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CONVERGENCE ANALYSIS OF APPROXIMATE PRIMAL

SOLUTIONS IN DUAL FIRST-ORDER METHODS§∗

JIE LU† AND MIKAEL JOHANSSON‡

Abstract. Dual first-order methods are powerful techniques for large-scale convex optimization.
Although an extensive research effort has been devoted to studying their convergence properties,
explicit convergence rates for the primal iterates have only been established under global Lipschitz
continuity of the dual gradient. This is a rather restrictive assumption that does not hold for several
important classes of problems. In this paper, we demonstrate that primal convergence rate guarantees
can also be obtained when the dual gradient is only locally Lipschitz. The class of problems that
we analyze admits general convex constraints including nonlinear inequality, linear equality, and set
constraints. As an approximate primal solution, we take the minimizer of the Lagrangian, computed
when evaluating the dual gradient. We derive error bounds for this approximate primal solution
in terms of the errors of the dual variables, and establish convergence rates of the dual variables
when the dual problem is solved using a projected gradient or fast gradient method. By combining
these results, we show that the suboptimality and infeasibility of the approximate primal solution at
iteration k are no worse than O(1/

√
k) when the dual problem is solved using a projected gradient

method, and O(1/k) when a fast dual gradient method is used.

Key words. dual optimization, first-order methods, primal convergence
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1. Introduction. Lagrangian duality is a widely-used approach in large-scale
optimization, especially when there are a few constraints that complicate an other-
wise simple problem [1,2]. Although many first-order methods can be applied to solve
such problems directly in the primal space, the iteration cost can be very high since
the projection onto the constraint set is often computationally difficult [3]. The cor-
responding dual problem has a more desirable structure: the dual constraint set has a
simple form and the (sub)gradient of the dual function is relatively easy to evaluate.
In addition, the dual function is often additive and suitable for distributed imple-
mentation, which has been exploited in a wide range of recent applications, including
communication systems [4, 5], large-scale control [6], and multi-agent systems [7].

There are many practical and theoretical subtleties in using dual optimization
methods to generate optimal solutions to the engineering problems cited above. First,
one needs to ensure that the dual optimal value agrees with the primal optimal value
(i.e., that there is no duality gap). For convex optimization problems, this can be
done by verifying Slater’s constraint qualifications [2]. Then, one typically needs to
guarantee that the iterates generated by the dual optimization method converge to a
dual optimum, which is not always true. For instance, the subgradient method with
constant step-size achieves suboptimality only. Further, for most applications it is
desirable to construct approximate primal solutions (representing the actual decisions
to implement) from the dual iterates. Whether the approximate primal solutions
converge to a primal optimal solution or not is often of great practical concern. More-
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over, to be able to assess solution times and understand how they depend on problem
data, it is preferable to estimate how quickly the solution converges. This motivates
research on on-line construction of approximate primal solutions and studying their
convergence properties.

A number of results on the convergence properties of approximate primal solu-
tions have been reported in the literature [6, 8–14]. At one extreme are results on
non-smooth convex problems with nonlinear constraints, e.g. [8, 9], where the corre-
sponding dual function is also non-smooth in general. For such problems, one typically
applies the subgradient method to the dual problem and forms running averages of
the generated primal iterates to construct an approximate primal solution. Such an
approximate primal solution converges asymptotically to the primal optimal set with
diminishing step-sizes [8] and has guaranteed bounds on suboptimality and infeasibil-
ity when a constant step-size is used [9]. At the other extreme are problems for which
the dual function is differentiable and has globally Lipschitz continuous gradient over
the entire dual feasible set, e.g. [6,10–14]. To ensure differentiability of the dual func-
tion, one often needs to assume strong convexity of the objective function [6,11–13] or
approach the dual problem using an augmented Lagrangian [10,14]. To make the dual
gradient globally Lipschitz, the references cited above typically require the inequality
and equality constraints to be linear. One exception is [13] that allows for nonlin-
ear inequality constraints, but not equality constraints. However, [13] assumes that
both the objective and the inequality constraint functions are twice differentiable and
that the Jacobian of the constraint functions is element-wise bounded. The globally
Lipschitz dual gradient not only simplifies analysis but also allows the application
of dual gradient and fast gradient methods (e.g., [3, 15, 16]) that achieve sublinear
convergence rates for the dual iterates. This leads to sublinear convergence rates of
the approximate primal solution, be it either the primal iterates [6, 10, 12] or their
running average [11, 13, 14].

In this paper, we consider a general class of convex optimization problems that
covers the less explored middle ground between these two extremes. In particular,
we focus on a class of convex optimization problems with a strongly convex but
not necessarily differentiable objective function. We allow the problems to have all
three types of convex constraints: nonlinear inequalities, linear equalities, and set
constraints, while the related references [6, 8–14] tackle problems in the absence of
either nonlinear constraints or equality constraints. This problem class leads to a
differentiable dual function with locally Lipschitz gradient on the dual feasible set and
generalizes the problems with globally Lipschitz dual gradient considered in [6,11–13].

For this problem class, we consider the unique minimizer of the Lagrangian for
given dual variables as an approximate primal solution and relate the errors of this
approximate primal solution in primal optimality and feasibility to those of the dual
variables in dual optimality. Based on such relationships, we study the convergence
properties of the approximate primal solution when the dual variables are generated
from the application of the classical projected gradient and fast gradient methods to
the dual problem. Specifically, by imposing mild assumptions on the smoothness of
the inequality constraint functions, we construct a sufficient condition on the step-
size to guarantee convergence of the dual iterates generated by the projected dual
gradient method and prove that they converge sublinearly at a rate of order O(1/k).
It is worthwhile to mention that this is a new result, as the existing results on the
O(1/k) convergence rate of the projected gradient method are established under global
Lipschitz continuity of the objective gradient, while for our problem, the dual gradient
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is only locally Lipschitz on the dual feasible set. This leads to one of our main results,
which states that the primal iterates (i.e., our approximate primal solution at each
iteration) converge to optimality and feasibility at a rate no worse than O(1/

√
k).

By assuming boundedness of the subgradients of the inequality constraint functions,
we show that the fast gradient methods in [15, 16] can be applied to solve the dual
problem and guarantee the O(1/k2) convergence rate of the dual iterates. As a result,
the convergence rates of the primal iterates in both optimality and feasibility are
improved to O(1/k).

The paper is organized as follows: Section 2 gives a formal problem statement,
while Section 3 establishes bounds for the error of the approximate primal solution in
terms of errors of the dual variables. Convergence rate bounds for the dual and primal
iterates in several dual first-order methods are derived in Section 4. Section 5 uses
simulations to compare the practical performance of different choices of approximate
primal solutions in various dual first-order methods. Finally, Section 6 concludes the
paper. The proofs are in the appendix.

1.1. Notation. The following notation is adopted throughout the paper: Let
R

n
+ and R

n
− be the set of nonnegative and negative vectors in R

n, respectively. For

a vector x ∈ R
n, let x(i) ∈ R, i = 1, 2, . . . , n denote the ith element of x and

x(i:j) ∈ R
j−i+1, 1 ≤ i ≤ j ≤ n the vector consisting of the ith, (i + 1)th, . . .,

jth elements of x. In addition, for any x, y ∈ R
n, let max{x, y} be the element-wise

maximum operation, i.e., (max{x, y})(i) = max{x(i), y(i)} ∀i ∈ {1, . . . , n}. We use
‖ · ‖, ‖ · ‖1, ‖ · ‖∞, and ‖ · ‖F to represent the Euclidean, ℓ1, infinity, and Frobenius
norm, respectively. For any matrix A ∈ R

p×n, let σmax(A) =
√

λmax(ATA) and

σmin(A) = max{
√

λmin(AAT ),
√

λmin(ATA)}, where λmax(·) and λmin(·) represent
the largest and smallest eigenvalues of a real symmetric matrix. We allow A to have
zero dimension, i.e., p = 0 or n = 0, in which cases we let σmax(A) = 0. For any func-
tion h : Rn → R, let ∂h(x) ⊂ R

n be its subdifferential at x ∈ R
n. If h is differentiable

at x, then ∂h(x) = {∇h(x)}, where ∇h(x) ∈ R
n is the gradient of h at x and its ith

element is represented by ∇(i)h(x). For any set Q ⊆ R
n, let relintQ be its relative

interior, convQ its convex hull, diam(Q) its diameter, |Q| its cardinality, and PQ[·]
the projection onto Q.

2. Problem formulation. We consider the following optimization problem with
inequality, equality, and set constraints:

minimize
x∈Rn

f(x)

subject to g(i)(x) ≤ 0, i = 1, 2, . . . ,m,
Ax + b = 0,
x ∈ X.

(2.1)

Here, f : Rn → R is the objective function, g(i) : Rn → R, ∀i ∈ {1, 2, . . . ,m} represent
the nonlinear inequality constraint functions, A ∈ R

p×n and b ∈ R
p encode the linear

equality constraints, and X ⊆ R
n is a closed and convex set. In addition, let the

following assumption hold:
Assumption 1. Problem (2.1) satisfies the following:
(a) The objective function f is strongly convex over X with convexity parameter

θ > 0, i.e., f(y)− f(x)− ∇̃f(x)T (y − x) ≥ θ
2‖x− y‖2, ∀x, y ∈ X, ∀∇̃f(x) ∈

∂f(x).∗

∗f is not necessarily differentiable. For instance, f could be a quadratic function plus an ℓ1 norm.
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(b) Each g(i), i ∈ {1, 2, . . . ,m} is convex over X and satisfies a Lipschitz condi-
tion on X: ‖g(i)(x) − g(i)(y)‖ ≤ Li‖x− y‖ ∀x, y ∈ X for some Li > 0.

(c) There exists x̃ ∈ relintX such that g(i)(x̃) < 0 ∀i ∈ {1, 2, . . . ,m} and Ax̃+b =
0.

(d) The number of inequality and equality constraints is not zero, i.e., m+ p 6= 0.
If p 6= 0, then A is not a zero matrix.

Assumptions 1(a), 1(b), and 1(c) guarantee that there is a unique optimal solution
x⋆ to problem (2.1) and that the optimal value f⋆ = f(x⋆) is finite. In addition,
they ensure that problem (2.1) has no duality gap when dualizing the inequality and
equality constraints, i.e., f⋆ is equal to the optimal value d⋆ of the corresponding dual
problem, and that the dual optimal set D⋆ is nonempty [2, Prop. 5.3.2]. Note that
we only require the convexity and Lipschitz continuity in Assumptions 1(a) and 1(b)
to hold over X , and not globally over the entire R

n.

To formulate the dual problem of (2.1), we first introduce the Lagrangian function
L : Rn × R

m+p → R associated with (2.1):

L(x, u) = f(x) +

m
∑

i=1

u(i)g(i)(x) +
(

u(m+1:m+p)
)T

(Ax+ b).

Given the Lagrangian L, the dual function d : Rm+p → R can be expressed as

d(u) = min
x∈X

L(x, u)

= f(x̄(u)) +
m
∑

i=1

u(i)g(i)(x̄(u)) +
(

u(m+1:m+p)
)T

(Ax̄(u) + b),(2.2)

where

x̄(u) ∈ arg minx∈X L(x, u),

and the Lagrange dual problem of (2.1) is

maximize
u∈Rm+p

d(u)

subject to u ∈ D , {u ∈ R
m+p : u(1:m) ∈ R

m
+}.

(2.3)

Since d is concave, the dual problem (2.3) is a convex optimization problem. Moreover,
for every u ∈ D, L(·, u) is strongly convex over X , so x̄(u) exists and is unique.
Furthermore, x̄(u) = x⋆ if u = u⋆ for some dual optimal solution u⋆ ∈ D⋆ [17, Prop.
6.1.1]. This makes x̄(u) a legitimate candidate for an approximate primal solution
to (2.1) based on the dual variable u ∈ D.

Next, we establish the boundedness of x̄(u) and then the differentiability of d:

Lemma 2.1. Consider problem (2.1) under Assumption 1. Then, for any compact
set S ⊂ D, the set {x̄(u) : u ∈ S} is bounded.

Proof. See Appendix 7.1.

With Lemma 2.1 and Danskin’s Theorem [2], it can be shown that the dual
function d is differentiable at every point in D. Moreover, for any u ∈ D,

∇d(u) = [g(1)(x̄(u)), . . . , g(m)(x̄(u)), (Ax̄(u) + b)T ]T .(2.4)
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Remark 1. Equations (2.2) and (2.4) suggest that the primal function value at
x̄(u), i.e., f(x̄(u)), can be expressed in terms of the dual variable u ∈ D and the dual
function d as follows:

f(x̄(u)) = d(u)−∇d(u)Tu, ∀u ∈ D.(2.5)

This relationship will be essential in the results that we derive shortly.
In the above setting, the goal of this paper is to (a) quantify how close the ap-

proximate primal solution x̄(u) is to optimality and feasibility for any given dual
feasible point u ∈ D, and (b) to derive the convergence rate of x̄(u) when the dual
problem (2.3) is solved using some common first-order methods. We investigate opti-
mality in terms of both the distance to the optimizer

‖x̄(u)− x⋆‖

and the error in primal objective value

|f(x̄(u))− f⋆|

while primal infeasibility is captured by the quantity

∆(x̄(u)) =
(

‖Ax̄(u) + b‖2 +
m
∑

i=1

(

max{0, g(i)(x̄(u))}
)2
)1/2

.

2.1. Comparison with related work. It is instructive to compare Problem (2.1)
with the problem classes considered in the related works [6,8–14] that also study pri-
mal convergence in dual first-order methods.

First of all, note that (2.1) allows for all three types of standard convex constraints
(convex inequality, linear equality, and convex set constraints), while [6, 8–14] do
not. The constraints in [6, 10–12, 14] must be linear, and although [8, 9, 13] consider
nonlinear inequality constraints, they do not allow for linear equality constraints.

Like our Assumption 1, references [6, 11–13] also assume strong convexity of the
objective function f . Clearly, problem (2.1) generalizes the linearly constrained prob-
lems considered in [6,11,12]. In addition, the problem class with nonlinear inequality
constraints in [13] requires that the objective and the inequality constraint functions
are twice differentiable and that the Jacobian of the inequality constraint functions is
element-wise bounded. These are more restrictive than Assumption 1.

Strong convexity of the objective function is relaxed to convexity in [8–10,14]. In
[8,9], the dual function is non-differentiable and therefore only the subgradient method
can be applied to the dual, which explains the lack of convergence rate gurantees.
In [10, 14], quadratic augmented Lagrangians are used to obtain a differentiable dual
function. Nevertheless, they still require the constraint set X to be compact.

3. Primal errors in optimality and feasibility. In this section, we bound
the errors of the approximate primal solution x̄(u) ∈ X in optimality and feasibility
in terms of the errors of the dual variable u ∈ D. To present our first result, we
introduce the following notation: for any u ∈ D, let

γ(u) =

√
m+ 1

θ
max

{

σmax(A), sup
q∈G(u)

‖q‖
}

,(3.1)



6

where

G(u) =

m
⋃

i=1

∂g(i)(x̄(u)) ⊂ R
n.(3.2)

Since G(u) is a compact set [17, Prop. 4.2.1], 0 ≤ γ(u) < ∞. Also, if γ(u′) = 0 for
some u′ ∈ D, then x̄(u) = x⋆ ∀u ∈ D.† This means that the primal optimal solution
x⋆ can be simply found by arbitrarily picking u ∈ D and computing x̄(u). Hence, in
the rest of the paper, we exclude this trivial case and assume γ(u) > 0 ∀u ∈ D.

Then, consider the following lemma:
Lemma 3.1. Consider problem (2.1) under Assumption 1. For any u, v ∈ D,

‖x̄(u)− x̄(v)‖ ≤ min{γ(u), γ(v)}‖u− v‖,(3.3)

where γ(u), γ(v) ∈ (0,∞) are defined in (3.1).
Proof. See Appendix 7.2.
Lemma 3.1 allows one to relate the primal error ‖x̄(u) − x⋆‖ to the dual error

‖u − u⋆‖ for any u ∈ D and any u⋆ ∈ D⋆. In addition, the next theorem bounds
‖x̄(u)− x⋆‖ by virtue of the error d⋆ − d(u) in dual optimality.

Theorem 3.2. Consider problem (2.1) under Assumption 1. For any u ∈ D and
any u⋆ ∈ D⋆,

‖x̄(u)− x⋆‖ ≤ γ(u⋆)‖u− u⋆‖,(3.4)

‖x̄(u)− x⋆‖ ≤
√

2(d⋆ − d(u))

θ
,(3.5)

where γ(u⋆) ∈ (0,∞) is defined in (3.1).
Proof. See Appendix 7.3.
Note that both Lemma 3.1 and Theorem 3.2 do not require the Lipschitz condition

in Assumption 1(b), which, however, is needed for deriving other results below.
Having derived bounds on ‖x̄(u)− x⋆‖, we turn our attention to the primal error

|f(x̄(u))− f⋆|. To this end, for any compact subset S ⊂ D, define

L(S) = sup
u∈S

γ(u)
(

σ2
max(A) +

m
∑

i=1

L2
i

)1/2

> 0.(3.6)

From Lemma 2.1 and [17, Prop. 4.2.3], the boundedness of S implies that the set
∪u∈SG(u) is bounded, so L(S) < ∞. Next, we show that L(S) is a Lipschitz constant
of ∇d on the compact set S ⊂ D:

Proposition 3.3. Consider problem (2.1) under Assumption 1. Then, on every
compact set S ⊂ D, ∇d satisfies a Lipschitz condition:

‖∇d(u)−∇d(v)‖ ≤ L(S)‖u− v‖, ∀u, v ∈ S,(3.7)

where L(S) ∈ (0,∞) is defined in (3.6). Moreover, if S is convex,

d(v) − d(u)−∇d(u)T (v − u) ≥− L(S)

2
‖u− v‖2, ∀u, v ∈ S.(3.8)

†To see this, note that γ(u′) = 0 implies p = 0 and ∂g(i)(x̄(u′)) = {0} ∀i ∈ {1, . . . , m}. Hence,
∂xL(x̄(u′), u) = ∂f(x̄(u′)) ∀u ∈ D, where ∂xL represents the subdifferential of L with respect to
the first argument. Since x̄(u′) minimizes L(·, u′) over X, there exists ∇̃f(x̄(u′)) ∈ ∂f(x̄(u′)) such
that ∇̃f(x̄(u′))T (x − x̄(u′)) ≥ 0. Therefore, x̄(u′) = arg minx∈X L(x, u) = x̄(u) ∀u ∈ D and thus
x̄(u) = x⋆ ∀u ∈ D.
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Proof. See Appendix 7.4.

The local Lipschitz continuity of ∇d on D established in Proposition 3.3 allows
to guarantee bounds on the primal error |f(x̄(u)) − f⋆| and the primal infeasibility
∆(x̄(u)) of any x̄(u) with u in some compact set S ⊂ D. The basic idea for deriving
such bounds is to use (2.5), which gives

f(x̄(u))− f⋆ = −∇d(u)Tu+ d(u)− d⋆(3.9)

and then bound −∇d(u)Tu using (3.8) with v = u+ 1
L(S)∇d(u). However, since such

a v may not belong to S, we introduce the set

Φ(S) = conv
({

PD[u+ β∇d(u)] : u ∈ S, β ∈ [0, 1/L(S)]
})

,(3.10)

which is compact and convex. In addition, S ⊆ Φ(S) ⊂ D. Hence, if u ∈ S and we
let v = PD[u + 1

L(Φ(S))∇d(u)], then u, v ∈ Φ(S) and we can apply (3.8) over Φ(S).

The following theorem provides the formal results:

Theorem 3.4. Consider problem (2.1) under Assumption 1. Let S ⊂ D be
compact. Then, for any u ∈ S and any u⋆ ∈ D⋆,

f(x̄(u))− f⋆ ≤
(

‖u‖∞
√

2L(Φ(S))(m+ p) +
√

d⋆ − d(u)
)

√

d⋆ − d(u),(3.11)

f(x̄(u))− f⋆ ≥ −‖u⋆‖
√

2L(Φ(S))(d⋆ − d(u)),(3.12)

∆(x̄(u)) ≤
√

2L(Φ(S))(d⋆ − d(u)),(3.13)

where Φ(S) and L(Φ(S)) ∈ (0,∞) are defined in (3.10) and (3.6).

Proof. See Appendix 7.5.

The bounds provided in (3.11), (3.12), and (3.13) depend on the compact set
Φ(S) defined in (3.10). Thus, unlike Theorem 3.2, the results in Theorem 3.4 only
hold locally, which stems from the fact that ∇d is locally Lipschitz continuous on
D. Nevertheless, under the assumption below, similar conclusions can be established
globally over D:

Assumption 2. The set ∪u∈DG(u) is bounded.

Assumption 2 can be satisfied when each constraint function g(i), i = 1, 2, . . . ,m is
affine or the constraint set X is compact (cf. [17, Prop. 4.2.3]). For another example,
if each g(i) is differentiable at every point of X and satisfies the Lipschitz condition in
Assumption 1(b) on an open set containing X , then ‖∇g(i)(x)‖ ≤ Li ∀x ∈ X , which
implies that Assumption 2 holds. However, if the Lipschitz condition only holds on X
as in Assumption 1(b), then ‖∇g(i)(x)‖ may be unbounded on X‡ and Assumption 2
is thus not guaranteed.

Remark 2. Note that even when both Assumption 1 and Assumption 2 are
imposed, our results generalize those in references [6, 11–13], since we do not require
f and g(i), i = 1, 2, . . . ,m to be differentiable. Also note that Assumption 2 is not
universally imposed throughtout the paper; most results hold without Assumption 2.

‡For instance, let X = {x ∈ R
2 : x(1) ≥ 1, x(2) = 1}. Also, let g(i) : R2

+ → R be defined as

g(i)(x) = −
(

x(1)
)

x
(2)

, which is differentiable, is convex, and satisfies a Lipschitz condition on X.

However, ‖∇g(i)(x)‖2 = 1 +
(

x(1) lnx(1)
)2 ∀x ∈ X, which is unbounded.
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Under Assumption 2, we have supu∈D γ(u) < ∞, which leads to the Lipschitz
continuity of ∇d on D and the following error bounds:

Corollary 3.5. Consider problem (2.1) under Assumptions 1 and 2. Then, ∇d
satisfies a Lipschitz condition on D: ‖∇d(u)−∇d(v)‖ ≤ L̃‖u− v‖ ∀u, v ∈ D, where

L̃ = sup
u∈D

γ(u)
(

σ2
max(A) +

m
∑

i=1

L2
i

)1/2

∈ (0,∞).

Moreover, for any u ∈ D, (3.11)–(3.13) hold with L(Φ(S)) replaced by L̃.
Proof. See Appendix 7.6
In the final part of this section, we study a special case of (2.1) where all the con-

straints are linear and derive sharper and more explicit primal error bounds. Specifi-
cally, we consider

minimize
x∈Rn

f(x)

subject to A′x+ b′ ≤ 0,
Ax+ b = 0,
x ∈ X,

(3.14)

where A′ ∈ R
m×n, b′ ∈ R

m, and ≤ represents element-wise inequality. For conve-
nience, let Ã = [(A′)T , AT ]T ∈ R

(m+p)×n and b̃ = [(b′)T , bT ]T ∈ R
m+p. Without loss

of generality, we assume Ã is not a zero matrix.
If f is strongly convex over the whole Rn, X is a polyhedral set, and the constraint

set of problem (3.14) is nonempty, then Assumption 1(c) can be removed [2, Prop.
5.2.1]. Also, Assumption 2 is automatically satisfied for this problem due to the
linearity of the constraints. Besides, x̄(u) exists and is unique for any u ∈ R

m+p and
d is differentiable over Rm+p.

Following the proof of Lemma 3.1, we show in the corollary below that the distance
between approximate primal solutions is proportional to that between the correspond-
ing dual variables:

Corollary 3.6. Consider the linearly constrained problem (3.14) under As-
sumption 1. Then, for any u, v ∈ R

m+p,

‖x̄(u)− x̄(v)‖ ≤ σmax(Ã)

θ
‖u− v‖.

Proof. See Appendix 7.7.
Since the inequality constraints are linear in (3.14), the bound provided in Corol-

lary 3.6 is independent of u and v. Moreover, it is tighter than that in Lemma 3.1,

i.e., σmax(Ã)
θ ≤ min{γ(u), γ(v)}. This can be seen from the facts that supq∈G(u) ‖q‖ ≥

1√
m
‖A′‖F ≥ 1√

m
σmax(A

′) and that σ2
max(Ã) ≤ σ2

max(A
′) + σ2

max(A). When there are

no inequality constraints, i.e., m = 0, the two bounds are equal.
Due to the linearity of the constraints, the gradient of the dual function is globally

Lipschitz continuous over the whole space with the Lipschitz constant
σ2
max(Ã)

θ [12].
Based on this, we provide global error bounds on primal optimality and feasibility:

Proposition 3.7. Consider the linearly constrained problem (3.14) under As-
sumption 1. Then, for any u ∈ D and any u⋆ ∈ D⋆,

−‖u⋆‖σmax(Ã)

√

2(d⋆ − d(u))

θ
≤ f(x̄(u))− f⋆ ≤ ‖u‖σmax(Ã)

√

2(d⋆ − d(u))

θ
,(3.15)
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∆(x̄(u)) ≤ σmax(Ã)

√

2(d⋆ − d(u))

θ
.(3.16)

Proof. See Appendix 7.8.
Again, it can be shown that the upper bound in (3.15) is not specialized from

and is tighter than that in (3.11).

4. Primal convergence in dual first-order methods. In this section, we use
the connections between primal and dual errors that are built in Section 3 to analyze
the convergence properties of the approximate primal solution when some common
first-order methods are employed to solve the dual problem.

4.1. Primal convergence in the projected dual gradient method. We
first consider the projected dual gradient method. Let the dual iterates (uk)

∞
k=0 ⊂ D

be generated by

uk+1 = PD[uk + α∇d(uk)], ∀k ≥ 0(4.1)

from an arbitrary initial point u0 ∈ D. To derive the convergence rates of (uk)
∞
k=0

and (x̄(uk))
∞
k=0, we impose the following assumption:

Assumption 3. Problem (2.1) satisfies the following:
(a) The constraint functions g(i) ∀i ∈ {1, 2, . . . ,m} are differentiable at every

point in X.
(b) There exists ũ ∈ R

m+p such that ũ(1:m) ∈ R
m
− and L(·, ũ) is strongly convex

over X.
To satisfy Assumption 3(b), it suffices that each ∇g(i) satisfies a Lipschitz con-

dition on X with Lipschitz constant L′
i ≥ 0. To see this, note from the proof of [3,

Lemma 1.2.3] that for each i ∈ {1, 2, . . . ,m}, g(i)(x1)−g(i)(x2)−∇g(i)(x2)
T (x1−x2) ≤

L′

i

2 ‖x1−x2‖2 ∀x1, x2 ∈ X . Hence, by letting ũ ∈ R
m+p be such that ũ(1:m) ∈ R

m
− and

−∑m
i=1 ũ

(i)L′
i < θ, we have

L(x1, ũ)− L(x2, ũ)− ∇̃xL(x2, ũ)
T (x1 − x2) ≥

θ +
∑m

i=1 ũ
(i)L′

i

2
‖x1 − x2‖2,

for each x1, x2 ∈ X and each subgradient ∇̃xL(x2, ũ) ∈ ∂xL(x2, ũ). Thus, L(·, ũ) is
strongly convex over X . Using ũ in Assumption 3, we define the set

D̃ = {u ∈ R
m+p : u(1:m) − ũ(1:m) ∈ R

m
+ } ⊃ D.

For any u ∈ D̃, L(·, u) is strongly convex over X and thus x̄(u) uniquely exists.
The next lemma is an important step toward establishing the convergence rates

of (uk)
∞
k=0 and (x̄(uk))

∞
k=0:

Lemma 4.1. Consider problem (2.1) under Assumptions 1 and 3. Then, for any
u ∈ D and v ∈ D̃,

‖∇d(u)−∇d(v)‖ ≤
√
m+ 1

θ

(

σ2
max(A) +

m
∑

i=1

L2
i

)1/2

·max
{

σmax(A), max
i∈{1,...,m}

‖∇g(i)(x̄(u))‖, max
i∈{1,...,m}

‖∇g(i)(x̄(v))‖
}

‖u− v‖.(4.2)
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Proof. See Appendix 7.9.
The Lipschitz-like property of ∇d on D̃ established in Lemma 4.1 will be used to

derive further inequalities below. To present these, we need to introduce the following
additional notation: For any convex and compact set S ⊂ D, let

Ψ(S)=

{

conv
({

u+β(∇d(u)−∇d(v)) : u, v ∈ S, β ∈ [0, 1
η(S) ]

})

, if η(S)>0,

S otherwise,
(4.3)

where η(S) ∈ [0,∞) is defined by

η(S) =























sup
u,v∈S

max
i∈{1,...,m}

−|∇(i)d(u)−∇(i)d(v)|
ũ(i) ,

if sup
u,v∈S

max
i∈{1,...,m}

−|∇(i)d(u)−∇(i)d(v)|
ũ(i) > 0,

σ2
max(A)

θ , otherwise.

(4.4)

This guarantees that Ψ(S) is compact and S ⊆ Ψ(S) ⊂ D̃. The expression of η(S)
is admittedly complicated, but it allows us to include the pathological cases that
∇d(u) is constant over S and that there are no inequality constraints (i.e., m = 0).
In particular, η(S) = 0 means the absence of equality constraints (i.e., p = 0) and
the invariance of ∇d(u) on S. In this case, the above definition still guarantees that
u+ η−1(∇d(u) −∇d(v)) ∈ Ψ(S) ∀u, v ∈ S ∀η > η(S).

Under Assumption 3, the definitions of G(u), γ(u), and L(S) in (3.1), (3.2),
and (3.6) can be extended to hold for any u ∈ D̃ and any compact set S ⊂ D̃. Also,
Lemma 2.1 still holds when D is replaced by D̃, which implies that 0 < L(Ψ(S)) < ∞.
Moreover, Lemma 4.1 implies that ‖∇d(u) − ∇d(v)‖ ≤ L(Ψ(S))‖u − v‖ ∀u ∈ S
∀v ∈ Ψ(S). With these observations, consider the following lemma:

Lemma 4.2. Consider problem (2.1) under Assumptions 1 and 3. Let S ⊂ D be
convex and compact. Also let η(S) ∈ [0,∞), Ψ(S) ⊂ D̃, and L(Ψ(S)) ∈ (0,∞) be
defined in (4.4), (4.3), and (3.6), respectively. Then, for any u ∈ S and v ∈ Ψ(S),

d(v) − d(u)−∇d(u)T (v − u) ≥ −L(Ψ(S))

2
‖u− v‖2.(4.5)

Moreover, for any u, v ∈ S and any η > 0 such that η ≥ η(S),

d(v) − d(u)−∇d(u)T (v − u) ≤
(L(Ψ(S))

2η2
− 1

η

)

‖∇d(u)−∇d(v)‖2,(4.6)

(∇d(u) −∇d(v))T (u − v) ≤ 2
(L(Ψ(S))

2η2
− 1

η

)

‖∇d(u)−∇d(v)‖2.(4.7)

Proof. See Appendix 7.10.
Remark 3. Lemma 4.2 is critical in deriving the convergence rates of the pro-

jected dual gradient method (4.1). Note that Theorem 2.1.5 in [3] gives similar in-
equalities as (4.5), (4.6), and (4.7). However, those inequalities require that ∇d is
Lipschitz continuous over R

m+p and their proofs do not apply to our case where ∇d
is locally Lipschitz continuous on D. Indeed, as is suggesed by Example 3 below,
when problem (2.1) reduces to the linearly constrained problem (3.14), Lemma 4.2 is
specialized to Theorem 2.1.5 in [3].
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Having established the inequalities in Lemmas 4.1 and 4.2, we provide the dual
and primal convergence rates for the projected dual gradient method (4.1):

Theorem 4.3. Consider problem (2.1) under Assumptions 1 and 3. Let (uk)
∞
k=0 ⊂

D be a sequence generated by the projected dual gradient method (4.1). Also, let
u⋆ ∈ D⋆ and D0 = {u ∈ D : ‖u−u⋆‖ ≤ ‖u0−u⋆‖} ⊂ D. Moreover, let Φ(D0) ⊂ D be
defined in (3.10), L(Φ(D0)) ∈ (0,∞) in (3.6), η(D0) ∈ [0,∞) in (4.4), Ψ(D0) ⊂ D̃
in (4.3), and L(Ψ(D0)) ∈ (0,∞) in (3.6). If

0 < α <

{

2
L(Ψ(D0))

, if L(Ψ(D0)) > η(D0),

4
(

1
η(D0)

− L(Ψ(D0))
2η(D0)2

)

, otherwise,
(4.8)

then for any k ≥ 0,

d⋆ − d(uk) ≤
R0

1 + kR0δρ−1
,(4.9)

‖x̄(uk)− x⋆‖ ≤
(

2R0θ
−1

1 + kR0δρ−1

)1/2

,(4.10)

f(x̄(uk))− f⋆ ≤ (‖u⋆‖+ ‖u0 − u⋆‖)
(

2(m+ p)L(Φ(D0))R0

1 + kR0δρ−1

)1/2

+
R0

1 + kR0δρ−1
,(4.11)

f(x̄(uk))− f⋆ ≥ −‖u⋆‖
(

2L(Φ(D0))R0

1 + kR0δρ−1

)1/2

,(4.12)

∆(x̄(u)) ≤
(

2L(Φ(D0))R0

1 + kR0δρ−1

)1/2

,(4.13)

where R0 = d⋆ − d(u0) ∈ (0,∞), ρ = (supu∈D0
‖∇d(u)‖ + ‖u0 − u⋆‖/α)2 ∈ (0,∞),

and δ = 1/α− L(Ψ(D0))/2 ∈ (0,∞).
Proof. See Appendix 7.11.
Theorem 4.3 says that under Assumptions 1 and 3 as well as a proper step-size

choice (4.8), the dual function value at the dual iterates (uk)
∞
k=0 converges to d⋆ at a

rate of O(1/k). Note that this result extends earlier analysis of the projected gradient
method for functions with globally Lipschitz continuous gradient (e.g., [18]) to a class
of functions with locally Lipschitz continuous gradient on closed and convex sets in the
form of D. Moreover, this result implies that the primal iterates (x̄(uk))

∞
k=0 converge

at a rate no worse than O(1/
√
k) in primal optimality and feasibility. Furthermore,

although (4.8) provides a sufficient condition for the range of step-sizes that guarantees
these convergence rates, it does not explicitly tell how to select a proper step-size. In
the examples below, we show explicit step-size rules satisfying (4.8) for some important
problem classes.

Example 1. Suppose that X is a compact set. Note that if m 6= 0,

sup
u,v∈S

max
i∈{1,...,m}

−|∇(i)d(u)−∇(i)d(v)|
ũ(i) ≤ sup

u,v∈D0

max
i∈{1,...,m}

−|g(i)(x̄(u))− g(i)(x̄(v))|
ũ(i)

≤ sup
u,v∈D0

max
i∈{1,...,m}

− Li

ũ(i)
‖x̄(u)− x̄(v)‖(4.14)

≤ max
i∈{1,...,m}

− Li

ũ(i)
diam(X),
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where the first inequality is due to (2.4) and the second comes from Assumption 1(b).
Hence,

η(D0) ≤ η̂ , max

{

σ2
max(A)

θ
, max
i∈{1,...,m}

− Li

ũ(i)
diam(X)

}

.

Also note that

γ(u) ≤ γ̂ ,

√
m+ 1

θ
max{σmax(A), sup

x∈X
max

i∈{1,2,...,m}
‖∇g(i)(x)‖}, ∀u ∈ D̃,

and thus

L(Ψ(D0)) ≤ L̂ , γ̂
(

σ2
max(A) +

m
∑

i=1

L2
i

)1/2

.

Since X is compact, we have 0 < η̂ < ∞ and 0 < L̂ < ∞. Then, as long as

0 < α <

{

2
L̂
, if L̂ > η̂,

4( 1η̂ − L̂
2η̂2 ), otherwise,

(4.15)

the step-size α satisfies (4.8). Notice that unlike η(D0) and L(Ψ(D0)), the constants
η̂ and L̂ can be directly determined from the primal problem.

Example 2. Suppose, for each i ∈ {1, 2, . . . ,m}, that g(i) is Lipschitz continuous
on an open set containing X with Lipschitz constant Li > 0. Then, ‖∇g(i)(x)‖ ≤ Li

∀x ∈ X ∀i ∈ {1, 2, . . . ,m}, which implies that

γ(u) ≤ γ̂ ,

√
m+ 1

θ
max{σmax(A), max

i∈{1,2,...,m}
Li}, ∀u ∈ D.

Due to (4.14) and Lemma 3.1,

sup
u,v∈S

max
i∈{1,...,m}

−|∇(i)d(u)−∇(i)d(v)|
ũ(i) ≤ max

i∈{1,...,m}
− Li

ũ(i)
· sup
u∈D0

γ(u) · sup
u,v∈D0

‖u− v‖

≤ max
i∈{1,...,m}

− Li

ũ(i)
γ̂ diam(D0).

Therefore,

η(D0) ≤ η̂ , max

{

σ2
max(A)

θ
, max
i∈{1,...,m}

− Li

ũ(i)
γ̂ diam(D0)

}

.

Also, L(Ψ(D0)) ≤ L̂ , γ̂
(

σ2
max(A) +

∑m
i=1 L

2
i

)1/2

. Then, any step-size α satisfying

(4.15) meets (4.8). Here, the constants η̂ and L̂ solely depend on the primal problem
as well as an upper bound on the diameter of the set D0.

Example 3. When problem (2.1) reduces to the linearly constrained problem (3.14),
it becomes a special case of Example 2. In this case, Assumption 3(b) holds for every
ũ ∈ R

m+p with ũ(1:m) ∈ R
m
− . By taking ũ(1:m) sufficiently small, we can make η̂ in

Example 2 equal to σ2
max(A)/θ. Thus, η(D0) ≤ σ2

max(A)/θ ≤ σ2
max(Ã)/θ. This, along
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with the fact that ∇d is Lipschitz continuous with Lipschitz constant σ2
max(Ã)/θ, im-

plies that 0 < α < 2θ
σ2
max(Ã)

satisfies (4.8). This step-size condition coincides with the

standard one used to guarantee the convergence of the gradient methods when the ob-
jective function has globally Lipschitz continuous gradient [3]. With such a step-size,
(4.9)–(4.13) hold with L(Φ(D0)) = L(Ψ(D0)) = σ2

max(Ã)/θ. Also, from (3.15), we
have a tighter upper bound on the primal convergence rate

f(x̄(uk))− f⋆ ≤ σmax(Ã)(‖u⋆‖+ ‖u0 − u⋆‖)
(

2R0θ
−1

1 + kR0δρ−1

)1/2

.(4.16)

It is known that the projected gradient method is able to converge linearly when
the objective function is strongly convex [3]. Theorem 3.2 thus suggests that the pri-
mal iterates could achieve linear convergence if the dual function is strongly concave.
Indeed, if the subgradients of f satisfy a Lipschitz condition on X with Lipschitz con-
stant M > 0, then the dual function for problem (3.14) with Ã having full row rank
and X = R

n is strongly concave with concavity parameter −θσ2
min(Ã)/M

2 < 0 [19].
Therefore, for any α ∈ (0, 2M2θ/(θ2σ2

min(Ã) +M2σ2
max(Ã)], we have

‖uk − u⋆‖ ≤ qk‖u0 − u⋆‖,

‖x̄(uk)− x⋆‖ ≤ qk
σmax(Ã)

θ
‖u0 − u⋆‖,

where q =
(

1 − 2αθσ2
min(Ã)σ2

max(Ã)

θ2σ2
min(Ã)+M2σ2

max(Ã)

)1/2

∈ [0, 1). Moreover, q reaches its minimum
(

1− 4M2θ2σ2
min(Ã)σ2

max(Ã)

(θ2σ2
min(Ã)+M2σ2

max(Ã))2

)1/2

when α = 2M2θ
θ2σ2

min(Ã)+M2σ2
max(Ã)

[3].

4.2. Primal convergence in fast dual gradient methods. In this subsec-
tion, we move on to fast dual gradient methods. To the best of the authors’ knowledge,
all the existing fast gradient methods require that the gradient of the objective func-
tion satisfies a Lipschitz condition on at least the feasible region in order to reach a
convergence rate of O(1/k2). Hence, throughout this subsection, we let Assumptions 1
and 2 hold, so that ∇d satisfies a Lipschitz condition on D with Lipschitz constant L̃
defined in Corollary 3.5. We also assume that (an upper bound on) supu∈D γ(u) and

thus L̃ are known.§

We consider the 1-memory fast gradient method in [15] for solving the dual prob-
lem (2.3). To start with, define the following: Let h : Rm+p → R be differentiable on
an open set containing D and let Q(u, v) = h(u)− h(v)−∇h(v)T (u− v) ∀u ∈ R

m+p

∀v ∈ D. Assume h is strictly convex and satisfies Q(u, v) ≥ ‖u − v‖2/2 ∀u, v ∈ D.
Also, let ℓ−d(u, v) = −d(v)−∇d(v)T (u− v) ∀u, v ∈ D. For completeness, we provide
the algorithm below:

Algorithm 1 (Algorithm 1, [15]).
Initialization:

1. Let β0 = 1 and choose u0, w0 ∈ D.

Operation: At each time k ≥ 0:

2. Choose a closed convex set Uk ⊆ R
m+p such that Uk ∩D⋆ 6= ∅.

§In Examples 1 and 2, the upper bounds on supu∈D γ(u) and L̃ (i.e., γ̂ and L̂) can be easily
computed from the primal problem.
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3. Let vk = (1− βk)uk + βkwk,
wk+1 = arg minu∈Uk∩D ℓ−d(u, vk) + βkL̃Q(u,wk),
ûk+1 = (1 − βk)uk + βkwk+1.

4. Choose uk+1 ∈ D be such that

ℓ−d(uk+1, vk) +
L̃
2 ‖uk+1 − vk‖2 ≤ ℓ−d(ûk+1, vk) +

L̃
2 ‖ûk+1 − vk‖2.

5. Choose βk+1 ≤ 2/(k + 3). �

In Algorithm 1, the variables uk, vk, and wk remain in D at all times. One
simple way to choose Uk in Step 2 and uk+1 in Step 4 is that Uk ⊇ D and uk+1 =
arg minu∈D ℓ−d(u, vk) + L̃Q(u,wk). In this case, if Q(u, v) = ‖u − v‖2/2 , then
the updates of wk+1 and uk+1 reduce to projected gradient steps wk+1 = PD[wk +
∇d(vk)/(βkL̃)] and uk+1 = PD[vk +∇d(vk)/L̃]. Other options for Uk and uk+1 can
also be found in [15]. Note that the above algorithm is indeed specialized from the
more general Algorithm 1 in [15]. This is for the purpose of deriving the primal and
dual convergence rates in the following proposition:

Proposition 4.4. Consider problem (2.1) under Assumptions 1 and 2. Let
(uk)

∞
k=0 ⊂ D be a sequence generated by Algorithm 1 and let u⋆ ∈ D⋆. Then, for any

k ≥ 1,

d⋆ − d(uk) ≤
4L̃Q(u⋆, w0)

(k + 1)2
,(4.17)

‖x̄(uk)− x⋆‖ ≤ (8L̃Q(u⋆, w0)θ
−1)1/2

k + 1
,(4.18)

f(x̄(uk))− f⋆ ≤ L̃‖uk‖∞
(

8(m+ p)Q(u⋆, w0)
)1/2

k + 1
+

4L̃Q(u⋆, w0)

(k + 1)2
,(4.19)

f(x̄(uk))− f⋆ ≥ − L̃‖u⋆‖(8Q(u⋆, w0))
1/2

k + 1
,(4.20)

∆(x̄(uk)) ≤
L̃(8Q(u⋆, w0))

1/2

k + 1
,(4.21)

where L̃ is defined in Corollary 3.5.
Proof. See Appendix 7.12.
Proposition 4.4 says that Algorithm 1 yields O(1/k2) convergence rate of (uk)

∞
k=1

in dual optimality. In addition, the distance between x̄(uk) and x⋆ as well as the primal
infeasibility of x̄(uk) vanishes at a rate no worse than O(1/k). As Algorithm 1 does
not guarantee that (uk)

∞
k=1 is bounded, it says nothing about the convergence rate of

f(x̄(uk)). Nevertheless, if problem (2.1) has only inequality constraints, then the dual
optimal set is bounded [9] and so is (uk)

∞
k=1. This leads to the following proposition,

which states that in the absence of equality constraints, f(x̄(uk)) converges to f⋆ at
a rate O(1/k) after some finite time:

Proposition 4.5. Consider problem (2.1) under Assumptions 1 and 2. Suppose
p = 0. Let (uk)

∞
k=0 ⊂ D be a sequence generated by Algorithm 1. Also, let x̃ ∈ R

n

satisfy Assumption 1(c), u⋆ ∈ D⋆, and ū ∈ D\D⋆. Then,

f(x̄(uk))− f⋆ ≤ L̃(d(ū)− f(x̃))
(

8(m+ p)Q(u⋆, w0)
)1/2

(k + 1)(maxi∈{1,2,...,m} g(i)(x̃))
+

4L̃Q(u⋆, w0)

(k + 1)2
,

∀k >
(4L̃Q(u⋆, w0)

d⋆ − d(ū)

)1/2

.(4.22)
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Proof. See Appendix 7.13.
Remark 4. In addition to Algorithm 1, i.e., the 1-memory fast gradient method

in [15], the dual problem (2.3) can also be solved by the ∞-memory fast gradient
method in [15], which would produce similar primal and dual convergence rates as
those in Propositions 4.4 and 4.5. Due to space limitation and since such analyses
are very similar to that in Propositions 4.4 and 4.5, we omit this algorithm in the
paper.

Recall that for the linearly constrained problem (3.14), the dual function d is
differentiable and has globally Lipschitz continuous gradient with Lipschitz constant
σ2
max(Ã)/θ. In this case, the following algorithm, which has a simpler form than

Algorithm 1, can be adopted to solve the dual problem:
Algorithm 2 (Algorithm 2, [15]).

Initialization:
1. Let β0 = β−1 = 1 and choose u0 = u−1 ∈ D.

Operation: At each time k ≥ 0:
2. Choose a closed convex set Uk ⊆ R

m+p such that Uk ∩D⋆ 6= ∅.
3. Let vk = uk + βk(1/βk−1 − 1)(uk − uk−1) and

uk+1 = arg minu∈Uk∩D ℓ−d(u, vk) +
σ2
max(Ã)
2θ ‖u− vk‖2.

4. Choose βk+1 ≤ 2/(k + 3). �

If we pick Uk ⊇ D, then the update of uk+1 in Step 3 is a projected gradient step

uk+1 = PD[vk +∇d(vk)θ/σ
2
max(Ã)]. If we also choose βk+1 =

(

√

β4
k + 4β2

k − β2
k

)

/2,

then Algorithm 2 becomes the fast iterative shrinkage-thresholding algorithm (FISTA)
in [16] applied to solve the dual problem. The primal and dual convergence rates of
Algorithm 2, which have the same order as Algorithm 1 but have a more explicit form,
are given below:

Proposition 4.6. Consider the linearly constrained problem (3.14) under As-
sumption 1. Let (uk)

∞
k=0 ⊂ D be a sequence generated by Algorithm 2 and u⋆ ∈ D⋆.

Then, for any k ≥ 1,

d⋆ − d(uk) ≤
2σ2

max(Ã)‖u0 − u⋆‖2
θ(k + 1)2

,(4.23)

‖x̄(uk)− x⋆‖ ≤ 2σmax(Ã)‖u0 − u⋆‖
θ(k + 1)

,(4.24)

−2‖u⋆‖σ2
max(Ã)‖u0 − u⋆‖
θ(k + 1)

≤ f(x̄(uk))− f⋆ ≤ 2‖uk‖σ2
max(Ã)‖u0 − u⋆‖
θ(k + 1)

,(4.25)

∆(x̄(uk)) ≤
2σ2

max(Ã)‖u0 − u⋆‖
θ(k + 1)

.(4.26)

Moreover, if p = 0, then

f(x̄(uk))− f⋆ ≤2σ2
max(Ã)(d(ū)− f(x̃))‖u0 − u⋆‖

θ(k + 1)maxi∈{1,2,...,m} g(i)(x̃)
,

∀k > σmax(Ã)‖u0 − u⋆‖
(

2θ−1

d⋆ − d(ū)

)1/2

,(4.27)

where x̃ and ū are defined as in Proposition 4.5.
Proof. See Appendix 7.14.



16

The O(1/k) primal convergence rates in (4.24) and (4.26) for linearly constrained
problem (3.14) are also provided in [6,12]. Moreover, as is shown in [12], σmax(Ã) can
be replaced by ‖Ã‖2,∞ , {‖Ãx‖∞ : ‖x‖ = 1}.

Compared with the projected dual gradient method (4.1), the fast dual gradient
methods considered above are capable of increasing the primal convergence rates from
O(1/

√
k) to O(1/k). However, the problems that these methods can handle must sat-

isfy Assumption 2, which is not necessary for projected dual gradient method. On the
other hand, in order to guarantee the sublinear dual and primal convergence rates,
the projected dual gradient method has to satisfy Assumption 3 while the fast dual
gradient methods do not. Moreover, the fast dual gradient methods are more com-
plicated to implement—in addition to solving minx∈X L(x, uk) for constructing the
approximate primal solution x̄(uk) that is also needed in the projected dual gradient
method, they have to solve minx∈X L(x, vk) in order to compute ∇d(vk).

5. Numerical example. In this section, we compare the dual and primal con-
vergence performance of the dual first-order methods in Section 4 and the double
smoothing method [10] via a numerical example.

We consider the following model predictive control (MPC) problem, which has a
very similar form as the one formulated in [6]:

minimize
x∈Rn

f(x) = 1
2x

THx+ tTx+ γ‖Px− s‖1
subject to A1x+ b1 ≤ 0,

A2x+ b2 = 0,
x ∈ {y ∈ R

n : |y(i)| ≤ ri ∀i ∈ {1, 2, . . . , n}},

where H ∈ R
n×n is positive definite, t ∈ R

n, γ > 0, P ∈ R
q×n, s ∈ R

q, A1 ∈ R
m×n,

b1 ∈ R
m, A2 ∈ R

p×n, b1 ∈ R
p, ri > 0, all of which are randomly generated with

n = 10, q = 5, m = 3, and p = 2. Note that such a linearly constrained problem
belongs to the intersection of the problem classes that the projected dual gradient
method (4.1), the fast dual gradient methods in Algorithms 1 and 2, and the double
smoothing method in [10] can handle. Also, since Algorithm 1 has similar convergence
rates as Algorithm 2 for this problem, we omit Algorithm 1 to be able to visualize
the results better.

For the projected dual gradient method (4.1), we choose the step-size
α = 2λmin(H)/λmax(A

T
1 A1 + AT

2 A2) × 99%, which satisfies the step-size condition
in Example 3. For the fast gradient method in Algorithm 2, we choose the parame-
ters Uk and βk to be such that this method reduces to FISTA [16]. For the double
smoothing method [10], since the linear constraint of the problem class that this
method can handle is in the form of Ax ∈ T with A being a linear operator and T
being a compact set, we put A = A2, T = {b2}, and view {y ∈ R

n : A1y + b1 ≤
0, |y(i)| ≤ ri ∀i = 1, 2, . . . , n} as its set constraint. Moreover, since one smoothing
parameter in the double smoothing method relies on an upper bound on some dual
optimum, we adopt its practical implementation version in [10], which starts with an
initial guess of this upper bound and repeatedly applying the method to a sequence
of doubly smoothed dual problems with increasing guess on the upper bound until a
correct guess is achieved. We choose the desired accuracy ǫ of the method to be 0.05.

In addition to the approximate primal solution x̄(uk) studied in this paper, we

also consider in the simulation the average x̃k ,
∑k

ℓ=0 x̄(uℓ)/k of the primal iterates
as in [9] for the projected dual gradient method and FISTA, and the running average

x̂k , (
∑k

ℓ=0 β
−1
ℓ x̄(uℓ))/(

∑k
ℓ=0 β

−1
ℓ ) with the weights being 1/βℓ as in [11] for FISTA.
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Fig. 1. Primal optimality of approximate primal solutions and dual optimality of dual iterates
(The light grey, grey, and black dashed curves represent the dual optimality d⋆ − d(uk) of uk in
the projected dual gradient method, FISTA, and the double smoothing method, respectively. The
light grey, grey, and black solid curves represent the primal optimality |f(x̄(uk)) − f⋆| of x̄(uk) in
the projected dual gradient method, FISTA, and the double smoothing method, respectively. The
light grey and grey dotted curves represent the primal optimality |f(x̃k)− f⋆| of x̃k in the projected
dual gradient method and FISTA, respectively. The grey dash-dotted curve represents the primal
optimality |f(x̂k)− f⋆| of x̂k in FISTA.).

For the double smoothing method, uk is a sequence generated by a fast gradient
method in [3, Sec. 2.2.1] applied to the smoothed dual; the approximate primal
solution x̄(uk) for this specific problem is the unique minimizer of the Lagrangian of
the original problem.

Figure 1 compares the convergence of the dual iterates generated by the three
methods mentioned above, alongside with various choices for the approximate primal
solution. Generally speaking, the dual convergence rate is faster than the primal in all
of the three methods. Also, the primal iterates have faster convergence than their av-
erages in the projected dual gradient method and FISTA. The projected dual gradient
method converges slower than the other two methods in dual and primal optimality.
FISTA and the double smoothing method have comparable performance, but the dou-
ble smoothing method has the drawback that it only guarantees a prespecified target
accuracy and does not ensure asymptotic convergence.

6. Conclusions. This paper studied primal convergence properties of dual first-
order methods for solving optimization problems with a strongly convex objective
function and general convex constraints including nonlinear inequality, linear equal-
ity, and set constraints. The unique minimizer of the Lagrangian at the current dual
iterate, which is needed for evaluating the dual gradient, was considered as an ap-
proximate primal solution. The errors of this approximate primal solution, both in
optimality and feasibility, were related to the dual errors. Sublinear dual and primal
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convergence rates for the projected dual gradient method and a few fast dual gradient
methods were established.

It is notable that this is the first work that ever provides primal convergence
rates of dual first-order methods for nonlinearly constrained convex optimization with
locally Lipschitz dual gradient. This work may also bring insights to future research on
the convergence performance of other approximate primal solutions such as running
averages of the primal iterates in dual first-order methods.

7. Appendix.

7.1. Proof of Lemma 2.1. Let S ⊂ D be compact, c̄ = maxu∈S d(u), and c =
minu∈S d(u), which are bounded due to the continuity of d. Also let ∂xL denote the
subdifferential of L with respect to the first argument. Fix u0 ∈ S. Since the function
L(·, u0) is strongly convex over X , the sublevel set C , {x ∈ X : L(x, u0) ≤ c̄} is
nonempty and compact. Thus, s , maxx∈C

∑m
i=1(g

(i)(x))2+‖Ax+b‖2 ∈ [0,∞). Also
let r = maxu∈S ‖u− u0‖ ∈ [0,∞). Then, for any u ∈ S and any x ∈ C,

L(x, u0)− r
√
s ≤ L(x, u) ≤ L(x, u0) + r

√
s.(7.1)

To prove the boundedness of {x̄(u) : u ∈ S}, assume to the contrary that it is
unbounded. Thus, given x0 ∈ C, there exists u′ ∈ S such that ‖x̄(u′) − x0‖2 >
2(L(x0,u0)+r

√
s−c)

θ ≥ 0. Since L(·, u′) is strongly convex over X with convexity pa-

rameter θ and since there exists a subgradient ∇̃xL(x̄(u′), u′) ∈ ∂xL(x̄(u′), u′) satis-
fying ∇̃x(L(x̄(u′), u′))T (x − x̄(u′)) ≥ 0 ∀x ∈ X , we have L(x0, u

′) − c ≥ L(x0, u
′) −

L(x̄(u′), u′) ≥ θ
2‖x̄(u′)− x0‖2. This gives L(x0, u

′) > L(x0, u0) + r
√
s, which contra-

dicts (7.1). Therefore, {x̄(u) : u ∈ S} is bounded.

7.2. Proof of Lemma 3.1. Let u, v ∈ D. From [20, Theorem 3, Sec. 7.1.2],
there exist subgradients ∇̃xL(x̄(u), u) ∈ ∂xL(x̄(u), u) and ∇̃xL(x̄(v), v) ∈ ∂xL(x̄(v), v)
such that

∇̃xL(x̄(u), u)T (x̄(v)− x̄(u)) ≥ 0,(7.2)

∇̃xL(x̄(v), v)T (x̄(u)− x̄(v)) ≥ 0.(7.3)

Due to [17, Prop. 4.2.4], ∂xL(x, u) = ∂f(x) +
∑m

i=1 u
(i)∂g(i)(x) + ATu(m+1:m+p)

∀x ∈ R
n ∀u ∈ D. Thus, there exist subgradients ∇̃f(x̄(u)) ∈ ∂f(x̄(u)), ∇̃f(x̄(v)) ∈

∂f(x̄(v)), and ∇̃g(i)(x̄(u)) ∈ ∂g(i)(x̄(u)), ∇̃g(i)(x̄(v)) ∈ ∂g(i)(x̄(v)), ∀i ∈ {1, 2, . . . ,m}
such that

∇̃xL(x, u) = ∇̃f(x̄(u)) +

m
∑

i=1

u(i)∇̃g(i)(x̄(u)) +ATu(m+1:m+p),

∇̃xL(x, v) = ∇̃f(x̄(v)) +

m
∑

i=1

v(i)∇̃g(i)(x̄(v)) +AT v(m+1:m+p).

Adding (7.2) and (7.3) and substituting the above into the resulting inequality, we
obtain

(

∇̃f(x̄(u))− ∇̃f(x̄(v))
)T

(x̄(u)− x̄(v)) ≤
(

u(m+1:m+p) − v(m+1:m+p)
)T

A(x̄(v) − x̄(u))

+
(

m
∑

i=1

u(i)∇̃g(i)(x̄(u))− v(i)∇̃g(i)(x̄(v))
)T

(x̄(v)− x̄(u)).(7.4)
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Note that
(

u(m+1:m+p) − v(m+1:m+p)
)T

A(x̄(v)− x̄(u))

≤ ‖AT (u(m+1:m+p) − v(m+1:m+p))‖ · ‖x̄(u)− x̄(v)‖
≤ σmax(A)‖x̄(u)− x̄(v)‖ · ‖u(m+1:m+p) − v(m+1:m+p)‖.(7.5)

In addition,

(

m
∑

i=1

u(i)∇̃g(i)(x̄(u))− v(i)∇̃g(i)(x̄(v))
)T

(x̄(v)− x̄(u))

=

m
∑

i=1

u(i)
(

∇̃g(i)(x̄(u))− ∇̃g(i)(x̄(v))
)T

(x̄(v)− x̄(u))

+
(

u(i) − v(i)
)

∇̃g(i)(x̄(v))T (x̄(v)− x̄(u))

≤
m
∑

i=1

‖∇̃g(i)(x̄(v))‖ · ‖x̄(u)− x̄(v)‖ · |u(i) − v(i)|,(7.6)

where the inequality holds because for each i ∈ {1, 2, . . . ,m}, g(i) is convex and
u(i) ≥ 0. From (7.4), (7.6), (7.5), and the strong convexity of f over X , we have

θ‖x̄(u)− x̄(v)‖2 ≤
(

m
∑

i=1

‖∇̃g(i)(x̄(v))‖ · ‖x̄(u)− x̄(v)‖ · |u(i) − v(i)|
)

+ σmax(A)‖x̄(u)− x̄(v)‖ · ‖u(m+1:m+p) − v(m+1:m+p)‖,

which yields

‖x̄(u)− x̄(v)‖ ≤ 1

θ

((

m
∑

i=1

sup
q∈∂g(i)(x̄(v))

‖q‖·|u(i)−v(i)|
)

+σmax(A)‖u(m+1:m+p)−v(m+1:m+p)‖
)

(7.7)

≤ 1

θ
max{σmax(A), sup

q∈G(v)

‖q‖}
((

m
∑

i=1

|u(i) − v(i)|
)

+ ‖u(m+1:m+p) − v(m+1:m+p)‖
)

≤ 1

θ
max{σmax(A), sup

q∈G(v)

‖q‖}

·
[

(m+ 1)
((

m
∑

i=1

|u(i) − v(i)|2
)

+ ‖u(m+1:m+p) − v(m+1:m+p)‖2
)]1/2

= γ(v)‖u− v‖.

Since u and v are interchangeable, (3.3) is satisfied.

7.3. Proof of Theorem 3.2. Let u ∈ D and u⋆ ∈ D⋆. Then, by letting v
in Lemma 3.1 be u⋆, we get (3.4). To derive (3.5), note that L(·, u) is strongly
convex on X with convexity parameter θ. Also note that there exists a subgradient
∇̃xL(x̄(u), u) ∈ ∂xL(x̄(u), u) such that ∇̃xL(x̄(u), u)T (x − x̄(u)) ≥ 0 ∀x ∈ X . As a
result, θ

2‖x̄(u)−x⋆‖2 ≤ L(x⋆, u)−L(x̄(u), u)−∇̃xL(x̄(u), u)T (x⋆− x̄(u)) ≤ L(x⋆, u)−
L(x̄(u), u). From the Lagrangian saddle point theorem [17, Prop. 6.2.4], L(x⋆, u) ≤
L(x⋆, u⋆) = d⋆. Also, L(x̄(u), u) = d(u). Therefore, (3.5) holds.
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7.4. Proof of Proposition 3.3. Let S ⊂ D be compact. Due to Lemma 3.1,
for any u, v ∈ S,

‖∇d(u)−∇d(v)‖2 = ‖A(x̄(u)− x̄(v))‖2 +
m
∑

i=1

‖g(i)(x̄(u))− g(i)(x̄(v))‖2

≤ σ2
max(A)‖x̄(u)− x̄(v)‖2 +

m
∑

i=1

L2
i ‖x̄(u)− x̄(v)‖2

≤ sup
w∈S

γ2(w)
(

σ2
max(A) +

m
∑

i=1

L2
i

)

‖u− v‖2.

Therefore, (3.7) holds. In addition, if S is convex, the proof of [3, Lemma 1.2.3] can
be applied to obtain (3.8).

7.5. Proof of Theorem 3.4. Let S ⊂ D be compact, u ∈ S, and u⋆ ∈ D⋆.
From (3.9), we know that to find an upper bound on f(x̄(u))−f⋆ in terms of d⋆−d(u),
it is sufficient to do so to −∇d(u)Tu.

LetA(u) = {i ∈ {1, 2, . . . ,m} : u(i)+ 1
L(Φ(S))∇(i)d(u) < 0} and I(u) = {1, 2, . . . ,m+

p}\A(u). These sets identify the components of the dual vector u for which, after a
gradient step, the projection onto D will be active and inactive, respectively. Since

−∇d(u)Tu =
(

∑

i∈A(u) −∇(i)d(u)u(i)
)

+
(

∑

i∈I(u)−∇(i)d(u)u(i)
)

, below we derive

upper bounds on
∑

i∈A(u) −∇(i)d(u)u(i) and
∑

i∈I(u)−∇(i)d(u)u(i).

To this end, let D(i) = [0,∞) for i = 1, 2, . . . ,m and D(i) = R for i = m +
1, . . . ,m+ p and note that (PD[v])(i) = PD(i) [v(i)] for all v ∈ R

m+p and all i. In this
way,

PD(i) [u(i) + 1
L(Φ(S))∇(i)d(u)] =

{

0, if i ∈ A(u),

u(i) + 1
L(Φ(S))∇(i)d(u), if i ∈ I(u).

Also, since Φ(S) ⊇ S, we have L(Φ(S)) ≥ L(S) and thus PD[u + 1
L(Φ(S))∇d(u)] ∈

Φ(S). It follows from (3.8) that

d⋆ − d(u) ≥ d(PD[u+ 1
L(Φ(S))∇d(u)]) − d(u)

≥ ∇d(u)T
(

PD[u+ 1
L(Φ(S))∇d(u)]− u

)

− L(Φ(S))

2

∥

∥

∥
u− PD[u+ 1

L(Φ(S))∇d(u)]
∥

∥

∥

2

.

(7.8)

We now look at the right-hand side of (7.8). For each i ∈ A(u),

∇(i)d(u)
(

PD(i) [u(i) + 1
L(Φ(S))∇(i)d(u)]− u(i)

)

−L(Φ(S))

2

(

u(i) − PD(i) [u(i) + 1
L(Φ(S))∇(i)d(u)]

)2

= −∇(i)d(u)u(i) − L(Φ(S))

2

(

u(i)
)2

≥−∇(i)d(u)u(i) − L(Φ(S))

2
u(i)

(

− 1
L(Φ(S))∇(i)d(u)

)

= −1

2
∇(i)d(u)u(i),

where the inequality is due to 0 ≤ u(i) < − 1
L(Φ(S))∇(i)d(u) ∀i ∈ A(u). For each

i ∈ I(u),

∇(i)d(u)
(

PD(i) [u(i) + 1
L(Φ(S))∇(i)d(u)]− u(i)

)

−L(Φ(S))

2

(

u(i) − PD(i) [u(i) + 1
L(Φ(S))∇(i)d(u)]

)2
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=∇(i)d(u) · 1
L(Φ(S))∇(i)d(u)− L(Φ(S))

2

(

1
L(Φ(S))∇(i)d(u)

)2

=
1

2L(Φ(S))

(

∇(i)d(u)
)2

.

Thus, (7.8) gives

d⋆ − d(u) ≥ 1

2

(

∑

i∈A(u)

−∇(i)d(u)u(i)
)

+
1

2L(Φ(S))

∑

i∈I(u)

(

∇(i)d(u)
)2
.(7.9)

This lead to
∑

i∈A(u)

−∇(i)d(u)u(i) ≤ 2(d⋆ − d(u)).(7.10)

Moreover, notice that

∑

i∈I(u)

(

∇(i)d(u)
)2 ≥ 1

|I(u)|
(

∑

i∈I(u)
|∇(i)d(u)|

)2

≥ 1

m+ p

( 1

‖u‖∞
∑

i∈I(u)
−∇(i)d(u)u(i)

)2

.

Also note that for each i ∈ A(u), ∇(i)d(u) < 0 and thus −∇(i)d(u)u(i) ≥ 0. It then
follows from (7.9) that

∑

i∈I(u)
−∇(i)d(u)u(i) ≤ ‖u‖∞

√

2L(Φ(S))(m+ p)(d⋆ − d(u)).

Due to this, (7.10), and (3.9), we conclude that (3.11) holds.
Next, we derive a lower bound on f(x̄(u))−f⋆. Since L(x̄(u), u⋆) ≥ L(x̄(u⋆), u⋆) =

f⋆,

f(x̄(u))− f⋆ ≥ −
(

m
∑

i=1

u⋆(i)g(i)(x̄(u))
)

− (u⋆(m+1:m+p))T (Ax̄(u) + b)

≥ −
(

m
∑

i=1

u⋆(i) max{0, g(i)(x̄(u))}
)

− (u⋆(m+1:m+p))T (Ax̄(u) + b)

≥ −‖u⋆‖∆(x̄(u)).(7.11)

To bound ∆(x̄(u)), note from (2.4) that if g(i)(x̄(u)) > 0, then i ∈ I(u). In addition,

{m+ 1, . . . ,m+ p} ⊆ I(u). Thus,
(

∆(x̄(u))
)2 ≤ ∑

i∈I(u)
(

∇(i)d(u)
)2
. It follows from

(7.9) that (3.13) holds. Due to (7.11) and (3.13) , we obtain (3.12).

7.6. Proof of Corollary 3.5. Since for any compact S ⊂ D, L(Φ(S)) ≤ L̃, the
corollary follows from Theorem 3.4.

7.7. Proof of Corollary 3.6. Let u, v ∈ R
m+p. Note that for problem (3.14),

(7.4) is equivalent to

(

∇̃f(x̄(u))− ∇̃f(x̄(v))
)T

(x̄(u)− x̄(v)) ≤ (u− v)T Ã(x̄(v)− x̄(u)).

Additionally, similar to (7.5), we obtain

(u− v)T Ã(x̄(v)− x̄(u)) ≤ σmax(Ã)‖x̄(u)− x̄(v)‖ · ‖u− v‖.

Then, it follows from the strong convexity of f on X that ‖x̄(u)− x̄(v)‖ ≤ σmax(Ã)
θ ‖u−

v‖.
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7.8. Proof of Proposition 3.7. Let u ∈ D and u⋆ ∈ D⋆. We first prove

that (3.16) is satisfied. Note that
(

∆(x̄(u))
)2 ≤ ‖(Ãx̄(u) + b̃) − (Ãx⋆ + b̃)‖2 =

‖∇d(u)−∇d(u⋆)‖2. Further, due to the inequalities d(u)−d(u⋆)−∇d(u⋆)T (u−u⋆) ≤
− θ

2σ2
max(Ã)

‖∇d(u)−∇d(u)⋆‖2 [3, Theorem 2.1.5] and ∇d(u⋆)T (u−u⋆) ≤ 0, we obtain

‖∇d(u)−∇d(u⋆)‖2 ≤ −2σ2
max(Ã)

θ
(d(u)− d(u⋆)−∇d(u⋆)T (u − u⋆))

≤ 2σ2
max(Ã)

θ
(d(u⋆)− d(u)).(7.12)

Consequently, (3.16) holds. From (3.9), we have f(x̄(u)) − f⋆ ≤ −∇d(u)Tu +
∇d(u⋆)T (u− u⋆). This, along with ∇d(u⋆)Tu⋆ = 0 [17, Prop. 6.1.1], implies that

f(x̄(u))− f⋆ ≤ (∇d(u⋆)−∇d(u))Tu ≤ ‖u‖ · ‖∇d(u⋆)−∇d(u)‖.

It follows from (7.12), (7.11), and (3.16) that (3.15) holds.

7.9. Proof of Lemma 4.1. Let u ∈ D and v ∈ D̃. We first show that

‖x̄(u)− x̄(v)‖ ≤
√
m+ 1

θ
‖u− v‖

·max
{

σmax(A), max
i∈{1,...,m}

‖∇g(i)(x̄(u))‖, max
i∈{1,...,m}

‖∇g(i)(x̄(v))‖
}

.(7.13)

To prove (7.13), consider two mutually exclusive and exhaustive cases:
Case (i) v ∈ D. In this case, from (3.3), we obtain (7.13).
Case (ii) v ∈ D̃ − D. Let I− = {i ∈ {1, 2, . . . ,m} : ũ(i) ≤ v(i) < 0} 6= ∅ and

w = PD[v], i.e., w(i) = 0 ∀i ∈ I− and w(i) = v(i) ∀i ∈ {1, 2, . . . ,m + p}\I−. Notice
from the proof of Lemma 3.1 that under Assumption 3, (7.7) holds with u = w, which
gives

‖x̄(w) − x̄(v)‖

≤1

θ

(

m
∑

i=1

‖∇g(i)(x̄(v))‖ · |w(i) − v(i)|+ σmax(A)‖w(m+1:m+p) − v(m+1:m+p)‖
)

=
1

θ

(

∑

i∈I−

−‖∇g(i)(x̄(v))‖v(i)
)

.(7.14)

Due again to (7.7), we obtain

‖x̄(u)− x̄(w)‖

≤1

θ

(

m
∑

i=1

‖∇g(i)(x̄(u))‖ · |u(i) − w(i)|+ σmax(A)‖u(m+1:m+p) − w(m+1:m+p)‖
)

=
1

θ

(

∑

i∈I−

‖∇g(i)(x̄(u))‖u(i) +
∑

i∈{1,2,...,m}\I−

‖∇g(i)(x̄(u))‖ · |u(i) − v(i)|

+ σmax(A)‖u(m+1:m+p) − v(m+1:m+p)‖
)

.(7.15)

From (7.14), (7.15), and the fact that |u(i) − v(i)| = u(i) − v(i) ∀i ∈ I−, we have

‖x̄(u)− x̄(v)‖ ≤ ‖x̄(u)− x̄(w)‖ + ‖x̄(w)− x̄(v)‖
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≤1

θ

(

m
∑

i=1

max
{

‖∇g(i)(x̄(u))‖, ‖∇g(i)(x̄(v))‖
}

|u(i) − v(i)|

+ σmax(A)‖u(m+1:m+p) − v(m+1:m+p)‖
)

.

Akin to the last part of the proof of Lemma 3.1, it can be shown that (7.13) holds for
this case. Having proved (7.13), we now show that (4.2) holds. Due to Assumption 3,
Lemma 2.1 and (2.4) still hold when D is replaced by D̃. Thus, using the proof of
Proposition 3.3 and (7.13), we have (4.2).

7.10. Proof of Lemma 4.2. Let u ∈ S and v ∈ Ψ(S). Since Ψ(S) is convex
and S ⊆ Ψ(S), u+ τ(v − u) ∈ Ψ(S) ∀τ ∈ [0, 1]. Then, from Lemma 4.1,

‖∇d(u+ τ(v − u))−∇d(u)‖ ≤ τL(Ψ(S))‖u− v‖, ∀τ ∈ [0, 1].

It then follows from the proof of [3, Lemma 1.2.3] that (4.5) holds.
Next, we prove (4.6) and (4.7). Let u, v ∈ S. Note that if η(S) = 0, then

∇d(u) = ∇d(v). Thus, due to the concavity of d, (4.6) and (4.7) hold. Now assume
η(S) > 0. To prove (4.6), we utilize the idea from the proof of [3, Theorem 2.1.5].
We define a function φ : Ψ(S) → R such that φ(w) = d(w) − ∇d(u)Tw. Note that
Φ is concave and ∇Φ(u) = 0, which implies φ(u) ≥ φ(w) ∀w ∈ Ψ(S). In addition,
v + 1

η∇φ(v) = v + 1
η (∇d(v) −∇d(u)) ∈ Ψ(S) ∀η ≥ η(S). It follows from (4.5) that

φ(u) ≥ φ(v +
1

η
∇φ(v))

= d(v +
1

η
∇φ(v)) − d(v) −∇d(v)T

1

η
∇φ(v) + φ(v) + (∇d(v) −∇d(u))T

1

η
∇φ(v)

≥ −L(Ψ(S))

2
‖1
η
∇φ(v)‖2 + φ(v) +

1

η
‖∇φ(v)‖2, ∀η ≥ η(S),

which is equivalent to (4.6). Moreover, (4.7) can be obtained from (4.6) by inter-
changing u and v and adding the two inequalities.

7.11. Proof of Theorem 4.3. Let u⋆ ∈ D⋆ and α satisfy (4.8). We first prove
that uk ∈ D0 ∀k ≥ 0 by induction. Clearly, u0 ∈ D0. Suppose uk ∈ D0 for some
k ≥ 0. Then, for any η > 0 such that η ≥ η(D0),

‖uk+1 − u⋆‖2 = ‖PD[uk + α∇d(uk)]− PD[u⋆ + α∇d(u⋆)]‖2

≤ ‖uk + α∇d(uk)− u⋆ − α∇d(u⋆)‖2

= ‖uk − u⋆‖2 + 2α(∇d(uk)−∇d(u⋆))T (uk − u⋆) + α2‖∇d(uk)−∇d(u⋆)‖2

≤
(

4α
(L(Ψ(D0))

2η2
− 1

η

)

+ α2
)

‖∇d(uk)−∇d(u⋆)‖2 + ‖uk − u⋆‖2,

where the last inequality is due to (4.7) and u⋆ ∈ D0. Notice that over the set

{η > 0 : η ≥ η(D0)}, if L(Ψ(D0)) > η(D0), then 4
(

L(Ψ(D0))
2η2 − 1

η

)

achieves its mini-

mum − 2
L(Ψ(D0))

at η = L(Ψ(D0)); otherwise, 4
(

L(Ψ(D0))
2η2 − 1

η

)

reaches the minimum

4
(

L(Ψ(D0))
2η(D0)2

− 1
η(D0)

)

at η = η(D0) > 0. Hence, (4.8) leads to 4α
(

L(Ψ(D0))
2η2 − 1

η

)

+α2 <

0. Therefore, ‖uk+1 − u⋆‖ ≤ ‖uk − u⋆‖, which means that uk+1 ∈ D0. This com-
pletes the proof by induction. With this property, we now prove (4.9). Because
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of Proposition 3.3 and because D0 ⊆ Ψ(D0), ∇d satisfies a Lipschitz condition on
D0 with Lipschitz constant no more than L(Ψ(D0)). It then follows from the proof
of [18, Theorem 5.1] that

d(uk)− d(uk+1) ≤ −δ‖uk+1 − uk‖2,
d⋆ − d(uk) ≤

√
ρ‖uk+1 − uk‖.

Also, from (4.8), we have α < 2
L(Ψ(D0))

and thus δ > 0. Consequently,

d⋆ − d(uk+1) ≤ d⋆ − d(uk)−
δ

ρ
(d⋆ − d(uk))

2.

Then, from [20, Lemma 6, Sec. 2.2], (4.9) holds. Also, (4.9) and (3.5) give (4.10).
Moreover, note that ‖uk‖ ≤ ‖u⋆‖+ ‖u0 − u⋆‖ ∀k ≥ 0. Then, (4.11) holds due to this,
(3.11), and (4.9). Furthermore, (4.12) comes from (4.9) and (3.12). Finally, (4.9) and
(3.13) yield (4.13).

7.12. Proof of Proposition 4.4. Inequality (4.17) is derived in the proof of [15,
Corrolary 1], which, along with (3.5) in Theorem 3.2, gives (4.18). In addition, from
Corollary 3.5, we obtain (4.19), (4.20), and (4.21).

7.13. Proof of Proposition 4.5. From [9, Lemma 1], for any u ∈ {u′ ≥ 0 :
d(u′) ≥ d(ū)},

‖u‖∞ ≤ ‖u‖ ≤ d(ū)− f(x̃)

maxi∈{1,2,...,m} g(i)(x̃)
.

Also, due to (4.17), we have d(uk) ≥ d(ū) when k + 1 ≥
(

4L̃Q(u⋆,w0)
d⋆−d(ū)

)1/2

and k ≥ 1.

It then follows from (4.19) that (4.22) holds.

7.14. Proof of Proposition 4.6. Inequality (4.23) comes from [15, Corollary 2]
and Proposition 3.7. Moreover, because of (3.5), (3.15), and (3.16), we obtain (4.24),
(4.25), and (4.26). Similar to the proof of Proposition 4.5, we have d(uk) ≥ d(ū) if

k + 1 ≥ σmax(Ã)‖u0 − u⋆‖
(

2θ−1

d⋆−d(ū)

)1/2

and k ≥ 1, implying that (4.27) holds.
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[12] A. Beck, A. Nedić, A. Ozdaglar, and M. Teboulle, “An O(1/k) gradient method for network
resource allocation problems,” IEEE Transactions on Control of Network Systems, vol. 1,
no. 1, pp. 64–73, 2014.

[13] I. Necoara and V. Nedelcu, “Rate analysis of inexact dual first-order methods application to
dual decomposition,” IEEE Transactions on Automatic Control, vol. 59, no. 5, pp. 1232–
1243, 2014.

[14] V. Nedelcu, I. Necoara, and Q. Tran-Dinh, “Computational complexity of inexact gradient aug-
mented lagrangian methods: Application to constrained mpc,” SIAM Journal on Control
and Optimization, vol. 52, no. 5, pp. 3109–3134, 2014.

[15] P. Tseng, “On accelerated proximal gradient methods for convex-concave optimization,” sub-
mitted to SIAM Journal on Optimization.

[16] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse
problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202, 2009.
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