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Abstract

We propose regularization schemes for deformable registration and efficient algorithms for their 

numerical approximation. We treat image registration as a variational optimal control problem. 

The deformation map is parametrized by its velocity. Tikhonov regularization ensures well-

posedness. Our scheme augments standard smoothness regularization operators based on H1- and 

H2-seminorms with a constraint on the divergence of the velocity field, which resembles 

variational formulations for Stokes incompressible flows. In our formulation, we invert for a 

stationary velocity field and a mass source map. This allows us to explicitly control the 

compressibility of the deformation map and by that the determinant of the deformation gradient. 

We also introduce a new regularization scheme that allows us to control shear.

We use a globalized, preconditioned, matrix-free, reduced space (Gauss–)Newton–Krylov scheme 

for numerical optimization. We exploit variable elimination techniques to reduce the number of 

unknowns of our system; we only iterate on the reduced space of the velocity field. Our current 

implementation is limited to the two-dimensional case.

The numerical experiments demonstrate that we can control the determinant of the deformation 

gradient without compromising registration quality. This additional control allows us to avoid 

oversmoothing of the deformation map. We also demonstrate that we can promote or penalize 

shear whilst controlling the determinant of the deformation gradient.
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1. Introduction

Image registration is a key technology in computer vision and imaging sciences. 

Applications include surveillance, remote sensing, motion tracking, and medical image 
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analysis. Lucid and concise expositions on image registration can be found in [65, 67, 85]. 

The problem of image registration can be stated as follows: Given a reference image 

 and a template image  with compact support on Ω ⊂ Rd, d ∈ {2, 3}, 

we seek a plausible map  such that the distance between mR and mT ○ y is as 

small as possible;  denotes the closure of Ω with boundary ∂Ω, and the operator 

○ is the function composition. If we use an L2-distance to measure the proximity between 

mR and mT ○ y we can formulate image registration as a variational optimization problem

(1.1)

Deformable registration is an ill-posed, nonlinear, and non-convex optimization problem—

regularization is inevitable. The key idea of regularization is to stably compute a solution to 

a nearby problem. A variety of regularization schemes have been proposed, for example [16, 

17, 22, 24, 23, 29, 32, 33, 34, 44, 45, 60, 62]. Regularization is typically based on some 

Tikhonov functional that is added to the objective, which—in the case of (1.1)—is a 

quadratic norm, the contribution of which is controlled by the weight β > 0. The particular 

choice of the regularization model depends on the application. This is also true for the 

measure of the proximity between mR and mT ○ y; different choices can be found in [65, 

67, 85].

A key requirement in many applications, especially in medical imaging, is that the map y is a 

diffeomorphism [10, 17, 30, 89, 91], i.e., y is a bijection, continuously differentiable, and has 

a continuously differentiable inverse. Formally, we require that det(∇y) ≠ 0 for every x ∈ Ω, 

where ∇y ∈ Rd×d is the Jacobian of the deformation map y. Under the assumption that y is 

orientation preserving we require that det(∇y) > 0 for every x ∈ Ω. In practice, we would like 

to control the distance of det(∇y) from zero.1 Generally speaking, the type and weight of 

regularization are selected to drive the optimizer to diffeomorphic maps y at reasonable 

computational cost whilst enabling a good registration between mR and mT. In the 

framework of large deformation diffeomorphic image registration we do not directly invert 

for the deformation map y, but for its velocity v. Broadly speaking, we can distinguish 

between approaches that invert for stationary [3, 4, 47, 59, 58, 91] and those that invert for 

non-stationary velocity fields [10, 22, 30, 89]. The proposed formulation uses a stationary 

velocity, although in principle the extension to a non-stationary velocity is straightforward. 

In either case, the search space for y is typically restricted to the manifold of 

diffeomorphisms by specifying adequate smoothness requirements for v [5, 10, 30, 47, 89]. 

However, this smoothness control may result in over-smoothing or may lead to det(∇y) ≈ 0 

or even det(∇y) < 0 [5].

Here, we propose constrained regularization schemes for v that allow us to control det(∇y) 

and the amount of shear in the deformation map y. We follow up on [60] where we 

introduced numerical schemes for our optimal control based large deformation 

1Monitoring det(∇y) does not guarantee that volume elements do not collapse [17, 42, 60] In practice, we have to monitor geometric 
properties of the deformed grid cells.
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diffeomorphic image registration formulation (for both stationary and non-stationary 

velocity fields). In particular, we considered two models—one for compressible and one for 

incompressible diffeomorphisms y.2 For the incompressible case we hypothesized that fixing 

det(∇y) to one yields more well-behaved mappings as compared to plain smoothness 

regularization. We found that enforcing det(∇y) = 1 up to numerical accuracy seems to be a 

too strong constraint for our formulation to be applicable across a wide range of registration 

problems. We also found that enforcing det(∇y) = 1 can lead to excessive shear in the 

deformation map.

In the present work, we propose new regularization schemes to address these issues. We 

introduce a mass source  as an additional unknown to our variational optimization 

problem. Conceptually, this is equivalent to replacing the incompressibility constraint by a 

soft constraint (penalty) on the divergence of v (see e.g. [14]). Our formulation avoids ill-

conditioning issues in case we set ∇ · v to a specified value (e.g. zero). We refer to this 

scheme as linear Stokes regularization. Our hypothesis is that the obtained maps y are better 

behaved (smaller variations of the determinant of the deformation gradient) without 

compromising registration quality as compared to plain smoothness regularization, e.g., used 

in [5, 6, 7, 10, 30, 46, 89, 87, 91, 92]. A similar reasoning can be found in connection with 

hyperelastic regularization models [17, 29].

Our overarching goal is to design a biophysically constrained framework for large 

deformation diffeomorphic image registration. Constraints can range from complicated 

biophysical priors, such as brain tumor models [35, 36, 63, 49] or cardiac motion models 

[86], to—like in the present case—simpler models of (nearly) incompressible tissue. The 

general idea is to favor diffeomorphic deformation maps that have minimal volume changes 

without compromising data fidelity. An interesting application for incompressible 

diffeomorphisms is motion estimation in cardiac imaging [13, 37, 64, 86]. Here, it is 

expected (at least for healthy individuals) that the volume of the heart muscle does not vary 

significantly during a cardiac cycle; the deformation map is incompressible. Other 

applications for (near-)incompressible diffeomorphic registration include time series of 

abdominal images of a single individual, i.e., images of the liver or the kidneys. Here, we 

also expect the tissue to mostly behave like an incompressible material. Notice that our new 

formulation relaxes the incompressibility constraint—it is possible to compute deformation 

maps that have large local volume changes; we will demonstrate this experimentally.

We, in addition to that, introduce a new regularization scheme that allows us to promote or 

penalize shear. This formulation also operates in a near-incompressible regime and is 

motivated from continuum mechanics [73, 75]. In some registration problems the optimizer 

might drive us to maps that introduce excessive shear. Our new formulation allows us to 

penalize shear in order to generate maps that are well behaved, guaranteed to be 

diffeomorphic, and potentially (near-)incompressible. On the contrary, we can also promote 

shear using the same formulation by simply changing the value of a single parameter. This 

may be of interest in applications where we expect sharp interfaces (large shear) in the 

deformation map. We refer to this scheme as nonlinear Stokes regularization. We will see 

2Related work on incompressible diffeomorphisms can be found in [19, 20, 48, 64, 80, 81]; see §1.4.
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that this formulation is—in the limit—equivalent to total variation regularization [20, 23, 

34].

1.1. Outline of the Method

We introduce a pseudo-time variable t > 0 and solve for a stationary velocity field , 

, and a mass source , , as follows:

(1.2a)

subject to

(1.2b)

(1.2c)

(1.2d)

and periodic boundary conditions on ∂Ω. The state variable  in (1.2b) 

models the transported intensities of the template image  subjected to the 

stationary velocity field v. The deformation map y is not computed explicitly.3 Instead, the 

solution of (1.2b), i.e. m1:= m(·, t = 1), , represents mT ○ y in (1.1), where y 
represents an Eulerian deformation map. We, likewise to (1.1), use an L2-distance to 

measure the proximity between m1 and mR. The objective in (1.2a) additionally consists of 

two regularization models that act on the controls v and w with weights βv and βw, 

respectively. We provide more details on the choice for the associated norms and the choices 

for q > 0 in §2.

We augment the regularization on v by a constraint on the divergence of the control v in 

(1.2d). Setting w in (1.2d) to zero yields a model of incompressible flow [19, 20, 48, 60, 64, 

80]. This is equivalent to enforcing det(∇y) = 1 up to numerical errors (see [39, p. 70ff.]). 

We relax this incompressibility constraint by introducing an unknown mass source w, which 

is determined by solving (1.2).

In §3 we will see that the optimality system for (1.2) is a system of space-time nonlinear 

multicomponent PDEs for the transported intensities m, the velocity field v, the mass source 

w, and the adjoint variables for the transport and divergence condition. Solving this system 

poses significant challenges. We follow our former work [60] and solve for the first-order 

3The Eulerian deformation map y and the deformation gradient F1 := (∇y)−1 are computed from v (see §D.2).
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optimality conditions using a globalized, matrix-free, preconditioned inexact 

(Gauss–)Newton–Krylov method for the Schur complement of the velocity v. We first derive 

the optimality conditions and then discretize using a pseudospectral discretization in space 

with a Fourier basis.

1.2. Contributions

The main goal of this work is to introduce and put to the test new regularization schemes for 

large deformation diffeomorphic image registration. We use the solver and numerical 

techniques we have described in [60] to efficiently solve the associated optimization 

problem. Our main contribution is the formulation and the derivation of the systems. In 

particular, the contributions are:

• We extend on existing work on continuum mechanical models for incompressible 

flow [14, 19, 20, 48, 60, 64, 80, 81] by introducing a mass-source w into the 

variational optimization problem. This results in a formulation that is more 

flexible in that we do not fix det(∇y) to one.

• We propose a novel H1-regularization scheme that yields a continuum 

mechanical model with a viscosity that depends on the strain rate tensor (non-

Newtonian fluid). This allows us to explicitly control the resistance of the fluid to 

shear stress and by that promote (shear thinning fluid) or suppress (shear 

thickening fluid) large shear in the map y. We will see that this model has a 

strong resemblance of total variation regularization [20, 34].

• By using Lagrange multipliers to control the divergence, our formulation avoids 

ill-conditioning issues in case ∇ · v is set to a specified value (for example w = 

0). Our numerical discretization (pseudospectral) allows us to construct fast 

solvers for the optimality system; we only iterate on the reduced space of the 

velocity field v.

• We provide second order information for numerical optimization.4 Although 

second order methods have widely been used in traditional, variational 

registration approaches (see e.g. [67]), there has been little work on the use of 

Newton-type optimization in the framework of large deformation diffeomorphic 

image registration [5, 46, 60]. Most work in this area is still based on first order 

numerical optimization strategies [6, 7, 14, 19, 20, 43, 47, 54, 55, 92].

• We study the effect of incompressibility and smoothness regularization on the 

overall registration quality as a function of the regularization parameters. We 

quantify registration accuracy in terms of overlap measures and compare our 

results against the diffeomorphic DEMONS algorithm [91]. We demonstrate that, 

by introducing a constraint on ∇ · v, we can control det(∇y) without 

compromising registration quality. We show that our model allows us to avoid 

4Our globalized, matrix-free, preconditioned Newton–Krylov scheme has been described in [60]. We do not view the numerical 
scheme as a major contribution, but the formulation and the derivation of the associated optimality conditions. A study of our 
numerical scheme, which includes a comparison to a preconditioned gradient descent algorithm (i.e., our algorithm uses the reduced 
gradient in the Sobolev space V), can be found in [60].
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over-smoothing of the deformation map. We also study the effect of controlling 

shear.

1.3. Limitations and Unresolved Issues

Here, we summarize the limitations and unresolved issues of our work:

• We introduce an additional regularization parameter. This makes it more difficult 

to design a black-box solver and more expensive to automatically calibrate the 

algorithm.

• We assume similar intensity statistics of mR and mT. This is a common 

assumption in many image registration approaches [10, 19, 34, 43, 47, 54, 68, 

92]. For multimodal registration problems different distance measures have to be 

considered (see e.g., [65, 85]).

• We present results only in two dimensions. Nothing in our formulation and 

numerical approximation is specific to the two dimensional case. Overall, the 

method is very expensive and a practical three dimensional implementation 

requires more work.

• We only report results for stationary velocities (see, e.g., [4, 47, 91]). We have 

implemented and tested time-varying velocities (in [60] we report results for 

incompressible y). For a two-image registration problem we found that a velocity 

that changes in time does not improve the quality of the registration. For tracking 

problems like optical flow [14, 19, 20, 50, 52, 80] or time series of medical 

images [61] a time-dependent velocity may be necessary. Nothing changes in our 

formulation, just the problem size (see [60]).

1.4. Related Work

There is a vast body of literature on image registration. Here, we restrict the discussion to 

approaches that are closely related to our work. We refer to [65, 67, 85] for a more general 

overview on algorithmic developments and formulations.

Our approach shares numerous characteristics with methods that have appeared in the past. 

Optimal control formulations for image registration have been discussed in [14, 19, 43, 54, 

55, 60, 92]. Our work is related to large deformation diffeomorphic metric mapping [6, 7, 

10, 30, 89, 95] (see [60] for a connection). It differs in that we, likewise to [3, 4, 47, 59, 58, 

91], invert for a stationary velocity field. Our formulation also shares conceptual ideas with 

traditional optical flow formulations [50, 52, 80]. We refer to [60] for a more detailed 

discussion. In this review we will focus on approaches that (i) introduce mass conservation 

as an additional constraint and/or (ii) aim at recovering motion fields that locally contain 

significant shear.

One way to explicitly control det(∇y) is to set it to one. This is equivalent to working with 

incompressible velocity fields (see [39, p. 77ff.]); we refer to this model as linear Stokes 
regularization. Formulations based on divergence free velocity fields have been described in 

[14, 19, 48, 60, 64, 80, 81]. None of these consider an inversion for a mass source w. All of 
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these, with the exception of our preceding work [60], use first order information only for 

numerical optimization. Other formulations for controlling det(∇y) can be found in [1, 8, 17, 

40, 41, 42, 56, 57, 66, 69, 74, 77, 79, 83, 94].

We, in addition to that, introduce a continuum mechanical model that controls shear (either 

promoting or penalizing it). We refer to this formulation as nonlinear Stokes regularization. 

Related approaches based on nonquadratic regularization norms (L1-norm or total variation) 

have been described in [20, 23, 34, 78, 96]. In our formulation, the regularization is a 

function of the shear strain rate. This allows us to explicitly control the amount of shear in 

the deformation map. If such an explicit control is beneficial in certain applications remains 

to be seen. We will see that our formulation is in the limit equivalent to total variation 

regularization [20, 23, 34]. Our model couples the individual components of the regularized 

vector field as opposed to component wise vectorial total variation regularization [20, 34].

Other approaches for estimating an expected discontinuous motion field include locally 

adaptive (i.e. direction dependent and/or intensity-driven) regularization [71, 72, 82], are 

based on a decomposition of the body-force [8], or are based on a subdivision of the domain 

[76, 79, 93]. The formulations in [23, 24, 34, 78, 82, 71] operate on the deformation map or 

the displacement field. Our formulation operates on the velocity field instead and as such 

falls into the category of large deformation models. We can, likewise to the linear Stokes 

case, control the magnitude of det(∇y). All mentioned approaches for estimating sliding 

motion, with the exception of [8, 78, 79], do not feature such a control. Our formulation 

does—as opposed to [8, 71, 76, 79, 82, 93]—not require any partitioning of the domain (pre-

segmentation). We exploit the second order Newton–Krylov scheme we have introduced in 

[60], which further distinguishes us from most of the preceding work. Our formulation 

allows us to control the shear within the estimated motion field on the basis of a single, 

strictly positive parameter; we can can not only promote shear, but also penalize it.

1.5. Organization and Notation

We provide additional details on the optimal control formulation in §2. The optimality 

system is summarized in §3. The numerics are described in §4 (we refer to [60], where we 

originally introduced our numerical scheme, for more details). We report experiments in §5 

and conclude with §6. Additional derivations, comments, algorithmic details, and measures 

of registration performance, can be found in the appendix.

An overview of the commonly used symbols can be found in Tab. 1. Vectorial quantities and 

matrices are denoted in boldface. Function spaces, differential operators, and functionals are 

denoted in calligraphy. A superscript h is added to the variables whenever we refer to 

discretized quantities.

2. Problem Formulation

The images to be registered are modeled as compactly supported functions on the domain 

Ω:= (−π, π)d ⊂ Rd, d ∈ {2, 3}, with boundary ∂Ω, and closure . We introduce a 

pseudo-time variable t > 0 and solve for a stationary velocity field , , and 

a mass source , , as follows:
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(2.1a)

subject to

(2.1b)

(2.1c)

(2.1d)

and periodic boundary conditions on ∂Ω. We do not directly invert for the map y but for its 

velocity v. This is different to the problem formulation in (1.1); in our formulation, the 

solution of (2.1b)—m1:= m(·, t = 1), —is equivalent to mT ○ y in (1.1), where y 
is the deformation map defined in an Eulerian frame of reference. We, likewise to (1.1), use 

an L2-distance to measure the proximity between the deformed template image m1 and the 

reference image mR. This is a common choice in many deformable image registration 

algorithms (see e.g. [10, 54, 68, 92]). The parameters βv > 0 and βw > 0 control the 

contribution of the regularization norms. The parameter γ ∈ {0, 1} is introduced for clarity. 

If we set γ = 0 we obtain a formulation that is related to available models for large 

deformation diffeomorphic image registration [4, 10, 43, 47, 92, 91] (see [43, 60] for a more 

detailed insight).5 If we set γ to one and w to zero, we obtain a model for incompressible 

diffeomorphisms; i.e., we enforce det(F1) = 1 up to numerical accuracy; the tensor field 

 is the deformation gradient at t = 1 computed from v (see §D.2 for details). 

Similar approaches for incompressible diffeomorphisms have been described in [19, 48, 60, 

64, 80, 81]. We extend these by introducing a non-zero mass-source w. This allows us to 

relax the model from incompressible diffeomorphisms to a model of near-incompressible 

diffeomorphisms. The regularization on w in (2.1a) acts like a penalty on ∇ · v; we use an 

H1-norm:

(2.2)

We use H1- and H2-seminorms to regularize v; in particular,

5We invert for a stationary velocity field. Other work on diffeomorphic registration based on stationary velocity fields can for instance 
be found in [3, 4, 47, 59, 58, 91]. The traditional large deformation diffeomorphic metric mapping framework introduced in [10, 30, 
88, 89, 95] uses time-dependent velocity fields. Our implementation allows us to invert for time-dependent and stationary velocity 
fields alike (in case quadratic regularization models are considered); nothing changes in our formulation, just the number of unknowns 
(see [60] for details). Here, we limit ourselves to stationary v.
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(2.3)

respectively. The choice of an H2-seminorm is motivated by related work on large 

deformation diffeomorphic image registration (see, e.g., [10, 43, 92]). The choice of an H1-

seminorm is motivated by the fact that we obtain optimality conditions that are similar to 

Stokes equations in fluid mechanics; we refer to this (near-)incompressible formulation as 

“linear Stokes regularization”.

Since we observed that a model of incompressible flow may promote shear, we additionally 

introduce a nonlinear regularization model that allows us to control (promote or penalize) 

shear in the deformation field in a problem dependent way. This model is motivated from 

continuum mechanics6 and given by

(2.4)

Here, n > 0 controls the nonlinearity and  is the strain rate tensor. 
We will see that we arrive at a Stokes-like optimality system with a viscosity that depends on 

the strain rate (see §3 for details). For ν ∈ (0, 1) we obtain a shear thickening and for ν > 1 a 

shear-thinning fluid. Notice that we approach a total variation like regularization model as ν 
in (2.4) tends to ∞ (see §C). Thus, we can explicitly control the shear within y via ν. This 

model, in combination with the incompressibility constraint, yields a deformation map for 

which det(F1) = 1. This is a fundamental difference to most existing models for estimating 

sliding motion7 (with the exception of [8, 78, 79]), since these in general do not explicitly 

control the determinant of the deformation gradient. We have also tested a version of this 

model with a relaxed incompressibility constraint. We refer to this formulation as “nonlinear 
Stokes regularization”. Notice, that the derivation we describe in the present work will also 

hold if we replace (2.4) with a total variation regularization model.

Remark on some theoretical considerations

There are several questions at hand. A first question regards an appropriate choice of the 

space for v so that the transport equation (2.1b) has a unique solution and preserves the 

smoothness of the initial image m(·, 0) = mT. The answer to this question depends on 

smoothness of the input images mT and mR. A second question regards the sufficient 

regularity of the adjoint variables, which is required to justify a gradient-descent scheme for 

solving (2.1). Finally, a third question regards the existence and uniqueness of the solution 

of (2.1). If the input images mT and mR are adequately smooth, and the regularization space 

6We will arrive at a formulation that resembles continuum mechanical models that can be found in geoscience applications [51, 73, 
75].
7We note that our formulation allows us to only approximate discontinuous motion fields (sliding motion) by promoting shear; the 
computed map will still be continuous.
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and weights are large enough, then the transport equation has a unique solution, smoothness 

is preserved, the adjoint variables are smooth, and the problem has a solution. Uniqueness 

requires an even stronger regularization to ensure the convexity of the problem. In our 

experiments we always use smooth images (we apply a Gaussian smoothing operator to the 

input images). However, it is not known if our regularization scheme for the velocity is in 

the theoretical limit sufficient for all three questions to have an affirmative answer. 

Numerically, we control the velocity by adjusting the regularization weight to ensure we 

obtain diffeomorphic maps. Informally, our experimental studies suggest that H1-regularity 

of v and the penalization of ∇ · v can provide sufficient smoothness as long as the 

regularization parameters are sufficiently large. We provide a lengthier discussion in §B, 

based on work of other authors [18, 19, 26, 28]. A detailed theoretical analysis is beyond the 

scope of this work and remains open for future work.

3. Optimality Conditions

We use the method of Lagrange multipliers to solve (2.1). The Lagrangian reads

(3.1)

with Lagrange multipliers  for the hyperbolic transport equation (2.1b), 

 for the initial condition (2.1c), and  for the incompressibility constraint 

(2.1d) (p is referred to as pressure in fluid dynamics); ϕ:= (m, v, w, λ, μ, p) and 

denotes the standard L2 inner product defined on Ω.

Our algorithm falls into the class of reduced space Newton–Krylov methods [11, 12]. This 

will also be reflected by the optimality systems we present below. The interested reader is 

referred to §E for a more detailed explanation of the optimality systems, the conceptual 

ideas behind our algorithm, and details for its implementation. We describe our Newton–

Krylov algorithm in more detail in [60]. We refer to [15, 38] for general information on 

optimal control theory and PDE constrained optimization; the conceptual ideas we use for 

our optimization scheme are described in [70]. We use an optimize-then-discretize approach.
8 The resulting optimality conditions is what we discuss next.

3.1. First order Optimality System

From Lagrange multiplier theory we know that the variations of  with respect to all 

variables have to vanish for an admissible solution of (2.1). Taking variations of  in (3.1) 

with respect to m, v, w, λ, μ, and p, in directions , , , , , and , and applying 

integration by parts, yields the optimality system (i.e., the first order necessary optimality 
conditions (KKT conditions) in strong form)

8For a discussion on advantages and disadvantages of the optimize-then-discretize and the discretize-then-optimize approach we refer 
to [38].
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(3.2a)

(3.2b)

(3.2c)

(3.2d)

(3.2e)

(3.2f)

(3.2g)

subject to periodic boundary conditions on ∂Ω. The parameter γ ∈ {0, 1} enables or disables 

the constraint on the divergence of v in (3.2e). Further,

is the body force. The operator −Δ+ id (where id is the identity operator) in (3.2g) is the first 

variation of the H1-norm in (2.2). The operator  in (3.2f) is the first variation of the 

regularization model for v. In particular, we have

(3.3)

for the H1- and the H2-seminorm in (2.3), respectively.9 Further, we have

(3.4)

9For , γ = 1 and w = 0 we obtain a linear Stokes regularization model (i.e., a model for incompressible diffeomorphisms; 
see [60]).
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if we consider the regularization model in (2.4), where  is the 

effective viscosity, ν > 0 is Glen’s flow law exponent and  is the 

strain rate tensor.

In the language of optimal control (3.2a) is referred to as the state equation (with initial 

condition (3.2b)), (3.2c) as the adjoint equation (with final condition (3.2d)), and (3.2f) and 

(3.2g) as the control equations, respectively. Notice that the adjoint equation models the 

transport of the mismatch between m1 (deformed template image) and mR backward in time; 

λ will (ideally) tend to zero if we approach the solution of our problem.

We can directly use the optimality system in (3.2) to design an iterative scheme for 

computing a solution to (2.1). This will result in a first order gradient descent scheme, which 

is still widely used in large deformation diffeomorphic image registration [10, 43, 92] 

despite its linear convergence. As we have seen in [60] (for the compressible and the 

incompressible case) preconditioned gradient descent schemes10 are inferior to 

preconditioned Newton–Krylov schemes in case we strive for high inversion accuracy. 

However, exploiting second order information requires more work; we have to derive the 

second variations of the Lagrangian. This is what we present next.

3.2. Newton Step

We use a globalized, inexact, reduced space (Gauss–)Newton–Krylov method for numerical 

optimization (see §4); we solve (3.2) using a Newton linearization. We have to compute 

variations of the weak form of the optimality conditions in (3.2), i.e., second variations of 

the Lagrangian in (3.1), to obtain the associated KKT system. Following the standard theory 

of calculus of variations, invoking the appropriate Green’s identities (integration by parts), 

and adhering to the fact that we consider a reduced space method, we arrive at the following 

system (which corresponds to the strong form of the second variations of the Lagrangian in 

(3.1)):

(3.5a)

(3.5b)

(3.5c)

10The control equation provides the reduced L2 gradient (variation of the objective with respect to v; by preconditioned gradient 
descent we mean that we use the gradient in the Sobolev space  for numerical optimization.
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(3.5d)

(3.5e)

(3.5f)

(3.5g)

with periodic boundary conditions on ∂Ω and incremental body force

We refer to (3.5a) (with initial condition (3.5b)), (3.5c) (with final condition (3.5d)), (3.5f) 

and (3.5g) as incremental state, incremental adjoint, and incremental control equations, 

respectively. The incremental variables are denoted with a tilde. The incremental control 

equations (3.5g) and (3.5f) represent the action of the reduced space Hessian operators on 

the control variables (Hessian matvec). The right hand sides in (3.5e) and (3.5g) correspond 

to the reduced gradients in (3.2g) and (3.2f), respectively.

The operator  is the second variation of the regularization model acting on v. It coincides 

with the first variations in (3.3) for the quadratic regularization models in (2.3). This also 

holds for the second variation of the H1-norm in (2.2) (see (3.5g)). The second variation for 

the nonlinear regularization model in (2.4) does not coincide with its first variation; we 

obtain

(3.6)

instead, where ⊗ is the tensor outer product and  is a fourth order identity tensor.

We can significantly simplify these systems by exploiting variable elimination techniques. 

This allows us to merely iterate on the reduced space of the velocity field v. This is what we 

discuss next.

Mang and Biros Page 13

SIAM J Imaging Sci. Author manuscript; available in PMC 2017 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3. Reduced Systems

We eliminate the control and adjoint variables w and p, and by that the constraint on the 

divergence of the velocity field v from the optimality system (3.2). The systems we provide 

below are the ones we solve numerically (see §E). We provide details on their derivation in 

§A. We arrive at

(3.7a)

(3.7b)

(3.7c)

(3.7d)

(3.7e)

with periodic boundary conditions on ∂Ω to replace (3.2). The operator  corresponds to the 

first variation of the regularization models. The operator  projects v onto the space of 

near-incompressible velocity fields. If we consider the regularization models in (2.3) we 

have

(3.8)

and id is the identity operator. If we set w = 0 this operator simplifies to . If we 

consider (2.4) instead, we have

where . If we set w = 0 we obtain .

The system no longer depends on w and p. This allows us to efficiently solve (2.1); we only 

iterate on the reduced space of the velocity field v. Computing variations of the weak form 

of (3.7) yields the Newton step

(3.9a)
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(3.9b)

(3.9c)

(3.9d)

(3.9e)

with periodic boundary conditions on ∂Ω. Here, g in (3.9e) corresponds to the reduced 

gradient in (3.7e). The operator  is the second variation of the regularization model (see 

§3). The projection operator  coincides with  in (3.8) if we consider the seminorms in 

(2.3) as a regularization operator. If we consider (2.4) instead, we have

(3.10)

where the operator  is as defined above and the operator  is given in (3.6). Our 

algorithm only operates on these reduced systems. We discuss its implementation, and by 

that the scheme to ultimately solve (2.1), next.

4. Numerics

Our numerical scheme has originally been described in [60]. We normalize the intensities of 

the images to [0, 1]. We use the trapezoidal rule for numerical quadrature and an explicit 

second order Runge–Kutta method for the numerical time integration of the hyperbolic 

PDEs in (3.7) and (3.9), respectively. Due to the conditional stability (CFL condition) we 

have to restrict the time step size ht. Given that we invert for a stationary velocity field v, we 

can modify the number of time steps nt as required. We use a pseudo-spectral discretization 

with a Fourier basis in space. This allows us to efficiently construct the inverse differential 

operators that appear in our formulation in §3.3.

Images are in general functions of bounded variation; our scheme can not handle this type of 

discontinuities in the data. Accordingly, we assume that the images are adequately smooth. 

We ensure this numerically by pre-smoothing the data, a common strategy considered in 

many registration packages.11 We use a globalized, inexact [27, 31], preconditioned, matrix-

free, reduced space (Gauss–)Newton–Krylov method for numerical optimization [60]. This 

11An inadequate smoothness of the data can deteriorate the accuracy of the solver. We numerically ensure stability by enforcing 
sufficient regularity of the data and the velocity field v based on a combination of pre-smoothing of the input data and an adequate 
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scheme amounts to a sequential solution of the systems (3.7) and (3.9). The Newton step is 

in general format given by

(4.1)

where , n ∈ N, is a discrete representation of the reduced Hessian in (3.9e) 

acting on the incremental control variable  at (outer) iteration k. The scheme is 

globalized via a backtracking line search subject to the Armijo condition (we use default 

parameters; see [70, algorithm 3.1, p. 37]). We iteratively solve (4.1) using a PCG method. 

We refer to the solution of (4.1) as inner iterations (as opposed to the steps for updating , 

to which we refer to as outer iterations). We ensure that the reduced space Hessian operator 

is positive definite by exploiting a Gauss–Newton approximation to the true Hessian. This 

corresponds to setting λ in (3.9) to zero (see also [60]). The preconditioner for the reduced 

space Hessian is the inverse of the second variation of the regularization operator. This 

preconditioner has vanishing construction costs, due to the pseudo-spectral discretization in 

space.

We provide more details on this algorithm in the appendix §E; we also refer to [60] for a 

detailed algorithmic study of our Newton–Krylov scheme in the context of large deformation 

diffeomorphic image registration; this includes a comparison to a preconditioned gradient 

descent scheme.

5. Numerical Experiments

We study the performance of the proposed formulation in different application scenarios, 

accounting for synthetic and real world registration problems. All results reported in this 

study are limited to the two dimensional case. Nothing in our formulation is specific to d = 

2; a three dimensional implementation is ongoing work.

We limit the first part of this study in §5.1 to the quadratic regularization norms in (2.3). 

Results for the nonlinear regularization model in (2.4) are reported in §5.2.

5.1. Quadratic Regularization

We report different measures of registration performance, with the aim to assess both, the 

fidelity of the registration as well as properties of the computed deformation map. We report 

results for different two-dimensional real world registration problems.

5.1.1. Registration Performance

Purpose: We study registration quality as a function of the regularization parameters βv 

(smoothness) and βw (incompressiblity).

choice of the regularization weight βv. The adjoint equation plays a critical role; in our formulation, we have to differentiate the 
Lagrange multiplier. As pointed out in [92], we can ensure numerical feasibility if we ensure that the input images are adequately 
smooth. Further strategies include the use of a other scheme for numerical time integration or to use a map based formulation [43]. We 
will investigate this in the future.
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Setup: All images are registered in full resolution. No grid, scale, or parameter continuation 

is performed. We terminate the optimization if the relative reduction of the gradient is at 

least three orders of magnitude. We consider three two-dimensional, real world registration 

problems: a benchmark problem based on hand images12 [2, 65, 67] as well as a 

multisubject and a serial13 (longitudinal) brain image registration problem (multisubject 
brain images and serial brain images). The initial images are displayed in Fig. 1.

The images have a grid size of 256 × 256. The number of time points is adapted as required 

by monitoring the CFL condition (initialized with nt = 2 max(nx)). We vary βv and βw in 

steps of one order of magnitude ranging from 1E−5 to 1E−1, respectively. If we further 

reduce the regularization parameters the problem becomes computationally prohibitive (due 

to ill-conditioning) and numerically unstable (we not only violate the theoretical smoothness 

assumptions [19, 30] but also approach regimes that are numerically unstable; this will 

eventually result in irregular, non-diffeomorphic mappings); smaller values for the 

regularization parameters require finer grids to resolve the problem. We terminate the 

optimization if the relative change of the ℓ∞-norm of the reduced gradient is at least three 

orders of magnitude. We compare the designed framework for near-incompressible 

registration to plain smoothness regularization and a model for incompressible 

diffeomorphisms.

Results: Quantitative results are summarized in Tab. 2. Exemplary results for the hand 
images, the multisubject brain images and the serial brain images are illustrated in Fig. 2, 

Fig. 3 and Fig. 4, respectively.

Observations: The most important observations are the following: Augmenting smoothness 

regularization with a constraint on ∇ · v with a non-zero right hand side w (mass source) 

allows us to control the magnitude of the determinant of the deformation gradient without 

comprising registration quality. We avoid over-smoothing of the deformation map y.

Enforcing incompressibility up to the numerical error is not adequate for the considered 

registration problems. This is also reflected by the residual differences reported in Tab. 2. 

Using a plain H1-seminorm as a regularization model (with no control on ∇ · v) can be 

delicate: small variations in the regularization parameter βv yield strong variations in the 

determinant of the deformation gradient. The divergence constraint allows us to better 

control the mapping. The trend of the values for det(F1) as a function of βv and βw 

demonstrates that we can precisely control the regularity properties of the mapping y.

In some cases we can—as compared to plain smoothness regularization—significantly 

reduce the variations of the determinant of the deformation gradient without comprising 

registration quality. For instance in run #16 in Tab. 2 we set βv to 1E−2 and βw to 1E−3 and 

obtain an L2-distance of 8.29E−2 with det(F1) ∈ [6.69E−1, 1.70]. The maximum and mean 

distance of the deformation gradient from identity is 2.51E−1 and 1.05, respectively. If we 

12The images are taken from [67].
13The data is available at http://central.xnat.org (open access series of imaging studies 
(OASIS) longitudinal study; dataset 70; time point one and time point four). The 
images have been affinely preregistered [53] and skull stripped [84].
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want to obtain a similar residual using plain smoothness regularization on the basis of an H1-

seminorm, we have to set βv to 1E−2 (run #6 in Tab. 2). This results in a relative change of 

the L2-distance of 5.56E−2. However, the variation of the determinant of the deformation 

gradient is larger with det(F1) ∈ [2.72E−1, 2.61]. If we use an H2-seminorm we achieve a 

similar mismatch (relative reduction of the L2-distance by 8.41E−2) for βv = 1E−3 (run #3 

in Tab. 2). The variation in the determinant of the deformation gradient is slightly larger with 

det(F1) ∈ [5.98E−1, 1.99] (as compared to the near-incompressible case).

Careful visual inspection of the results in Fig. 2 confirms these findings. The residual 

differences are very similar for all models. We can also see that if we set βv to 1E−2 or 1E−4 

for plain H1- and H2-regularization (i.e. without additional constraint on the divergence of v; 

runs #4 and #6 in Tab. 2), we seem to overfit the data; the mapping becomes more and more 

ill-behaved. By setting βv to 1E−3 for the H2-seminorm or by using a near-incompressible 

model with βv = 1E−2 a nice diffeomorphism is obtained.

For the hand images we obtain an equivalent performance for the H1- and H2-regularization 

models since the mapping between both images is rather smooth. This is different for the 

multisubject brain images (see Fig. 3). The H2-seminorm yields a nice diffeomorphic map, 

but y also appears to be overly smooth. That is, we observe a strong blurring in the map of 

the determinant of the deformation gradient. Thus, it is not possible to recover fine features 

in the deformation field. The same behavior can be observed for the serial brain images. 

Although the residual differences are very similar for the H1- and the H2-seminorm, we 

obtain mappings that are locally very different. If we use an H1-regularization we can 

recover much more localized features in the deformation map. These local changes could be 

of interest in a subsequent analysis of the local deformation properties (volume changes; 

deformation based morphometry). Also note that the mean values for the determinant of the 

deformation gradient are closer to one (i.e. volume is more likely preserved) as compared to 

plain smoothness regularization.

When switching from H1- to an H2-regularization model we have to reduce βv by one order 

of magnitude to obtain a similar mismatch. Note that the computational complexity of our 

scheme is currently not mesh independent; the rate of convergence deteriorates significantly 

if we reduce βv as judged by the number of Hessian matrix vector products and hyperbolic 

PDE solves.

Conclusions: Using an H2-regularization model—a common choice in large deformation 

diffeomorphic registration algorithms—yields well behaved mappings. However, we might 

loose local features (fine structures) in the deformation map due to over-smoothing. These 

features could be of importance for a subsequent analysis of the deformation map. 

Empirically, we observed that we have to reduce βv by one order of magnitude for the H2-

regularization model as compared to the H1-seminorm to obtain a similar mismatch. If we 

reduce βv significantly the computational work load for the inversion (with the defined 

tolerance) becomes prohibitive. If we switch to an H1-seminorm as a regularization model 

we can resolve fine features in the deformation. Introducing a constraint on the divergence 

of the velocity field with a non-zero mass source w allows us to explicitly control the 

magnitude of the determinant of the deformation gradient without comprising registration 
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quality. This relaxation of the incompressibility constraint is critical to make our model 

applicable across a wide range of registration problems.

5.1.2. Validation and Comparison

Purpose: We compare and validate registration performance of our algorithm. We report 

results for our formulation and the diffeomorphic DEMONS algorithm [90, 91].

Setup: Our evaluation is based on the data of the Nonrigid Image Registration Evaluation 
Project ( NIREP) [21].14 NIREP is a standardized data repository for the validation of 

deformable image registration algorithms; we refer to [21] for details. We use the datasets 

na01 and na02 to study registration performance as a function of regularization parameters 

and norms (see Fig. 1). Since our implementation is only a two-dimensional prototype, we 

extract a single slice from both volumes (axial slice 128) and resample the data to a 

resolution of nx = (128, 150)⊤ (using a spline interpolation model for the image data and a 

nearest neighbor interpolation model for the label maps). For simplicity, we do not report 

results for the 32 individual labels but combine them to a single gray matter label map. We 

report the JSC, the DSC, the FPE, and the FNE (see §F for the definitions). We also report 

values for the determinant of the deformation gradient. We limit the evaluation of the 

deformation gradient to the area occupied by the brain (identified by thresholding).

We perform a parameter continuation in βv with bounds on the minimal tolerable 

determinant of the deformation gradient (binary search; see [60] for details) for our 

algorithm starting with βv = 1. We perform this binary search for fixed values of βw (we 

vary βw by one order of magnitude, starting with βw = 1E−1; i.e., we perform an exhaustive 

search for the second regularization parameter. We do not perform an additional grid or scale 

continuation. We terminate the optimization if the relative reduction in the gradient is two 

orders of magnitude or more.15 Once we have obtained the velocity field (i.e., we solved the 

inverse problem with an estimated, optimal combination of regularization parameters βv and 

βw) we compute the determinant of the deformation gradient and transport the label maps 

(as a post-processing step). We do so at a grid size of 4nx to be able to fully resolve the 

problem. Before we solve the transport problem we smooth the label maps using a Gaussian 

filter with standard deviation of 3hx (to avoid Gibbs phenomena). We threshold the 

transported label maps at a threshold of 0.5 to obtain binary labels and map them to the 

original resolution level by injection. We subsequently compute the overlap between the 

reference and transported template label maps.

The publicly available DEMONS algorithm16 does not provide any stopping conditions other 

than the number of iterations. We tested several settings for the number of iterations in 

combination with a varying number of multi-resolution levels. We observed that an increase 

in the number of iterations does not necessarily improve the obtained results; as a matter of 

fact the results can deteriorate for certain regularization parameter combinations if the 

14The data is available at http://nirep.org and described in detail in [21].
15We use a larger tolerance in these experiments because we did not observe any differences in the results if we turned to smaller 
tolerances.
16We use the public implementation found at http://hdl.handle.net/1926/510 (see [90]; compiled with ITK4).
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iterations per resolution level are increased (i.e., the algorithm diverges). After these initial 

experiments we decided to fix the number of iterations and any other settings to the default 

values suggested in the documentation of the code (three grid resolution levels with 15, 10, 

and 5 iterations, respectively, with a diffeomorphic update rule based on an exponential map 

[91] and symmetric gradient forces). We study the registration accuracy of the DEMONS 

algorithm as a function of the two regularization parameters σu (smoothing for the update 

field; fluid like regularization) and σd (smoothing for the deformation field; diffusive 
regularization). We report results for (i) the mixed case, (ii) pure diffusive regularization, and 

(iii) pure fluid like regularization. We report results for high data fidelity and low 

deformation regularity as well as results for low data fidelity and high deformation 

regularity. We apply the obtained mapping to the label maps using a nearest neighbor 

interpolation model.

For our algorithm, we use the parameters from the run above to extend our analysis to the 

remaining NIREP datasets. That is, we use the values for the regularization parameters βv 

and βw that resulted in the best DSC scores for the registration between na01 and na02 to 

register all the remaining images to na01. For the DEMONS algorithm we use two parameter 

settings for σd and σu: one setting that results in the best DSC score (under the constraint 

that the deformation has to be diffeomorphic) and one setting that matches the determinant 

of the deformation gradient delivered by our method.

Results: We summarize the quantitative results for the datasets na01 and na02 in Tab. 3. 

We provide qualitative results in Fig. 5. We report the results for the remaining NIREP 

datasets in Tab. 4; we summarize this experiment in Fig. 6.

Observations: The most important observation is that our framework allows us to generate 

diffeomorphic maps that are much better behaved with a higher data fidelity, at the cost of a 

significant increase in computational work as compared to the DEMONS algorithm.

The DEMONS algorithm is much more efficient than our approach. The time to solution is 

significantly faster than for our prototype implementation.17 Overall, we trade numerical 

accuracy and convergence guarantees against computational complexity. The obtained maps 

are for most of the combinations for σu and σd diffeomorphic as judged by the determinant 

of the deformation gradient. The highest diffeomorphic DSC we could achieve for the 

DEMONS algorithm is 7.99E−1 for the diffusive regularization (run #5 in Tab. 3) and 8.06E−1 

for the fluid like regularization (run #22 in Tab. 3). The min/mean/max values for the 

determinant of the deformation gradient are 2.17E−1/1.83/6.06E1 and 1.50E−1/3.67/2.63E2, 

respectively. Our formulation allows us to obtain similar (run #30 in Tab. 3) or even better 

17The runtime of our solver depends on the choice of the regularization norm and weight, and the complexity of the registration 
problem. Considering the test problem in Tab. 3 we obtain the following timings for a fixed regularization parameter on a Linux 
machine with Intel Xeon X5650 Westmere EP 6-core processors at 2.67GHz with 24GB DDR3-1333 memory (stopping condition: 
reduction of the gradient by two orders of magnitude): 15 minutes for βv = 1E−2, 60 minutes for βv = 1E−3, and 300 minutes for βv = 
1E−4 for an H2-regularization model (compressible diffeomorphism), respectively; 1 minute for βv = 5E−1, βw = 1E−4, 15 minutes 
for βv = 5E−2, βw = 1E−4, and 75 minutes for βv = 5E−3, βw = 1E−4, for the H1 Stokes regularization scheme, respectively. 
Applying the DEMONS scheme takes only a few seconds. We note that our solver is not finalized; we are currently working on an 
improved solver in an effort to make it competitive with existing software for diffeomorphic image registration. We will report a 
detailed performance analysis for this solver elsewhere.
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values for the DSC (run #26, run #27, and run #31 in Tab. 3) with much more well-behaved 

deformation maps (as judged by the determinant of the deformation gradient).

For run #30 we obtain almost the same DSC with det(F1) ∈ [6.46E−1, 1.94]. Further, we can 

observe that across almost all runs the mean values for det(F1) are much closer to one for 

the linear Stokes regularization case. The H2-regularization also results in better behaved 

deformation maps. However, the variations increase significantly as we turn to a higher data 

fidelity. Our approach results in maps for which the maximal value of the determinant of the 

deformation gradient is (for the most part) much better behaved than for the DEMONS 

algorithm. This is important since the Jacobian of the inverse deformation map will have 

very small values if the maximum for the reported values is large. For instance, for the best 

runs for DEMONS max(det(F1)) is equal to 6.06E1 (pure diffusive regularization; run #5 in 

Tab. 3) and 2.63E2 (pure fluid like regularization; run #22 in Tab. 3) as compared to 4.09 for 

the linear Stokes case (run #31 in Tab. 3; which in addition to that has a better DSC). If we 

compare the results with similar values for the deformation gradient (e.g., run #3 or run #24 

in Tab. 3) we can not achieve the same DSC scores as the PROPOSED algorithm delivers; we 

have to operate the DEMONS algorithm at regimes with large variations in the determinant of 

the deformation gradient to obtain DSC scores that are equivalent to those achieved with our 

algorithm.

If we consider the results for the remaining datasets in Tab. 4 we observe a similar behavior 

(for fixed parameters for both algorithms). We obtain slightly better DSC scores for the 

DEMONS algorithm (see also Fig. 6) at the cost of a larger variations in the determinant of the 

deformation gradient. If we increase the regularization we can reproduce similar values for 

the determinant of the deformation gradient but are not able to achieve the same data fidelity 

as judged by the DSC scores. Fig. 6 shows that these differences are on average consistent 

across all datasets.

Conclusions: We have conduced a preliminary two-dimensional study of registration quality 

based on the NIREP data. All approaches deliver diffeomorphic maps with a good data 

fidelity. The DEMONS algorithm arrives at a solution significantly faster than our current 

prototype implementation. We note that our method has not been optimized for speed yet; 

there exist several ways to accelerate our algorithm, which we are currently investigating. 

We will report these improvements and the extension of our solver to three-dimensional 

problems elsewhere. This preliminary study suggests that our algorithm provides much more 

well-behaved mappings without compromising data fidelity as compared to the DEMONS 

algorithm. Overall, we trade numerical accuracy and convergence guarantees against 

computational efficiency (i.e., an increase in the time to solution). We consider these 

differences in registration quality a preliminary result; clearly, we have to validate the 

performance of our solver on three-dimensional data, extend the comparison to other 

algorithms, and reduce the time to solution to truly demonstrate that our formulation has the 

potential to impact the applied sciences.
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5.2. Nonlinear Stokes Regularization (Shear Control)

Purpose—We study the effect of controlling the shear in the deformation field in the 

presence of an expected “discontinuous” motion field. We compare results for the nonlinear 

Stokes regularization model to plain, quadratic smoothness regularization, and a linear 

Stokes regularization model (incompressible diffeomorphism).

Setup—We consider two synthetic problems for which we expect the deformation to 

contain large shear (see Fig. 7). The images have a grid size of 512 × 512.18 We compare 

plain smoothness regularization based on an H2-seminorm (γ = 0) to models of 

incompressible flow (H1-regularization; γ = 1). We study the qualitative behavior of the 

deformation map with respect to changes in the flow law exponent ν for empirically chosen 

values for βv ∈ {1E−2, 1E−3}. In particular, we study shear-thickening (ν = 1/2) and shear-

thinning (ν ∈ {3, 5}). We consider the full set of termination criteria used in [60] for this set 

of experiments with a tolerance of 1E−3. No grid, scale or parameter continuation is 

performed.

Results—We report exemplary results for the sliding rectangles and the sliding vent in Fig. 

8, Fig. 9, and Fig. 10, respectively. We enforce incompressibility up to numerical accuracy.

Observations—The most important observation is that the nonlinear Stokes regularization 

provides an adaptive control of the shear of the deformation field at the sliding interface. 

Setting ν to a value in (0, 1) increases the resistance to shear (shear thickening fluid). On the 

contrary, if we choose ν > 1 we promote shear. The larger ν the sharper the transition at the 

interface and the more localized the deformation. This confirms the theoretical statement 

that the model tends to a total variation regularization for ν → ∞. However, we can already 

recover sharp interfaces for small ν (e.g. for ν = 5; see Fig. 8 and Fig. 10 bottom and, in 

particular, Fig. 9). The residual differences between the registered images are insignificant 

for varying parameters ν. The computed mappings are very different; points close to the 

sliding interface map to completely different positions. We can model highly nonlinear 

deformations with a precise control on the determinant of the deformation gradient. 

Likewise to the linear case we can also extend this formulation by introducing a mass-source 

w (see §A.2 in the appendix for details) rendering the flow near-incompressible (results not 

included in this study). This makes this approach applicable across a wider range of 

registration scenarios.

Conclusion—The nonlinear Stokes regularization model allows us to promote or penalize 

large shear in the deformation field as required. As a consequence, we have—in contrast to 

traditional vectorial total variation—complete control on the smoothness properties of the 

deformation map and the determinant of the deformation gradient. Further, we—likewise to 

total variation regularization—do not have to identify the interfaces where the sliding motion 

is expected to occur (i.e. we do not require a pre-segmentation of the data). We note that 

promoting shear is only an approximation of true sliding motion, i.e., our formulation does 

18We use more grid points to be able to resolve the velocity field and avoid aliasing.
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not allow for computing “discontinuous” motion fields. In future studies we will compare 

our formulation against total variation regularization to better quantify the capabilities.

6. Conclusions

We have introduced novel constrained regularization schemes for large deformation 

diffeomorphic image registration that feature a local control of the divergence of the velocity 

and thus of the determinant of the deformation gradient (in a problem-dependent way). Our 

formulation is founded on well established computational models in fluid mechanics (Stokes 

flow). All results reported in this study are limited to the two dimensional case. Nothing in 

our formulation is specific to the two dimensional case; an extension to three dimensions is 

ongoing work in our group.

We invert for a stationary velocity field. We achieve a similar or even better inversion quality 

(as judged by values for the residual differences and overlap between anatomical regions) as 

compared to available diffeomorphic registration models, whilst maintaining a better control 

over the deformation regularity. Furthermore, several applications do require incompressible 

or near-incompressible deformations, for example in medical imaging. Our framework 

provides such a technology.

It is unclear how to theoretically determine the behavior of the proposed methods. For this 

reason we conducted experiments to probe their behavior. The basic conclusions from our 

experiments are the following:

• Using an H1-seminorm as a regularization model without control of the 

determinant of the deformation gradient is not robust. Either it produces 

uninformative maps (large regularization) or highly (perhaps unacceptably so) 

deformed maps.

• The H2-seminorm without control of the determinant of the deformation gradient 

behaves well but its cost with decreasing regularization increases to regimes that 

make it not practical.

• Our proposed H1-seminorm regularization plus control of the deformation 

gradient performs well. It delivers small mismatch values (comparable to the H2 

case without controlling det(∇y)) and smooth det(∇y) much faster than the H2 

scheme (e.g., Tab. 2, run #4 versus run #16 and run #20 versus run #23). It also 

delivers a good agreement between anatomical structures with an excellent 

control on det(∇y) (e.g., Tab. 3 run #29 and run #30). However, this scheme 

results in one additional regularization parameter βw and its calibration is 

expensive. This cost can be amortized in studies involving multiple images.

So, the new formulation seems preferable in terms of robustness and speed. Further studies 

in three dimensions and on a larger set of images are necessary to confirm these results.

We have also introduced a regularization model that allows us to control the shear in the 

deformation map. We can either promote (shear thinning) or penalize (shear thickening) 

shear in an attempt to approximate discontinuous motion fields or generate more well-
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behaved deformation maps. Our framework (i) is applicable to smooth and non-smooth 

registration problems, (ii) allows us to control the amount of shear, (iii) does not require a 

pre-segmentation of the data, and (iv) features a control of the determinant of the 

deformation gradient in a problem dependent way. We demonstrated that this regularization 

results in dramatically different deformation maps (see Fig. 7).

Our solver is not finalized; its extension to three dimensions requires more work. The next 

steps will be the design of a more effective preconditioner, the implementation of a more 

effective scheme to solve the transport equations, and the application to problems that have 

time sequences of images. For such cases, a time-dependent velocity field will be necessary.
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Appendix A. Variable Elimination: Derivations

Here, we provide the derivations of the variable elimination. We start with the linear Stokes 

regularization model (i.e., we consider the regularization operator  and γ = 1 in 

(3.2)).

A.1. Linear Stokes Regularization

The variable elimination for the linear, incompressible flow model (i.e., enforcing ∇ · v = 0 

up to numerical accuracy) can be found in [60]. Here, we extend on the formulation in [60] 

by introducing a mass source w into the divergence constraint. We eliminate p and w from 

the optimality system (3.2). This will result in an optimality system that allows us to only 

iterate on the reduced space of the control variable v.

Applying the divergence to (3.2f) yields ∇ · (−βvΔv) + Δp + ∇ · b = 0. From the optimality 

condition ∇ · v = w and the equivalence

(A.1)

it follows that −βvΔw + Δp = −∇ · b. From (3.2g) it follows that

(A.2)

Inserting this expression yields Δ(βv(βw(−Δ +id))−1 +id)p = −∇ · b and therefore
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(A.3)

Inserting this expression into (3.2f) yields the control equation

(A.4)

Note, that (A.4) is independent of the variables w and p. In addition, we have eliminated 

(3.2e) and (3.2g) from (3.2). We arrive at the optimality system (3.7). Computing second 

variations of the weak form of (3.7) yields (3.9) with the operator  as defined in (A.4). If 

we consider an incompressible diffeomorphism (i.e., set w = 0) the control equation (A.4) 

simplifies to −βvΔv − ∇Δ−1∇ · b + b = 0 [60]. Note that it is possible to replace the Laplacian 

operator with a biharmonic operator (i.e., consider an H2- instead of an H1-seminorm); the 

same arguments used above still hold. We can even use an H3-seminorm (the reduced 

gradient becomes a triharmonic equation) if theoretical considerations are of concern (see 

[19] or §B for a brief discussion; we provide exemplary results in Fig. 11). We limit 

ourselves in this work to an H1-seminorm, which results in a linear Stokes regularization 

model.

A.2. Nonlinear Stokes Regularization

We discuss the variable elimination techniques for the nonlinear Stokes regularization next. 

We start with a model of incompressible flow (i.e., we assume that ∇ · v = 0). The same 

arguments that have been used in the former section apply. However, since the viscosity is 

no longer a constant but a function of v, we have to decompose η into

to be able to eliminate p. If we insert this decomposition into the control equation for v we 

obtain

(A.5)

The divergence of the strain rate tensor ℰ[v] is identical to  under the incompressibility 

assumption ∇ · v = 0. Accordingly, we have

By taking advantage of (A.1) and applying the divergence we obtain
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and therefore . Inserting this expression into the control 

equation for v results in

(A.6)

where . Computing second variations 

yields the incremental control equation

(A.7)

The operator  is the second variation of (2.4) given in (3.6) and

Next, we consider a non-zero mass source w (i.e., we relax the incompressibility constraint 

to ∇ · v = w). In this case, the divergence of the strain rate tensor  is 

no longer proportional to Δv. Instead, we have

Applying the divergence operator yields

Using (A.2) we can eliminate w. Thus,

and therefore . We have again found an expression 

for p that not only eliminates p but also the equation for the constraint on ∇ · v, the control 

variable w, and the associated control equation for w. We obtain first order optimality 

conditions that are very similar to the incompressible case. The only difference is the form 

of the operator  in (A.6). In particular,
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It immediately follows that we arrive at (3.10) for the second variation.

Appendix B. Theoretical Considerations

An adequate choice for the regularization norm ensures the existence and uniqueness of a 

minimizer for  in (2.1a). A second requirement for an admissible solution of (2.1a) is that 

the map y generated by  is a diffeomorphism. In [30, 88] it is shown in the context of 

the large deformation diffeomorphic metric mapping formulation (which is related to our 

formulation; see [43, 60]) that y is diffeomorphic if we enforce a sufficient amount of 

smoothness on the elements of the space . The order of the associated Sobolev norm 

depends on the dimensionality d of the ambient space; for d = 3 the norm 

, where γ > 1.5, is adequate [10].

Our formulation operates in an incompressible or near-incompressible regime, i.e., v ∈ {f ∈ 
H1(Ω)d : ∇ · f = w, w ∈ H1(Ω)}. An excellent reference for the analysis of such flows is [26]. 

An existence proof for a minimizer of  in (2.1) for the non-stationary, incompressible case 

(i.e., w = 0) in two dimensions, for which the images are modeled as functions of bounded 

variation and the regularization model for v is an H3-seminorm, can be found in [19]. This 

proof is based on the premise that v propagates  regularity in space (i.e., 

and m(·, t) is in  for all t ∈ [0, 1]); Lipschitz regularity of v in space does not only 

imply that we propagate the regularity of mT to t ∈ [0, 1] but also that we obtain a unique 

map y from v [19, 26]. Under these assumptions it is shown in [19] that we have to equip 

with an H3-seminorm to guarantee existence of a minimizer; this will result in a triharmonic 

control equation. The results reported in [19] were—due to numerical considerations—

obtained using an H1-seminorm assuming that H1-regularity still yields smooth enough 

results. A critical result to support this claim can be found in [28] (see also [26]); the 

smoothness requirements for v are relaxed to a local Sobolev regularity; this relaxation will 

not preserve  regularity of the images [25]. However, existence and uniqueness of the 

flow y can be guaranteed if v has local Sobolev regularity in space and ∇ · v is a bounded 

measurable function [28]; our incompressible formulation fulfills these requirements. 

According to [28], H1 regularity of v will transport L2 images to L2 images (see also [19, 

18]). Relaxing  to L2-integrability seems reasonable, especially since our 

scheme can currently not handle  images; we have to use smooth representations of mT 

and mR to ensure numerical stability. An existence proof for a minimizer of an 

incompressible H1-flow that follows these arguments can be found in [18, pages 58ff]. A 

rigorous proof for our formulation remains open. We note that we can switch to an H2- or an 

H3-seminorm if our formulation does not meet the theoretical requirements; all the 

derivations and algorithmic features presented here will still apply (see §A; an exemplary 

result can be found in Fig. 11). Likewise, adding a parabolic regularization via a diffusion 

operator to the hyperbolic transport equation can be another strategy to ensure existence of a 

minimizer, even for an L2-integrable v [9].

As we mentioned in §2, our computational studies as well as the results reported in [19] 

suggest that an H1-seminorm together with a control on ∇ · v seems to provide sufficient 

smoothness to converge to a locally optimal, diffeomorphic solution.
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Appendix C. Connection to Total Variation Regularization

Here we briefly comment on the connection between our nonlinear Stokes regularization 

model and a total variation regularization model. The total variation regularization model is 

given by

(C.1)

Notice, that the exponent in (2.4) will tend to 1/2 if we let ν in (2.4) tend to ∞. Thus, if we 

replace the strain rate tensor  with ∇v, (2.4) and (C.1) are equivalent as 

ν → ∞. This equivalence is also reflected by the variations of both models. We obtain 

 for the first variation of (C.1) and

for the second variation of (C.1) with respect to v, respectively. These expressions are very 

similar to the operators in (3.4) and (3.6). As such, the derivations we presented in this work 

also hold if we replace (2.4) with (C.1).

Appendix D. Illustration of Deformation Map

We report images of the deformation pattern (deformed grid) and maps of the determinant of 

the deformation gradient in order to illustrate local properties of the deformation map. Here, 

we provide information on how these were generated and on how to interpret them.

D.1. Deformation Map

We illustrate regularity and local properties of the deformation map y on the basis of 

deformed grids. We define y as a perturbation from identity, i.e. y:= x − u1, where 

, u1:= u(·, t = 1), , is some displacement field at final time t = 

1. The latter can be computed from the velocity field v by solving

(D.1)

with periodic boundary conditions on ∂Ω. Note that y is defined in an Eulerian frame of 

reference (i.e., the deformed grid does not illustrate where the points move to, but where 

they originate from). An exemplary visualization of a synthetic deformation is shown in Fig. 

12.
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D.2. Deformation Gradient

We report maps and values for the determinant of the deformation gradient to qualitatively 

and quantitatively assess regularity of a mapping y. In the framework of continuum 

mechanics the deformation tensor field  can be computed from v by 

solving

(D.2)

with periodic boundary conditions on ∂Ω. Here, I = diag(1, …, 1) ∈ Rd×d and det(F1) is 

identical to det(∇y)−1, where F1:= F(·, t = 1), , and y is the Eulerian 

deformation map.

We limit the color map for the display of det(F1) to [0, 2]. In particular, the color map ranges 

from black (compression: det(F1) ∈ (0, 1); black corresponds to values of 0 or below (due to 

clipping), which represents a singularity or the loss of mass, respectively) to orange (mass 

conservation: det(F1) = 1) to white (expansion: det(F1) > 1; white represents values of 2 or 

greater (due to clipping)). An illustration of this color map can be found in Fig. 12. Notice 

that none of the maps for the determinant of the deformation gradient reported in this study 

values smaller than 0 (i.e., we do not report any degenerate deformation maps).

Appendix E. Algorithm

Here, we provide more insight into our algorithm. We have added this information to the 

appendix, since we are mainly concerned with new regularization schemes in the present 

work. We refer to [60] for a detailed study of our globalized, inexact, preconditioned, 

reduced space (Gauss-)Newton-Krylov method for constrained diffeomorphic image 

registration; the study in [60] includes a comparison to a preconditioned gradient descent 

scheme. Note that our solver is not finalized. We are currently working on improvements to 

reduce the time to solution.

E.1. The Reduced Space Newton–Krylov Method

We have seen in §3.1 that the first order optimality conditions for (2.1) are a system of 

space-time multicomponent nonlinear PDEs for the transported intensities m, the velocity 

field v, and the mass source w. As we have seen in §3.3 we can significantly simplify this 

system by exploiting variable elimination techniques to obtain (3.7); our algorithm will only 

operate on the reduced system. Note that this elimination not only reduces the computational 

complexity but also allows us to fulfill the hard constraint on ∇ · v exactly. Given that we use 

a pseudo-spectral discretization in space, we can efficiently evaluate the resulting differential 

operators and their inverses.

We apply a Newton linearization to solve the first order optimality system (3.2). This 

linearization results in a huge, severely ill-conditioned, dense, multi-component system for 

the incremental state, adjoint, and control variables. In full space methods one directly 

solves this system. Our algorithm belongs to the class of reduced space methods (see e.g. 
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[11, 12] for details); we do not solve for all unknowns of the KKT system simultaneously 

but eliminate the incremental state and adjoint variables from the system; we only iterate on 

the reduced space of the control variable v. Advantages of reduced space methods include 

better spectral properties of the reduced space Hessian, a similar structure of the forward and 

adjoint operators, and a reduction of the order of the KKT system (the reduced space 

Hessian is nothing but the Schur complement for ) to a size that is manageable [11]. 

Nonetheless, solving this system remains a significant challenge, given that the reduced 

space Hessian is still a large, ill-conditioned, dense, and compact operator.19 Further, as we 

will see below, we have to solve the state and adjoint equations at each iteration—a direct 

consequence of the block elimination in reduced space methods.

Next, we will discuss how the conceptual idea of a reduced space Newton–Krylov method 

relates to the optimality systems we have presented in §3. The reduced space KKT system is 

given by (3.9e). To solve this system, we have to evaluate to what we refer to as the reduced 

gradient g on the right hand side of (3.9e). This involves the solution of the system (3.7) in 

sequential order: Given some v we first solve (3.7a) forward in time. This gives us m at t = 1, 

which we need for the terminal condition in (3.7d).20 Next, we solve (3.7c) backward in 

time. Note that (3.7c) represents a transport equation for the mismatch between m1 and mR. 

Thus, λ will (ideally) tend to zero as we approach a solution (local minimizer) of (2.1). 

After we have solved (3.7a) and (3.7c), we can evaluate the control equation (3.7e) for some 

trial v. Note that m and λ in (3.7e) are essentially functions of v through (3.7a) and (3.7c), 

respectively. Thus, although the PDE constraints are linear in v, the inverse problem is not; it 

is non-linear in v. This non-linearity as well as the conditioning of our problem are the main 

reasons why we prefer second order optimization methods.

Now, that we have found g, we can solve the reduced space KKT system in (3.9e) for the 

incremental control variable , i.e., compute the update (search direction) for v; (3.9e) only 

provides the action of the reduced-space Hessian  on  (Hessian matvec); this is all we 

need, given that we use a PCG method to solve (3.9e) (i.e., our solver is matrix free). The 

incremental state and adjoint variables  and  are—likewise to what we have seen for m 
and λ for the first order optimality conditions—functions of  through (3.9a) and (3.9c), 

respectively. Thus, each time we apply  to , we have to solve (3.9a) and (3.9c). Also note 

that (3.9) does not only depend on the incremental variables , , and , but also on m, λ, 

and v; the systems are strongly coupled.

To compute a minimizer to (2.1) we have to repeat this entire process several times until 

convergence. We refer to the steps for updating v as outer iterations and the steps for 

iteratively solving the reduced space KKT system as inner iterations. We summarize these 

steps in compact form in Alg. 1 and Alg. 2 (for a PCG method), respectively.

The number of outer iterations depends on the rate of convergence of our scheme. A 

convergence study of our (Gauss–)Newton–Krylov scheme can be found in [60]. For a 

19A study of the spectral properties of the reduced space Hessian for compressible and incompressible diffeomorphisms can be found 
in [60].
20We assign the costs for this forward solve to the evaluation of the objective and not the gradient.

Mang and Biros Page 30

SIAM J Imaging Sci. Author manuscript; available in PMC 2017 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Newton–Krylov method we expect this convergence to be quadratic. However, given that we 

can not guarantee that the Hessian is positive definite far away from a (local) minimizer, we 

resort to a Gauss–Newton approximation. This is equivalent to dropping all expressions in 

which λ appears in (3.9); we expect the rate of convergence to drop from quadratic to super-

linear (see [60] for more details). The number of inner iterations depends on the tolerance of 

the PCG method and on the preconditioner for the KKT system. For the tolerance we follow 

standard numerical optimization literature [27, 31] and define it to be proportional to the 

relative ℓ2-norm of the reduced gradient (see [60] for details). The preconditioner is what we 

describe next.

Algorithm 1

Outer iteration of the designed inexact Newton–Krylov method.

1:

; compute and , ,  and ; k ← 0

2: while true do

3:   stop ← check for convergence

4:  if stop break

5:

   ← solve (4.1) given , , , and 

⊲ Newton step (see Alg. 2)

6:

 αk ← perform line search on  subject to the Armijo condition

7:

  

8:

  

9:

   ← solve (3.7a) forward in time given 

⊲ forward solve

10:

  

11:

   ← solve (3.7c) backward in time given  and 

⊲ adjoint solve

12:

 compute  and  given ,  and 

13:  k ← k + 1

14: end while

Algorithm 2

Newton step. We illustrate the solution of the reduced KKT system (4.1) using a PCG 

method at a given outer iteration k ∈ N. The steps to compute the Hessian matrix vector 

product are given in lines 4–8.

1:
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2:

, , , s0 ← z0, l ← 0

3: while l < n do

4:

  

5:

   (3.9a) forward in time given ,  and 

⊲ inc. forward solve

6:

  

⊲ inc. adjoint solve

7:

   (3.9c) backward in time given ,  and 

8:

    to sl as indicated in (3.9e) given , ,  and 

9:
  

10:

  

11:
  

12:   if ‖rl+1‖2 < ηk break

13:

  

14:  μl ← 〈zl+1, rl+1〉/〈zl, rl〉

15:  sl+1 ← zl+1 + μlsl

16:  l ← l + 1

17: end while

E.2. Preconditioning the Reduced Space KKT System

Preconditioning (4.1) is essential to provide an efficient solver. We consider a left 

preconditioner P based on the second variation of the quadratic regularization models that 

act on v; that is .21 This is a common choice in the PDE constrained optimization 

community. This preconditioner has—for our numerical scheme—essentially no 

construction and application cost; the inversion and application of  amounts to a spectral 

diagonal scaling. The system PCG sees is a compact perturbation of the identity:22

(E.1)

the inverse of the operator  acts like as smoother on .

21By modifying the kernel of , it is ensured that P is invertible.
22We slightly abuse our notation to indicate the dependence of  on  trough (3.9a) and (3.9c), respectively; see §E.1 for 
additional details.
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Since the second variation of (2.4) can not directly be inverted in Fourier space (due to the 

complicated structure and the spatially varying viscosity; see (3.6)) we use the inverse of the 

vectorial Laplacian operator as a preconditioner in case the regularization model in (2.4) is 

considered.

Appendix F. Performance Measures

We report different measures of registration performance. We summarize the definitions of 

these measures in Tab. 5. The inversion accuracy of our solver is controlled on the basis of a 

tolerance for the relative change of the reduced gradient. The quality of the inversion is 

assessed in terms of the relative change of the L2-distance (residual) between the images to 

be registered. For some of our experiments we report values that measure the agreement 

between label maps of anatomical structures. We quantify regularity of the deformation map 

y on basis of measures computed from the deformation gradient (see §D.2). In particular, we 

report values for the determinant of the deformation gradient. These indicate local volume 

change and deformation regularity. We also report values for the distance of the deformation 

gradient from identity.
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Figure 1. 
Real world two-dimensional registration problems. We display (from left to right) the 

reference image mR (fixed image), the template image mT (image to be registered), and a 

map of the residual differences between mR and mT before registration (for each set of 

images as indicated by the inset). Top left: benchmark registration problem [2, 65, 67]; top 

right: inter-subject registration problem; bottom left: longitudinal (intra-subject) registration 

problem; bottom right: inter-subject registration problem [21] (for the latter data we have a 

ground truth based on annotations: segmentations of 32 anatomical gray matter regions of 

interest; we overlay the associated label maps onto the reference and template image).
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Figure 2. 
Exemplary registration results for the hand images (see Fig. 1). We report representative 

results from Tab. 2. The first three rows show results for plain smoothness regularization (γ 
= 0; first and second row: H2-regularization; third row: H1-regularization) for different 

choices of βv (top row: βv = 1E−3; second row: βv = 1E−4; third row: βv = 1E−2). The two 

rows from the bottom show results for a model with local adaptive compression (H1-

regularization; γ = 1) for βv = 1E−2 and different choices for βw (bottom row: β2 = 1E−4; 

second row from the bottom: βw = 1E−3). We show (from left to right) (i) the residual 

differences after registration, (ii) a map of the determinant of the deformation gradient (the 

values are reported in Tab. 2; the color map is explained in §D of the appendix), (iii) the 

deformed template image m1 with a grid in overlay, and (iv) a close up of the latter for a 

particular area of interest (as identified by the inset in the images).

Mang and Biros Page 39

SIAM J Imaging Sci. Author manuscript; available in PMC 2017 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Exemplary registration results for the multisubject brain images (see Fig. 1). We report 

representative results from Tab. 2. We report results for plain smoothness regularization (top 

row; H2-regularization; γ = 0; βv = 1E−2) and for a model with local adaptive compression 

(bottom row; H1-regularization; γ = 1; βv = 1E−1; βw = 1E−4). We display (from left to 

right) (i) a map of the residual differences after registration, (ii) a map of the determinant of 

the deformation gradient (the values are reported in Tab. 2; information about the color map 

can be found in §D of the appendix), (iii) the deformed template image m1 with a grid in 

overlay (to illustrate the deformation map y), and (iv) a close up of the latter for a particular 

area of interest (as identified by the inset in the images).
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Figure 4. 
Exemplary registration results for the serial brain images (see Fig. 1). We compare plain 

smoothness regularization based on an H2-seminorm (top row; βv = 1E−3; γ = 0) to the 

designed model with local adaptive compression (bottom row; H1-regularization; βv = 1E−1; 

βw = 1E−4; γ = 1). We display (from left to right) (i) a map of the residual differences 

between the reference image mR and the deformed template m1, (ii) a map of the 

determinant of the deformation gradient (the values are reported in Tab. 2; information about 

the color map can be found in §D of the appendix; notice that we changed the window to 

[0.5, 1.5], since the volume changes between the images are subtle), (iii) a deformed grid 

overlaid onto the deformed template image m1 (to illustrate the deformation map y) and (iv) 

a close up of the latter for a particular area of interest (as identified by the inset in the 

images).
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Figure 5. 
Performance evaluation. We report qualitative results for the NIREP data sets for our method 

(top row and middle row) and the DEMONS algorithm (bottom row). The displayed results 

correspond to the runs reported in Tab. 3 (H2-regularization: run #26; linear Stokes 

regularization: run #31; DEMONS: run #5 (diffusive regularization) and run #22 (fluid like 

regularization); we use run run #26 instead of the best run (run #27) for the H2-

regularization because it has a similar DSC as we obtain for the linear Stokes case). We 

report for each run (from left to right) (i) the residual differences after registration, (ii) a map 

of the determinant of the deformation gradient, and (iii) a deformed grid overlaid onto the 

deformed template image. We computed the displayed results on a finer grid (512 × 600) as 

compared to the one we have used to solve the optimization problem (128 × 150) to be able 

to visualize the obtained deformation maps accurately (since MATLAB uses linear 

interpolation for visualization and we are using a spectral basis).
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Figure 6. 
Statistical quantification of registration quality across multiple datasets. We show box 

whisker plots to summarize the results reported in Tab. 4. We compare registration quality 

for the DEMONS algorithm and the PROPOSED algorithm. We report results for A: DEMONS, σu 

= 0, σd = 1; B: DEMONS, σu = 2, σd = 0; C: DEMONS, σu = 0, σd = 2; D: DEMONS, σu = 4, σd = 

0; E: PROPOSED, linear Stokes regularization, βv = 4.94E−3, βw = 1E−4. These parameters 

are the same as in Tab. 4; these parameters deliver results that are consistent with our 

formulation in terms of the DSC scores or the values for the determinant of the deformation 

gradient. We report the DSC scores (left) and the smallest (middle) and largest (right) values 

for the determinant of the deformation gradient.
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Figure 7. 
Registration problems with an expected “discontinuous” motion field (sliding interfaces; 

left: sliding rectangles; right: sliding vent). We display (from left to right) the reference 

image mR (fixed image), the template image mT (image to be registered), and a map of the 

residual differences between mR and mT before registration (for each set of images as 

indicated by the inset).
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Figure 8. 
Exemplary registration results for the sliding rectangles (see Fig. 7). We study the effect of 

shear control (nonlinear Stokes regularization). We compare plain H2-regularization (top 

row; γ = 0; βv = 1E−2) to a linear Stokes regularization model (third row from the top; H1-

regularization; γ = 1; βv = 1E−3) and a nonlinear Stokes regularization model (second row 

from the top: ν = 1/2 (shear thickening; βv = 1E−2); first and second row from the bottom: 

ν ∈ {3, 5} (shear thinning; βv = 1E−3)). We show (from left to right) (i) a map of the 

residual differences between the reference image mR and the deformed template m1, (ii) a 

map of the determinant of the deformation gradient, (iii) a deformed grid overlaid onto the 

deformed template image m1 (to illustrate the deformation map y), (iv) a close up of the 

latter for a particular area of interest, and (v) a single displacement vector at x = (4.66, 3.25) 

(the location is indicated as a gray rectangle in the visualization of the deformed grid; the 

size of the box is 25 × 25 grid points).
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Figure 9. 
Exemplary registration results for the sliding rectangles (see Fig. 7). We display the 

displacement field for the nonlinear Stokes regularization for ν = 5 (bottom row in Fig. 8). 

We only show an detail of the displacement field in full resolution. On the left we illustrate 

the region of interest . A closeup of this region of interest is provided on the right.
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Figure 10. 
Exemplary registration results for the sliding vent (see Fig. 7). We study the effect of shear 

control for a highly nonlinear registration problem. We show results for a linear (top row; γ 
= 1; ν = 1) and a nonlinear (bottom row; γ = 1; ν = 5) Stokes regularization model. We 

show (from left to right) (i) a map of the residual differences between the reference image 

mR and the deformed template m1, (ii) a map of the determinant of the deformation gradient, 

(iii) a deformed grid overlaid onto the deformed template image m1 (to illustrate the 

deformation map y) and (iv) a close up of the latter for a particular area of interest.

Mang and Biros Page 47

SIAM J Imaging Sci. Author manuscript; available in PMC 2017 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. 
Exemplary results for a fully incompressible Stokes model (i.e., w = 0) for different 

regularization norms. We provide (from left to right) results for an H1-, an H2-, and an H3-

seminorm for βv = 1E−2.
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Figure 12. 
Illustration of the visualization of the computed deformation map y. From left to right: 

template image mT, deformed template image m1 (deformed configuration), deformed 

template image m1 with an illustration of the deformed grid as an overlay and a map of the 

determinant of the deformation gradient F1 (as identified in the inset). The color map for 

det(F1) is displayed on the right. Notice that the map y is defined in an Eulerian frame of 

reference (Eulerian description of motion), i.e., the map y models where points originate 

from. Accordingly, we have det(F1) ≡ det(∇y−1) = det(∇y)−1.
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Table 1

Commonly used notation and symbols.

Symbol/Notation Description

CFL Courant–Friedrichs–Lewy (condition)

DSC Dice Similarity Coefficient

FFT Fast Fourier Transform

FNE False Negative Error

FPE False Positive Error

JSC Jaccard Similarity Coeffcient

KKT Karush–Kuhn–Tucker

matvec matrix-vector product

PDE partial differential equation

PDE solve solution of the hyperbolic transport equations

PCG preconditioned conjugate gradient (method)

RK2 2nd order Runge–Kutta (method)

d spatial dimensionality; typically d ∈ {2, 3}

Ω
spatial domain; Ω := (−π, π)d ⊂ Rd with boundary ∂Ω and closure 

x spatial coordinate; x := (x1, …, xd)⊤ ∈ Rd

mR

reference image; 

mT

template image; 

m
state variable (transported intensities); 

m1

deformed template image (state variable at t = 1); 

λ
adjoint variable (transport equation); 

p
adjoint variable (incompressibility constraint); 

v
control variable (stationary velocity field); 

w
control variable (mass source); 

b
body-force; 

(reduced) Hessian

g (reduced) gradient

F1

deformation gradient at t = 1; ; F1 = F(·, t = 1), F ≡ (∇y)−1

βv regularization parameter for the control v

βw regularization parameter for the control w

ν Glen’s flow law exponent; ν > 0
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Symbol/Notation Description

strain rate tensor; 

regularization operator (variation of regularization model acting on v)

∇ gradient operator (acts on scalar and vector fields)

Δ Laplacian operator (acts on scalar and vector fields)

∇· divergence operator (acts on vector and 2nd order tensor fields)
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Table 5

Summary of the performance measures. We report values for the relative change of the gradient (row 1) and 

the residual (row 2) to indicate inversion accuracy. Here,  is the initial gradient and  is the gradient at the 

final iteration k⋆;  is the reference and  the template image. We also report measures derived from 

deformation gradient  (row 3 and row 4). Where applicable, we also report overlap measures (rows 5–8) for 

“ground truth” segmentations of anatomical structures. Here, LR denotes a label map for the reference image 

 and LT the corresponding label map for the template image ; # denotes the cardinality of a set,\denotes 

the complement, and ∪ and ∩ are the union and intersection of two sets, respectively.

Description Symbol Definition

relative change: reduced gradient

relative change: residual

distance of deformation gradient from identity D

determinant of the deformation gradient J

 det(F\)

overlap: Jaccard similarity coefficient JSC #(LR ∩ LT)/#(LR ∪ LT)

overlap: Dice similarity coefficient DSC 2#(LR ∩ LT)/(#LR + #LT)

overlap: false positive error FPE #(LT\LR)/#LT

overlap: false negative error FNE #(LR\LT)/#LR
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