
STABILIZED LOWEST ORDER FINITE ELEMENT
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Abstract. A stabilized conforming mixed finite element method for the three-field (displace-
ment, fluid flux and pressure) poroelasticity problem is developed and analyzed. We use the lowest
possible approximation order, namely piecewise constant approximation for the pressure and piece-
wise linear continuous elements for the displacements and fluid flux. By applying a local pressure
jump stabilization term to the mass conservation equation we ensure stability and avoid pressure
oscillations. Importantly, the discretization leads to a symmetric linear system. For the fully dis-
cretized problem we prove existence and uniqueness, an energy estimate and an optimal a-priori
error estimate, including an error estimate for the divergence of the fluid flux. Numerical experi-
ments in 2D and 3D illustrate the convergence of the method, show the effectiveness of the method
to overcome spurious pressure oscillations, and evaluate the added mass effect of the stabilization
term.

1. Introduction. Poroelasticity is a mixture theory in which a complex fluid-
structure interaction is approximated by a superposition of the solid and fluid com-
ponents. Developments of the continuum theory can be found, for example, in [6]
and [13]. Poroelastic models have been developed to study numerous geomechanical
applications ranging from reservoir engineering [30] to earthquake fault zones [36].
Fully saturated, incompressible poroelastic models have been proposed for a variety
of biological tissues and processes, including lung parenchyma [23], protein-based hy-
drogels embedded within cells [18], blood flow in the beating myocardium [10, 12],
brain oedema and hydrocephalus [25, 37], and interstitial fluid and tissue in articular
cartilage and intervertebral discs [17, 20, 28].

We develop a stabilized, low-order, mixed finite element method for poroelastic
models of biological tissues and restrict our attention to the fully saturated incom-
pressible case. In order to simplify our presentation, we also assume small deforma-
tions. In contrast to [29, 36], who study a reduced displacement and pressure formu-
lation, we retain the fluid flux variable as a primary variable resulting in a three-field,
displacement, fluid flux, and pressure formulation. This avoids post processing to cal-
culate the fluid flux and material stress, and allows physically meaningful boundary
conditions to be applied at the interface when modelling the interaction between a
fluid and a poroelastic structure [3]. A three-field approach can be readily extended
from a Darcy to a Brinkman flow model, for which there are numerous applications
in modelling biological tissues [21]. Our mixed scheme uses the lowest possible ap-
proximation order, piecewise constant approximation for the pressure and piecewise
linear continuous elements for the displacement and fluid flux, since continuous pres-
sure elements often struggle to capture the steep gradients at the interface between
regions with high and low permeabilities. The resulting linear system is symmetric

∗Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, OX1
3QD, Oxford, UK, (lorenz.berger@comlab.ox.ac.uk), phone: +44 1865 273838, fax: +44 1865 273839.
Funded by the EPSRC via the Life Sciences Interface Doctoral Training Centre, Oxford University.
†Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, OX1

3QD, Oxford, UK, (rafel.bordas@comlab.ox.ac.uk), phone: +44 1865 273xxx, fax: +44 1865 273839.
Funded by the EU FP7 AirPROM project (grant agreement no. 270194)
‡Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, OX1

3QD, Oxford, UK, (david.kay@comlab.ox.ac.uk), phone: +44 1865 610814, fax: +44 1865 273839
§Department of Mathematics, 115 Weber Building, Colorado State University, Fort Collins, CO

80523, USA, (tavener@math.colostate.edu), phone: +1 970 491 6645, fax: +1 970 491 2161

1

ar
X

iv
:1

31
2.

26
07

v3
  [

m
at

h.
N

A
] 

 2
2 

Se
p 

20
16



2 L. BERGER, R. BORDAS, D. KAY AND S. TAVENER

and has a block structure that is well suited for effective preconditioning.
To ensure stability, a mixed finite element method must satisfy the Ladyzhenskaya-

Babuska-Brezzi (LBB) condition. Stabilization techniques have been proposed for the
Stokes equations, see e.g. [15] (chapter 5) and for Darcy flow, see e.g. [5]. Most stabi-
lization techniques construct a modified variational formulation in which an additional
term is added to the mass balance equation. In this work we use a local pressure jump
stabilization method pioneered by [8] for the study of Stokes and Darcy flows that
are coupled via an interface. This approach provides the natural H1 stability for the
displacements and Hdiv stability for the fluid flux.

In earlier approaches to solving the three-field problem, [30, 31] developed a mixed
finite element method using continuous piecewise linear approximations for displace-
ments and mixed low-order Raviart Thomas elements for the fluid flux and pressure
variables. However, their method was found to be susceptible to pressure oscillations
[32]. To overcome these pressure oscillations, [24] and [38] analysed discontinuous
and nonconforming three-field methods, respectively. Stabilization using the time
derivative of pressure is shown to be crucial for stability and optimal convergence
with refinement and counterexamples are provided in Section 6. In addition to these
monolithic approaches there has been considerable work on operating splitting (itera-
tive) approaches for solving the poroelastic equations [16, 22, 35]. These schemes are
often only conditionally stable, and their accuracy is complicated by the exchange of
information between the components, see [9].

In Section 2 we present the model and its continuous weak formulation and con-
struct a fully-discrete approximation. We prove existence and uniqueness of solutions
to this discrete model at each time step in Section 3, provide an energy estimate over
time in Section 4, and derive an optimal order a-priori error estimate in Section 5.
Finally in Section 6, we present numerical experiments to illustrate the convergence
of the method and its ability to overcome pressure oscillations.

2. The poroelastic model.

2.1. Governing equations. Following [30] and [33], the governing equations
for a fully saturated, incompressible poroelastic flow are

−(λ+ µ)∇(∇ · u)− µ∇2u + α∇p = f in Ω× (0, T ], (2.1a)

k−1z +∇p = b in Ω× (0, T ], (2.1b)

c0pt +∇ · (αut + z) = g in Ω× (0, T ], (2.1c)

u = uD on ΓD × (0, T ], (2.1d)

σn = tN on ΓN × (0, T ], (2.1e)

z · n = qD on ΓF × (0, T ], (2.1f)

p = pD on ΓP × (0, T ], (2.1g)

u(0, ·) = u0 in Ω, (2.1h)

p(0, ·) = p0 in Ω, (2.1i)

where u is the displacement, z is the fluid flux and p is the pressure. Here f is the
body force on the solid, b is the body force on the fluid and g is the fluid source
term, λ and µ are the first and second Lamé parameters respectively, and k is the
dynamic permeability tensor. We will assume the Biot-Willis constant α = 1, and
the constrained specific storage coefficient c0 = 0. Our analysis can be extended to
the situation when these last two assumptions do not hold, but it is necessarily more
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complicated. We consider Ω to be a bounded domain in R2 or R3, and for the purpose
of defining boundary conditions, ∂Ω = ΓD∪ΓN for displacement and stress boundary
conditions and ∂Ω = ΓP ∪ΓF for pressure and flux boundary conditions, with outward
pointing unit normal n.

Remark 2.1. Since the above resulting system of equations is linear, for ease of
presentation, we will assume all Dirichlet boundary conditions are homogeneous, ie.,
uD = 0, qD = 0, pD = 0.

2.2. Weak formulation. We define the following spaces for displacement, fluid
flux and pressure respectively,

WE(Ω) := {u ∈ (H1(Ω))d : u = 0 on ΓD},
WD(Ω) := {z ∈ Hdiv(Ω) : z · n = 0 on ΓF },

L(Ω) :=

{
L2(Ω) if ΓN ∪ ΓP 6= ∅
L2

0(Ω) if ΓN ∪ ΓP = ∅

}
,

where L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω
q dx = 0

}
. By combining these spaces we construct

the mixed solution space

WX :=
{
WE(Ω)×WD(Ω)× L(Ω)

}
.

We define the bilinear form

a(u,v) :=

∫

Ω

2µ(ε(u) : ε(v)) + λ(∇ · u)(∇ · v) dx,

for u,v ∈WE(Ω). This bilinear form is continuous such that

a(u,v) ≤ Cc||u||1,Ω||v||1,Ω ∀ u,v ∈ (H1(Ω))d. (2.2)

Using Korn’s inequality [7, 11], and
∫

Ω
λ(∇ · v)(∇ · v) ≥ 0, we have

||v||2a,Ω := a(v,v) ≥ 2µ||ε(v)||20,Ω ≥ Ck||vh||
2
1,Ω ∀ v ∈WE(Ω). (2.3)

Since k is assumed to be a symmetric and strictly positive definite tensor, there
exists eigenfunctions λmin, λmax > 0 such that ∀x ∈ Ω, λmin||η||0,Ω ≤ ηtk(x)η ≤
λmax||η||0,Ω ∀ η ∈ Rd, and

λ−1
min||w||

2
0,Ω ≥ (k−1w,w) ≥ λ−1

max||w||20,Ω ∀w ∈WD(Ω). (2.4)

The continuous weak problem is: Find u ∈WE(Ω), z ∈WD(Ω), and p ∈ L(Ω)
for any time t ∈ [0, T ] such that

a(u,v)− (p,∇ · v) = (f ,v) + (tN ,v)ΓN
∀v ∈WE(Ω), (2.5a)

(k−1z,w)− (p,∇ ·w) = (b,w) ∀w ∈WD(Ω), (2.5b)

(∇ · ut, q) + (∇ · z, q) = (g, q) ∀q ∈ L(Ω). (2.5c)

We will assume the following regularity requirements on the data,

f ∈ C1([0, T ]; (H−1(Ω))d),

b ∈ C1([0, T ];H−1
div(Ω)),

tN ∈ C1([0, T ];H−1/2(ΓN )),

g ∈ C0([0, T ]; (L2(Ω))d).
(2.6)

For the initial conditions we require that u0 ∈ (H1(Ω))d. The well-posedness of the
continuous two-field formulation has been proven by [33]. [26] proves well-posedness
for the continuous three-field formulation (2.5). In this work we also establish the
well-posedness of (2.5) as a result of the energy estimates proven in section 4, see
remark 4.1.
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2.3. Fully-discrete model. Let T h be a partition of Ω into non-overlapping
elements K, where h denotes the size of the largest element in T h and assume that
the partition is quasi-uniform. We define the following finite element spaces,

WE
h :=

{
uh ∈ C0(Ω) : uh|K ∈ P1(K) ∀K ∈ T h,uh = 0 on ΓD

}
,

WD
h :=

{
zh ∈ C0(Ω) : zh|K ∈ P1(K) ∀K ∈ T h, zh · n = 0 on ΓF

}
,

Qh :=

{ {
ph : ph|K ∈ P0(K) ∀K ∈ T h

}
if ΓN ∪ ΓP 6= ∅{

ph : ph|K ∈ P0(K),
∫

Ω
ph = 0 ∀K ∈ T h

}
if ΓN ∪ ΓP = ∅ ,

where P0(K) and P1(K) are respectively the spaces of constant and linear polynomials
on K. We partition [0, T ] into N evenly spaced non-overlapping regions (tn−1, tn],
n = 1, 2, . . . , N , where tn − tn−1 = ∆t. For any sufficiently smooth function v(t, x)

we define vn(x)” = v(tn, x) and the discrete time derivative by vn∆t := vn−vn−1

∆t .
The fully discrete weak problem is: For n = 1, 2, . . . , N , unh ∈WE

h , find znh ∈WD
h

and pnh ∈ Qh such that

a(unh,vh)− (pnh,∇ · vh) = (fn,vh) + (tN ,vh)ΓN
∀vh ∈WE

h , (2.7a)

(k−1znh,wh)− (pnh,∇ ·wh) = (bn,wh) ∀wh ∈WD
h , (2.7b)

(∇ · u∆t,h, qh) + (∇ · znh, qh) + J (p∆t,h, qh) = (gn, qh) ∀qh ∈ Qh. (2.7c)

The stabilization term is

J(p, q) = δ
∑

K

∫

∂K\∂Ω

h∂K [p][q] ds, (2.8)

where h∂K denotes the size (diameter) of an element edge in 2D or face in 3D, δ is
a stabilization parameter that is independent of h and ∆t, and [·] is the jump across
an edge or face (taken on the interior edges only).

We also assume

a(u0
h,vh) = a(u0,vh) ∀vh ∈WE

h , (2.9a)

J(p0
h, qh) = J(p0, qh) ∀qh ∈ Qh, (2.9b)

where p0 ∈ L(Ω).

3. Existence and uniqueness of solutions to the fully-discrete model.
Well-posedness of the unstabilized fully-discretized system (2.7), δ = 0, with the use
of a low order Raviart-Thomas approximation for the fluid velocity is shown by [31]
for c0 > 0, and by [26] for c0 ≥ 0. Although as the permeability tends to zero and the
porous mixture becomes impermeable, the three-field linear poroelasticity tends to a
mixed linear elasticity problem [19]. Hence, in this case this element becomes unstable,
as expected since the elasticity P1−P0 approximation is known to be unstable. Our
method is stable for both the Darcy problem (as the elasticity coefficients tend to
infinity) and the mixed linear elasticity problem (as the permeability tends to zero),
and is therefore stable for all permeabilities and elasticity coefficients.

3.1. Norms and inequalities. The stabilization term gives rise to the semi-
norm |q|J,Ω := J(q, q)1/2. Throughout this work, we will let C denote a generic
positive constant, whose value may change from instance to instance, but is indepen-
dent of any mesh parameters. Using the scaling argument

∣∣∣∣h1/2ph
∣∣∣∣

0,∂K
≤ cz||ph||0,K ,
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Cauchy-Schwarz and the triangle inequality the following bounds for the stabilization
term hold.

|ph|J,Ω ≤ C||ph||0,Ω and J(ph, qh) ≤ |ph|J,Ω|qh|J,Ω ∀ ph, qh ∈ Qh. (3.1)

Furthermore, for any q ∈ H1(Ω),

J(p, q) = 0 ∀p ∈ L(Ω), (3.2)

see Lemma 1.23 in [14]. We also have the Poincaré inequality

||q||0,Ω ≤ Cp||∇q||0,Ω ∀q ∈ H1(Ω).

We now give some approximation results that will be useful later. Let π1
h :

H1(Ω)→WE
h and π0

h : L2(Ω)→ Qh be Clément projections, see [11].

Lemma 3.1. For all v ∈
(
H2(Ω)

)d
and q ∈ H1(Ω) the interpolation operators

satisfy: For s = 0, 1

||v − π1
hv||s,Ω ≤ Ch2−s||v||2,Ω, (3.3)

∣∣∣∣q − π0
hq
∣∣∣∣

0,Ω
≤ Ch||q||1,Ω, (3.4)

|q − π0
hq|J,Ω ≤ Ch||q||1,Ω. (3.5)

Proof. The first two results are standard. The final result is obtained by using
the element error estimate provided in [34] and then summing over all elements.

Due to the surjectivity of the divergence operator, for every p ∈ L2(Ω) there exists
a function vp ∈ (H1

0 (Ω))d such that ∇ · vp = −p and ||vp||1,Ω ≤ c||p||0,Ω. We assume

that the projection, π1
hvp ∈ vp ∈ (H1

0 (Ω))d, is stable such that

∣∣∣∣π1
hvp

∣∣∣∣
1,Ω
≤ ĉ||p||0,Ω. (3.6)

Furthermore, for any element K ∈ T h

||vp − π1
hvp||0,K ≤ Ch||vp||H1(ωK), (3.7)

where ωK is the union of all elements J ∈ T h such that K ∩ J 6= ∅.
Combining the above with the trace inequality, see Lemma 3.1 in [34],

∣∣∣∣(vp − π1
hvp) · n

∣∣∣∣2
0,∂K

≤ C
∣∣∣∣vp − π1

hvp
∣∣∣∣

0,K
(h−1

∣∣∣∣vp − π1
hvp

∣∣∣∣
0,K

+
∣∣∣∣vp − π1

hvp
∣∣∣∣

1,K
),

(3.8)
we obtain

∣∣∣∣(vp − π1
hvp) · n)

∣∣∣∣2
0,∂K

≤ Ch||vp||2H1(ωK). (3.9)

Taking into account ||vp||1,Ω ≤ c||p||0,Ω, we may write

∑

K

∫

∂K

h−1|(vp − π1
hvp) · n|2 ds ≤ ct||p||20,Ω. (3.10)

We define the fully discrete finite element approximation for all time to be the
piecewise constant in time functions uh(t,x) := unh(x) for t ∈ (tn−1, tn], zh and ph
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are defined similarly. For such piecewise continuous in time functions, v, the norms
L2(0, T ;X) satisfy

||v||2(L2;X) =

∫ T

0

||v(s, ·)||2X ds =
N∑

n=1

∆t||vn||2X ,

where X is any given function space over Ω.
For all v ∈ H2(0, T ; (L2(Ω))d)

N∑

n=1

∆t

∣∣∣∣
∣∣∣∣vn∆t −

∂v

∂t
(tn, ·)

∣∣∣∣
∣∣∣∣
2

0,Ω

≤ ∆t2
∫ T

0

||vtt||20,Ωds. (3.11)

For all [v,w, q] ∈
[
(H1(Ω))d ×Hdiv(Ω)× L2(Ω)

]
we define the norm

|||[v,w, q]|||2A := ||v||21,Ω + ∆t2||∇ ·w||20,Ω + ∆t||w||20,Ω + ||q||20,Ω + |q|2J,Ω, (3.12)

and for all [v,w, q] ∈
[
L∞(0, T ; (H1(Ω))d)× L2(0, T ;Hdiv(Ω))× L2(0, T ;L2(Ω))

]
the

norm

|||[v,w, q]|||2B := ||v||2L∞(H1) + ||w||2L2(L2) + ||q||2L2(L2). (3.13)

3.2. Existence and uniqueness. Combining the fully discrete equations (2.7a),
(2.7b) and (2.7c), after first multiplying (2.7b) and (2.7c) by ∆t, gives the equivalent
problem: For n = 1, 2, . . . , n find (uh, zh, ph) such that

Bnh [(uh, zh, ph), (vh,wh, qh)]

= (fn,vh) + (tN ,vh)ΓN
+ ∆t(bn,wh) + ∆t(gn, qh)

+(∇ · un−1
h , qh) + J(pn−1

h , qh) ∀(vh,wh, qh) ∈ WX
h ,

where

Bnh [(uh, zh, ph), (vh,wh, qh)]

= a(unh,vh) + ∆t(k−1znh,wh)− (pnh,∇ · vh)−∆t(pnh,∇ ·wh)

+ (∇ · unh, qh) + ∆t(∇ · znh, qh) + J(pnh, qh). (3.14)

The linear form satisfies the following continuity property

|Bnh [(uh, zh, ph), (vh,wh, qh)]| ≤ C |||(unh, znh, pnh)|||A |||(vh,wh, qh)|||A .

We apply Babuska’s theory [2] to show well-posedness (existence and uniqueness) of
this discretized system at a particular time step. This requires us to prove a discrete
inf-sup type result (Theorem 3.2) for the combined bilinear form (3.14).

Theorem 3.2. Let γ > 0 be a constant independent of any mesh parameters.
Then the finite element formulation (2.7) satisfies the following discrete inf-sup con-
dition

γ |||(unh, znh, pnh)|||A ≤ sup
(vh,wh,qh)∈VX

h

Bnh [(uh, zh, ph), (vh,wh, qh)]

|||(vh,wh, qh)|||A
∀(uh, zh, ph) ∈ WX

h .

(3.15)
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Hence, given a solution at the previous time step the linear system arising from the
fully discrete method for the subsequent time step is non-singular. The following
proof follows ideas presented by [8].

Proof.

Step 1, bounding ||unh||1,Ω, ∆t1/2||znh||0,Ω, and |pnh|J,Ω.

Choose (vh,wh, qh) = (unh, z
n
h, p

n
h), then using (2.3) and (2.4), we obtain

Bnh [(uh, zh, ph), (uh, zh, ph)] = a(unh,u
n
h) + ∆t(k−1znh, z

n
h) + J(pnh, p

n
h)

≥ Ck||unh||21,Ω + λ−1
max∆t||znh||20,Ω + |pnh|2J,Ω. (3.16)

Step 2, bounding ||pnh||0,Ω.

Choose (vh,wh, qh) = (π1
hvpnh , 0, 0) and add 0 = ||pnh||

2
0,Ω + (pnh,∇ · vpnh ) to obtain

Bnh [(uh, zh, ph), (π1
hvpnh , 0, 0)] = a(unh, π

1
hvpnh )

+||pnh||20,Ω + (pnh,∇ · (vpnh − π
1
hvpnh )). (3.17)

Focusing on the third term in (3.17) only, by applying the divergence theorem together
with the fact that pnh is piecewise constant on T h, and recalling vpnh − π1

hvpnh ∈
(H1

0 (Ω))d, we obtain

(pnh,∇ · (vpnh − π
1
hvpnh )) =

∑

K

∫

∂K/∂Ω

pnh(vpnh − π
1
hvpnh ) · n ds

=
∑

K

1

2

∫

∂K/∂Ω

[pnh](vpnh − π
1
hvpnh ) · n ds.

We thus have

Bnh [(uh, zh, ph), (π1
hvpnh , 0, 0)] = ||pnh||20,Ω + a(unh, π

1
hvpnh )

+
∑

K

1

2

∫

∂K/∂Ω

[pnh](vpnh − π
1
hvpnh ) · n ds.

Now first applying the Cauchy-Schwarz inequality and (2.2) on the right hand side to
get

Bnh [(uh, zh, ph), (π1
hvpnh , 0, 0)] ≥ ||pnh||20,Ω − Cc||unh||1,Ω

∣∣∣∣π1
hvpnh

∣∣∣∣
1,Ω

−
∑

K

1

2

(∫

∂K/∂Ω

(
h1/2[pnh]

)2

ds

)1/2

·
(∫

∂K

(
h−1/2(vpnh − π

1
hvpnh ) · n

)2

ds

)1/2

.

Now apply Young’s inequality and (3.6) to obtain

Bnh [(uh, zh, ph), (π1
hvpnh , 0, 0)] ≥ ||pnh||20,Ω −

C2
c

2ε
||unh||21,Ω −

εĉ

2
||pnh||20,Ω

− 1

2εδ
J(pnh, p

n
h)− ε

2

∑

K

∫

∂K

h−1|(vpnh − π
1
hvpnh ) · n|2 ds.
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Applying (3.10) we obtain

Bnh [(uh, zh, ph), (π1
hvpnh , 0, 0)] ≥ −C

2
c

2ε
||unh||21,Ω +

(
1− (ĉ+ ct)

ε

2

)
||pnh||20,Ω −

1

2εδ
|pnh|2J,Ω. (3.18)

Step 3, bounding ∆t||∇ · znh||0,Ω.

Choosing (vh,wh, qh) = (0, 0,∆t∇ · znh) yields

Bnh [(uh, zh, ph), (0, 0,∆t∇·znh)] = (∇·unh,∆t∇·znh)+∆t2||∇ · znh||20,Ω +J(pnh,∆t∇·znh).

We bound the first term using the Cauchy-Schwarz inequality followed by Young’s
inequality such that

(∇ · unh,∆t∇ · znh) ≤ Cp
2ε
||unh||21,Ω +

ε∆t2

2
||∇ · znh||20,Ω.

We can also bound the third term as before using the Cauchy-Schwarz inequality
followed by Young’s inequality such that

J(pnh,∆t∇ · znh) ≤ 1

2ε
J(pnh, p

n
h) +

ε∆t2

2
J(∇ · znh,∇ · znh)

=
1

2ε
J(pnh, p

n
h) + εδ∆t2

∑

K

∫

∂K/∂Ω

|h1/2∇ · znh|2 ds

≤ 1

2ε
J(pnh, p

n
h) + εδcz∆t

2||∇ · znh||20,Ω, (3.19)

where we have used the fact that ∇ · znh ∈ Qh in conjunction with (3.1). This yields

Bnh [(uh, zh, ph), (0, 0,∆t∇ · znh)] ≥ (1− εδcz −
ε

2
)∆t2||∇ · znh||20,Ω

− 1

2ε
|pnh|2J,Ω −

Cp
2ε
||unh||21,Ω. (3.20)

Step 4, Combining steps 1-3. Finally, we can combine (3.16), (3.18) and (3.20) to get
control over all the norms by choosing

(vh,wh, qh) = (βunh + π1
hvpnh , βznh, βp

n
h + ∆t∇ · znh),

where β is a real number that will be chosen to be sufficiently large enough to conclude,
which yields

Bnh [(uh, zh, ph), (βunh + π1
hvpnh , βznh, βp

n
h + ∆t∇ · znh)] ≥

(βCk −
C2
c + Cp

2ε
)||unh||21,Ω + βλ−1

max∆t||znh||20,Ω +
(

1− εδcz −
ε

2

)
∆t2||∇ · znh||20,Ω

+
(

1− (ĉ+ ct)
ε

2

)
||pnh||20,Ω +

(
β − 1

2ε
− 1

2εδ

)
|pnh|2J,Ω, (3.21)

where we can choose

β ≥ max

[
C2
c + Cp
2εCk

+
1− C̄ε
Ck

, λmax
(
1− C̄ε

)
,

1

2ε
+

1

2εδ
+ 1− C̄ε

]
,
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with C̄ = max
[
ĉ+ct

2 , δcz − 1
2

]
. This yields

Bnh [(uh, zh, ph), (βunh + π1
hvpnh , βznh, βp

n
h +∇ · znh)] ≥ (1− C̄ε) |||(unh, znh, pnh)|||2A .

To complete the proof, we let (vh,wh, qh) = (βunh + π1
hvpnh , βznh, βp

n
h + ∆t∇ · znh) and

show that for ε sufficiently small there exists a constant C such that |||(unh, znh, pnh)|||A ≥
C |||(vh,wh, qh)|||A. Using the triangle inequality and (3.6) we obtain

∣∣∣∣∣∣(βunh + π1
hvpnh , βznh, βp

n
h + ∆t∇ · znh)

∣∣∣∣∣∣2
A

≤ C
(
β2||unh||21,Ω +

∣∣∣∣π1
hvpnh

∣∣∣∣2
1,Ω

+ ∆t2(1 + β)2||∇ · znh||20,Ω + β2∆t||znh||20,Ω
+β2||pnh||20,Ω + β2|pnh|2J,Ω + ∆t2|∇ · znh|2J,Ω

)

≤ C |||(unh, znh, pnh)|||2A ,

as desired.

4. Energy estimate for the fully-discrete model. In this Section we con-
struct two new combined bilinear forms, Bn∆t,h (Lemmas 4.1 and 4.2) and Bnh (Lemmas
4.3 and 4.4). These bilinear forms are bounded below by Lemmas 4.1 and 4.3 respec-
tively. Lemma 4.2 uses Lemma 4.1 to provide a bound on uh, zh and ph. Lemma 4.4
uses Lemma 4.3 to provide a bound on ∇ · zh.

4.1. Bound on the displacement, fluid flux and pressure. Adding (2.7a),
(2.7b) and (2.7c), and assuming tN = 0 on ΓN , we get the following

Bn∆t,h[(uh, zh, ph), (vh,wh, qh)] = (fn,vh)+(bn,wh)+(gn, qh) ∀(vh,wh, qh) ∈ WX
h ,

(4.1)
where

Bn∆t,h[(uh, zh, ph), (vh,wh, qh)] = a(unh,vh)+(k−1znh,wh)−(pnh,∇·vh)−(pnh,∇·wh)

+ (∇ · un∆t,h, qh) + (∇ · znh, qh) + J(pn∆t,h, qh). (4.2)

Lemma 4.1. (uh, zh, ph) satisfies

N∑

n=1

∆tBn∆t,h[(uh, zh, ph), (un∆t,h + π1
hvpnh , z

n
h, p

n
h)]

+
∣∣∣∣u0

h

∣∣∣∣2
1,Ω

+ |p0
h|2J,Ω + ||uh||2L2(H1) + ||ph||2L2(J)

≥ C
(∣∣∣∣uNh

∣∣∣∣2
1,Ω

+ |pNh |2J,Ω + ||zh||2L2(L2) + ||ph||2L2(L2)

)
.

Proof.

For n = 1, 2, . . . , N we choose (vh,wh, qh) = (un∆t,h + π1
hvpnh , z

n
h, p

n
h) in (4.2),
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multiplying by ∆t, and summing over all time steps, we get

N∑

n=1

∆tBn∆t,h[(uh, zh, ph), (un∆t,h + π1
hvpnh , z

n
h, p

n
h)]

=
N∑

n=1

∆ta(unh,u
n
∆t,h) +

N∑

n=1

∆tJ(pn∆t,h, p
n
h) +

N∑

n=1

∆t(k−1znh, z
n
h)

+

N∑

n=1

∆ta(unh, π
1
hvpnh )−

N∑

n=1

∆t(pnh,∇ · π1
hvpnh ). (4.3)

By telescoping out the first two terms on the righthand side, using (2.4) on the
third, and applying firstly Young’s inequality and then (3.6) to the final two terms,
we obtain the inequality

(
N∑

n=0

∆tBn∆t,h[(uh, zh, ph), (un∆t,h + π1
hvpnh , z

n
h, p

n
h)]

+
Cc
2

∣∣∣∣u0
h

∣∣∣∣2
1,Ω

+
Cc
2ε
||uh||2L2(H1) +

1

4ε
||ph||2L2(J) +

1

2
|p0
h|2J,Ω

)

≥ Ck
2

∣∣∣∣uNh
∣∣∣∣2

1,Ω
+

1

2
|pNh |2J,Ω + λ−1

max||zh||2L2(L2) + (1− Cε) ||ph||2L2(L2). (4.4)

Finally, choosing ε sufficiently small completes the proof.

Lemma 4.2. (uh, zh, ph) satisfies

∣∣∣∣uNh
∣∣∣∣2

1,Ω
+ |pNh |2J,Ω + ||zh||2L2(L2) + ||ph||2L2(L2) ≤ C(T ).

Proof.

For n = 1, 2, . . . , N we choose (vh,wh, qh) = (un∆t,h + π1
hvpnh , z

n
h, p

n
h) in (4.1),

multiplying by ∆t, and summing yields

N∑

n=1

∆tBn∆t,h[(unh, z
n
h, p

n
h), (un∆t,h + π1

hvpnh , z
n
h, p

n
h)] =

N∑

n=1

∆t(fn,un∆t,h + π1
hvpnh )

+
N∑

n=1

∆t(bn, znh) +
N∑

n=1

∆t(gn, pnh).

Let us note the standard result, for any ε > 0

N∑

n=1

∆t(fn,un∆t,h) ≤ C
[

1

2ε

(∣∣∣∣f0
∣∣∣∣2

0,Ω
+
∣∣∣∣fN

∣∣∣∣2
0,Ω

+ ||ft||2L2(L2)

)

+
ε

2

(∣∣∣∣u0
h

∣∣∣∣2
0,Ω

+
∣∣∣∣uNh

∣∣∣∣2
0,Ω

+ ||uh||2L2(L2)

)]
. (4.5)

Now using the above, Lemma 4.1, the Cauchy-Schwarz and Young’s inequalities,
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choosing ε sufficiently small, and noting (3.6), we arrive at

∣∣∣∣uNh
∣∣∣∣2

1,Ω
+ |pNh |2J,Ω + ||zh||2L2(L2) + ||ph||2L2(L2) ≤

C
(
||uh||2L2(H1) + ||ph||2L2(J) +

∣∣∣∣fN
∣∣∣∣2

0,Ω
+ ||ft||2L2(L2) +

∣∣∣∣u0
h

∣∣∣∣2
0,Ω

+

|p0
h|2J,Ω +

∣∣∣∣f1
∣∣∣∣2
L2(L2)

+ ||f ||2L2(L2) + ||b||2L2(L2) + ||g||2L2(L2)

)
.

Using assumed regularity of the given data to bound the third term and upwards on
the righthand side we obtain

∣∣∣∣uNh
∣∣∣∣2

1,Ω
+ |pNh |2J,Ω + ||zh||2L2(L2) + ||ph||2L2(L2) ≤ C

(
1 + ||uh||2L2(H1) + ||ph||2L2(J)

)
.

Upon applying the Gronwall Lemma to the above inequality we obtain the desired
result.

4.2. Bound on the divergence of the fluid flux. In order to bound the
divergence of the fluid flux we now define the bilinear form Bnh . We first show how we
derive Bnh from the fully-discrete weak form (2.7), for which we know that a solution
(uh, zh, ph) exists for test functions (vh,wh, qh) ∈ VXh . Adding (2.7a) and (2.7b),
assuming tN = 0 on ΓN , and summing we have

N∑

n=1

a(unh,vh) +
N∑

n=1

(k−1znh,wh)−
N∑

n=1

(pnh,∇ · vh)−
N∑

n=1

(pnh,∇ ·wh)

=
N∑

n=1

(fn,vh) +
N∑

n=1

(bn,wh) ∀(vh,wh, qh) ∈ VXh . (4.6)

For the purposes of this proof we now introduce initial conditions for the fluid flux,
z0 ∈ Hdiv(Ω). We also define the projections, into their respective finite element
spaces, z0

h := π0
hz

0 and p0
h := π0

hp
0.

Adding (2.7a) and (2.7b), and summing from 0 to N − 1, we have

N∑

n=1

a(un−1
h ,vh) +

N∑

n=1

(k−1zn−1
h ,wh)−

N∑

n=1

(pn−1
h ,∇ · vh)−

N∑

n=1

(pn−1
h ,∇ ·wh)

=

N∑

n=1

(fn−1,vh) +

N∑

n=1

(bn−1,wh) ∀(vh,wh, qh) ∈ VXh . (4.7)

Taking (2.7c), multiplying by ∆t, and summing we have

N∑

n=1

∆t(∇ · un∆t,h, qh) +
N∑

n=1

∆t(∇ · znh, qh) +
N∑

n=1

∆tJ(pn∆t,h, qh)

=
N∑

n=1

∆t(gn, qh) ∀(vh,wh, qh) ∈ VXh . (4.8)
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Now adding (4.6) and (4.8), and subtracting (4.7) we get

N∑

n=1

∆tBnh [(uh, zh, ph), (vh,wh, qh)]

=
N∑

n=1

∆t(fn∆t,vh) +
N∑

n=1

∆t(bn∆t,wh) +
N∑

n=1

∆t(gn, qh) ∀ (vh,wh, qh) ∈ VXh , (4.9)

where

Bnh [(uh, zh, ph), (vh,wh, qh)] = a(un∆t,h,vh) + (k−1zn∆t,h,wh)

− (pn∆t,h,∇ · vh)− (pn∆t,h,∇ ·wh) + (∇ · un∆t,h, qh) + (∇ · znh, qh) + J(pn∆t,h, qh).

(4.10)

With these preliminaries, we may now bound Bnh from below.
Lemma 4.3. For all β > β? > 0, (uh, zh, ph) satisfies

N∑

n=1

∆t Bnh [(uh, zh, ph), (βun∆t,h + π1
hvp, βznh, βp

n
∆t,h +∇ · znh)] +

∣∣∣∣z0
h

∣∣∣∣2
0,Ω
≥

C
(
||u∆t,h||2L2(H1) +

∣∣∣∣zNh
∣∣∣∣2

0,Ω
+ ||p∆t,h||2L2(L2) + ||p∆t,h||2L2(J) + ||∇ · zh||2L2(L2)

)
.

Proof. For n = 1, 2, . . . , N we choose (vh,wh, qh) = (βun∆t,h+π1
hvpnh , βznh, βp

n
∆t,h+

∇ · znh) in (4.10)

N∑

n=1

∆tBnh [(uh, zh, ph), (βun∆t,h + π1
hvp, βznh, βp

n
∆t,h +∇ · znh)]

=

N∑

n=1

∆ta(un∆t,h, βun∆t,h) +

N∑

n=1

∆t(k−1zn∆t,h, βznh) +

N∑

n=1

∆t(∇ · znh,∇ · znh)

+
N∑

n=1

∆t(un∆t,h,∇ · znh) +
N∑

n=1

∆tJ(pn∆t,h,∇ · znh) +
N∑

n=1

∆tJ(pn∆t,h, βp
n
∆t,h)

+
N∑

n=1

∆ta(un∆t,h, π
1
hvp)−

N∑

n=1

∆t(pn∆t,h,∇ · π1
hvp). (4.11)

For all ε > 0 using (2.3), (2.4), the Cauchy-Schwarz, Young’s and Poincaré inequalities,
(3.1) on ∇ · znh, and an approach similar to step 2 in the proof of Theorem 3.2 for the
final two terms on the righthand side, we obtain

N∑

n=1

∆tBnh [(uh, zh, ph), (βun∆t,h + π1
hvp, βznh, βp

n
∆t,h +∇ · znh)]

≥
(
βCk −

Cp + Cc
2ε

)
||u∆t,h||2L2(H1) +

βλ−1
max

2

∣∣∣∣zNh
∣∣∣∣2

0,Ω
+

(
β − 3

4ε

)
||p∆t,h||2L2(J)

+ (1− ε(1 + cz)) ||∇ · zh||2L2(L2) −
βλ−1

min

2

∣∣∣∣z0
h

∣∣∣∣2
0,Ω

+ (1− Cε) ||p∆t,h||2L2(L2). (4.12)



STABILIZED LOW ORDER FEM POROELASTICITY 13

Finally choosing ε sufficiently small and β ≥ max
[
Cp

2Ckε
, 3

4ε

]
completes the proof.

The following Lemma shows the divergence control of the fluid flux.
Lemma 4.4. zh obtained from (4.9) satisfies

||∇ · zh||2L2(L2) ≤ C.

Proof. For n = 1, 2, . . . , N we choose (vh,wh, qh) = (βun∆t,h+π1
hvpnh , βznh, βp

n
∆t,h+

∇ · znh) in (4.9) yielding

N∑

n=1

∆tBnh [(unh, z
n
h, p

n
h), (βun∆t,h + π1

hvpnh , z
n
h, βp

n
∆t,h +∇ · znh)]

=

N∑

n=1

∆t(fn∆t, βun∆t,h + π1
hvpnh ) +

N∑

n=1

∆t(bn∆t, βznh) +

N∑

n=1

∆t(gn, βpn∆t,h +∇ · znh).

Using Lemma 4.3, the Cauchy-Schwarz and Young’s inequalities, and (3.6), along
with ideas already presented in the proof of Lemma 4.2

||u∆t,h||2L2(H1) + ||p∆t,h||2L2(L2) + ||p∆t,h||2L2(J) +
∣∣∣∣zNh

∣∣∣∣2
0,Ω

+ ||∇ · zh||2L2(L2)

≤ C
(
||ft||2L2(L2) + ||bt||2L2(L2) + ||ph||2L2(L2) + ||zh||2L2(L2) +||g||2L2(L2)

)
.

Finally, by applying a Gronwall Lemma, using Lemma 4.2 and regularity, we obtain
the desired result.

4.3. The energy estimate. Theorem 4.5. The solution to the fully-discrete
problem (2.7) satisfies the energy estimate

||uh||2L∞(H1) + ||ph||2L∞(J) + ||zh||2L2(L2) + ||ph||2L2(L2) + ||∇ · zh||2L2(L2) ≤ C.

Proof. The proof follows from combining Lemma 4.2 and Lemma 4.4, and noting
that these Lemmas hold for all time steps n = 0, 1, ..., N . This then gives the desired
discrete in time L∞ bounds.

Remark 4.1. Having proven Theorem 4.5, it is now a standard calculation to
show that the discrete Galerkin approximation converges weakly, as ∆t, h→ 0, to the
continuous problem with respect to continuous versions of the norms of the energy
estimate in Theorem 4.5. This in turn shows that the continuous variational problem
is well-posed. Due to the linearity of the variational form and noting that |v|J,Ω → 0
as h→ 0, these calculations are straight forward and closely follow the existence and
uniqueness proofs presented in [39] and [4] for the linear two-field Biot problem and
a nonlinear Biot problem, respectively.

5. A-priori error analysis. Lemma 5.1 provides a Galerkin orthogonality re-
sult obtained by comparing continuous and discrete weak forms, which is the corner
stone of the error analysis. Lemma 5.2 bounds the auxiliary errors for displacement,
flux and pressure in the appropriate norms and Lemma 5.3 bounds the auxiliary error
for the divergence of the flux. Since Lemmas 5.2 and 5.3 bound the auxiliary errors
at the same order as the projection errors, combining projection and auxiliary errors
in Theorem 5.4 provides an optimal error estimate.
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We define the finite element error functions

eu := u− uh, ez := z− zh, ep := p− ph.

We introduce the following projection errors:

ηu := u− π1
hu, ηz := z− π1

hz, ηp := p− π0
hp,

where we have assumed z(tn, ·) ∈ (H1(Ω))d.
Auxiliary errors:

θnu(·) := π1
hu(tn, ·)− unh(·), θnz (·) := π1

hz(tn, ·)− znh(·), θnp (·) := π0
hp(tn, ·)− pnh(·),

(5.1)
and time-discretization errors:

ρnu(·) :=
u(tn, ·)− u(tn−1, ·)

∆t
− ∂u(tn, ·)

∂t
, ρnp :=

p(tn, ·)− p(tn−1, ·)
∆t

− ∂p(tn, ·)
∂t

. (5.2)

5.1. Galerkin orthogonality. We now give a Galerkin orthogonality type ar-
gument for analysing the difference between the fully-discrete approximation and the
true solution. For this we introduce the continuous counterpart of the fully-discrete
combined weak form (4.1) given by

Bn[(u, z, p), (v,w, q)] = (f(tn, ·),v) + (b(tn, ·),w) + (g(tn, ·), q) ∀ (v,w, q) ∈ VX ,
(5.3)

where

Bn[(u, z, p), (v,w, q)] = a(u(tn, ·),v) + (k−1z(tn, ·),w)− (p(tn, ·),∇ · v)

−(p(tn, ·),∇ ·w) + (∇ · ut(tn, ·), q) + (∇ · z(tn, ·), q).

Lemma 5.1. Assuming

(u(tn, ·), z(tn, ·), p(tn, ·)) ∈
(
H1(Ω)

)d ×Hdiv(Ω)×
(
H1(Ω) ∩ L(Ω)

)
,

Bn∆t,h[(eu, ez, ep), (vh,wh, qh)] = (∇ · ρnu, qh) + J(ρnp , qh) ∀(vh,wh, qh) ∈ VXh .

Proof. Subtracting the discrete weak form (4.1) from the continuous weak form
(5.3), we obtain

Bn[(u, z, p), (vh,wh, qh)]−Bn∆t,h[(uh, zh, ph), (vh,wh, qh)] = 0, ∀(vh,wh, qh) ∈ VXh .

Adding J(pt(tn, ·), q) = 0 to the left, see (3.2) and (∇ · (u∆t(tn, ·)− ut(tn, ·)) , q) +
J(p∆t(tn, ·) − pt(tn, ·), q) to both the left and righthand sides we obtain the desired
result.

5.2. Auxiliary error estimates. Lemma 5.2. Assuming

u ∈ H2
(

0, T ;
(
L2(Ω)

)d) ∩ H1
(

0, T ;
(
H2(Ω)

)d)
, z ∈ L2

(
0, T ;

(
H1(Ω)

)d)
and p ∈

H2
(
0, T ;H1(Ω) ∩ L(Ω)

)
, then the finite element solution (2.7) satisfies the error es-

timate

|||[θu, θz, θp]|||2B + ||θp||2L∞(J) ≤ C(T )(h2 + ∆t2). (5.4)



STABILIZED LOW ORDER FEM POROELASTICITY 15

Proof. Using Lemma 5.1 and choosing vnh = θn∆t,u + π1
hvpnh , wn

h = θnz , qnh = θnp ,
we get

Bn∆t,h[(θnu + ηnu, θ
n
z + ηnz , θ

n
p + ηnp ), (θn∆t,u + π1

hvpnh , θ
n
z , θ

n
p )]

= (∇ · ρnu, θnp ) + J(ρnp , θ
n
p ).

Rearranging gives

Bn∆t,h[(θnu, θ
n
z , θ

n
p ), (θn∆t,u + π1

hvpnh , θ
n
z , θ

n
p )]

= (∇ · ρnu, θnp ) + J(ρnp , θ
n
p )−Bn∆t,h[(ηnu, η

n
z , η

n
p ), (θn∆t,u + π1

hvpnh , θ
n
z , θ

n
p )].

Expanding the righthand side, noting that (ηnp ,∇·(θn∆t,u+π1
hvp)) = 0, (ηnp ,∇·θnz ) = 0,

multiplying both sides by ∆t and summing gives

N∑

n=1

∆tBn∆t,h[(θnu, θ
n
z , θ

n
p ), (θn∆t,u + π1

hvpnh , θ
n
z , θ

n
p )] =

7∑

i=1

Φi,

where

Φ1 := −
N∑

n=1

∆ta(ηnu, θ
n
∆t,u), Φ2 := −

N∑

n=1

∆t((k−1ηnz , θ
n
z )), Φ3 := −

N∑

n=1

∆ta(ηnu, π
1
hvp),

Φ4 := −
N∑

n=1

∆tJ(ηn∆t,p, θ
n
p ), Φ5 :=

N∑

n=1

∆t(∇ · ρnu, θnp ), Φ6 :=
N∑

n=1

∆tJ(ρnp , θ
n
p ),

Φ7 := −
N∑

n=1

∆t(θnp ,∇ · (ηn∆t,u + ηnz )).

We now individually consider the terms on the right hand side of (5.5):
To bound the first quantity, we use (3.11), Lemma 3.1, the triangle, Cauchy-

Schwarz and Young’s inequalities, θ0
u = 0, and (2.2),

Φ1 = −
N∑

n=1

a(ηnu, θ
n
u − θn−1

u )

= −a(ηNu , θ
N
u ) +

N∑

n=1

a(ηnu − ηn−1
u , θn−1

u )

= −a(ηNu , θ
N
u ) + ∆t

N∑

n=1

a

((
I − π1

h

)(
ρnu +

∂u(tn, ·)
∂t

)
, θn−1

u

)

≤ εC
∣∣∣∣θNu

∣∣∣∣2
1,Ω

+
Ch2

ε

∣∣∣∣uN
∣∣∣∣2

2,Ω
+ εC||θu||2L2(H1)

+
Ch2

2ε
||ut||2L2(H2) +

C∆t2

2ε
||utt||2L2(H1).

(5.5)

Next, using (2.4), Young’s inequality, (3.6) and Lemma 3.1,

Φ2 ≤
ε

2
||θz||2L2(L2) +

λ−2
minh

2

2ε
||z||2L2(H1).
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Using (2.2), Young’s inequality and Lemma 3.1,

Φ3 ≤
ε

2

∣∣∣∣π1
hvpnh

∣∣∣∣2
L2(H1)

+
C

2ε
||ηu||2L2(H1) ≤

εĉ2

2
||θp||2L2(L2) +

Ch2

2ε
||u||2L2(H2).

The bound on Φ4 is obtained using a similar argument to the bound on Φ1,

Φ4 ≤ ε||θp||2L2(J) +
h2

2ε
||pt||2L2(H1) +

∆t2

2ε
||ptt||2L2(H1).

Using the Cauchy-Schwarz and Young’s inequalities and Lemma 3.1,

Φ5 ≤
ε

2
||θp||2L2(L2) +

∆t2

2ε
||utt||2L2(L2) and Φ6 ≤

ε

2
||θp||2L2(J) +

∆t2

2ε
||ptt||2L2(L2).

Finally, using the Cauchy-Schwarz and Young’s inequalities, and a similar argument
to the bound on Φ1,

Φ7 ≤
3ε

2
||θp||2L2(L2) +

h2

2ε
||ut||2L2(H2) +

∆t2

2ε
||utt||2L2(H1) +

h2

2ε
||z||2L2(H2).

Combining these bounds with an application of the coercivity Lemma 4.1 to (5.5),
noting the assumed regularity of the continuous solution and choosing ε sufficiently
small, gives

∣∣∣∣θNu
∣∣∣∣2

1,Ω
+|θNp |2J,Ω+||θz||2L2(L2)+||θp||2L2(L2) ≤ C

(
||θu||2L2(H1) + ||θp||2L2(J) + h2 + ∆t2

)
.

(5.6)
An application of Gronwall’s Lemma gives

∣∣∣∣θNu
∣∣∣∣2

1,Ω
+ |θNp |2J,Ω + ||θz||2L2(L2) + ||θp||2L2(L2) ≤ C(T )

(
h2 + ∆t2

)
.

Because the above holds for all time steps n = 0, 1, ..., N , we can get the desired L∞

bounds to complete the proof of the theorem.

We now present an a-priori auxiliary error estimate of the fluid flux, in its natural
Hdiv norm.

Lemma 5.3. Assuming u ∈ H2
(

0, T ;
(
H1(Ω)

)d) ∩ H1
(

0, T ;
(
H2(Ω)

)d)
, z ∈

L2
(

0, T ;
(
H2(Ω)

)d)
and p ∈ H2 (0, T ; J ∩ L(Ω)) ∩ H1(0, T ;H1(Ω)), then the finite

element solution (2.7) satisfies the auxillary error estimate

||∇ · θz||2L2(L2) ≤ C(T )(h2 + ∆t2). (5.7)

Proof.

Similarly to the approach taken in obtaining (4.9) we may easily obtain the fol-
lowing identity

N∑

n=1

∆tBnh [(θnu, θ
n
z , θ

n
p ), (βθn∆t,u + π1

hvθn∆t,p
, βθnz , βθ

n
∆t,p +∇ · θnz )] =

6∑

i=1

Ψi,
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where

Ψ1 := −
N∑

n=1

∆ta(ηn∆t,u, βθ
n
∆t,u + π1

hvθn∆t,p
),

Ψ2 := −
N∑

n=1

∆t(∇ · (ηn∆t,u + ηnz ),∇ · θnz + βθn∆t,p),

Ψ3 :=
N∑

n=1

∆tJ(ηn∆t,p, βθ
n
∆t,p +∇ · θnz ), Ψ4 := −

N∑

n=1

∆t((k−1ηn∆t,z, βθ
n
z )),

Ψ5 :=
N∑

n=1

∆tJ(ρnp , βθ
n
∆t,p +∇ · θnz ), Ψ6 :=

N∑

n=1

∆t(∇ · ρnu, βθn∆t,p +∇ · θnz ).

We now bound the terms on the right hand side of (5.8) using machinery developed
during the previous proof:

Ψ1 ≤
Cε

2
||θ∆t,u||2L2(H1) +

ĉ2ε

2
||θ∆t,p||2L2(L2) +

Ch2

2ε
||ut||2L2(H2)

+
C

2ε
∆t2||utt||2L2(H1), (5.8)

Ψ2 ≤ ε||∇ · θz||2L2(L2) + ε||θ∆t,p||2L2(L2) +
Ch2

2ε

(
||ut||2L2(H2) + ||z||2L2(H2)

)

+
C

2ε
∆t2||utt||2L2(H1), (5.9)

Ψ3 ≤ εC||∇ · θz||2L2(L2) + ε
∣∣∣∣θn∆t,p

∣∣∣∣2
L2(J)

+
Ch2

2ε
||pt||2L2(H1) +

C

2ε
∆t2||ptt||2L2(J),(5.10)

Ψ4 ≤ ε||θz||2L2(L2) +
Ch2

2ε
||zt||2L2(H1) +

C

2ε
∆t2||ztt||2L2(L2), (5.11)

Ψ5 ≤ ε||θ∆t,p||2L2(J) + εC||∇ · θz||2L2(L2) +
C∆t2

2ε
||ptt||2L2(J), (5.12)

Ψ6 ≤ ε||θ∆t,p||2L2(L2) + ε||∇ · θz||2L2(L2) +
C

2ε
∆t2||utt||2L2(H1). (5.13)

We can now combine the individual bounds (5.8), (5.9), (5.10), (5.11), (5.12), and
(5.13), with the coercivity result Lemma 4.3, choose β sufficiently large, use the
assumption θ0

z = 0, the assumed regularity of u, z and p, and choose ε sufficiently
small to obtain

∣∣∣∣θNz
∣∣∣∣2

0,Ω
+ ||∇ · θz||2L2(L2) ≤ C||θz||

2
L2(L2) + C(h2 + ∆t2).

Applying Gronwall’s Lemma, we get the desired result.

5.3. The a priori error estimate. By combining the previous Lemmas we
obtain the main Theorem regarding the finite element error estimate.

Theorem 5.4. If u ∈ H2
(

0, T ;
(
L2(Ω)

)d)∩H1
(

0, T ;
(
H2(Ω)

)d)
, z ∈ L2

(
0, T ;

(
H1(Ω)

)d)

and p ∈ H2
(
0, T ;H1(Ω) ∩ L(Ω)

)
, then finite element solution (2.7) satisfies the error

estimate

|||eu, ez, ep|||2B ≤ C(h2 + ∆t2).



18 L. BERGER, R. BORDAS, D. KAY AND S. TAVENER

Moreover, if u ∈ H2
(

0, T ;
(
H1(Ω)

)d)∩H1
(

0, T ;
(
H2(Ω)

)d)
, z ∈ L2

(
0, T ;

(
H2(Ω)

)d)

and p ∈ H2 (0, T ; J ∩ L(Ω)) ∩H1(0, T ;H1(Ω)), then the finite element solution (2.7)
satisfies the error estimate

|||eu, ez, ep|||2B + ||∇ · ez||2L2(L2) ≤ C(h2 + ∆t2).

Proof. We first write the errors as enu = ηnu + θnu, and similarly for the other
variables. Using Lemma 3.1 we can bound the projection errors, and using Lemma
5.2 and Lemma 5.3 we can bound the auxillary errors to give the desired result.

6. Numerical Results. We first present convergence studies for both two- and
three-dimensional test problems which illustrate the predicted convergence rates for
the fully-discrete finite element method. We then apply our method to the popular
2D cantilever bracket problem and demonstrate that our stabilization technique over-
comes the spurious pressure oscillations that have been experienced by other methods.
Finally, a 3D unconfined compression problem is presented that highlights the added
mass effect of the method for different choices of the stabilization parameter δ.

6.1. 2D test problem. Choosing λ = µ = α = 1 and c0 = 0 in (2.1) we solve
the problem

−2∇ (∇ · u)−∇2u +∇p = f in Ω, (6.1a)

z +∇p = 0 in Ω, (6.1b)

∇ · (ut + z) = g in Ω, (6.1c)

u(t) = uD on ΓD = Γ, (6.1d)

z(t) · n = qD on ΓF = Γ, (6.1e)

u(0,x) = 0, p(0,x) = 0 x ∈ Ω. (6.1f)

The domain, Ω, is the unit square and the source terms and boundary conditions are
chosen so that the true solution is

u =

(
− 1

4π cos(2πx) sin(2πy) sin(2πt)
− 1

4π sin(2πx) cos(2πy) sin(2πt)

)
, z =

(
−2π cos(2πx) sin(2πy) sin(2πt)
−2π sin(2πx) cos(2πy) sin(2πt)

)
,

and p = sin(2πx) sin(2πy) sin(2πt), with t ∈ [0, 0.25].

6.1.1. Choice of δ. The most appropriate choice of stabilization parameter δ
is not known a priori. Small values of δ can result in spurious pressure solutions,
as shown in Figure 6.1a for δ = 0.1. Larger values of the stabilization parameter
produce smooth pressure solutions, as shown in Figure 6.1b for a value of δ = 1. The
value of δ required to produce a stable solution depends on the geometry and material
parameters of the particular problem under investigation, but is independent of any
mesh parameters.
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Fig. 6.1: (a) Unstable pressure field with δ = 0.1 at t = 0.25, stabilization parameter
too small. (b) Stable pressure field, with δ = 1 at t = 0.25.

6.1.2. 2D convergence study. The convergence of the method with discretiza-
tion parameters is illustrated in Figure 6.2a – 6.2e for δ = 1, 10, 100. The convergence
rates observed in the appropriate norms agree with the theoretically derived error
estimates.
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Fig. 6.2: Convergence of the displacement, fluid flux, and pressure errors in their
respective norms for the simplified poroelastic 2D test problem with different (stable)
values for the stabilization parameter δ.

6.1.3. Alternative stabilization techniques. In Figure 6.3 we illustrate the
convergence of the pressure error for three possible stabilization forms. As demon-
strated in Section 6.1, the stabilization J(p∆t,h, qh) yields a stable solution and optimal
convergence rate. A more naive approach, inserting the stabilization J(ph, qh) results
in the solution becoming unstable after the first refinement step. This is because
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the stabilization becomes relatively small as ∆t decreases. To overcome this issue one
could chose to scale the stabilization, and try 1

∆tJ(ph, qh). Although this stabilization
now stays stable during refinement, it does not converge at an optimal rate.

3 4 5 6
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1
∆tJ(ph, qh)

1st order

Fig. 6.3: Convergence of the pressure error for three different stabilization forms, with
δ = 1.

6.2. 3D test problem. Extending the test problem in Section 6.1 to the unit
cube, we set

u =



− 1

6π cos(2πx) sin(2πy) sin(2πz) sin(2πt)
− 1

6π sin(2πx) cos(2πy) sin(2πz) sin(2πt)
− 1

6π sin(2πx) sin(2πy) cos(2πz) sin(2πt)


 ,

z =



−2π cos(2πx) sin(2πy) sin(2πz) sin(2πt)
−2π sin(2πx) cos(2πy) sin(2πz) sin(2πt)
−2π sin(2πx) sin(2πy) cos(2πz) sin(2πt)


 ,

and

p = sin(2πx) sin(2πy) sin(2πz) sin(2πt).

The expected rates of convergence for each variable in the appropriate norm are illus-
trated in the numerical results presented in Figure 6.4a – 6.4e for δ = 0.001, 0.01, 0.1.
The stabilization factor δ may be chosen to be very much smaller for 3D problems
as compared to 2D problems and the effect of the stabilization term on the solution
is negligible. This can be explained by the improved ratio of solid displacement and
fluid flux nodes to pressure nodes in three dimensions, making the LBB condition
easier to satisfy.
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Fig. 6.4: Convergence of the displacement, fluid flux, and pressure errors in their
respective norms for the simplified poroelastic 3D test problem with different (stable)
values for the stabilization parameter δ.

6.3. 2D cantilever bracket problem. We consider the 2D cantilever bracket
problem used in [32] to illustrate the problem of spurious pressure oscillation. This
problem was also used in [27] and [38] to demonstrate their methods ability to over-
come these spurious pressure oscillations. The cantilever bracket problem (shown
in Figure 6.5a) is solved on a unit square [0, 1]2. No-flow flux boundary conditions
are applied along all sides, the deformation is fixed (u = 0) along the left hand-side
(x = 0), and a downward traction force, tN · n = −1, is applied along the top edge
(y = 1). The right and bottom sides are traction-free. For this numerical experi-
ment, we set ∆t = 0.001, h = 1/96, δ = 5 × 10−6. The material parameters λ and
µ are chosen such that Youngs’s modulus, E = 105 and Poisson’s ratio ν = 0.4 and
α = 0.93, c0 = 0, k = 1 × 10−7, values shown in [32] to typically cause locking. The
proposed stabilized finite element method yields a smooth pressure solution without
any oscillations as is shown in Figure 6.5b.

6.4. 3D unconfined compression stress relaxation. In this test, a cylin-
drical specimen of porous tissue is exposed to a prescribed displacement in the axial
direction while left free to expand radially. (Note that the two plates are not explicitly
modelled in the simulation, but are realised through displacement boundary condi-
tions.) After loading the tissue, the displacement is held constant while the tissue
relaxes in the radial direction due to interstitial fluid flow through the radial bound-
ary. For the special case of a cylindrical geometry [1] found a closed-form analytical
solution for the radial displacement u given by

u

a
(a, t) = ε0

[
ν + (1− 2ν)(1− ν)

∞∑

n=1

exp (−α2
n
Mkt
a2 )

α2
n(1− ν)2 − (1− ν)

]
, (6.2)

where αn are the solutions to the characteristic equation J1(x)− (1− ν)xJ0(x)/(1−
2ν) = 0, where J0 and J1 are Bessel functions, ε0 is the amplitude of the applied axial



22 L. BERGER, R. BORDAS, D. KAY AND S. TAVENER

Ω
u = (0, 0)T
z · n = 0 z · n = 0

z · n = 0

z · n = 0
t · n = −1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y

P
r
e
s
s
u
r
e

 

 

x=0.25

x=0.5

x=0.75

(b)

Fig. 6.5: (a) Boundary conditions for the cantilever bracket problem. (b) Pressure
solution for the cantilever bracket problem at t = 0.005.

strain, a is the radius of the cylinder, and tg is the characteristic time of diffusion
(relaxation) tg = a2/Mk, where M = λ + 2µ is the P-wave modulus of the elastic
solid skeleton, and k is the permeability.

The analytical solution available for this test problem describes the displacement
of the outer radius which is directly dependent on the amount of mass in the system
since the porous medium is assumed to be incompressible and fully saturated. It is
therefore an ideal test problem for analyzing the effect that the added stabilization
term has on the conservation of mass. In Figure 6.7 we can see that for large values
of δ the numerical solution loses mass faster and comes to a steady state that has less
mass than the analytical solution. This is a clear limitation of the method and the
stability parameter therefore needs to be chosen carefully. However, for 3D problems
δ can be chosen to be very small so this effect is negligible, as can be seen in Figure
6.7 for a stable value of δ = 0.001.

7. Conclusion. The local pressure jump stabilization method [8] is commonly
used to solve the Stokes or Darcy equations using piecewise linear approximations
for the velocities, and piecewise constant approximations for the pressure variable.
The main contribution of this paper has been to extend these ideas to three-field
poroelasticity. We have presented a stability result for the discretized equations that
guarantees the existence of a unique solution at each time step, and derived an energy
estimate which can be used to prove weak convergence of the solution of the discretized
system to the solution to the continuous problem as the mesh parameters tend to
zero. We also derived an optimal error estimate which includes an error for the fluid
flux in its natural Hdiv norm. We have also presented numerical experiments in
2D and 3D that illustrate the convergence of the method, the effectiveness of the
method in overcoming spurious pressure oscillations, and the added mass effect of the
stabilization term.
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Fig. 6.6: (a) Sketch of the test problem. The porous medium is being compressed
between two smooth impervious plates. The frictionless plates permit the porous
medium to expand in order to conserve volume and then to gradually relax as the
fluid seeps out radially. (b) Pressure field solution at t = 5s, using a mesh with 28160
tetrahedra.
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