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OPTIMAL LOCAL APPROXIMATION SPACES FOR
COMPONENT-BASED STATIC CONDENSATION PROCEDURES∗

KATHRIN SMETANA† AND ANTHONY T. PATERA†

Abstract. In this paper we introduce local approximation spaces for component-based static
condensation (sc) procedures that are optimal in the sense of Kolmogorov. To facilitate simulations
for large structures such as aircraft or ships, it is crucial to decrease the number of degrees of
freedom on the interfaces, or “ports,” in order to reduce the size of the statically condensed system.
To derive optimal port spaces we consider a (compact) transfer operator that acts on the space of
harmonic extensions on a two-component system and maps the traces on the ports that lie on the
boundary of these components to the trace of the shared port. Solving the eigenproblem for the
composition of the transfer operator and its adjoint yields the optimal space. For a related work in
the context of the generalized finite element method, we refer the reader to [I. Babuška and R. Lipton,
Multiscale Model. Simul., 9 (2011), pp. 373–406]. We further introduce a spectral greedy algorithm
to generalize the procedure to the parameter-dependent setting and to construct a quasi-optimal
parameter-independent port space. Moreover, it is shown that, given a certain tolerance and an
upper bound for the ports in the system, the spectral greedy constructs a port space that yields an
sc approximation error on a system of arbitrary configuration which is smaller than this tolerance for
all parameters in a rich train set. We present our approach for isotropic linear elasticity, although the
idea may be readily applied to any linear coercive problem. Numerical experiments demonstrate the
very rapid and exponential convergence both of the eigenvalues and of the sc approximation based on
spectral modes for nonseparable and irregular geometries such as an I-beam with an internal crack.

Key words. domain decomposition methods, (component-based) static condensation, model
reduction, component mode synthesis, a priori error estimate, Kolmogorov n-width, finite element
method, reduced basis methods

AMS subject classifications. 65N12, 65N55, 65N15, 65N30, 74S05

DOI. 10.1137/15M1009603

1. Introduction. In the last decades numerical simulations based on partial
differential equations (PDEs) have significantly gained importance in engineering ap-
plications. However, both the geometric complexity of the considered structures, such
as ships, aircraft, and turbines, and the intricacy of the simulated physical phenom-
ena often make a straightforward application of, say, the finite element (FE) method
prohibitive. This is particularly true if multiple simulation requests or a real-time
simulation response is desired, as in engineering design and optimization.

One way to tackle such complex problems is to exploit the natural decomposition
of the structures into components and apply static condensation (sc) to obtain a (Schur
complement) system of the size of the degrees of freedom (DOFs) on all interfaces or
ports in the system. To mitigate the computational costs for the required PDE solvers
in the interior of the component, model order reduction procedures may be applied.
One popular approach is component mode synthesis (CMS), introduced in [4, 21],
which uses an approximation based on the eigenmodes of local constrained eigenvalue
problems. The static condensation reduced basis element (scRBE) method [22, 23]
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has been introduced in the context of parametrized PDEs and employs the reduced
basis (RB) method [15, 17, 38] for the approximation in the interior of the component,
benefiting from the, in general, very rapid convergence of RB approximations [5, 7, 9].
The scRBE method allows an offline/online decomposition in the sense that high-
dimensional computations that are necessary to construct the reduced model are
carried out in a (possibly expensive) offline phase, such that in the online stage only
computations that scale with the DOFs on the ports must be performed.

To realize a fast simulation response also for large component-based structures it
is vital to reduce the number of DOFs on the ports, too. Within the CMS approach
this is realized by utilizing an eigenmode expansion [6, 18, 19, 26], which has recently
been combined with input-output-based model reduction in [20]. In [11] Eftang and
Patera develop an empirical pairwise training procedure for port reduction within the
scRBE context: Modes are selected from traces of snapshots generated by random
boundary conditions.

In this paper we propose port spaces for component-based sc procedures that
are optimal in the sense of Kolmogorov [29] and thus minimize the sc approximation
error among all spaces that have the same dimension. In constructing those port
spaces we are guided by the goal to provide a (quasi-)optimal space for the global
system. In detail, we connect two components1 at the port for which we wish to
construct the port space and recognize that the solution on the global system satisfies
the PDE locally with unknown Dirichlet boundary conditions on the ports that lie
on the boundary of the two-component system. Therefore, we consider the space
of all harmonic extensions on this local system, i.e., all local solutions of the PDE.
Note that from separation of variables we anticipate an exponential decay (of the
higher modes) of the Dirichlet boundary conditions to the interior of the system;
thus, most of the harmonic extensions have very small values on the shared port,
which is why we expect that a low-dimensional port space will yield already a very
good approximation of all harmonic extensions. To quantify which information of the
Dirichlet boundary conditions reaches the shared port of the system, we introduce a
(compact) transfer operator that acts on the space of harmonic extensions and maps
the traces (of the harmonic extensions) on the boundary ports to the trace on the
shared port. Solving the “transfer eigenproblem” for the composition of the transfer
operator and its adjoint yields the optimal space. We note that a similar eigenproblem
has been considered in the work of Babuška and Lipton (see [2, 3]) for the generalized
FE method.

We can also view our method as a more formal approach to the transfer matrix
method (see, for instance, [36]), in which the transfer of the field both between com-
ponents and within components are taken into account to obtain a frequency equation
for a system of components. The necessary relations are derived, for instance, from
equilibrium equations.

To construct a (quasi-)optimal port space in the parametrized setting we also
introduce a spectral greedy algorithm that constructs a parameter-independent port
space, which serves to approximate all parameter-dependent port spaces obtained
from the now parameter-dependent transfer eigenproblem. First, we exploit an a pri-
ori bound, which is also derived in this article, to construct parameter-dependent port
spaces such that the sc approximation based on the respective parameter-dependent

1Note that one could also connect more components to construct port spaces for several ports at
once. However, in order to realize an efficient computational realization and make use of paralleliza-
tion concepts, considering two components is often preferable.
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port space lies below a given tolerance. In the spirit of the greedy algorithm for RB
methods introduced in [44], the spectral greedy then proceeds iteratively and identi-
fies at each iteration the function in the union of all parameter-dependent port spaces
which is worst approximated by the current space. The spectral greedy algorithm
provides a reduced basis for the approximation of the n eigenspaces associated with
the n largest eigenvalues of a parametrized (generalized) eigenproblem with a given
accuracy for n > 1. Note that the spectral greedy algorithm also shares some similar-
ities with the POD-greedy algorithm [14, 16], as each parameter is associated with a
space and not a single function, as in the “standard” greedy. Finally, given an upper
bound for the anticipated number of ports in the online system, the spectral greedy
algorithm constructs a port space such that the sc approximation error in the online
stage is bounded (for all parameters in a rich train set) by a prescribed tolerance. In
this sense, we ensure convergence of the sc approximation.

We emphasize that, in contrast to existing approaches, the port spaces generated
by our approach both allow for a rigorous a priori theory and yield a rapidly (and
often exponentially) convergent sc approximation, as demonstrated in the numerical
experiments. The eigenmode expansion employed in the CMS approach also admits a
rigorous a priori theory, but provides only an algebraic convergence rate. Conversely,
empirical approaches often realize a rapid convergent sc approximation; however, there
do not exist either a priori error bounds or algorithms to construct a port space of
specified accuracy.

There are various other approaches that are based on localized approximation
spaces for parametrized PDEs as, for instance, in the context of multiscale methods
[1, 10, 35, 40]. A combination of domain decomposition (DD) and RB methods was
first considered in the reduced basis element method (RBEM) [31, 32], where the local
RB approximations are coupled by Lagrange multipliers. The RB hybrid method [24]
extends the RBEM by additionally considering a coarse FE discretization on the whole
domain to account for continuity of normal stresses. In the RDF method, FE basis
functions on the interface or on a (small) area around the interface are combined
with local RB approximations that are harmonic extensions of either parametrized
Lagrangian or Fourier functions [25]. Finally, RB methods have been combined with
a Dirichlet–Neumann scheme in [33] and with a heterogeneous DD method in [34],
where the basis on the interface in the latter article is constructed from snapshots.
We believe that our approach might be relevant to many of these DD model reduction
techniques.

The remainder of this paper is organized as follows. In section 2 we give a short
introduction to DD methods and recall the port-reduced sc procedure. The main
new contributions of this paper are developed in sections 3 and 4. In the former we
first introduce optimal port spaces and prove an a priori bound for the corresponding
sc approximation still in the parameter-free setting. Subsequently, we address in
section 4 parametrized PDEs and introduce an algorithm to construct a parameter-
independent port space and prove convergence for the resulting parameter-dependent
sc approximation. The results in sections 3 and 4 are derived for a two-component
system, as all relevant ideas of our approach can be explained in this simple setting.
The generalization to arbitrary systems is discussed in section 5. Finally, we present
several numerical experiments in section 6 to validate the approximation properties
of our approach, and in section 7 we draw some conclusions. We emphasize that
in order to simplify the presentation we present our approach for isotropic linear
elasticity; however, all results hold true for coercive, linear PDEs, whose associated
bilinear form is symmetric.
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Fig. 2.1. Illustration of the decomposition of Ω in Ω1 and Ω2 and the position of the ports
Γ1,Γ12,Γ2 within Ω in a simplified two-dimensional setting.

2. Preliminaries. Let Ω̂ ⊂ R3 be a large, bounded domain. In sections 3 and
4 we will demonstrate how to obtain an optimal local approximation space on a
subdomain Ω ⊂ Ω̂, and we discuss in section 5 how these optimal local spaces can be
employed to obtain a quasi-optimal space for the entire domain Ω̂.

Let n be the outer normal of Ω, and let the Lipschitz boundary ∂Ω be partitioned
such that ∂̄Ω = Σ̄D ∪ Σ̄N , with |ΣD| > 0. We assume that Ω represents an isotropic
material, and we consider the following linear elastic boundary value problem: Find
the displacement vector u and the Cauchy stress tensor σ(u) such that

−∇ · σ(u) = g in Ω, σ(u) · n = 0 on ΣN , u = uD on ΣD,(2.1)

where g = (g1, g2, g3) ∈ R3 is a body force and accounts for gravity. Moreover, uD is

the unknown value of the global solution corresponding to Ω̂ on ΣD and therefore an
(unknown) Dirichlet boundary condition on the displacement over Ω. We can express
for a linear elastic material the Cauchy stress tensor as σ(u) = E C : ε(u), where C
is the fourth-order stiffness tensor, ε(u) = 0.5(∇u+(∇u)T ) is the infinitesimal strain

tensor, and the colon operator : is defined as C : ε(u) =
∑3

k,l=1 Cijklεkl(u). Moreover,
E ∈ L∞(Ω) denotes Young’s modulus, which is assumed to be piecewise constant on
Ω and to satisfy E(x) ≥ E0 > 0 for a constant E0 ∈ R+. Therefore, the stiffness
tensor can be written as

(2.2) Cijkl =
ν

(1 + ν)(1 − 2ν)
δijδkl +

1

2(1 + ν)
(δikδjl + δilδjk), 1 ≤ i, j, k, l ≤ 3,

where δij denotes the Kronecker delta; we choose Poisson’s ratio ν = 0.3. The corre-
sponding variational formulation of (2.1) then reads as follows: Find u ∈ X = {v ∈
[H1(Ω)]3 : v = uD on ΣD} such that

(2.3) a(u, v) = f(v) ∀v ∈ X0, where X0 := {v ∈ [H1(Ω)]3 : v = 0 on ΣD},
and the bilinear and linear forms a(·, ·) : [H1(Ω)]3 × [H1(Ω)]3 → R and f(·) :
[H1(Ω)]3 → R are defined as

(2.4) a(w, v) :=

∫
Ω

E(x)
∂wi

∂xj
Cijkl

∂vk

∂xl
dx and f(v) :=

∫
Ω

g · v dx.

Well-posedness of (2.3) follows then from Korn’s inequality, treating the nonhomoge-
neous Dirichlet boundary conditions with the standard lifting procedure.

2.1. The multidomain problem. For the sake of simplicity we decompose Ω
into two nonoverlapping subdomains (components) such that

(2.5) Ω̄ = Ω̄1 ∪ Ω̄2,

as illustrated in Figure 2.1 in a simplified two-dimensional setting. We denote by Γ12

the interface between Ω1 and Ω2:

(2.6) Γ12 = Ω̄1 ∩ Ω̄2.
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For the sake of simplicity we assume that each component has two local interfaces
(ports) at which this component may be connected to other components. Moreover,
we assume that those ports do not intersect. The nonshared port of component
i is denoted by Γi, i = 1, 2, and we require Σ̄D = Γ̄1 ∪ Γ̄2, which implies Γ12 ∩
ΣD = ∅. We emphasize that the generalization to the case where the ports are not
necessarily mutually disjoint is not straightforward and thus the subject of future
work. Subdomains which have more than two interfaces are discussed in section 5.

To obtain a variational formulation of the multidomain problem, we introduce
the local spaces Xi = {v ∈ [H1(Ωi)]

3 : v|Γi = uD|Γi} and Xi;0 := {v ∈ Xi : v|Γi =
v|Γ12 = 0}, i = 1, 2, and define the following linear and bilinear forms:

ai(w, v) :=

∫
Ωi

E(x)
∂wi

∂xj
Cijkl

∂vk

∂xl
dx, fi(v) :=

∫
Ωi

g · v dx ∀w, v ∈ [H1(Ωi)]
3.

(2.7)

Then the variational formulation of (2.1) can equivalently be stated in the fol-
lowing way (see, for instance, [39]): Find u1 ∈ X1 and u2 ∈ X2 such that

a1(u1, v) = f1(v) ∀v ∈ X1;0,(2.8a)

a2(u2, v) = f2(v) ∀v ∈ X2;0,(2.8b)

u1 = u2 on Γ12,(2.8c)

a1(u1,R1ζ) + a2(u2,R2ζ) = f1(R1ζ) + f2(R2ζ) ∀ζ ∈ [H1/2(Γ12)]
3,(2.8d)

where Ri : [H1/2(Γ12)]
3 → XΓi

i := {v ∈ [H1(Ωi)]
3 : v|Γi = 0} are linear and con-

tinuous extension operators. Note that if we knew the value of u on Γ12, we could
determine u on the whole computational domain Ω thanks to (2.8a) and (2.8b).

Finally, we define local semi-inner products and seminorms (v, w)Xi := ai(v, w)
and ‖v‖Xi :=

√
(v, v)Xi for all v, w ∈ [H1(Ωi)]

3, i = 1, 2, and the corresponding

global (semi-)inner product and (semi)norm (v, w)X :=
∑2
i=1(v, w)Xi and ‖v‖X :=

(
∑2

i=1 ‖v‖2Xi
)1/2.

2.2. (Port-reduced) static condensation. The variational formulation (2.8)
is at the basis of many DD methods, such as iterative substructuring methods (see, for
instance, [39] for an overview). The key concept of static condensation procedures is
to first employ (2.8) to derive an equation for u|Γ12 ∈ [H1/2(Γ12)]

3 and then discretize
this equation in order to compute an approximation for u|Γ12 and thus for u.

To derive a well-posed problem for u|Γ12 ∈ [H1/2(Γ12)]
3, we first note that the

solutions ui ∈ Xi of (2.8) can be written as a sum of an a-harmonic extension of
the nonhomogeneous Dirichlet boundary conditions, an a-harmonic extension of the
unknown vector u|Γ12 , and a Riesz representation of the right-hand side; to wit, there
holds2

(2.9) ui = Li,ΓiuD,i + Li,Γ12 (u|Γ12) + bfi .

Here, the a-harmonic extension operators Li,Γ : [H1/2(Γ)]3 → [H1(Ωi)]
3, i = 1, 2, are

defined as

ai(Li,Γζ, v) = 0 ∀v ∈ Xi;0 and (Li,Γζ)|Γ = ζ, (Li,Γζ)|Γ∗ = 0, Γ = Γ∗,(2.10)

2Note that in actual practice one would use arbitrary continuous extensions of the nonhomoge-
neous Dirichlet boundary conditions and associated solutions of the PDE with these extensions as a
right-hand side.
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for any ζ ∈ [H1/2(Γ)]3, Γ = Γ1,Γ12,Γ2, uD,i := uD|Γi ∈ [H1/2(Γi)]
3, and the Riesz

representations bfi ∈ Xi;0 of the right-hand side are defined as the solutions of

ai(b
f
i , v) = fi(v) ∀v ∈ Xi;0, i = 1, 2.(2.11)

To shorten notation we set bf := bf1 + bf2 , extending b
f
i by zero to Ωi′ , i = i′.

Inserting (2.9) into (2.8d) and exploiting that the operators Li,Γ, Γ = Γ1,Γ12,Γ2

are continuous extension operators (cf. [30]), we obtain the variational form of the
Steklov–Poincaré interface equation: Find u|Γ12 ∈ [H1/2(Γ12)]

3 such that
(2.12)
2∑
i=1

ai(Li,Γ12 (u|Γ12),Li,Γ12ζ)=

2∑
i=1

[
fi(Li,Γ12ζ)−ai(bfi ,Li,Γ12ζ)−ai(Li,ΓiuD,i,Li,Γ12ζ)

]
,

for all ζ ∈ [H1/2(Γ12)]
3. Note that well-posedness of problem (2.12) can, for instance,

be demonstrated by using the Riesz representation theorem and exploiting that the
bilinear forms (·, ·)Γ : [H1/2(Γ)]3 × [H1/2(Γ)]3 → R on the ports Γ = Γ1,Γ12,Γ2 and
the union of ports Γ = Γ1 ∪ Γ2, defined as

(ζ, ρ)Γ12 :=
2∑
i=1

ai(Li,Γ12ζ,Li,Γ12ρ),

(ζ, ρ)Γi := ai(Li,Γiζ,Li,Γiρ), i = 1, 2, and (ζ, ρ)Γ1∪Γ2 := (ζ, ρ)Γ1 + (ζ, ρ)Γ2 ,

(2.13)

are inner products. Here, the positive definiteness of (·, ·)Γ follows from Friedrich’s
inequality, Korn’s inequality, and the trace theorem. Furthermore, we introduce for
all v ∈ [H1/2(Γ)]3 the induced norm ‖v‖Γ :=

√
(v, v)Γ, Γ = Γ1,Γ12,Γ2,Γ1 ∪ Γ2.

In order to compute an approximation of u|Γ12 ∈ [H1/2(Γ12)]
3 we introduce a

basis {χk}∞k=1 of [H1/2(Γ12)]
3. At this point we assume that this basis is given to us,

where the choice of the basis is addressed in the next section. Moreover, we introduce
the functions

Φk :=

{
L1,Γ12χk in Ω1,

L2,Γ12χk in Ω2,
(2.14)

the space of interface functions

XΓ12 := span {Φk, k = 1, . . . ,∞} ,
and a reduced space

Xm
Γ12

:= span {Φk, k = 1, . . . ,m} .
We may then introduce a port-reduced static condensation approximation [11]

(2.15) um =

2∑
i=1

(
bfi + Li,ΓiuD,i

)
+

m∑
k=1

Umk Φk, m ≤ ∞,

where the coefficients Umk ∈ R are the solutions of the Schur complement system

m∑
k=1

a(Umk Φk,Φl) = f(Φl)−a(bf ,Φl)−
2∑
i=1

ai(Li,ΓiuD,i,Φl), l = 1, . . . ,m.(2.16)
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Well-posedness of (2.16) follows from the Lax–Milgram lemma. Note that the solution
u of (2.3) can be represented as in (2.15) with m = ∞ and solves (2.16) for the test
space XΓ12 . Moreover, thanks to the definition of Φk in (2.14), the system (2.16) for
m =∞ is just a reformulation of (2.12).

We may now ask how to find a rapidly convergent or even optimal m-dimensional
port space Λm = span{χk}mi=1 ⊂ [H1/2(Γ12)]

3, and thus local approximation space
Xm

Γ12
, for all solutions u of (2.3) for all possible Dirichlet boundary data uD,i ∈

[H1/2(Γi)]
3, i = 1, 2. This question will be addressed in the next section.

3. Optimal port spaces. Recall that we have assumed that Ω lies in the interior
of a large computational domain Ω̂ such that we do not know the values of u on Γ1

and Γ2. We know only that u must solve the PDE (2.3) locally on Ω—with unknown
Dirichlet boundary conditions uD. The goal of this section is thus to construct a port
space which can provide a rapidly convergent approximation to the set of all (local)
solutions u of (2.3) on Ω. Aiming at finding a good approximation space for a whole
set of functions suggests optimality in the sense of Kolmogorov [29].

Definition 3.1. Let Λ be a Hilbert space, let A ⊂ Λ, and let Λn be an n-dimen-
sional subspace of Λ. The deviation of A from Λn is 3

(3.1) E(A; Λn) := sup
ξ∈A

inf
ζ∈Λn

‖ξ − ζ‖Λ.

The Kolmogorov n-width of A in Λ is given by

dn(A; Λ) := inf{E(A; Λn) : Λn an n-dimensional subspace of Λ}
= inf

Λn⊂Λ
dim(Λn)=n

sup
ξ∈A

inf
ζ∈Λn

‖ξ − ζ‖Λ.(3.2)

Moreover, for linear, continuous operators T : Y → Λ and a Hilbert space Y we also
introduce
(3.3)

dn(T (Y ); Λ) := inf
Λn⊂Λ

dim(Λn)=n

sup
ψ∈Y

inf
ζ∈Λn

‖Tψ − ζ‖Λ
‖ψ‖Y = inf

Λn⊂Λ
dim(Λn)=n

sup
ψ∈Y

‖ψ‖Y ≤1

inf
ζ∈Λn

‖Tψ − ζ‖Λ.

A subspace Λn ⊂ Λ of dimension at most n for which

dn(A; Λ) = E(A; Λn) or dn(T (Y ); Λ) = sup
ψ∈Y

inf
ζ∈Λn

‖Tψ − ζ‖Λ
‖ψ‖Y

holds is called an optimal subspace for dn(A; Λ) or dn(T (Y ); Λ), respectively.

Remark 3.2. Note that the definition of dn(T (Y ); Λ) is related to the definition
of dn(A; Λ) in the sense that in the former we consider the subset T (Y ) ⊂ Λ, which
is characterized by the image of the mapping T applied to the unit ball in Y .

Remark 3.3. Before defining the optimal port space on Γ12, we give a short mo-
tivation for the construction procedure described below. To that end, we consider
the Laplacian and define a(v, w) :=

∑2
i=1

∫
Ωi
∇v∇w; we consider two components

Ωi ⊂ R2, i = 1, 2, each of height H in x2 and length L in x1, such that Γ1 is at

3Note that, following the common notation in the literature, we denote both the Young’s modulus
and the deviation by E expecting that the respective meaning will be clear from the context.
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OPTIMAL LOCAL SPACES FOR STATIC CONDENSATION A3325

x1 = −L, Γ12 is at x1 = 0, and Γ2 is at x1 = L; we impose homogeneous Neumann
conditions on x2 = 0 and x2 = H in both components. Proceeding with separation
of variables, we can infer that all harmonic functions for this problem are of the form

(3.4) u(x1, x2) = a0 + b0x1 +

∞∑
n=1

cos
(
nπ

x2
H

) [
an cosh

(
nπ

x1
H

)
+ bn sinh

(
nπ

x1
H

)]
,

where the coefficients an, bn ∈ R, n = 0, . . . ,∞, are determined by the Dirichlet
data on Γ1 and Γ2. Because of the cosh function we can observe a very rapid and
exponential decay of the harmonic functions (3.4) in the interior of Ω. Therefore,
most of the harmonic functions (3.4) have negligibly small values on Γ12, which is
why we expect a low-dimensional port space on Γ12 to be able to provide a very good
approximation of all harmonic functions (3.4). The construction procedure described
below generalizes the separation of variables ansatz.

3.1. Construction of optimal port spaces via a transfer operator. First,
we address the case where g = (0, 0, 0)T and therefore fi(v) = 0, i = 1, 2; the general
case will be dealt with at the end of this subsection. Motivated by the separation of
variables procedure, and the fact that the global solution u on Ω̂ satisfies the PDE
locally on Ω, we consider the space of a-harmonic extensions

(3.5) H̃ := {w ∈ [H1(Ω)]3 : a(w, v) = 0 ∀v ∈ X0},
where X0 has been defined in (2.3). For theoretical purposes we have to consider
the quotient space H := H̃/RB instead of H̃, where RB := {a + b × (x1, x2, x3)

T ,
a,b ∈ R3} is the space of rigid body motions (see Appendix A and the supplementary
material for details on the latter). To construct an optimal port space on the shared
port Γ12 we therefore consider subspaces of HΓ12 , where HΓ := {u|Γ, u ∈ H}, Γ =
Γ1,Γ12,Γ2.

To assess how fast the a-harmonic functions decay in the interior of Ω we introduce
a transfer operator P : HΓ1∪Γ2 → HΓ12 , which we define as follows:

For w ∈ H and thus w|Γ1∪Γ2 ∈ HΓ1∪Γ2 we define P (w|Γ1∪Γ2) := w|Γ12 .(3.6)

For the analysis of P and the remaining theoretical findings in this subsection we
closely follow [3], where optimal local approximation spaces have been derived for
the generalized FE method. First, we note that the operator P is compact, which is
proved in Appendix B (see Proposition B.2). The main ingredient of the proof is the
following version of the Caccioppoli inequality, whose proof will also be provided in
Appendix B.

Lemma 3.4 (Caccioppoli inequality). Let w ∈ [H1(Ω)]3 satisfy

(3.7) a(w, v) = 0 ∀v ∈ X0.

Then on Ω∗ � Ω∗∗ ⊂ Ω with dist(∂Ω∗ \ ∂Ω, ∂Ω∗∗ \ ∂Ω) >  > 0 there holds

(3.8)

∫
Ω∗

∂wi

∂xj
Cijkl

∂wk

∂xl
dx ≤ ‖E‖[L∞(Ω)]3

E0

12

2
1− ν

(1 + ν)(1 − 2ν)
‖w‖2[L2(Ω∗∗\Ω∗)]3 .

Next, we introduce the adjoint operator P ∗ : HΓ12 → HΓ1∪Γ2 . Then the operator
P ∗P is a compact, self-adjoint, nonnegative operator, which maps HΓ1∪Γ2 into itself.
We may thus employ the Hilbert–Schmidt theorem and Theorem 2.2 in Chapter 4
of [37] to show the following result.
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A3326 KATHRIN SMETANA AND ANTHONY T. PATERA

Proposition 3.5. Let ϕj and λj be the eigenfunctions and eigenvalues which
satisfy the eigenvalue problem: Find (ϕj , λj) ∈ (H,R+) such that

(ϕj |Γ12 , w|Γ12 )Γ12 = λj [(ϕj |Γ1 , w|Γ1 )Γ1 + (ϕj |Γ2 , w|Γ2 )Γ2 ] ∀w ∈ H.(3.9)

Additionally, let the eigenvalues λj be listed in nonincreasing order of magnitude,
that is, λ1 ≥ λ2 ≥ · · · , and λj → 0 as j → ∞. The optimal approximation space for
dn(P (HΓ1∪Γ2); HΓ12) is given by

(3.10) Λn := span{χsp1 , . . . , χspn }, where χspj = P (ϕj |Γ1∪Γ2), j = 1, . . . , n.

Moreover, there holds

(3.11) dn(P (HΓ1∪Γ2);HΓ12) = sup
ξ∈HΓ1∪Γ2

inf
ζ∈Λn

‖Pξ − ζ‖Γ12

‖ξ‖Γ1∪Γ2

=
√
λn+1.

Proof. Exploiting that P ∗ is the adjoint operator of P, we may reformulate (3.9)
as follows: Find (ϕj , λj) ∈ (H,R+) such that

(P ∗Pϕj |Γ1∪Γ2 , w|Γ1∪Γ2 )Γ1∪Γ2 = λj(ϕj |Γ1∪Γ2 , w|Γ1∪Γ2)Γ1∪Γ2 ∀w ∈ H.
The assertion then follows from Theorem 2.2 in Chapter 4 of [37].

Remark 3.6. We note that this “transfer eigenproblem” is directly related to the
eigenproblem introduced and analyzed in Babuška and Lipton [3] but also to more
classical constructions, in particular separation of variables and the concept (say,
in acoustics) of evanescence. As regards separation of variables, we return to our
motivating example discussed in Remark 3.3 to establish the connection explicitly.
Proceeding with separation of variables, the eigenproblem in x2 yields separation
constants σj = (jπ)/H , j = 0, 1, 2, . . . , which then inform the decay of the corre-
sponding eigenmodes in x1. We can now exploit the separation of variables solution
to solve (3.9) in closed form: λj = (cosh(Lσj−1))

−2, j = 1, 2, 3, . . . . This simple
model problem also foreshadows the potentially very good performance of the asso-
ciated optimal space (3.10) in light of Definition 3.1 and Proposition 3.8: we obtain
exponential convergence.

Recall that so far we have considered the quotient space H, neglecting rigid body
modes. Therefore, we introduce a basis ηj , j = 1, . . . , 6, of the space RB (see Appen-
dix A for a possible basis, and the supplementary material for a proof that the space
of rigid body motions has six dimensions) and define

(3.12) χRB
j := ηj |Γ12 −

n∑
j=1

(ηj |Γ12 , χ
sp
j )Γ12χ

sp
j .

As we can represent all functions in the spaceRBΩ := {a+b×(x1, x2, x3)T , a,b ∈ R3,
x = (x1, x2, x3)

T ∈ Ω}, by the a-harmonic extensions (2.10) of ηj |Γ12 , j = 1, . . . , 6,
and the restrictions of ηj to Γ1 and Γ2 (see Lemma A.1), it is sufficient to consider
the space

(3.13) ΛnRB := span{χRB
1 , . . . , χRB

6 , χsp1 , . . . , χ
sp
n }

to facilitate an approximation of arbitrary functions in H̃ = {w ∈ [H1(Ω)]3 : a(w, v) =
0 ∀v ∈ X0}.
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Finally, we also allow g = (0, 0, 0)T . Note that, similarly to (2.9), we can write
u = uf + ũ0, where uf ∈ X0 and ũ0 ∈ X are the solutions of

a(uf , v) = f(v) ∀v ∈ X0, and a(ũ0, v) = 0 ∀v ∈ X0, respectively.(3.14)

As ũ0 ∈ H̃ it can be well approximated by the space ΛnRB and it therefore remains
to deal with uf . Thanks to the definition of the a-harmonic extensions in (2.10), the

definition of bfi , i = 1, 2, in (2.11), and the decomposition X = XΓ12 ⊕ X1;0 ⊕X2;0,
it is easy to show (see the supplementary material for a proof) that there holds
uf = Φf + bf , where Φf ∈ XΓ12 solves

(3.15) a(Φf ,Φl) = f(Φl)− a(bf ,Φl), l = 1, . . . ,∞.

To represent f within the port space we thus set

(3.16) χf := Φf |Γ12 −
n∑
j=1

(Φf |Γ12 , χ
sp
j )Γ12χ

sp
j −

6∑
k=1

(Φf |Γ12 , χ
RB
k )Γ12χ

RB
k ,

as bf |Γ12 = 0, and obtain that the space

(3.17) Λn,fRB := span{χRB
1 , . . . , χRB

6 , χsp1 , . . . , χ
sp
n , χ

f}

is the optimal port space for the port Γ12. Moreover, the space Λn,fRB thus provides a
good approximation of arbitrary functions in {w ∈ [H1(Ω)]3 : a(w, v) = f(v) ∀v ∈
X0}.

Assuming without loss of generality that χf /∈ ΛnRB, we may now choose the
orthogonal4 reduced basis {χk}mk=1 introduced in section 2.2 as

(3.18) χj = χRB
j , j = 1, . . . , 6, χj+6 = χspj , j = 1, . . . , n, χn+7 = χf .

We denote this basis henceforth as spectral basis, since the basis functions {χspj }nj=1

are the traces of the first n eigenfunctions of the transfer eigenvalue problem. Via the
corresponding a-harmonic extensions {Φk}n+7

k=1 as introduced in (2.14), we may then
define the reduced space Xn

Γ12
:= span{Φk, k = 1, . . . , n + 7} and the port-reduced

static condensation approximation corresponding to the optimal port space Λn,fRB:

(3.19) un :=
2∑
i=1

(
bfi + Li,ΓiuD,i

)
+
n+7∑
k=1

Unk Φk,

where the coefficients Unk ∈ R satisfy the Schur complement system (2.16) for the test
space Xn

Γ12
.

4Note that, thanks to the Hilbert–Schmidt theorem, the functions {ϕj |Γ1∪Γ2
}∞j=1 form a com-

plete orthonormal basis for HΓ1∪Γ2
, where ϕj ∈ H are the eigenfunctions of (3.9). As a consequence

the basis functions {χsp
1 , . . . , χsp

n } are orthogonal with respect to the (·, ·)Γ12
-inner product and

satisfy

‖χsp
j ‖2Γ12

= λj ‖ϕj |Γ1∪Γ2
‖2Γ1∪Γ2

= λj .
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3.2. Computational realization of the transfer eigenvalue problem. In
this subsection we outline how one can compute an approximation of the transfer
eigenvalue problem and thus the optimal port space Λn,fRB via the FE method.

First, we emphasize that in order to compute an approximation of the eigenvalues
and eigenfunctions of (3.9), we do not need to consider the quotient space H but can
employ the space H̃ instead.5

Next, we introduce partitions of the subdomains Ωi, i = 1, 2, which match at
the interface Γ12. Moreover, we introduce a corresponding conforming FE space
Xh ⊂ [H1(Ω)]3 of dimension N with a nodal basis {ψ1, . . . , ψN } and associated FE
port spaces ΛhΓ12

:= {vh|Γ12 : vh ∈ Xh} and ΛhΓ1∪Γ2
:= {vh|Γ1∪Γ2 : vh ∈ Xh}.

Without loss of generality we assume that the first 2NΓ basis functions are associated
with the nodes that lie on the Dirichlet boundary Σ̄D = Γ̄1∪ Γ̄2, and the last NΓ basis
functions correspond to the nodes that lie on Γ12. Here, NΓ denotes the number of
DOFs on the three interfaces, which we choose to be identical for the sake of simplicity.
Then we may introduce the matrices B ∈ RN−2NΓ×2NΓ , D ∈ RN−2NΓ×N−2NΓ , and
A ∈ RN×N , defined as

Bi,j := a(ψj , ψi), 2NΓ + 1 ≤ i ≤ N , 1 ≤ j ≤ 2NΓ,

Di,j := a(ψj , ψi), 2NΓ + 1 ≤ i, j ≤ N , A =

[
I2NΓ

0
B D

]
,

where I2NΓ
∈ R2NΓ×2NΓ is the identity matrix. By expressing functions ξh ∈ ΛhΓ1∪Γ2

in the basis {ψ1|Γ1∪Γ2 , . . . , ψ2NΓ |Γ1∪Γ2} and denoting the vector containing the re-
spective coefficients by ξ ∈ R2NΓ , we obtain the following matrix representation

P ∈ RNΓ×2NΓ of the transfer operator:

P ξ =
[
0 INΓ

]
A−1

[
I2NΓ

0

]
ξ,(3.20)

where INΓ
∈ RNΓ×NΓ is again the identity matrix.

Finally, we denote by GΓ1∪Γ2
∈ R2NΓ×2NΓ and GΓ12

∈ RNΓ×NΓ the inner product
matrices associated with the inner products (·, ·)Γ1∪Γ2 and (·, ·)Γ12 , respectively. For
details on GΓ1∪Γ2

and GΓ12
we refer the reader to the supplementary material.

Then the FE approximation of the transfer eigenvalue problem (3.9) reads as
follows: Find the eigenvectors ξ

j
∈ R2NΓ and the eigenvalues λj ∈ R+ such that

(3.21) P tGΓ12
P ξ

j
= λj GΓ1∪Γ2

ξ
j
.

Note that in actual practice we would not assemble the matrix P , but rather com-
pute the harmonic extensions by successively solving the linear systems of equations

A ũ0k =

[
I2NΓ

0

]
ek for the unit vectors ek ∈ R2NΓ , k = 1, . . . , 2NΓ,

and store the evaluations of the harmonic extensions on Γ12, that is,
[
0 INΓ

]
ũ0k.

Subsequently we would assemble and solve the generalized eigenvalue problem (3.21).

5Note to that end that, thanks to Lemma A.1, a basis for the space RBΩ spans an invariant
subspace of P ∗P . If the two components Ωi, i = 1, 2, and the three ports Γ1,Γ2,Γ12 have the same
geometry, respectively, then the first six eigenvalues of the transfer eigenvalue problem on H̃ equal 1
and the corresponding eigenfunctions form a basis for RBΩ. Thanks to the above and Lemma B.1
we obtain that the remaining eigenvalues and eigenspaces coincide with those of the generalized
eigenvalue problem on H.
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The coefficients of the FE approximation of the reduced basis {χ1, . . . , χn+6} are then
given by χ

j
= P ξ

j
, j = 1, . . . , n + 6. To account for the right-hand side we finally

solve the linear system of equations

(3.22) Duf = F , where F i = f(ψi+2NΓ), 1 ≤ i ≤ N − 2NΓ,

and define

(3.23) χ
n+7

=
[
0 INΓ

]
uf

if χn+7 is orthogonal to {χ1, . . . , χn+6}; otherwise an orthogonalization has to be
performed.

Remark 3.7. Finally, we note that for the illustrative result based on separation
of variables in Remarks 3.3 and 3.6, we observe that the respective FE approximations
converge to the eigenvalues λj with an order that is quadratic in the mesh size.

3.3. A priori error bound. The result in (3.11) can be exploited to derive an
a priori error bound for the approximation error between any solution u of (2.3) and
the optimal sc approximation un as stated in the following proposition.

Proposition 3.8 (a priori error bound). Let u be the (exact) solution of (2.3)
and un the optimal sc approximation defined in (3.19). Then we have the following a
priori error bound:

(3.24)
‖u− un‖X
‖u‖X ≤ C1(Ω)

√
λn+1,

where λn+1 is the n+ 1th eigenvalue of (3.9) and C1(Ω) is a constant which depends
neither on u nor on un.

Proof. The basic idea of the proof is the following: First, we use Céa’s lemma to
obtain

(3.25) ‖u− un‖X ≤ ‖u− unsp‖X ,

where unsp lies in the same space as un and will be constructed in such a way that
we may exploit (3.11). As the parts of u which represent the rigid body modes and
the right-hand side f can be represented exactly by bf and functions in Xn

Γ12
(see

the discussion after Remark 3.6) and thus unsp, those parts cancel, and we end up
with a difference between two functions in H. Choosing the remaining coefficients
appropriately allows us to apply (3.11). For a detailed proof we refer the reader to
Appendix B.

4. Generalization to parametrized PDEs. As already indicated in the in-
troduction, many applications require a rapid simulation response for many different
material parameters such as the Young’s modulus in (2.7). Therefore, it is desirable
to have a port-reduced sc procedure that is able to deal efficiently with parameter-
dependent PDEs. Recall, however, that the optimal port space as introduced in
section 3 is based on the space of functions that solve the (now parametrized) PDE
and therefore also depends on the parameter. As the computation of a, say, FE ap-
proximation of Λn,fRB requires solving the PDE on Ω 2NΓ times, where NΓ denotes the
number of DOFs on Γ1 and Γ2, constructing a new optimal port space “from scratch”
for each new parameter value is in general not feasible. The goal of this section is
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thus to construct a low-dimensional and quasi-optimal port space that is parameter-
independent but yields an accurate approximation for the full parameter set of inter-
est. Model order reduction and particularly RB methods [15, 17, 38] are very well
suited to our goal. We generalize in section 4.4 the “standard” greedy algorithm [44]
used in RB methods to a spectral greedy algorithm which constructs a reduced basis
to approximate the n eigenspaces associated with the n largest eigenvalues of the
parameter-dependent generalized (transfer) eigenvalue problem. (Quasi-)optimality
of the resulting low-dimensional parameter-independent space can be inferred from
the results in [9]. We finally demonstrate in section 4.5 that the spectral greedy algo-
rithm yields a convergent port-reduced sc approximation in the sense that the relative
approximation error can be bounded by any given tolerance, where the latter enters
the spectral greedy algorithm as an input. To start we state the parametrized PDE
of interest in section 4.1, we then recall the port-reduced sc procedure for parameter-
dependent PDEs in section 4.2, and finally we generalize the findings of section 3 to
the parametrized setting in section 4.3.

4.1. Problem setting. Let Ω, Ωi, Γi, i = 1, 2, and Γ12 be as in section 2. For
each component Ωi, i = 1, 2, we define a parameter μi = (Ei, E

r
i , g

1, g2, g3) ∈ Di ⊂ R5,
where Di denotes the parameter set of all admissible parameters associated with
Ωi. We may then introduce the parametrized bilinear and linear forms ai(·, ·;μi) :
[H1(Ωi)]

3 × [H1(Ωi)]
3 → R and fi(·;μi) : [H1(Ωi)]

3 → R defined as

ai(w, v;μi) := Ei

{∫
Ωi,Ei

∂wi

∂xj
Cijkl

∂vk

∂xl
dx+ Eri

∫
Ωi,Er

i

∂wi

∂xj
Cijkl

∂vk

∂xl
dx

}
,

fi(v;μi) :=

∫
Ωi

g · v dx,

where Cijkl is defined as in section 2. Here, we choose the Young’s modulus E(x)
as used in (2.4) and (2.7) equal to Ei ∈ R in subdomains Ωi,Ei ⊂ Ωi and equal to
EiE

r
i ∈ R in the remaining parts Ωi,Er

i
= Ωi \ Ωi,Ei . In this way, we can consider

materials that are (significantly) stiffer or softer in some parts of the (sub)domains
than in the remaining parts. Note that we prescribe the same gravitational field
in both components, assuming for the sake of simplicity that the mass density is
constant. We shorten notation by setting D = D1 × D2 and μ = (μ1, μ2). Next, we
introduce the global bilinear and linear forms a(·, ·;μ) : [H1(Ω)]3 × [H1(Ω)]3 → R

and f(·;μ) : [H1(Ω)]3 → R that are defined as a(v, w;μ) :=
∑2
i=1 ai(v, w;μi) and

f(v;μ) :=
∑2
i=1 fi(v;μi). We consider the following parametrized problem: For any

given μ ∈ D find u(μ) ∈ X such that

(4.1) a(u(μ), v;μ) = f(v;μ) ∀v ∈ X0.

Finally, we define the following (semi-)inner products and (semi)norms. First, we
introduce local parameter-dependent energy semi-inner products and local induced

energy seminorms as ((v, w))μ,i := ai(v, w;μi) and |||v|||μ,i := ((w,w))
1/2
μ,i for all v, w ∈

[H1(Ωi)]
3, i = 1, 2. The corresponding global parameter-dependent energy inner

product and energy norm are defined as ((v, w))μ :=
∑2
i=1((v, w))μ,i and |||v|||μ :=

(
∑2

i=1|||v|||2μ,i)1/2. Next, we introduce the reference parameters μ̄i = (1, 1, 0, 0, 0), i =
1, 2, assuming for the sake of simplicity that the smallest values Eri,min, Ei,min ∈ Di,
i = 1, 2, equal 1. We may then define the local semi-inner products and seminorms
((v, w))i := ai(v, w; μ̄i) and |||v|||i :=

√
((v, v))i for all v, w ∈ [H1(Ωi)]

3, i = 1, 2,
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OPTIMAL LOCAL SPACES FOR STATIC CONDENSATION A3331

and the corresponding global inner product and norm ((v, w)) :=
∑2
i=1((v, w))i and

|||v||| := (
∑2

i=1|||v|||2i )1/2. Thanks to our assumptions above we have the following.

Lemma 4.1. Under the assumptions above and due to the definition of μ̄i, i = 1, 2,
there holds

(4.2) |||v||| ≤ |||v|||μ ≤ c(μ, μ̄)|||v||| ∀v ∈ [H1(Ω)]3 and c(μ, μ̄) :=
√

max
i=1,2

EiEri .

Note that for large parameter domains it might be convenient to decompose
the parameter domain and define reference parameters and associated parameter-free
norms for each of those (parameter) subdomains to avoid large constants c(μ, μ̄).

4.2. (Port-reduced) sc for parametrized PDEs. To formulate the sc pro-

cedure for the parametrized setting, we first introduce Riesz representations bfi (μi) ∈
Xi;0 of the right-hand side as the solutions of

ai(b
f
i (μi), v;μi) = fi(v;μi) ∀v ∈ Xi;0, i = 1, 2.(4.3)

Next, we introduce parameter-dependent a-harmonic extension operators Li,Γ(μi) :
[H1/2(Γ)]3 → [H1(Ωi)]

3, i = 1, 2, such that for any ζ ∈ [H1/2(Γ)]3, Γ = Γ1,Γ12,Γ2,
there holds

ai(Li,Γ(μi)ζ, v;μi) = 0 ∀v ∈ Xi;0,(4.4)

and (Li,Γ(μi)ζ) |Γ = ζ, (Li,Γ(μi)ζ) |Γ∗ = 0, Γ = Γ∗.

The global functions

Φk(μ) :=

{
L1,Γ12(μ1)χk in Ω1,

L2,Γ12(μ2)χk in Ω2

(4.5)

then span the space of interface functionsXΓ12(μ) := span {Φk(μ), k = 1, . . . ,∞} and
may be employed to define a reduced space Xm

Γ12
(μ) := span {Φk(μ), k = 1, . . . ,m}.

We may then introduce a port-reduced static condensation approximation

(4.6) um(μ) =

2∑
i=1

(
bfi (μi) + Li,Γi(μi)uD,i

)
+

m∑
k=1

Umk (μ)Φk(μ), m ≤ ∞,

where the coefficients Umk (μ) ∈ R are the solutions of the Schur complement system

m∑
k=1

a(Umk (μ)Φk(μ),Φl(μ);μ) = f(Φl(μ);μ) −
2∑
i=1

ai(b
f
i (μi) + Li,Γi(μi)uD,i,Φl(μ);μi)

(4.7)

for l = 1, . . . ,m.
Finally, in a slight abuse of notation we redefine the inner products (·, ·)Γ and

induced norms ‖ · ‖Γ, Γ = Γ1,Γ12,Γ2,Γ1 ∪ Γ2 for the remainder of this paper as
follows:

(ζ, ρ)Γ12 :=
2∑
i=1

ai(Li,Γ12 (μ̄i)ζ,Li,Γ12(μ̄i)ρ; μ̄i),

(ζ, ρ)Γi := ai(Li,Γi(μ̄i)ζ,Li,Γi (μ̄i)ρ; μ̄i), i = 1, 2,

(ζ, ρ)Γ1∪Γ2 := (ζ, ρ)Γ1 + (ζ, ρ)Γ2 ,

‖ζ‖Γ :=
√
(ζ, ζ)Γ for ζ, ρ ∈ [H1/2(Γ)]3.

(4.8)
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We recall that μ̄i, i = 1, 2, are reference parameters, which were introduced at the
end of section 4.1.

4.3. Optimal port spaces for parametrized PDEs. First, we note that
for any given μ ∈ D the respective bilinear and linear forms match the setting of
sections 2 and 3. Therefore, we may define a process which applies for any given μ ∈ D
the procedure in section 3 to obtain the respective parameter-dependent quantities,
employing the inner products as defined in (4.8) instead of (2.13). In detail, for a
given parameter μ ∈ D, solving the parameter-dependent transfer eigenvalue problem
yields for this specific parameter μ an optimal n-dimensional port space of spectral
modes Λn(μ). Augmenting this parameter-dependent space Λn(μ) with port modes
that allow us to represent the right-hand side or the rigid body modes within the
reduced sc space yields the (optimal) port space Λn,fRB(μ) for this specific parameter
μ ∈ D. As in (3.19) we obtain a port-reduced sc approximation un(μ) based on this

optimal space Λn,fRB(μ). For the former, the following a priori error bound, whose proof
is provided in Appendix B, holds true.

Proposition 4.2 (a priori error bound). Let u(μ) be the (exact) solution of (4.1)
and un(μ) the port-reduced sc approximation corresponding to the optimal port space

Λn,fRB(μ). Then we have the following a priori error bound:

(4.9)
|||u(μ)− un(μ)|||μ
|||u(μ)|||μ

≤ c(μ, μ̄)C1(Ω, μ)
√
λn+1(μ),

where λn+1(μ) is the n+1th eigenvalue of the parameter-dependent transfer eigenvalue
problem and C1(Ω, μ) is a constant which does not depend on u(μ).

4.4. A spectral greedy algorithm. The process defined in section 4.3 yields
for every μ ∈ D the (optimal) port space Λn,fRB(μ) for this specific parameter μ ∈
D. The spectral greedy algorithm which we introduce in this subsection constructs
one quasi-optimal parameter-independent port space Λm which approximates those
parameter-dependent spaces Λn,fRB(μ) with a given accuracy on a finite-dimensional
training set Ξ ⊂ D. In the spectral greedy algorithm we exploit the fact that, although
the solutions on the component pair may vary significantly with the parameter μ ∈ D,
we expect that the port spaces Λn,fRB(μ), and in particular the spectral modes that
correspond to the largest eigenvalues, are much less affected by a variation in the
parameter thanks to the expected very rapid decay of the higher eigenfunctions in the
interior of Ω.

The spectral greedy algorithm shown in Algorithm 4.1 then proceeds as we now
describe. As all port spaces Λn,fRB(μ) include the rigid body port modes {ηj |Γ12}6j=1

by construction, we initialize Λ6 as span{η1|Γ12 , . . . , η6|Γ12}.
Subsequently, we compute for all μ ∈ Ξ the parameter-dependent optimal port

spaces Λn,fRB(μ). Motivated by the a priori bound (4.9), we choose n such that there

holds c(μ, μ̄)C1(Ω, μ)
√
λn+1(μ) ≤ (1 − (q/p))ε for a given tolerance ε and weighting

factors p and q, q/p < 1. Note that in this way we ensure that for every parameter μ ∈
Ξ we include all necessary information that we need to obtain a good approximation
for this specific parameter. The choice of C1(Ω, μ), p, and q is discussed below. After
having collected all functions on Γ12 that are essential to obtain a good approximation
for all functions u(μ)|Γ12 , μ ∈ Ξ, where u(μ) solves (4.1) for all possible Dirichlet
boundary conditions, we must select a suitable basis from those functions. This is
realized in an iterative manner in lines 5–14.
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Algorithm 4.1: spectral greedy.

input : train sample Ξ ⊂ D, tolerance ε, weighting factors p, q
output: set of chosen parameters Sm, port space Λm

1 Initialize S6 ← ∅, Λ6 ← span{η1|Γ12 , . . . , η6|Γ12}, m← 6
2 foreach μ ∈ Ξ do

3 Compute Λn,fRB(μ) such that c(μ, μ̄)C1(Ω, μ)
√
λn+1(μ) ≤ (1− q

p )ε.

4 end

5 while true do

6 if maxμ∈ΞE(S(Λn,fRB(μ)),Λ
m) ≤ ε/((p− q)ε+ pC2(Ω, μ)c(μ, μ̄)) then

7 return
8 end

9 μ∗ ← argmaxμ∈ΞE(S(Λn,fRB(μ)),Λ
m)

10 Sm+1 ← Sm ∪ μ∗

11 κ← arg supρ∈S(Λn,f
RB(μ∗)) infζ∈Λm ‖ρ− ζ‖Γ12

12 Λm+1 ← Λm ∪ span{κ}
13 m← m+ 1

14 end

As in the “standard” greedy algorithm in RB methods [15, 17, 38], the spectral
greedy algorithm aims at minimizing at each iteration the deviation of the set we wish
to approximate from the m-dimensional space Λm which is under construction. Note
that constructing the port space such that we minimize the deviation ideally yields a
deviation which is close to the Kolmogorov n-width and thus a (quasi-)optimal port

space. Therefore, in each iteration we first identify in line 9 the port space Λn,fRB(μ
∗)

that maximizes E(S(Λn,fRB(μ)),Λ
m), μ ∈ Ξ, where S(Λn,fRB(μ)) ⊂ Λn,fRB(μ); possible

choices of S(Λn,fRB(μ)) will be discussed below. Subsequently, we determine in line

11 the function κ ∈ S(Λn,fRB(μ
∗)) that is worst approximated by the space Λm and

enhance Λm with the span of κ. The spectral greedy algorithm terminates if for all
μ ∈ Ξ we have maxμ∈ΞE(S(Λn,fRB(μ)),Λ

m) ≤ ε/((p − q)ε + pC2(Ω, μ)c(μ, μ̄)) for a
constant C2(Ω, μ) that will be discussed shortly; this choice of stop criterion ensures
that we obtain |||u(μ)− um(μ)|||μ/|||u(μ)|||μ ≤ ε, as will be demonstrated in the next
subsection.

We remark that as Algorithm 4.1 is of the same type as the “standard” greedy
algorithm in RB methods, the theoretical results which have so far been obtained for
the latter (see [5, 7, 9]) apply for the spectral greedy algorithm. From these results
we can infer the convergence of Algorithm 4.1. Moreover, taking the recent results
in [9] as a foundation, we obtain that the space Λm is (quasi-)optimal with respect
to the L∞-norm over the parameter set Ξ. We could alternatively apply a proper
orthogonal decomposition and obtain a parameter-independent port space which is
optimal in the L2-norm over the parameter set Ξ. Note, however, that in contrast
to the proper orthogonal decomposition, the spectral greedy algorithm allows us to
control the relative error of the sc approximation for all μ ∈ Ξ. Regarding the choice
of the training set Ξ, we refer the reader to the recent tutorial [15] and the references
therein.
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Choice of the subset S(Λn,f
RB(µ)). First, we emphasize that in contrast to the

standard RB setting we have an ordering of the basis functions in Λn,fRB(μ) in terms of
their approximation properties thanks to the transfer eigenvalue problem. To obtain a
parameter-independent port space that yields a (very) good sc approximation already
for moderate m it is therefore desirable that the spectral greedy algorithm selects
the more important basis functions sooner rather than later during the while loop.
As the sorting of the basis functions in terms of their approximation properties is
implicitly saved in their norms,6 we introduce the following weighted inner product
and weighted induced norm on Λn,fRB(μ):

(ρ(μ), ζ(μ))Λn,f
RB(μ) :=

n+7∑
i=1

αρi (μ)α
ζ
i (μ) and ‖ρ(μ)‖Λn,f

RB(μ) :=
√
(ρ(μ), ρ(μ))Λn,f

RB(μ)

(4.10)

for ρ(μ) =
n+7∑
i=1

αρi (μ)χi(μ), ζ(μ) =
n+7∑
i=1

αζi (μ)χi(μ) ∈ Λn,fRB(μ),

where we recall that {χi(μ)}n+7
i=1 denotes the spectral basis of Λn,fRB(μ). We thus

propose considering

(4.11) S(Λn,fRB(μ)) := {ζ ∈ Λn,fRB(μ) : ‖ζ‖Λn,f
RB(μ) ≤ 1}

in the spectral greedy algorithm. The deviation E(S(Λn,fRB(μ)),Λ
m) can then be com-

puted by solving the following eigenvalue problem:7 Find (φj(μ), σj(μ)) ∈ Λn,fRB(μ)×
R+ such that
(4.12)(

φj(μ)−
m∑
k=1

(φj(μ), χk)Γ12χk, ρ−
m∑
k=1

(ρ, χk)Γ12χk

)
Γ12

= σj(μ)(ξj(μ), ρ)Λn,f
RB(μ)

∀ρ ∈ Λn,fRB(μ),

where {χk}mk=1 denotes the orthonormal basis of Λm. Observe that we have two
different inner products on the left- and right-hand sides of (4.12). We thus obtain

E(S(Λn,fRB(μ)),Λ
m) =

√
σ1(μ) for all μ ∈ Ξ, and κ = φ1(μ

∗) at each iteration. Note
that by exploiting the definition of (·, ·)Λn,f

RB(μ) in (4.10), by expressing φj in (4.12) in

the spectral basis {χi(μ)}n+7
i=1 of Λn,fRB(μ), and by denoting the vector containing the

corresponding coefficients by φ
j
∈ Rn+7, we can express the matrix version of (4.12)

as follows: Find (φ
j
(μ), σj(μ)) ∈ (Rn+7,R+) such that

Z(μ)φ
j
(μ) = σj(μ)φj(μ),(4.13)

where

Zi,l(μ) :=

(
χl(μ)−

m∑
k=1

(χl(μ), χk)Γ12χk, χi(μ)−
m∑
k=1

(χi(μ), χk)Γ12χk

)
Γ12

.(4.14)

6Recall that the basis functions {χsp
1 (μ), . . . , χsp

n (μ)} are orthogonal with respect to the (·, ·)Γ12
-

inner product and satisfy ‖χsp
j (μ)‖2Γ12

= λj(μ) ‖ϕj(μ)|Γ1∪Γ2
‖2Γ1∪Γ2

= λj(μ).
7Note to that end that there holds

sup
ρ∈S(Λ

n,f
RB(μ))

inf
ζ∈Λm

‖ρ − ζ‖Γ12
= sup

ρ∈Λ
n,f
RB(μ),‖ρ‖

Λ
n,f
RB(µ)

=1

inf
ζ∈Λm

‖ρ− ζ‖Γ12
= sup

ρ∈Λ
n,f
RB(μ)

inf
ζ∈Λm

‖ρ− ζ‖Γ12

‖ρ‖
Λ
n,f
RB(μ)

.

D
ow

nl
oa

de
d 

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL LOCAL SPACES FOR STATIC CONDENSATION A3335

To further motivate this choice of S(Λn,fRB(μ)) let us assume that all spectral modes

in Λn,fRB(μ) are orthogonal to the space Λm for all μ ∈ Ξ, which is the case, for
instance, for m = 6 but also often for higher m. In this case the matrices Z(μ) reduce
to diagonal matrices with diagonal entries Zi,i(μ) = ‖χi(μ)‖2Γ12

, i = 1, . . . , n + 7,

μ ∈ Ξ. A spectral greedy algorithm based on E(S(Λn,fRB(μ)),Λ
m) would therefore

select the parameter μ∗ such that the associated function φ1(μ
∗) has maximal energy

with respect to the (·, ·)Γ12 -inner product. Note that this is consistent with our aim
to include the weighting induced by the transfer eigenvalue problem into the basis
selection process by the spectral greedy algorithm.

Remark 4.3. Note that were we to consider the norm ‖·‖Γ12 in (4.11) and therefore
the (·, ·)Γ12 -inner product on the right-hand side in (4.12), the sorting of the spectral

basis {χi(μ)}n+7
i=1 of Λn,fRB(μ) in terms of approximation properties is neglected in the

while loop of Algorithm 4.1. As a consequence it may and often would happen in
actual practice, also due to numerical inaccuracies, that a spectral greedy algorithm
based on the ‖ · ‖Γ12-norm in (4.11) selects first functions that have been marked by
the transfer eigenvalue problem as less important. Therefore, we would observe an ap-
proximation behavior of the sc approximation based on the so-constructed port space
that is not satisfactory for moderate m. Hence, we suggest considering S((Λn,fRB(μ)))
as defined in (4.11), which yields a port space with excellent approximation properties,
as will be demonstrated in section 6.

Discussion of the constants C1(Ω, µ) and C2(Ω, µ) and the weighting
factors p and q. Sharp estimates for the constants C1(Ω, μ) and C2(Ω, μ) can be
obtained by considering suitable eigenvalue problems on the component pair. This
procedure, however, requires some technicalities which are beyond the scope of this
paper and will therefore be addressed in another article [42]. As we expect the con-
stants C1(Ω, μ) and C2(Ω, μ) to have the same order for most systems, it might be
convenient to choose, say, C1(Ω, μ) = C2(Ω, μ) = 1. Note that another value of those
constants would just result in an appropriately scaled tolerance ε.

We now discuss the choice of p and q. We shall show in Theorem 4.4 (in the next
subsection, and Appendix B.2) that a sufficient condition for convergence of the sc
approximation associated with Λm for all μ ∈ Ξ is

(4.15) p > q ≥ max
μ∈Ξ

θ(μ),

where
(4.16)

θ(μ) :=

(
min

i=1,...,n+7
‖χi(μ)‖Γ12

)−1

and there holds ‖ρ‖Λn,f
RB(μ) ≤ θ(μ)‖ρ‖Γ12 .

We note, however, that θ(μ) generally equals λ
−1/2
n (μ), and thus if we choose p and

q to satisfy (4.15), the right-hand side in line 6 is about ελ
−1/2
n (μ) and thus on

the order of ε2 per Proposition 4.2 and line 3 of Algorithm 4.1. Although, based
on our numerical experiments, it seems that this choice is numerically manageable
for given tolerances ε that are equal to or larger than about 10−7, the space Λm

becomes in general unnecessarily large due to the very pessimistic factor θ(μ). In
actual practice it seems sufficient to choose q = 1 and, say, p = 2 to obtain a relative
approximation error |||u(μ)− um(μ)|||μ/|||u(μ)|||μ which lies below the given tolerance
ε. We also check on a test parameter sample μ ∈ Ξtest that the desired accuracy
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is indeed achieved; the latter thus serves as an empirical a posteriori substitute for
the pessimistic a priori theoretical result of Theorem 4.4. Note that, assuming an
exponential decay of the deviation during the spectral greedy algorithm, the choice
q = 1 and p = 2 roughly corresponds to using half the number of basis functions
as required by (4.15) for a provable convergence. In spite of this relaxed termination
criterion, numerical experiments confirm that the choice q = 1 and p = 2 indeed yields
excellent approximation results.

4.5. Convergence of the port-reduced static condensation procedure
based on a port space generated by the spectral greedy. We consider the
parameter-independent port space Λm constructed by the spectral greedy Algorithm
4.1. Exploiting the design of the spectral greedy algorithm, we are able to prove the
convergence of the port-reduced sc approximation as stated in the following theorem.
Note that the theorem supposes the choice p > q ≥ maxμ∈Ξ θ(μ), which is not the
best choice in practice, as described in the previous paragraph.

Theorem 4.4 (convergence of the port-reduced sc procedure). Let u(μ) be the
exact solution of (2.3) and um(μ) the sc approximation as defined in (4.6). Moreover,
let ε be a given tolerance which enters the spectral greedy Algorithm 4.1 as an input
parameter, and Ξ ⊂ D the finite train sample employed in Algorithm 4.1. If we choose
p > q ≥ maxμ∈Ξ θ(μ), then there holds for each μ ∈ Ξ and any given tolerance ε > 0

(4.17) |||u(μ)− um(μ)|||μ ≤ ε|||u(μ)|||μ.
Proof. We provide only the basic idea at this point; for the complete proof, see

Appendix B. First, we use Céa’s lemma to infer |||u(μ)−um(μ)|||μ ≤ |||u(μ)−ûm(μ)|||μ,
where ûm(μ) lies in the same space as um(μ). Then we introduce a spectral approx-
imation as in the proof of Proposition 3.8 corresponding to the optimal port space
Λn,fRB(μ) and apply the triangle inequality. Choosing the coefficients of the spectral
approximation appropriately allows us to use (3.11). Subsequently, we choose the
coefficients of ûm(μ) such that we can exploit that the spectral greedy Algorithm 4.1

ensures that maxμ∈ΞE(S(Λn,fRB(μ)),Λ
m) ≤ ε/((p− q)ε+ pC2(Ω, μ)c(μ, μ̄)).

5. Generalization to arbitrary systems. In this section, we outline the
changes that have to be implemented from both an algorithmic and an analytic point
of view if we now take into account that Ω—and thus our component pair—is actually
part of a large system of many components associated with Ω̂. To allow a maximal
topological flexibility in the online stage where the system is assembled, we do not
in general know the size, the composition, or the shape of the system in the offline
stage during which we prepare the reduced model. Therefore, to construct the port
spaces, we consider in the offline stage component pairs associated with every possible
configuration at a port that may be encountered in the online system. We are thus
in the situation of the preceding sections: We consider a pair of two subdomains, Ω1

and Ω2, that share one port and form the domain Ω, which is in turn a subdomain of
a larger domain Ω̂.8

To avoid technical details we first present the generalized results for systems of
I components that have the same geometry, have the same port type, and have two
ports, and where all component pairs that share a port have the same geometry. We
describe briefly at the end of this section how the procedures and theoretical results

8Note, however, that if it is known already in the offline stage that, say, a component (type)
will not intersect with the boundary of the computational domain of the online system, we may also
consider systems of more than two components for the generation of the port modes.
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can be adjusted to the general case. We abuse notation and denote the exact solution
again by u(μ) and the port-reduced sc approximation by um(μ). The energy norm

|||·|||μ is then defined as |||v|||μ := (
∑I

i=1|||v|||2μ,i)1/2 for v ∈ [H1(Ω̂)]3. Finally, we
introduce a set Π which contains all ports within the online system and denote an
element of Π by Γ. Super- or subscripts Γ indicate the correspondence of a quantity
or function to that specific port.

Thanks to these assumptions it is sufficient to perform the spectral greedy al-
gorithm for one component pair. Following the procedure described in sections 3
and 4, we construct for all μ ∈ Ξ an optimal port space Λn,fRB(μ). Motivated by
the following a priori bound, whose proof is provided in Appendix B, the sizes
of the port spaces Λn,fRB(μ) in the spectral greedy algorithm are chosen such that

Γpc(μ, μ̄)C̃1(Ω, μ)
√
λn+1(μ) ≤ (1 − q

p )ε. Here, Γp is an upper bound for the number
of ports in the online system.

Corollary 5.1 (a priori bound for systems). Let u(μ) be the (exact) solution

and unΓ(μ) an sc-type approximation which uses the optimal port space ΛnΓ,f
RB,Γ(μ) for

each port Γ ∈ Π. Then we have the following a priori error bound:

(5.1)
|||u(μ)− unΓ(μ)|||μ

|||u(μ)|||μ
≤ Γpmax

Γ∈Π

(
cΓ(μ, μ̄) C̃Γ,1(ΩΓ, μ)

√
λΓ,n+1(μ)

)
.

Here, the constant C̃Γ,1(ΩΓ, μ) depends only on the configuration of the component
pair and not on the global system or on u(μ).

The spectral greedy algorithm then proceeds as described in section 4.4 and
terminates if we have for all μ ∈ Ξ that E(S(Λn,fRB(μ)),Λ

m) ≤ ε/((p − q)ε +

pΓpC̃2(Ω, μ)c(μ, μ̄)). It returns a parameter-independent port space Λm which is
used for the sc procedure on all ports in the online system. Based on that we can also
show the convergence of the port-reduced sc approximation for systems as stated in
the following corollary, whose proof is given in Appendix B.

Corollary 5.2 (convergence of the port-reduced sc procedure for systems). Let
u(μ) be the exact solution and um(μ) the sc approximation. Moreover, let ε be a
given tolerance which enters the spectral greedy algorithm as an input parameter, and
Ξ ⊂ D the finite train sample employed in the spectral greedy algorithm. If we choose
p > q ≥ maxμ∈Ξ θ(μ), then there holds for each μ ∈ Ξ and any given tolerance ε > 0

(5.2) |||u(μ)− um(μ)|||μ ≤ ε|||u(μ)|||μ.

Note that, thanks to the expected rapid decay of the higher eigenfunctions in
the parametrized transfer eigenvalue problem in the interior of Ω, we anticipate in
actual practice a much better scaling of the approximation error in |Π|, which is
demonstrated in the numerical examples in section 6.

Finally, we briefly address arbitrary systems. In the event that we want to allow,
say, P different port types in the online system, we apply at the offline stage the spec-
tral greedy Algorithm 4.1 separately for each different port type and construct P differ-
ent optimal spaces. The port spaces in each spectral greedy algorithm are constructed
such that PΓjpc(μ, μ̄)C̃j1(Ω, μ)

√
λn+1(μ) ≤ (1 − q

p )ε is satisfied for all j = 1, . . . ,P .
Here, Γjp denotes an upper bound for the number of ports of port type j that are ex-
pected in the online system. Moreover, one requires the spectral greedy algorithm to

stop if maxμ∈ΞE(S(Λn,fRB(μ)),Λ
m) ≤ ε/((p− q)ε+ p

∑P
j=1 Γ

j
pC̃2

j
(Ω, μ)c(μ, μ̄)) holds.
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Note that due to the definition of the inner product (·, ·)Γ, two ports that have
the same geometry but whose associated component pairs have a different geometry
or PDEs with different coefficient functions are considered as being of different port
type. However, this can be relaxed by considering a different inner product on the
ports which is continuous with respect to the ‖ · ‖Γ-norm.

If one wants to consider components that have more than two ports, one just has
to increase the number of ports on which arbitrary Dirichlet boundary conditions are
considered in the PDE and the transfer eigenvalue problem. The thresholds in the
spectral greedy algorithm in lines 3 and 6 do not need to be changed unless having
more than two ports within the components increases the number of port types.

Finally, we emphasize that systems of arbitrary shape can be treated as long as
the ports do not intersect. As indicated above the generalization to this case is the
subject of a forthcoming paper. Note that although the determination of the exact
thresholds in the spectral greedy algorithm can be challenging, the fact that numerical
experiments show only a (very) weak dependence on |Π| might indicate that in actual
practice it might not be necessary to employ the exact thresholds, but rather a (rough)
estimate to obtain a port space with excellent approximation properties.

6. Numerical experiments. In this section we demonstrate the excellent ap-
proximation properties of the (quasi-)optimal port spaces Λn,fRB(μ) and Λm. The focus
of section 6.2 is the analysis of the eigenvalues and eigenfunctions of the transfer
eigenvalue problem; we show the very rapid and exponential convergence of the eigen-
values for an I-beam with a crack. In section 6.3 we provide a thorough investigation
of the spectral greedy Algorithm 4.1 and demonstrate for a stiffened plate the very
fast and exponential convergence of the port-reduced sc procedure based on Λm. We
begin in section 6.1 with a short outline of a possible computational realization of the
spectral greedy algorithm. Our implementation is based on the finite element library
libMesh [27] and uses rbOOmit [28]. For the solution of the (generalized) eigenvalue
problems we have employed the (generalized) self-adjoint eigensolver of the Eigen

library [13]. Note finally that we employ also for approximated quantities the same
notation used until now to improve readability.

6.1. Computational realization of the spectral greedy algorithm. To
compute an approximation of the parametrized transfer eigenvalue problems, we em-
ploy the scRBE method [12, 22, 41]. In detail, we use a Petrov–Galerkin formu-
lation9 both to compute 2NΓ approximations of the solutions u(μ) ∈ [H1(Ω)]3 of
a(u(μ), v;μ) = 0 and of the functions Φf (μ). Recall that NΓ denotes the number of
DOFs on Γ1,Γ2,Γ12, respectively, and note that we compute for every basis function
on Γ1 ∪ Γ2 an associated a-harmonic solution as indicated in section 3.2. The toler-
ance for the greedy algorithm to construct the RB approximations within the scRBE
method has been set to 10−7, and we use all constructed RB basis functions such that
the RB approximation does not affect the convergence behavior.

Moreover, we have used the constants Γp = C1(Ω, μ) = C2(Ω, μ) = 1 in the
numerical experiments. Furthermore, we have employed q = 1 and p = 2 in the nu-
merical experiments, adjusting the tolerance ε by assessing the relative approximation
error for certain parameters in a test training sample. Note that the eigenvalue prob-
lems (4.12) are only of size n+7×n+7 and can therefore efficiently be solved by, say,
a direct solver for each μ ∈ Ξ. We note finally that in general the computation of the
optimal port spaces Λn,fRB(μ) for all μ ∈ Ξ in line 3 requires far more computational
time than the subsequent while loop.

9For the exact formulation and a comparison with a Galerkin formulation, see [41].
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cracked I-Beam; same

cracked I-Beam; diff

solid beam, NΓ = 108

solid beam, NΓ = 363

Fig. 6.1. Eigenvalues λj(μ) for the solid beam and the I-beam with two cracks on the same and
different flanges for Ei = Er

i = 1, i = 1, 2.

(a) NΓ = 108 (b) NΓ = 363

Fig. 6.2. Plots of (χsp
4 (μ))3 for the solid beam, E1 = E2 = Er

1 = Er
2 = 1 and FE port space

dimensions (a) NΓ = 108 and (b) NΓ = 363. Note that (χsp
4 (μ))1 and (χsp

4 (μ))2 are negligible and
the superscript j indicates here the jth component of the vector.

6.2. Analysis of the transfer eigenvalue problem for systems of beams.
First, we analyze the eigenvalues and eigenfunctions of the (parametrized) transfer
eigenvalue problem for a solid beam and subsequently an I-beam with an internal
crack.

In detail we consider a two-component system of two identical solid beam compo-
nents and thus components with a separable geometry: Ω1 = (−0.5, 0.5)×(−0.5, 0.5)×
(0, 5) and Γ1 = (−0.5, 0.5)× (−0.5, 0.5)× {0}. We compare two different FE discre-
tizations of N = 3348 and N = 22143 DOFs per component and NΓ = 108 and
NΓ = 363, respectively. Recall that N was introduced in section 3.2. Moreover, we
consider Ei = Eri = 1, i = 1, 2. First, we observe a very rapid convergence of the eigen-
values yielding λ7(μ) < 10−13 for both discretizations (see Figure 6.1), demonstrating

the possible good approximation properties of Λn,fRB(μ). Recall that the eigenvalues
depicted in Figure 6.1 do not correspond to the rigid body modes, which must be in-
cluded in addition (see the discussion after Remark 3.6). Additionally, we see that the
difference between the eigenvalues for the two FE discretizations is relatively small;
the largest relative difference is encountered for the third eigenvalue and amounts to
0.1608. Comparing the spectral modes χsp4 (μ) for the two discretizations shows that
in spite of the relatively coarse mesh in Figure 6.2(a), which affects the shape of the
function, the essential behavior of the spectral mode is already captured for NΓ = 108.
We shall thus restrict our attention to this computationally more convenient coarser
mesh.
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Fig. 6.3. Component mesh for the I-beam with a crack.

Next, we consider an I-Beam component with an internal crack as depicted in
Figure 6.3 to demonstrate how the proposed method accommodates nonseparable and
irregular geometries. The underlying FE discretization has N = 20490 DOFs (for one
component) and a port space dimension of NΓ = 507. We connect two identical
cracked I-beam components to generate a port space and consider Ei = Eri = 1,
i = 1, 2. The extremely rapid convergence of the eigenvalues λj(μ), j = 1, . . . , n, both
for an I-beam with two cracks on the same flange and an I-beam where the two cracks
are on different flanges can be observed in Figure 6.1. For instance, for the former
we obtain λ9(μ) ≈ 1.0152 · 10−8. In light of Proposition 3.8, this demonstrates the

excellent approximation properties of the port spaces Λn,fRB(μ).
Finally, we compare the spectral modes generated by the spectral greedy Al-

gorithm 4.1 with other port modes, demonstrating the superior convergence of the
former. In detail, we compare the relative error of the port-reduced sc approximation
for port spaces comprising “Legendre polynomial”-type functions10 [11], empirical
port modes constructed by a pairwise training algorithm11 [11, 12], and the spectral
modes introduced in this paper. We consider the FE discretization with N = 3348
DOFs and Di = [1, 10]× [1, 1]× [−1, 1]× [−1, 1]× [−1, 1] and thus a Young’s modulus
which is uniform in each subdomain but possibly different in the two components.
Recall that we prescribe the same gravitational vector g in both components. Within
the spectral greedy algorithm we have considered 200 parameter values sampled from
the uniform distribution over D and ε = 1 · 10−6. On average the port spaces Λn,fRB(μ)
have had a size of 13.65, while the largest and smallest sizes encountered have been
14 and 13, respectively. Finally, the resulting parameter-independent port space Λm

has a size of 56. As the basis functions of the parameter-dependent port spaces Λn(μ)
vary only slightly for different μ ∈ D, it seems that a significant part of the basis
functions of Λm have been added during the spectral greedy algorithm to represent
the right-hand side f(·;μ) associated with g.

In the online stage we consider Ei = Eri = 1, i = 1, 2, g = (0, 0, 0)T , and prescribe
uD,1 = (0, 0, 0)T and uD,2 = (1, 1, 1)T , recalling that uD,i ∈ [H1/2(Γi)]

3 accounts for
(non)homogeneous Dirichlet boundary conditions. We observe in Figure 6.4 that the
Legendre modes perform by far the worst, demonstrating that including information
on the solution manifold on the ports in the basis construction procedure can signif-
icantly improve the approximation behavior. We remark that the Legendre modes

10Note that each component of the displacement is the solution of a scalar singular Sturm–Liouville
eigenproblem.

11Following the notation in [12] we have chosen Nsamples = 500 and γ = 3 in the pairwise training
algorithm.
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Fig. 6.4. |||u(μ) − um(μ)|||μ/|||u(μ)|||μ for the Legendre, empirical, and spectral port modes for
the solid beam.

will perform even worse in the case of less regular behavior on the port, which further
justifies the need for problem-specific port spaces in the sense of model reduction. The
empirical modes and spectral modes exhibit a comparable convergence until m = 17,
but for m > 17 the relative error in the spectral approximation is one order of mag-
nitude smaller than that of the empirical port mode approximation. This can be
explained by the fact that, thanks to its conception, the pairwise training algorithm
is able to identify and include the most significant modes, but (in contrast to the
spectral greedy algorithm) might have difficulties detecting subtle modes that affect
the shape of the function at the port Γ12 only slightly. Note that the temporary
stagnation of the relative error for m = 7, . . . , 17 for the spectral modes is due to the
fact that the spectral greedy prepares the port space for all possible boundary con-
ditions and parameter configurations. Thus for the boundary conditions considered
here some spectral modes, as, say, a mode related to a twisting (torsion) of the beam,
are not needed for the approximation.

6.3. Demonstration of the spectral greedy algorithm for a simplified
model for ship stiffeners. For motivation purposes, we first consider a plate
consisting of two components with Ω1 = (−0.7, 0.7) × (−0.05, 0.05) × (−0.6, 0.6),
Ω2 = (0.7, 1.4)× (−0.05, 0.05)× (−0.6, 0.6), Γ1 = {−0.7}× (−0.05, 0.05)× (−0.6, 0.6),
Γ2 = {1.4}× (−0.05, 0.05)× (−0.6, 0.6), and uniform Young’s modulus Ei = Eri = 1,
i = 1, 2, g = (0, 0, 0)T . We apply zero Dirichlet boundary conditions on Γ1 and
η4|Γ2/‖η4|Γ2‖Γ2 = (x2, 0, 0)

T /‖η4|Γ2‖Γ2 on Γ2. We observe that the plate sags in the
interior of the domain (see Figure 6.5(a)), where Γ2 can be seen in the foreground of
the picture. To increase the stiffness and stability of plates or shells, it is a common
engineering practice to attach stiffeners such as beams (see, for instance, [43] and
references therein). In this subsection we consider a simplified ship stiffener compo-
nent as depicted in Figure 6.5(c) with Ω2 = (0.7, 1.4) × (−0.05, 0.05) × (−0.6, 0.6)
and Γ2 = {1.4} × (−0.05, 0.05)× (−0.6, 0.6), the latter indicated in yellow, allowing
Young’s modulus ratio Eri to vary between 1 and 20 in the dark (red) shaded areas.
Note that for Eri = 1 we obtain the setting as considered in the beginning of this
subsection. The underlying FE discretization of Ω2 is also the same as above and
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(a) Er
i = 1 (b) Er

i = 20

(c) ship stiffener component

Fig. 6.5. Plots of the magnitude of the displacement for a (a) nonstiffened and (b) stiffened
plate for the motivating example at the beginning of section 6.3. (c) Component mesh of the ship
stiffener; the port Γ2 is indicated in yellow. In the dark (red) shaded bands, Young’s modulus (ratio)
may be varied between 1 and 20. (Color available online.)
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0.01e−j

Fig. 6.6. Eigenvalues λj(μ) for different Young’s modulus ratios Er
i , i = 1, 2.

has N = 13125 DOFs and a port space with dimension NΓ = 375. We then connect
two ship stiffener components, prescribe the same Dirichlet boundary conditions as
above, and again prescribe g = (0, 0, 0)T , Ei = 1, but Eri = 20, i = 1, 2. Now we see
in Figure 6.5(b) that the deflection of the plate (observed for the uniform Young’s
modulus) has disappeared to a great extent. We would therefore expect a faster con-
vergence of the eigenvalues λj(μ) of the parametrized transfer eigenvalue problem for
the stiffened plate, which can indeed be seen in Figure 6.6. In general, we observe
for the ship stiffener application an exponential convergence of order ≈ e−j of the
eigenvalues λj(μ), demonstrating again the outstanding approximation properties of

Λn,fRB(μ).
Next, we analyze the parameter selection of the spectral greedy Algorithm 4.1 and

provide in this context also a comparison of the eigenfunctions χspj (μ). We consider
D = [1, 1]× [1, 20]× [−0.1, 0.1]× [−0.1, 0.1]× [−0.1, 0.1], a training set Ξ of size 250,

and ε = 2 · 10−6. On average the port spaces Λn,fRB(μ) have had a size of about 35.5
and the maximal encountered size has been 38. In Figure 6.7(a) we plot the training
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Fig. 6.7. (a) The training set Ξ ⊂ D (crosses) and the parameters selected during the spectral

greedy algorithm (dots). (b) The behavior of E(S(Λn,f
RB(μ)),Λ

m) during the spectral greedy algorithm.

set Ξ (crosses) and indicate the parameters which are selected by the spectral greedy
algorithm with dots; the size of the dots scales linearly with the number of times a
parameter has been selected. First, we observe that the configurations with a small
Young’s modulus ratio and especially the configuration with the smallest Young’s
modulus ratios Er1 = 1.0214, Er2 = 1.1085 in Ξ are selected rather often. For those
configurations the spectral greedy algorithm chooses in particular higher membrane,
bending, or torsional modes—modes that have the same shape as a higher lateral or
vertical bending mode or torsional mode of a beam with free ends12 (see [45]). This
seems plausible, as those modes cannot be found in the port spaces of, say, the con-
figurations Eri = 20 and Er1 = 10 and Er2 = 13. Note that this is consistent with the
more uniform behavior of the stiffened plate, as mentioned at the beginning of this
subsection. For configurations with a relatively high Young’s modulus ratio, the space
Λm is mainly enhanced with lower membrane, bending, or torsional modes or defor-
mations such as a simultaneous shrinking in x3 and enlargement in the x2-direction.
Moreover, we observe a strong coincidence of the spectral modes of the configurations
Eri = 20 and Er1 = 10 and Er2 = 13. This might explain why the spectral greedy

algorithm chooses relatively few functions of port spaces Λn,fRB(μ) associated with a
parameter configuration where both Er1 and Er2 lie in the interval [8, 16].

Finally, we observe in Figure 6.7(b) a very rapid and exponential convergence

of E(S(Λn,fRB(μ)),Λ
m) during the spectral greedy algorithm such that the port space

Λm is of a relatively small dimension of 79. This might be explained by the fact
that, apart from the above-stated differences, the port spaces Λn,fRB(μ) share (albeit
possibly disturbed) lower bending, membrane, and to some extent torsional modes.
In particular, we observe little variation for the first nine modes. We thus infer that
at least for the current numerical example a variation in the parameter affects the
port spaces Λn,fRB(μ) and especially the lower spectral modes only moderately.

Next, we analyze the convergence of the relative error of the port-reduced sc

12Note that we use here the term membrane displacement in the sense of [8], i.e., that the respective
displacement is symmetric with respect to the midsurface of the plate.
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approximation. First, we compare the convergence for Legendre modes, empirical port
modes, and spectral port modes for a system of two components with Ei = Eri = 1,
i = 1, 2, g = (0, 0, 0)T , uD,1 = (1, 1, 1)T , and uD,2 = (0, 0, 0)T . The error decay for the
Legendre modes is very slow and in particular much slower than that of the empirical
and spectral port modes. For instance, for m = 50 the relative error for the Legendre
modes still amounts to about 7%, while for m = 18 the relative error of the empirical
and spectral modes has already dropped to about 0.002. The convergence for the
empirical modes and the spectral modes is comparable. This is maybe due to the
fact that for the ship stiffener application the boundary conditions seem to affect the
solution u(μ) much more than for the solid beam, making it simpler for the pairwise
training algorithm to identify modes associated with the boundary conditions. We
expect that for more complex boundary conditions the spectral modes converge faster
than the empirical modes.13 This can indeed be observed for a system 1 of two
components for which we prescribe Ei = Eri = 1, i = 1, 2, g = (0, 0, 0)T , uD,1 =
5η6|Γ1/‖η6|Γ1‖Γ1 , and uD,2 = −2.5η6|Γ2/‖η6|Γ2‖Γ2 ; note that the prescribed boundary
conditions cause a rotation of the ports Γ1 and Γ2 in the planes of the ports but in
relative opposite direction, causing a twisting of the plate. Comparing the relative
approximation error for the empirical and spectral port modes in Figure 6.8(a), we
observe that for the empirical modes only two port modes seem to cause a significant
reduction of the error, as opposed to five for the spectral modes. This may be because
the higher torsional modes that reduce the error for the spectral modes do not lie
within the span of the empirical port modes.

In order to investigate the approximation behavior of the spectral modes for
more complex boundary conditions, we consider a system 2 with Ei = 1, i = 1, 2.
First, we compare the convergence of the relative error |||u(μ) − um(μ)|||μ/|||u(μ)|||μ
for g = (0,−0.04, 0)T , uD,1 = 0.1

∑10
j=1 χj , uD,2 = 0.1(−χ1 + χ2 − χ3 − χ4 − χ5 +

χ6+χ7−χ8+χ9+χ10),
14 and the Young’s modulus ratios Eri = 1, Eri = 20, i = 1, 2,

Er1 = 10, Er2 = 13, and Er1 = 1, Er2 = 20; note that we thus have μ /∈ Ξ for all four
parameter configurations. We observe in Figure 6.8(b) for those four parameter values
a very rapid and exponential convergence. A very similar convergence is obtained for
a parameter configuration Er1 = 9.443, Er2 = 13.46, g = (−0.04,−0.0009,−0.0434)T ,
which lies in Ξ but is not selected by the spectral greedy algorithm, and a param-
eter configuration Er1 = 1.6796, Er2 = 19.112, g = (0.0278, 0.0852, 0.0448)T that
has been chosen by the spectral greedy algorithm (see Figure 6.8(b)), where we con-
sider uD,1 = 0.1(χ1 − χ2 + χ3 + χ4 − χ5 + χ6 − χ7 + χ8 + χ9 − χ10) and uD,2 =
0.1(−χ1−χ2−χ3−χ4+χ5+χ6−χ7−χ8+χ9−χ10). Finally, the convergence for the
parameter configuration Er1 = 9.443, Er2 = 13.46, g = (−0.04,−0.0009,−0.0434)T ,
which is in Ξ, and the parameter Er1 = 10, Er2 = 13, g = (−0.04,−0.0009,−0.0434)T ,
which does not lie in Ξ, with the same Dirichlet boundary conditions nearly coincides.
This demonstrates also for the ship stiffener application the very good approximation
properties of the spectral port modes and that the spectral greedy Algorithm 4.1
is able to build a parameter-independent port space that yields a very rapid and
exponential convergent sc approximation. We may also infer that although the con-

13Note that during the pairwise training algorithm, we prescribe for each component ul
D,i =

∑NΓ/3
k=1 (rLk)/k

γ [11, 12], i = 1, 2, l = 1, 2, 3, where r is a random number, γ a smoothing parameter,

and Lk the Legendre-type function introduced in section 6.2. Thanks to the factor k−γ , the higher
Legendre modes are penalized.

14Note that prescribing a linear combination of the spectral basis {χi}mi=1 on Γ1 and Γ2 does not
imply u(μ)|Γ12

∈ Λm.
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Fig. 6.8. |||u(μ)−um(μ)|||μ/|||u(μ)|||μ for the empirical and spectral port modes for (a) system 1,
(b) system 2 and varying parameters μ ∈ D, and (c) system 3 and an increasing number of ports
in the global system |Π|.

vergence result in Theorem 4.4 only applies for parameters in Ξ, the convergence will
not worsen for μ /∈ Ξ for Ξ sufficiently rich. Finally, we emphasize that in contrast to
the eigenvalues of the transfer eigenvalue problem, the convergence of the sc approxi-
mation based on the port space constructed by the spectral greedy algorithm is only
slightly affected by the choice of Eri .

To investigate the convergence of the relative error for an increasing number
of ports |Π| within the global system, we consider a system 3 of I components,
Ei = Eri = 1, i = 1, . . . , I, and g = (0, 0, 0)T . Similarly to the previous example,
we prescribe uD,1 = 0.1(χ1 − χ2 − χ3 + χ4 − χ5 − χ6 + χ7 − χ8 + χ9 − χ10) and
uD,2 = 0.1(−χ1 + χ2 − χ3 − χ4 − χ5 + χ6 + χ7 − χ8 + χ9 + χ10). We observe in
Figure 6.8(c) that the convergence for |Π| = 2, 4, 8 is nearly the same and that a
linear scaling in the number of ports cannot be detected.

7. Conclusions. We have proposed port spaces for sc approximations that are
optimal in the sense of Kolmogorov [29]. To this end we have introduced a (compact)
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transfer operator that acts on the space of harmonic extensions on a component pair
and maps the traces on the ports on the boundary of the two-component system to
the shared port. It can then be shown, similarly to [3], that the optimal port space
is spanned by the lowest eigenfunctions of the transfer eigenvalue problem of the
composition of the transfer operator and its adjoint. Additionally, we have introduced
a spectral greedy algorithm that constructs a quasi-optimal [9] parameter-independent
port space from the union of all parameter-dependent port spaces. Finally, we have
proved, for certain algorithmic choices, that the spectral greedy yields, for any given
tolerance and anticipated number of ports in the online system, an sc approximation
which is bounded (for all parameters in a rich train set) by the prescribed tolerance.
The theoretical results have been presented for exact local approximation spaces.
Taking into account errors due to FE and RB approximation is the subject of future
work.

The numerical experiments demonstrate an extremely rapid and exponential con-
vergence of the eigenvalues for a simple beam of square cross-section, an I-beam with
an internal crack, and a simplified ship stiffener component. Furthermore, we have
observed that the spectral port spaces yield a very rapid and exponentially convergent
sc approximation, also for parameters outside the train set. This rapid convergence
represents a substantial improvement over singular Sturm–Liouville expansions, and
also, particularly for higher accuracies, an improvement over the port spaces gener-
ated by the empirical pairwise training procedure of [11]; furthermore, and unlike the
method of [11], our approach allows us to control the accuracy of the sc approximation
a priori during the offline stage.

Appendix A. Rigid body modes. We consider the local spaces of rigid body
modes

(A.1) RBΩi := {a+ b × (x1, x2, x3)
t, a, b ∈ R3, x = (x1, x2, x3)

t ∈ Ωi}, i = 1, 2,

and for x = (x1, x2, x3)
t ∈ Ωi, i = 1, 2, the following basis:

η1(x1, x2, x3) = (1, 0, 0), η2(x1, x2, x3) = (0, 1, 0), η3(x1, x2, x3) = (0, 0, 1),

η4(x1, x2, x3) = (x2,−x1, 0), η5(x1, x2, x3) = (x3, 0,−x1), η6(x1, x2, x3) = (0, x3,−x2).

(A.2)

Note that since each of these modes has zero strain, the functions η1|Ωi , . . . , η6|Ωi

are also a basis for the nullspace of the bilinear forms ai(·, ·), i = 1, 2. This can be
exploited to represent the functions in RBΩi , i = 1, 2, by the a-harmonic extensions
(2.10) of the restrictions of the rigid body modes to the ports, as stated in the following
lemma.

Lemma A.1. There holds RBΩi ⊂ span{Li,Γiηk|Γi ,Li,Γ12ηk|Γ12 , k = 1, . . . , 6},
i = 1, 2.

Proof. Thanks to the definition of the a-harmonic extensions, we have for i = 1, 2,
k = 1, . . . , 6(Li,Γiηk|Γi + Li,Γ12ηk|Γ12

)|Γi = ηk|Γi ,
(Li,Γiηk|Γi + Li,Γ12ηk|Γ12

)|Γ12 = ηk|Γ12 ,

ai(ηk, v) = ai(Li,Γiηk|Γi + Li,Γ12ηk|Γ12 , v) = 0 ∀v ∈ Xi;0.

We consider the following problem: Find w ∈ Xi;ηk := {v ∈ [H1(Ω)]3 : v|Γ12 =
ηk|Γ12 , v|Γi = ηk|Γi} such that

(A.3) ai(w, v) = 0 ∀v ∈ Xi;0, i = 1, 2.
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This problem is well-posed thanks to Korn’s inequality and therefore has a unique
solution. As there holds ηk|Ωi ∈ Xi;ηk , i = 1, 2, k = 1, . . . , 6, we may thus conclude
that we have

ηk = Li,Γiηk|Γi + Li,Γ12ηk|Γ12 almost everywhere in Ωi.

Appendix B. Proofs. First, we define an a-harmonic extension operator
E : [H1/2(Γ1 ∪ Γ2)]

3 → [H1(Ω)]3 of (arbitrary Dirichlet boundary) functions ξ ∈
[H1/2(Γ1 ∪ Γ2)]

3 via

a(Eξ, v) = 0 ∀v ∈ X0 and (Eξ)|Γ1∪Γ2 = ξ.(B.1)

B.1. Proofs of section 3.

Lemma B.1. For w ∈ H there holds w = E(w|Γ1∪Γ2) almost everywhere in Ω.

Proof. As w ∈ H = H̃/RB we can write w = w̃+wRB with w̃ ∈ H̃ and wRB ∈ RB.
Thanks to the linearity of the extension and the trace operator, it is sufficient to show
that w̃ = E(w̃|Γ1∪Γ2) and wRB = E(wRB |Γ1∪Γ2) almost everywhere in Ω. From the
definition of the space H̃ and properties of the trace operator and the extension
operator E , we infer that E(w̃|Γ1∪Γ2) = E((E ξ̃)|Γ1∪Γ2) = E ξ̃, where w̃|Γi = ξ̃|Γi ,
i = 1, 2, for ξ̃ ∈ [H1/2(Γ1 ∪ Γ2)]

3. We may thus infer that w̃ = E(w̃|Γ1∪Γ2) almost
everywhere in Ω. Next, we consider the problem

a(E(wRB|Γ1∪Γ2), v) = 0 ∀v ∈ X0 and
(EwRB|Γ1∪Γ2

)|Γi = wRB|Γi , i = 1, 2.

(B.2)

First, we note that wRB lies in the kernel of the bilinear form a(·, ·) and thus satisfies
(B.2). As (B.2) is well-posed thanks to Korn’s inequality and the solution of (B.2) is
thus unique, we conclude that wRB = EwRB |Γ1∪Γ2 .

Proof of Lemma 3.4. Define a cut-off function ζ ∈ C1(Ω) with the following prop-
erties: 0 ≤ ζ ≤ 1, ζ ≡ 1 on Ω∗ and ζ ≡ 0 on Ω\Ω∗∗, and max1≤i≤3 | ∂ζ∂xi

| ≤ 1
� . Choosing

v = wζ2 as a test function in (3.7) yields
∫
Ω
E(x)∂w

i

∂xj
Cijkl

∂(wkζ2)
∂xl

dx = 0, and therefore

∫
Ω

E(x)
∂wi

∂xj
Cijkl

∂wk

∂xl
ζ2dx = −2

∫
Ω

E(x)
∂wi

∂xj
Cijkl

∂ζ

∂xl
ζwkdx

≤
(∫

Ω

E(x)
∂wi

∂xj
Cijkl

∂wk

∂xl
ζ2dx

)1/2(
4

∫
Ω

E(x)
∂ζ

∂xj
Cijkl

∂ζ

∂xl
wiwkdx

)1/2

.

Exploiting the properties of ζ, the definition of the stiffness tensor, and the definition
of E yields

E0

∫
Ω∗

∂wi

∂xj
Cijkl

∂wk

∂xl
dx ≤

∫
Ω

E(x)
∂wi

∂xj
Cijkl

∂wk

∂xl
ζ2dx

≤ ‖E‖[L∞(Ω)]3
12

2
1− ν

(1 + ν)(1 − 2ν)
‖w‖2[L2(Ω∗∗\Ω∗)]3 .

Proposition B.2. The operator P : HΓ1∪Γ2 → HΓ12 as defined in (3.6) is com-
pact.
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Proof. Let wm be a sequence inH which satisfies ‖wm|Γ1∪Γ2‖Γ1+‖wm|Γ1∪Γ2‖Γ2 ≤
C for some positive constant C <∞. Thanks to the definition of the ‖ · ‖Γ-norm we
thus have ‖wm|Γ1∪Γ2‖[H1/2(Γ1∪Γ2)]3 ≤ C, where we allow the constant C to change
within this proof. Employing the continuity of the extension operator E [30], we
thus obtain that the sequence E(wm|Γ1∪Γ2) is bounded with respect to the X-norm.
From Lemma B.1 we infer that also wm ∈ H is bounded with respect to the X-norm
and that we therefore may apply Korn’s inequality in the quotient space H to deduce
that ‖wm‖[H1(Ω)]3 ≤ C‖wm‖X . The Rellich compactness theorem then yields that the
sequence wm is bounded with respect to the L2-norm on Ω and has a subsequence wmn

which converges strongly in [L2(Ω)]3. Moreover, as the whole sequence wm is bounded
with respect to the X-norm, we have that the subsequence wmn also converges weakly
in [H1(Ω)]3 with respect to the X-norm to a limit w ∈ [H1(Ω)]3. From Lemma B.1
and the Lax–Milgram lemma, we infer that w ∈ H.

Next, we introduce the subdomains Ω∗ � Ω∗∗ � Ω2 with ∂Ω∗ ∩ Γ12 = Γ12

and dist(∂Ω∗ \ ∂Ω2, ∂Ω
∗∗ \ ∂Ω2) >  > 0. Thanks to Lemma B.1 the sequence

emn := (wmn − w) satisfies (3.7), and we may apply Lemma 3.4 to emn ∈ H to infer
that ∫

Ω∗

∂eimn

∂xj
Cijkl

∂ekmn

∂xl
dx+ ‖emn‖2[L2(Ω∗)]3 ≤ C‖emn‖2[L2(Ω)]3 .

This allows us to make use of Korn’s inequality in [H1(Ω∗)]3 and to conclude that

‖emn‖2[H1(Ω∗)]3 ≤ C
∫
Ω∗

∂eimn

∂xj
Cijkl

∂ekmn

∂xl
dx+ ‖emn‖2[L2(Ω∗)]3 .

From the trace theorem we infer that ‖emn |Γ12‖[H1/2(Γ12)]3 ≤ C‖emn‖[H1(Ω∗)]3 .
Thanks to the continuity of the extension operator Li,Γ12 [30], we obtain
‖Li,Γ12(emn |Γ12)‖Xi ≤ C‖emn |Γ12‖[H1/2(Γ12)]3 , i = 1, 2, and thus ‖emn |Γ12‖Γ12 ≤
C‖emn |Γ12‖[H1/2(Γ12)]3 . Combining these estimates results in ‖wmn |Γ12 −w|Γ12‖Γ12 ≤
C‖wmn −w‖[L2(Ω)]3 . Hence the subsequence wmn |Γ12 converges strongly in HΓ12 to a
limit w|Γ12 ∈ HΓ12 , which was to be proven.

Proof of Proposition 3.8. First, we assume that u /∈ RBΩ, because otherwise we
exploit Lemma A.1 to conclude that ‖u− un‖X = 0 and the estimate (3.24) is vacu-
ously true.

Next, we assume without loss of generality that the orthogonal projections of
ηj |Γ12 , j = 1, . . . , 6, on Λn in (3.12) and Φf |Γ12 on ΛnRB in (3.16) are zero. For the
sake of clarity we denote in this proof by ΦRB

j the a-harmonic extensions (see (2.14))

of χRB
j , j = 1, . . . , 6, and by Φspk the a-harmonic extensions of the functions χspk ,

k = 1, . . . , n, defined in (3.10). Next, we define the function unsp as

(B.3) unsp :=
2∑
i=1

(
bfi + Li,ΓiuD,i

)
+

6∑
j=1

uRB
sp,jΦ

RB
j +

n∑
k=1

unsp,kΦ
sp
k +Φf ,

where the coefficient of Φf has been chosen as ≡ 1 and the coefficients uRB
sp,j , u

n
sp,k ∈ R,

j = 1, . . . , 6, k = 1, . . . , n, will be specified below. Note that unsp lies in the same space
as un (to this end, compare (B.3) with (3.19)). As indicated above, we may then apply
Céa’s lemma to infer

(B.4) ‖u− un‖X ≤ ‖u− unsp‖X .
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Recall that we can write u = uf + ũ0, where uf and ũ0 solve (3.14), and that
there holds uf = bf + Φf . Similar to (2.9) and by exploiting (Li,Γi(μi)uD,i)|Γ12 = 0,
i = 1, 2, we can then represent u in the following way:

(B.5) u = Φf +
2∑
i=1

(
bfi + Li,ΓiuD,i + Li,Γ12 (ũ

0|Γ12)
)
.

We thus obtain

‖u− unsp‖2X =

∥∥∥∥∥
2∑
i=1

Li,Γ12(ũ
0|Γ12)−

6∑
j=1

uRB
sp,jΦ

RB
j −

n∑
k=1

unsp,kΦ
sp
k

∥∥∥∥∥
2

X

.(B.6)

Observe that the representations of the right-hand side have canceled. Next, we
address the representations of the rigid body modes. To that end we define uRB :=
arg infv∈RBΩ ‖ũ0 − v‖[H1(Ω)]3 for ũ0 ∈ H̃ and obtain that

(B.7) u0 := ũ0 − uRB ∈ H.

Then we choose the coefficients uRB
sp,j, j = 1, . . . , 6, in (B.3) such that there holds

6∑
j=1

uRB
sp,jχ

RB
j = uRB|Γ12 .

This allows us to conclude that

‖u− unsp‖2X =

∥∥∥∥∥
2∑
i=1

Li,Γ12 (ũ
0|Γ12)−

6∑
j=1

uRB
sp,jΦ

RB
j −

n∑
k=1

unsp,kΦ
sp
k

∥∥∥∥∥
2

X

=

∥∥∥∥∥
2∑
i=1

Li,Γ12

(
ũ0|Γ12 −

6∑
j=1

uRB
sp,jχ

RB
j −

n∑
k=1

unsp,kχ
sp
k

)∥∥∥∥∥
2

X

=

∥∥∥∥∥
2∑
i=1

Li,Γ12

(
ũ0|Γ12 − uRB|Γ12 −

n∑
k=1

unsp,kχ
sp
k

)∥∥∥∥∥
2

X

=
2∑
i=1

∥∥∥∥∥Li,Γ12

(
ũ0|Γ12 − uRB|Γ12 −

n∑
k=1

unsp,kχ
sp
k

)∥∥∥∥∥
2

Xi

=

2∑
i=1

∥∥∥∥∥Li,Γ12

(
u0|Γ12 −

n∑
k=1

unsp,kχ
sp
k

)∥∥∥∥∥
2

Xi

.

By exploiting the definition of the inner product (·, ·)Γ12 in (2.13) and the definition
of the transfer operator in (3.6), we arrive at

(B.8) ‖u− unsp‖2X =

∥∥∥∥∥u0|Γ12 −
n∑
k=1

unsp,kχ
sp
k

∥∥∥∥∥
2

Γ12

=

∥∥∥∥∥P (u0|Γ1∪Γ2)−
n∑
k=1

unsp,kχ
sp
k

∥∥∥∥∥
2

Γ12

.

Comparing the last term in (B.8) with (3.11) motivates us to choose
∑n

k=1 u
n
sp,kχ

sp
k

as the best approximation of P (u0|Γ1∪Γ2) in Λn, that is, to define the coefficients as
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unsp,k := (u0|Γ1∪Γ2 , ϕk|Γ1∪Γ2)Γ1∪Γ2 , k = 1, . . . , n, where the eigenfunctions ϕk have
been introduced in Proposition 3.5. We may thus conclude

(B.9) ‖u− un‖X ≤
√
λn+1 ‖u0|Γ1∪Γ2‖Γ1∪Γ2 .

Exploiting ‖u0|Γ1∪Γ2‖Γ1∪Γ2 ≤ C1(Ω) ‖u‖X (for the proof, see Lemma B.3) yields the
assertion.

Lemma B.3. Let u be the solution of (2.3), and let u0 be defined as in (B.7).
Then there holds

(B.10) ‖u0|Γ1∪Γ2‖Γ1∪Γ2 ≤ C1(Ω)‖u‖X ,
where the constant C1(Ω) depends on neither u nor un.

Proof. As u0 ∈ H we may apply Lemma B.1 to infer that u0 = Eu0|Γ1∪Γ2 , where
E has been defined in (B.1). Thanks to the Lax–Milgram lemma, we thus obtain

‖u0‖X = a(u0, u0) = min
{
a(v, v) : v ∈ [H1(Ω)]3, v|Γ1∪Γ2 = u0|Γ1∪Γ2

}
.

Therefore, there holds
(B.11)
‖u0‖X ≤ ‖v‖X for all functions v ∈ [H1(Ω)]3 that satisfy u0|Γ1∪Γ2 = v|Γ1∪Γ2 .

Recall that we can write u = uf + ũ0 = uf + u0 + uRB, where uf ∈ X0 = {v ∈
[H1(Ω)]3 : v = 0 on Γ1,Γ2}, yielding (u − uRB)|Γ1∪Γ2 = u0|Γ1∪Γ2 . We may thus
apply (B.11) to conclude ‖u0‖X ≤ ‖u− uRB‖X . As uRB has zero strain (see Appen-
dix A) and thus satisfies ‖uRB‖X = 0, we infer ‖u0‖X ≤ ‖u‖X and thus

‖u0|Γ1∪Γ2‖Γ1∪Γ2

‖u‖X ≤ ‖u
0|Γ1∪Γ2‖Γ1∪Γ2

‖u0‖X ≤ C1(Ω).

Note that the independence of the constant C1(Ω) on u follows from the trace theorem
and Korn’s inequality for the quotient space H.

B.2. Proofs of section 4.

Proof of Proposition 4.2. The assertion is obtained by following along the lines of
the proof of Proposition 3.8 and exploiting that, thanks to the Lax–Milgram lemma
and the corresponding energy minimizing principle similar to (B.11), we have that∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣Li,Γ12(μi)

(
u0(μ)|Γ12 −

n∑
k=1

unsp,kχ
sp
k (μ)

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
μ,i

(B.12)

≤
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣Li,Γ12(μ̄i)

(
u0(μ)|Γ12 −

n∑
k=1

unsp,kχ
sp
k (μ)

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
μ,i

.

Proof of Theorem 4.4. Let μ ∈ Ξ be fixed but arbitrary. Recall that we can
assume u(μ) /∈ RBΩ and that we can write

u(μ) = Φf (μ) +
2∑
i=1

(
bfi (μi) + Li,Γi(μi)uD,i + Li,Γ12(μi)(ũ

0(μ)|Γ12 )
)
,

where Φf (μ) is the a-harmonic extension of χf (μ) and ũ0 ∈ H̃(μ). For details,
we refer the reader to the proof of Proposition 3.8. Again, we define uRB(μ) :=
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arg infv∈RBΩ ‖ũ0(μ) − v‖[H1(Ω)]3 and obtain u0(μ) := ũ0(μ) − uRB(μ) ∈ H(μ). Next,
we introduce the auxiliary function

(B.13) ûm(μ) :=

2∑
i=1

(
bfi (μi) + Li,Γi(μi)uD,i

)
+

m∑
k=1

ûmk (μ)Φk(μ) +

6∑
k=1

ûRB
k (μ)Φk(μ),

recalling that {χ1, . . . , χ6} are obtained by orthonormalizing a basis for the rigid body
modes restricted to Γ12. The coefficients ûRB

k (μ), k = 1, . . . , 6, are thus defined such

that they satisfy
(∑6

k=1 û
RB
k (μ)Φk(μ)

)|Γ12 = uRB(μ)|Γ12 . The coefficients ûmk (μ),
k = 1, . . . ,m, will be specified later. We also introduce again a spectral approximation,

ûnsp(μ) := Φf (μ) +

n∑
k=1

(u0(μ)|Γ1∪Γ2 , ϕk(μ)|Γ1∪Γ2)Γ1∪Γ2Φ
sp
k (μ),

and shorten notation by setting

(B.14) unsp,k(μ) := (u0(μ)|Γ1∪Γ2 , ϕk(μ)|Γ1∪Γ2)Γ1∪Γ2 .

Proceeding similarly as in the proof of Proposition 3.8, we obtain

|||u(μ)− um(μ)|||μ ≤ |||u(μ)− ûm(μ)|||μ

≤
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

2∑
i=1

Li,Γ12(μi)(u
0(μ)|Γ12 ) + Φf (μ)− ûnsp(μ)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
μ

+

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ûnsp(μ)−

m∑
k=1

ûmk (μ)Φk(μ)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
μ

.

(B.15)

The first term in (B.15) can be treated as in the proof of Proposition 3.8, and we
obtain

|||u(μ)−um(μ)|||μ ≤ c(μ, μ̄)
√
λn+1(μ)‖u0(μ)|Γ1∪Γ2‖Γ1∪Γ2+

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ûnsp(μ)−

m∑
k=1

ûmk (μ)Φk(μ)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
μ

.

We recall that within the spectral greedy Algorithm 4.1 for all μ ∈ Ξ the spaces
Λn,fRB(μ) are computed such that there holds c(μ, μ̄)C1(Ω, μ)

√
λn+1(μ) ≤ (1 − q

p )ε.
We may thus conclude

|||u(μ)− um(μ)|||μ ≤
(
1− q

p

)
ε|||u(μ)|||μ +

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ûnsp(μ)−

m∑
k=1

ûmk (μ)Φk(μ)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
μ

.(B.16)

Exploiting the definition of Φk(μ) in (4.5), and the energy minimizing property of
Li,Γ(μi) as in (B.12), we may estimate the last term in (B.15) as follows:∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣ûnsp(μ)−

m∑
k=1

ûmk (μ)Φk(μ)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

μ

≤ c(μ, μ̄)2
∥∥∥∥∥ûnsp(μ)|Γ12 −

m∑
k=1

ûmk (μ)χk

∥∥∥∥∥
2

Γ12

.

Note that ûnsp(μ)|Γ12 = χf (μ) +
∑n

k=1 u
n
sp,k(μ)χ

sp
l (μ) ∈ Λn,fRB(μ), where u

n
sp,k(μ) has

been defined in (B.14). Recall that the spectral greedy Algorithm 4.1 ensures that
the space Λm is constructed such that we have

max
μ∈Ξ

E(S(Λn,fRB(μ)),Λ
m) = max

μ∈Ξ

{
sup

ρ∈Λn,f
RB(μ)

inf
ζ∈Λm

‖ρ− ζ‖Γ12

‖ρ‖Λn,f
RB(μ)

}
≤ ε

(p− q)ε+ pC2(Ω, μ)c(μ, μ̄)
.
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Choosing
∑m
k=1 û

m
k (μ)χk as the orthogonal projection of ûnsp(μ)|Γ12 on the space Λm

and thus defining the coefficients as ûmk (μ) := (ûnsp(μ)|Γ12 , χk)Γ12 , k = 1, . . . ,m, allows
us to infer
(B.17)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ûnsp(μ)−

m∑
k=1

ûmk (μ)Φk(μ)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
μ

≤ εc(μ, μ̄)

(p− q)ε+ pC2(Ω, μ)c(μ, μ̄)
‖ûnsp(μ)|Γ12‖Λn,f

RB(μ).

Thanks to inequalities (4.16) and (B.16), it thus remains to prove that

(B.18)
εc(μ, μ̄)θ(μ)

(p− q)ε+ pC2(Ω, μ)c(μ, μ̄)
‖ûnsp(μ)|Γ12‖Γ12 ≤

q

p
ε |||u(μ)|||μ,

where θ(μ) has been defined in (4.16). Thanks to (3.11) we have

‖ûnsp(μ)|Γ12‖Γ12 ≤ ‖ûnsp(μ)|Γ12 − u0(μ)|Γ12 − χf (μ)‖Γ12 + ‖u0(μ)|Γ12‖Γ12 + ‖χf(μ)‖Γ12

≤
√
λn+1(μ)‖u0(μ)|Γ1∪Γ2‖Γ1∪Γ2 + ‖u0(μ)|Γ12‖Γ12 + ‖χf(μ)‖Γ12 .

Exploiting that a(ũ0(μ), uf (μ);μ) = 0 and thus |||u(μ)|||μ ≥ |||uf (μ)|||μ and |||u(μ)|||μ ≥
|||ũ0(μ)|||μ = |||u0(μ)|||μ (see the supplementary materials for a proof), we obtain

c(μ, μ̄)θ(μ)‖ûnsp(μ)|Γ12‖Γ12

|||u(μ)|||μ
≤ θ(μ)

p

(
(p−q)ε+pc(μ, μ̄)

{
‖χf‖Γ12

|||uf (μ)|||μ
+
‖u0(μ)|Γ12‖Γ12

|||u0(μ)|||μ

})
.

(B.19)

Using the assumption p > q ≥ maxμ∈Ξ θ(μ) and exploiting that{
‖χf‖Γ12

|||uf (μ)|||μ
+
‖u0(μ)|Γ12‖Γ12

|||u0(μ)|||μ

}
≤ C2(Ω, μ)

with a constant C2(Ω, μ) that does not depend on u(μ) (see Lemma B.4) yields (B.18)
and thus the assertion.

Lemma B.4. Let uf(μ) ∈ X0 and ũ0(μ) ∈ X be the solutions of

(B.20) a(uf (μ), v;μ) = f(v;μ) ∀v ∈ X0 and a(ũ0(μ), v;μ) = 0 ∀v ∈ X0,

and recall u0(μ) = ũ0(μ)− arg infv∈RBΩ ‖ũ0(μ)− v‖[H1(Ω)]3 . Then there holds{
‖χf‖Γ12

|||uf (μ)|||μ
+
‖u0(μ)|Γ12‖Γ12

|||u0(μ)|||μ

}
≤ C2(Ω, μ)

with a constant C2(Ω, μ) that does not depend on u(μ).

Proof. The definition of the norm ‖ ·‖Γ12 , an energy minimizing argument similar
to (B.12), the definition of Φf (μ), and Lemma 4.1 yield

‖χf(μ)‖2Γ12
=

2∑
i=1

|||Li,Γ12 (μ̄i)χ
f (μi)|||2i ≤

2∑
i=1

|||Li,Γ12(μi)χ
f (μi)|||2i

= |||Φf (μ)|||2 ≤ |||Φf (μ)|||2μ.
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Recall that we have uf (μ) = Φf (μ) +
∑2
i=1 b

f
i (μi). Thanks to the the definition of

Li,Γ12(μi) in (4.4) and the fact that bfi (μi) ∈ Xi;0, there holds ai(Φ
f (μ)|Ωi , b

f
i (μi);μi)

= 0, i = 1, 2. We can thus infer that there holds |||uf (μ)|Ωi |||2μ,i = |||Φf (μ)|Ωi |||2μ,i +
|||bfi (μi)|||2μ,i, and as a consequence |||Φf (μ)|||μ ≤ |||uf (μ)|||μ and (‖χf (μ)‖2Γ12

/

|||uf (μ)|||μ) ≤ 1.

To estimate the term ‖u0(μ)|Γ12‖Γ12/|||u0(μ)|||μ we first introduce the functions

Li,Γ12 :=

[
3∑

k=1

Li,Γ12(μ̄i)ηk|Γ12

]
u0(μ), i = 1, 2.

Note that, thanks to (
∑3

k=1 ηk|Γ12) = (1, 1, 1)T and the definition of Li,Γ12 (μi)
in (4.4), there hold Li,Γ12 |Γ12 =

(Li,Γ12(μ̄i)(u
0(μ)|Γ12 )

) |Γ12 and Li,Γ12 |Γi =(Li,Γ12(μ̄i)(u
0(μ)|Γ12)

) |Γi = 0. Similarly as in the proof of Lemma B.3, we can
thus exploit the energy minimizing property of Li,Γ12(μ̄i)(u

0(μ)|Γ12 ) thanks to the
Lax–Milgram lemma:

‖u0(μ)|Γ12‖2Γ12
=

2∑
i=1

|||Li,Γ12 (μ̄i)(u
0(μ)|Γ12 )|||2i ≤

2∑
i=1

|||Li,Γ12 |||2i .

Exploiting that
∥∥(∑3

k=1 Li,Γ12(μ̄i)ηk|Γ12

)k∥∥
L∞(Ωi)

≤ 1, i = 1, 2, where the superscript

k denotes the kth component of the vector field, and using the product rule for
differentiation, Hölder’s inequality, and Young’s inequality, we may now continue
with our estimate as follows:

‖u0(μ)|Γ12‖2Γ12
≤ 2

(
|||u0(μ)|||2 + cΩcν‖u0(μ)‖2[L2(Ω)]3

)
,

where cΩ := maxi=1,2 maxj=1,2,3 |(
∑3

k=1 Li,Γ12(μ̄i)ηk|Γ12)
j |W 1,∞(Ωi) and cν =

3−3ν
(1+ν)(1−2ν) . If Ωi is not regular enough to provide boundedness of cΩ, we may

employ a suitable cut-off function instead of the a-harmonic extensions in Li,Γ12 .
Applying Korn’s second inequality on the quotient space H(μ) with a constant
cK and Lemma 4.1 yields ‖u0(μ)|Γ12‖Γ12 ≤ (2 + 2cΩcνc

2
K)1/2|||u0(μ)|||μ. Choosing

C2(Ω, μ) ≥ 1 + (2 + 2cΩcνc
2
K)1/2 concludes the proof.

B.3. Proofs of section 5.

Proof of Corollary 5.1. The proof can be carried out using the ideas of the proofs
of Proposition 3.8 and Theorem 4.4. We just remark that to obtain functions whose
restriction to a component pair is in the corresponding quotient space H(μ), one
has to introduce functions uΓRB(μ) := arg infv∈RB ‖ũ0(μ) − v‖[H1(ΩΓ)]3 and choose
the coefficients of the a-harmonic extensions of the rigid body modes of the spectral
approximation such that their traces match uΓRB(μ)|Γ on each port, respectively. Here,
ũ0(μ) solves (B.20) for the global system. Finally, the constant C̃Γ,1(ΩΓ, μ) depends
only on the configuration of the component pair thanks to Korn’s second inequality.

Proof of Corollary 5.2. Again, the statement can be proved using the same ideas
as in the proofs of Proposition 3.8 and Theorem 4.4. To show boundedness of the term∑

Γ∈Π ‖χfΓ(μ)‖Γ/|||uf (μ)|||μ appearing in the estimate which corresponds to (B.19),

one may introduce the functions uf,ΓRB(μ) := infv∈RB ‖uf(μ)−v‖[H1(ΩΓ)]3 . Here, u
f(μ)

solves (B.20) for the global system. Note that, thanks to uf (μ)|Γ = χfΓ(μ) and the
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orthogonality of χfΓ(μ) and the functions {χΓ,1, . . . , χΓ,6} with respect to the (·, ·)Γ-
inner product, we have ‖χf(μ)‖Γ ≤ ‖(uf (μ)−uf,ΓRB(μ))|Γ‖Γ on all ports that do not lie

on the boundary of Ω. The boundedness of
∑

Γ∈Π ‖χfΓ(μ)‖Γ/|||uf (μ)|||μ by a constant
that only depends on the configuration of the component pair then follows from Korn’s
inequality.
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[3] I. Babuška and R. Lipton, Optimal local approximation spaces for generalized finite ele-
ment methods with application to multiscale problems, Multiscale Model. Simul., 9 (2011),
pp. 373–406, doi:10.1137/100791051.

[4] M. Bampton and R. Craig, Coupling of substructures for dynamic analyses, AIAA J., 6
(1968), pp. 1313–1319.

[5] P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wojtaszczyk, Con-
vergence rates for greedy algorithms in reduced basis methods, SIAM J. Math. Anal., 43
(2011), pp. 1457–1472, doi:10.1137/100795772.

[6] F. Bourquin, Component mode synthesis and eigenvalues of second order operators: Discre-
tization and algorithm, RAIRO Modél. Math. Anal. Numér., 26 (1992), pp. 385–423.

[7] A. Buffa, Y. Maday, A. T. Patera, C. Prud’homme, and G. Turinici, A priori convergence
of the greedy algorithm for the parametrized reduced basis method, ESAIM Math. Model.
Numer. Anal., 46 (2012), pp. 595–603.

[8] M. Dauge, E. Faou, and Z. Yosibash, Plates and Shells: Asymptotic Expansions and Hier-
archic Models, Encyclopedia Comput. Mech., John Wiley, New York, 2004.

[9] R. DeVore, G. Petrova, and P. Wojtaszczyk, Greedy algorithms for reduced bases in Ba-
nach spaces, Constr. Approx., 37 (2013), pp. 455–466.

[10] Y. Efendiev, J. Galvis, and T. Y. Hou, Generalized multiscale finite element methods (GMs-
FEM), J. Comput. Phys., 251 (2013), pp. 116–135.

[11] J. L. Eftang and A. T. Patera, Port reduction in parametrized component static conden-
sation: Approximation and a posteriori error estimation, Internat. J. Numer. Methods
Engrg., 96 (2013), pp. 269–302.

[12] J. L. Eftang and A. T. Patera, A port-reduced static condensation reduced basis element
method for large component-synthesized structures: Approximation and a posteriori error
estimation, Adv. Modeling Simul. Engrg. Sci., 1 (2014), pp. 1–49.

[13] Eigen, A C++ Linear Algebra Library, http://eigen.tuxfamily.org/.
[14] B. Haasdonk, Convergence rates of the POD-greedy method, ESAIM Math. Model. Numer.

Anal., 47 (2013), pp. 859–873.
[15] B. Haasdonk, Reduced basis methods for parametrized PDEs: A tutorial introduction for

stationary and instationary problems, in Model Reduction and Approximation: Theory and
Algorithms, P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, eds., SIAM, Philadelphia,
to appear.

[16] B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of
parametrized linear evolution equations, M2AN Math. Model. Numer. Anal., 42 (2008),
pp. 277–302.

[17] J. S. Hesthaven, G. Rozza, and B. Stamm, Certified Reduced Basis Methods for Parametrized
Partial Differential Equations, SpringerBriefs in Mathematics, BCAM SpringerBriefs,
Springer; BCAM Basque Center for Applied Mathematics, Bilbao, 2016.

D
ow

nl
oa

de
d 

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://dx.doi.org/10.1137/100791051
http://dx.doi.org/10.1137/100795772
http://eigen.tuxfamily.org/


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL LOCAL SPACES FOR STATIC CONDENSATION A3355

[18] U. Hetmaniuk and A. Klawonn, Error estimates for a two-dimensional special finite element
method based on component mode synthesis, Electron. Trans. Numer. Anal., 41 (2014),
pp. 109–132.

[19] U. Hetmaniuk and R. B. Lehoucq, A special finite element method based on component mode
synthesis, ESAIM Math. Model. Numer. Anal., 44 (2010), pp. 401–420.

[20] P. Holzwarth and P. Eberhard, Interface reduction for CMS methods and alternative model
order reduction, IFAC-PapersOnLine, 48 (2015), pp. 254–259.

[21] W. C. Hurty, Dynamic analysis of structural systems using component modes, AIAA J., 3
(1965), pp. 678–685.

[22] D. B. P. Huynh, D. J. Knezevic, and A. T. Patera, A static condensation reduced basis
element method: Approximation and a posteriori error estimation, ESAIM Math. Model.
Numer. Anal., 47 (2013), pp. 213–251.

[23] D. B. P. Huynh, D. J. Knezevic, and A. T. Patera, A static condensation reduced basis
element method: Complex problems, Comput. Methods Appl. Mech. Engrg., 259 (2013),
pp. 197–216.

[24] L. Iapichino, A. Quarteroni, and G. Rozza, A reduced basis hybrid method for the coupling
of parametrized domains represented by fluidic networks, Comput. Methods Appl. Mech.
Engrg., 221/222 (2012), pp. 63–82.

[25] L. Iapichino, A. Quarteroni, and G. Rozza, Reduced basis method and domain decompo-
sition for elliptic problems in networks and complex parametrized geometries, Comput.
Math. Appl., 71 (2016), pp. 408–430.

[26] H. Jakobsson, F. Bengzon, and M. G. Larson, Adaptive component mode synthesis in linear
elasticity, Internat. J. Numer. Methods Engrg., 86 (2011), pp. 829–844.

[27] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey, libMesh: A C++ library for
parallel adaptive mesh refinement/coarsening simulations, Engineering with Computers,
22 (2006), pp. 237–254.

[28] D. J. Knezevic and J. W. Peterson, A high-performance parallel implementation of the
certified reduced basis method, Comput. Methods Appl. Mech. Eng., 200 (2011), pp. 1455–
1466.
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