ω, S2).
Since

∂tdm = −um · ∇dm + (∆dm + |∇dm|2dm) ∈ L2([0, 1], L
3
2 (Ω)) + L2([0, 1], L2(Ω)),

and

sup
m≥1

∥∥∥∂tdm
∥∥∥
L2([0,1],L

3
2 (Ω))+L2([0,1],L2(Ω))

≤ C.

We can apply Aubin-Lions’ lemma, similar to §5.1, to conclude that for any open set Ω̃ ⊂⊂ Ω, after
taking a subsequence, there holds

lim
m→∞

∥∥∥∇(dm − d∞)
∥∥∥
L2(Ω̃×(GΛ\Z))

= 0. (6.11)

On the other hand, by (6.2), we have

sup
m≥1

∥∥∥∇(dm − d∞)
∥∥∥
L2(Ω̃×(BΛ∪Z))

≤ C(E(0))
∣∣BΛ ∪ Z

∣∣ = 0. (6.12)

Putting (6.11) and (6.12) together yields

lim
m→∞

∥∥∥∇(dm − d∞)
∥∥∥
L2(Ω̃×(0,1))

= 0. (6.13)

Claim 2 follows from (6.13).

Claim 3. ρm → ρ0,∞ in Lγ(Q1). To show this claim, first observe that by the same lines of argument
in §5.3 with (ρǫ, uǫ, dǫ) replaced by (ρm, um, dm), we can obtain that there exist θ > 0 and C > 0
independent of m such that

ˆ 1

0

ˆ

Ω

ργ+θ
m ≤ C, ∀m ≥ 1. (6.14)

From (6.14), we may assume that

ργm ⇀ ρ
γ
∞ in Lp1(Q1), 1 < p1 ≤ γ + θ

γ
(Q1). (6.15)

There are two methods to prove that ργ∞ = ργ∞ a.e. in Q1 and ρm → ρ∞ in Lγ(Q1): the first
is to repeat the same lines of arguments given by §5.5, §5.6, and §5.7 with (ρǫ, uǫ, dǫ) replaced by
(ρm, um, dm); and the second is to apply the div-curl lemma, similar to [5] Proposition 4.1. Here
we sketch it. For simplicity, assume the pressure coefficient a = 1. Let Div and Curl denote
the divergence and curl operators in Q1. As pointed out by [6] Remark 1.1, (1.4) also holds for
b(ρm) = G(ργm) when G(z) = zα, with

0 < α < min
{ 1

2γ
,

θ

θ + γ

}
.

Using the equation (1.4), one can check that

Div
[
0, 0, 0, G(ργm)

]
is precompact in W−1,q1(Q1)

for some q1 > 1.
While, using the equation (1.1)2 and (6.2), one can check

Curl
[
0, 0, 0, ργm

]
is precompact in W−1,q2(Q1)



26 J. LIN, B. LAI, AND C. WANG

for some q2 > 1.
Assume

G(ργm)⇀ G(ργ∞) in Lp2(Q1),

and
G(ργm)ργm ⇀ G(ργ∞)ργ∞ in Lr(Q1),

with

p2 =
1

α
,
1

r
=

1

p2
+

1

p1
.

Then by the div-curl lemma we conclude that

G(ργ∞)ργ∞ = G(ργ∞) ργ∞

As G is strictly monotone, this implies G(ργ∞) = G
(
ρ
γ
∞

)
. Since Lp2 is uniformly convex, this implies

that the convergence in (6.15) is strong in L1(Q1). Hence we have that

ρm → ρ∞ in Lγ(Q1).

Since

ˆ

Ω

ρm(t) =

ˆ

Ω

ρ0 for 0 < t < 1 and ρ∞ is constant, it follows that ρ∞ ≡ 1

|Ω|

ˆ

Ω

ρ0 (:= ρ0,∞).

From claim 2, claim3, and (6.2), we can apply Fubini’s theorem to conclude that there exists
tm ∈ (m,m+ 1) such that as m→ ∞,

(
ρ(tm), d(tm)

)
→

(
ρ0,∞, d∞

)
in Lγ(Ω)×H1

loc(Ω, S
2),

and ∥∥u(tm)
∥∥
H1(Ω)

→ 0.

Hence by Sobolev’s embedding theorem we have that u(tm) → 0 in Lp(Ω) for any 1 < p < 6. The
proof is now complete. �
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