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Abstract

We study partial regularity of weak solutions of the 3D valued non-stationary

Hall magnetohydrodynamics equations on R
2. In particular we prove the existence

of a weak solution whose set of possible singularities has the space-time Hausdorff

dimension at most two.
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1 Introduction and the main theorem

We consider the homogeneous incompressible Hall magnetohydrodynamics(Hall-MHD)
equations:























∂u

∂t
+ u · ∇u+∇p = (∇×B)×B + ν∆u+ f ,

∂B

∂t
−∇× (u×B) +∇× ((∇×B)×B) = µ∆B +∇× g,

∇ · u = 0, ∇ ·B = 0,

where the three dimensional vector fields u = u(x, t) and B = B(x, t) are the fluid
velocity and the magnetic field respectively. The scalar field p = p(x, t) is the pressure,
while the positive constants ν and µ represent the viscosity and the magnetic resistivity
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respectively. The given vector fields f and ∇ × g are external forces on the magneti-
cally charged fluid flows. The system has been studied first by Lighthill [13] in 1960.
We notice that comparing with the usual MHD system, the Hall-MHD system contains
the extra term ∇ × ((∇×B) ×B), called the Hall term. The inclusion of this term is
essential in understanding the phenomena of magnetic reconnection, meaning the change
of the topology of magnetic field lines. This is observed in real physical situations such
as space plasma [9, 11], star formation [21] and neutron star [19]. There are also many
other physical phenomena that requires the Hall-MHD system to describe them (see e.g.
[15, 20, 16] and the references therein). The Hall term is quadratically nonlinear, con-
taining the second order derivative, and it causes major difficulties in the mathematical
study of the Hall-MHD system. Thanks to the orthogonality in L2 of the Hall term with
B, however, the energy inequality similar to the usual MHD case holds true. Using this
fact the construction of the global in time weak solution can be achieved without any
difficulties, as has been shown in [1]. Observing similar cancellation properties of the Hall
term, the local in time well-posedness as well as the global in time well-posedness for
small initial data was also established in [3], and has been refined in [4]. Regarding the
question of energy conservation for weak solutions in the inviscid case we refer to [7]. For
a special form of axially symmetric initial data the authors of [8] proved the global in time
existence of classical solutions to the system. On the other hand, the optimal temporal
decay estimates are obtained in [5].

Concerning the regularity of weak solutions, one can expect that the problem is more
difficult than the Navier-Stokes equations and the usual MHD system. Even the problem
of regularity of stationary weak solution has essential difficulty with current methods
of the regularity theory, which is contrary to the case of the stationary Navier-Stokes
equations. The partial regularity of stationary weak solutions has been obtained recently
by the current authors (cf. [6]). In the present paper we investigate the partial regularity
of weak solutions of the non-stationary system. For the Navier-Stokes equations there are
many publications on this direction of study (see e.g. [18, 2, 12, 14, 23]). In the case
of the 3D Hall-MHD system in R

3, however, we encounter again essential difficulties in
constructing suitable weak solutions, satisfying desired form of localized energy inequality.

In the current paper we focus on the case of 3D valued Hall-MHD system on the
plane, which is sometimes called the 21

2
dimensional system. Physically the situation

corresponds to the full 3D system having the translational symmetry in the x3 direction.
In this case, as will be shown in detail below, although we cannot construct suitable
weak solution, satisfying the localized energy inequality, instead, we could construct an
approximate system, for which we can deduce Caccioppoli-type inequalities to obtain
“approximate singular set”, and then by passing to a limit in an appropriate sense, we
can show that there exists a possible singular set for the limiting weak solution, whose
Hausdorff dimension is at most two. When we try to apply the similar idea to the full
3D non-stationary system defined on R

3, we have difficulty in constructing a sequence of
the approximate weak solutions, the compactness of which is strong enough to pass to
the limit. Therefore, we leave the proof of partial regularity of the full 3D non-stationary
system as an open problem. We now formulate our problem more precisely, and state our
main result.
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We concentrate on the following 3D valued Hall-MHD system in Q = R
2 × (0, T ).

∂tu+ (u · ∇)u−∆u = −∇p+ (∇×B)×B + f ,(1.1)

∂tB +∇× (B × u)−∆B = −∇× ((∇×B)×B) +∇× g,(1.2)

∇ · u = 0, ∇ ·B = 0(1.3)

together with the initial condition

(1.4) u = u0, B = B0 on R
2 × {0},

which satisfy

(1.5) ∇ · u0 = ∇ ·B0 = 0 on R
2.

Here, u = (u1, u2, u3),B = (B1, B2, B3), where uj = uj(x1, x2, t), Bj = Bj(x1, x2, t), j =
1, 2, 3, and p = p(x1, x2, t), (x, t) = (x1, x2, t) ∈ Q. Note that we set ν = µ = 1 for
convenience. For the definition of weak solution see Definition 1.1 below. The aim of
the present paper is to prove the existence of a weak solution to the Hall-MHD system
(1.1)–(1.3), which is Hölder continuous outside of a possible singular set together with
the estimation of its Hausdorff dimension. We set L2

div = {u ∈ L2 | ∇ · u = 0}, where the
derivative is defined in the sense of distribution. We also define V 2(Q) = L∞(0, T ;L2) ∩
L2(0, T ;W 1,2). By V 2

div(Q) we denote the space of all u ∈ V 2(Q) such that ∇ · u = 0 in
the sense of distribution in Q.

Notice that using the formula (u · ∇)u = (∇× u)× u+ 1
2
|u|2, one can rewrite (1.1)

into

(1.6) ∂tu+ (∇× u)× u−∆u = −∇
(

p+
|u|2
2

)

+ (∇×B)×B + f in Q.

Applying ∇× to the both sides of the above, we get

(1.7) ∂tω +∇× (ω × u)−∆ω = ∇× ((∇×B)×B) +∇× f in Q,

where ω stands for the vorticity ∇× u. Taking the sum of (1.2) and (1.7), we are led to

(1.8) ∂tV +∇× (V × u)−∆V = ∇× (f + g) in Q,

where

(1.9) V = B + ω.

Since ∇ · V = 0, there exists a solenoidal potential v such that ∇× v = V . From (1.8)
we deduce that v solves the following system in Q,

∇ · v = 0,(1.10)

∂tv + (v · ∇)v −∆v = −∇π + (∇× v)× b+ f + g,(1.11)

where b = v − u. Clearly, ∇× b = B.
We now introduce the notion of a weak solution to the system (1.1)–(1.5).
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Definition 1.1. Let f , g ∈ L2(Q). We say (u, p,B) ∈ V 2
div(Q)× L2(0, T ;L2

loc)× V 2
div(Q)

is a weak solution to (1.3)–(1.4) if
∫

Q

(−u · ∂tϕ+∇u : ∇ϕ− u⊗ u : ∇ϕ)dxdt

=

∫

Q

p∇ ·ϕdxdt+
∫

Q

((∇×B)×B + f ) · ϕdxdt +
∫

R2

u0 · ϕ(0)dx,(1.12)

∫

Q

(B · ∂tϕ+∇B : ∇ϕ+B × u : ∇× ϕ)dxdt

=

∫

Q

((∇×B)×B + g) · ∇ ×ϕdxdt+
∫

R2

B0 · ϕ(0)dx(1.13)

for all ϕ ∈ C∞
c (R2×[0, T )). Here we used the notationA : B =

∑3
i,j=1AijBij for matrices

A,B ∈ R
3×3.

By M2,λ
loc (Q) we denote the local Morrey space, which is defined in Section 3 below.

Our main result is the following theorem.

Theorem 1.2. Let u0 ∈ L2
div,B0 ∈ L2 and f , g ∈ L2(Q). Moreover, we suppose that

g ∈ M2,λ
loc (Q) for some 2 < λ < 4. Then, there exists a weak solution (u, p,B) ∈

V 2
div(Q) × L2(0, T ;L2

loc) × V 2
div(Q) of (1.1)–(1.5) being α-Hölder continuous outside of a

closed subset set Σ(B) ⊂ Q of Hausdorff dimension less than or equal to two, where

0 < α < λ−2
2
.

The paper is organized as follows. In Section 2 we discuss local estimates of weak
solutions to the approximate system related to (1.2) involving the magnetic field B.
Thanks to the validity of the local energy equality (see (2.4) below) we are able to establish
a Caccioppoli-type inequality, which plays a central role in the proof of the fundamental
estimate in Section 3 (cf. Lemma3.2). To achieve this result we make use of an indirect
argument together with the fundamental estimate which holds true for the corresponding
linear limit system (cf. Lemma3.1). The aim of section Section 4 is the construction of
an approximate solution to system (1.1)–(1.5) along with the required a priori estimates.
Furthermore, passing to the limit in the approximate system we get a weak solution
to (1.1)–(1.5). In Section 5 we prove that the weak solution constructed in Section 4
fulfills the required partial regularity property stated in Theorem1.2, the main result
of the paper. We wish to remark that even for the weak solution to the system under
consideration constructed in a suitable way, a corresponding local energy inequality similar
to the case of the Navier-Stokes equation may not be available. For this reason in the
proof of the main theorem we are only able to work on the approximate solutions using
Lemma3.2. The estimation of the parabolic Hausdorff dimension of the singular set is
obtained by Theorem5.1, the proof of which can be found at the end of Section 5. For
readers convenience we added an appendix which contains the definition of the parabolic
Hölder space Cα,α/2(Q), the parabolic version of the Poincaré inequality and an algebraic
lemma which will be used in the proof of Theorem5.1.
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2 Caccioppoli-type inequality for the approximate B

system

Let g,u ∈ L2(Q) be given. For fixed 0 < δ < 1 we consider the following system for B
approximating (1.2)

∂tB −∆B

= −∇×
(

∇×B × B

1 + δ|B|
)

+∇×
(

u× B

1 + δ|B|
)

+∇× g in Q.(2.1)

We start our discussion with the following notions of a weak solution to (2.1).

Definition 2.1. A vector field B ∈ V 2(Q) is said to be a weak solution to (2.1) if

∫

Q

(−B · ∂tϕ+∇B : ∇ϕ)dxdt

= −
∫

Q

(∇×B − u)× B

1 + δ|B| · ∇ × ϕdxdt+
∫

Q

g · ∇ × ϕdxdt(2.2)

for all ϕ ∈ C∞
c (Ω).

Remark 2.2. Let B be a weak solution to (2.1). Then, (2.2) yields the existence of the
distributional time derivative B′ ∈ L2(0, T ;W−1,2), determined by the identity

∫

R2

〈B′(s),ψ〉dx+

∫

R2

∇B(s) : ∇ψdx

= −
∫

R2

(∇×B(s)− u(s))× B(s)

1 + δ|B(s)| · ∇ ×ψdx+

∫

R2

g(s) · ∇ ×ψdx(2.3)

for all ψ ∈ W 1, 2(R2) and for a. e. s ∈ (0, T ). Inserting ψ(x, s) = φ(x, s)(B(x, s) − Λ)
into (2.3) with φ ∈ C∞

c (Q) and a constant vector Λ ∈ R
3, integrating the result over (0, t)
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(t ∈ (0, T )) and using integrating by parts, we obtain the following local energy equality

1

2

∫

R2

φ(t)|B(t)−Λ|2dx+

t
∫

0

∫

Q

φ|∇B|2dxds

=
1

2

t
∫

0

∫

R2

(∂tφ+∆φ)|B −Λ|2dxds

+

t
∫

0

∫

R2

(∇×B − u)× B

1 + δ|B| · ((B −Λ)×∇φ)dxds

+

t
∫

0

∫

R2

φu× B

1 + δ|B| · ∇ ×Bdxds

+

t
∫

0

∫

R2

(

φg · ∇ ×B − g · (B −Λ)×∇φ
)

dxds.(2.4)

First, let us fix some notations which is used throughout the present and subsequent
sections. Let X0 = (x0, t0) ∈ R

3 and 0 < r < +∞ by Qr = Qr(X0) we denote the
parabolic cylinder Br(x0)× (t0−r2, t0). Furthermore, for a function f ∈ L1(Qr) we define

fr,X0 := fQr =

∫

−
Qr

fdxdt =
1

mesQr

∫

Qr

fdxdt,

where mesQr stands for the three dimensional Lebesgue measure of Qr.
Let 0 < ρ < r. We call θ ∈ C∞(R3) a cut-off function suitable for Qr and Qρ if

0 ≤ θ ≤ 1 in R
3, θ ≡ 1 on Qρ, θ ≡ 0 in (R3 \Br)× (t0 − r2, t0) ∪ R

2 × (−∞, t0 − r2) and
|∂tθ|+ |∇θ|2 + |∇2θ| ≤ c(r − ρ)−2 in R

3.
Now, we state the following Caccioppoli-type inequality.

Lemma 2.3. Let g ∈ L2(Q),u ∈ L4(Q) be given, and let B ∈ V 2(Q) be a weak solution

to (2.1). Then, for every cylinder Qr = Qr(X0) ⊂ Q and 0 < ρ < r there holds

ess sup
t∈(t0−r2,t0)

∫

Br

θ4|B −Br,X0|2dx+

∫

Qr

θ4|∇B|2dxdt

≤ c

(r − ρ)2
(1 + |Br,X0|2)

∫

Qr

|B −Br,X0 |2dxdt

+
c

r − ρ

(
∫

Qr

θ3+γ|B −Br,X0|4dxdt
)1/2(∫

Qr

θ3−γ |∇B|2dxdt
)1/2

+ c

∫

Qr

(|g|2 + θ4|B|2|u|2)dxdt(2.5)
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for all cut-off function θ suitable for Qr and Qρ (γ ∈ [−3, 3]), and

E(ρ)4 ≤ cr4

(r − ρ)4
(1 + |Br,X0|2)(G(r)4 + F (r)4)

+
cr6

(r − ρ)6
(G(r)6 + F (r)6)

+
c

(r − ρ)2

{

∫

Qr

|g|2dxdt + |Br,X0 |2
∫

Qr

|u|2dxdt
}

(G(r)2 + F (r)2)

+
cr4

(r − ρ)4

∫

Qr

|u|4dxdt(G(r)4 + F (r)4),(2.6)

where c = const > 0 denotes a universal constant, and

E(r) = E(r,X0) =

(
∫

−
Qr(X0)

|B −Br,X0|4dxdt
)1/4

,

F (r) = F (r,X0) =

(

r−2

∫

Qr(X0)

|∇B|2dxdt
)1/2

,

G(r) = G(r,X0) =

(
∫

−
Qr(X0)

|B −Br,X0|2dxdt
)1/2

, 0 < r <
√
t0.

Proof Let Qr = Qr(X0) ⊂ Q be a fixed cylinder. For 0 < ρ < r we take a cut-off function
θ ∈ C∞(R3) suitable for Qr and Qρ.

From (2.4) with φ = θ4 and Λ = Br,X0 we obtain the following Caccioppoli-type
inequality

ess sup
t∈(t0−r2,t0)

∫

Br

θ4|B −Br,X0|2dx+

∫

Qr

θ4|∇B|2dxdt

≤ c

(r − ρ)2

∫

Qr

|B −Br,X0 |2dxdt+ c

∫

Qr

|g|2 + θ4|B|2|u|2dxdt

+
c

r − ρ

∫

Qr

θ3|∇B| |B| |B −Br,X0|dxdt

=
c

(r − ρ)2

∫

Qr

|B −Br,X0|2dxdt+ c

∫

Qr

|g|2 + θ4|B|2|u|2dxdt+ J.(2.7)
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Let γ ∈ [−3, 3]. Applying Hölder’s and Young’s inequality, we estimate

J ≤ c

(r − ρ)2
|Br,X0|2

∫

Qr

|B −Br,X0|2dxdt

+
c

r − ρ

(
∫

Qr

θ3+γ |B −Br,X0 |4dxdt
)1/2(∫

Qr

θ3−γ |∇B|2dxdt
)1/2

+
1

2

∫

Qr

θ4|∇B|2dxdt.

Inserting the estimate of J into (2.7), we are led to

ess sup
t∈(t0−r2,t0)

∫

Br

θ4|B −Br,X0|2dx+

∫

Qr

θ4|∇B|2dxdt

≤ c

(r − ρ)2
(1 + |Br,X0 |2)

∫

Qr

|B −Br,X0 |2dxdt

+
c

r − ρ

(
∫

Qr

θ3+γ|B −Br,X0|4dxdt
)1/2(∫

Qr

θ3−γ |∇B|2dxdt
)1/2

+ c

∫

Qr

(|g|2 + θ4|B|2|u|2)dxdt.(2.8)

This proves (2.5). On the other hand, by means of Sobolev’s embedding theorem we get
∫

−
Qr

θ4|B −Br,X0 |4dxdt

≤ cr−4‖θ2(B −Br,X0)‖2L∞(t0−r2,t0;L2(Br))
‖∇B‖2L2(Qr)

+ cr−4(r − ρ)−2‖θ2(B −Br,X0)‖2L∞(t0−r2,t0;L2(Br))
‖B −Br,X0‖2L2(Qr)

≤ c

(r − ρ)2
‖θ2(B −Br,X0)‖2L∞(t0−r2,t0;L2(Br))

(F (r)2 +G(r)2).(2.9)

Combining (2.8) with γ = 1 and (2.9) with help of Young’s inequality, we get
∫

−
Qr

θ4|B −Br,X0 |4dxdt

≤ cr4

(r − ρ)4
(1 + |Br,X0 |2)G(r)2(F (r)2 +G(r)2)

+
cr6

(r − ρ)6
(F (r)6 +G(r)6)

+
c

(r − ρ)2

∫

Qr

(|g|2 + θ4|B|2|u|2)dxdt(F (r)2 +G(r)2).(2.10)

Estimating |B|2 ≤ 2|B −Br,X0|2 + 2|Br,X0|2 and applying Young’s inequality, we obtain
(2.6). Thus, the proof of the Lemma is complete.
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Remark 2.4. From (2.5) with γ = −1 along with Young’s inequality we get

(

1

r2
ess sup

t∈(t0−ρ2,t0)

∫

Bρ

|B(t)−Br,X0|2dx
)1/2

+ F (ρ)

≤ cr

r − ρ

{

(1 + |Br,X0|)E(r) + E(r)2
}

+
c

ρ

{

‖u‖2,Qr(E(r) + |Br,X0|) + ‖g‖2,Qr

}

.(2.11)

Furthermore, using the parabolic Poincaré-type inequality (cf. LemmaA.1, appendix
below), we find

∫

−
Qr

|B −Br,X0|2dxdt

≤ c(1 + |Br,X0 |2)r−2

∫

Qr

|∇B|2dxdt

+ c(1 + |Br,X0 |2)r−2

∫

Qr

(|g|2 + |u|2)dxdt

+ C1r
−2

∫

Qr

(|∇B|2 + |u|2)dxdt
∫

−
Qr

|B −Br,X0|2dxdt(2.12)

with an absolute constant C1 > 0. Thus, assuming that

(2.13) C1

{

r−2

∫

Qr

|∇B|2dxdt+ 4

(
∫

Qr

|u|4dxdt
)1/2

}

≤ 1

2
,

(2.12) leads to

G(r) ≤ c(1 + |Br,X0 |)(F (r) +H(r)),(2.14)

where

H(r) = H(r,X0) = r−1‖g‖2,Qr + ‖u‖4,Qr , 0 < r <
√
t0.

Substituting G(r) on the right of (2.6) by (2.14), setting ρ = r
2
therein, we arrive at

E(r/2) ≤ C2(1 + |Br,X0 |2)
{

F (r) + F (r)2 +H(r) +H(r)2
}

(2.15)

with an absolute constant C2 > 0, provided (2.13) is fulfilled.
From (2.11) with ρ = r

2
we deduce that

F (r/2) ≤ C3(1 + |Br,X0|)
{

E(r) + E(r)2 +H(r) +H(r)2
}

(2.16)

with an absolute constant C3 > 0.
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3 Blow-up lemma

In what follows we define the space

V 2(Qr) = L∞(t0 − r2, t0;W
1, 2(Br(x0))) ∩ L∞(t0 − r2, t0;L

2(Br(x0)))

for X0 = (x0, t0) and 0 < r < +∞.

We begin our discussion with the following fundamental estimate for solutions to the
model problem in Q1 = Q1(0, 0), which will be used in the blow-up lemma below.

Lemma 3.1. Let Λ ∈ R
3. Let W ∈ L4(Q1) such that W |Qσ ∈ V 2(Qσ) for all 0 < σ < 1

solves

(3.1) ∂tW −∆W = −∇× ((∇×W )×Λ) in Q1

in sense of distributions, i. e.

∫

B1

W (t) ·Φ(t)dx+

t
∫

−1

∫

B1

(−W · ∂tΦ+∇W : ∇Φ)dxds

= −
t

∫

−1

∫

B1

((∇×W )×Λ) · ∇ ×Φdxds(3.2)

for all Φ ∈ W 1, 2(Q1) compactly supported in Q1, for a. e. t ∈ (−1, 0). Then,

(3.3)

(
∫

−
Qτ

|W −WQτ |4dxdt
)1/4

≤ C0τ(1 + |Λ|5)
(
∫

−
Q1

|W −WQ1 |4dxdt
)1/4

for all 0 < τ < 1, where C0 > 0 denotes a universal constant.

Proof Since the assertion is trivial for 1
4
< τ < 1, we may assume that 0 < τ ≤ 1

4
. Let

ζ ∈ C∞
c (R3) be a suitable cut-off function for Qτ and Q1/2. Inserting the admissible test

function Φ = ζ2m(W −WB1) (m ∈ N) into (3.2), by using Cauchy-Schwarz’s inequality
along with Young’s inequality, we are led to

ess sup
t∈(−1,0)

∫

B1

ζ2m|W (t)|2dx+

∫

Q1

ζ2m|∇W |2dxdt

≤ c(1 + |Λ|2)
∫

Q1

ζ2m−2|W −WQ1|2dxdt.(3.4)

If W is smooth in Q1, since (3.1) is a linear system, the same inequality holds true for
DαW in place ofW for any multi-index α. By a standard mollifying argument together
with Sobolev’s embedding theorem we see that W is smooth in Q1. By an iterative
application of (3.4) with m = 4, 3, 2, 1 we obtain

(3.5) ess sup
t∈(−1,0)

∫

B1

ζ8|DαW |2dx ≤ c(1 + |Λ|8)
∫

Q1

|W −WQ1|2dxdt ∀ |α| ≤ 3.
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By means of Sobolev’s embedding theorem and Jensen’s inequality we get

(3.6) ‖∇W ‖4∞,Q1/2
≤ c(1 + |Λ|16)

∫

Q1

|W −WQ1|4dxdt.

Applying Poincaré’s inequality, we arrive at

(3.7)

∫

−
Qτ

|W −WQτ |4dxdt ≤ cτ 4(1 + |Λ|4)‖∇W ‖4∞,Q1/2
.

Combination of (3.6) and (3.7) gives the desired estimate.

In our discussion below we make use of the notion of the Morrey space. Let K ⊂ Q
be a compact set. Define, dK = min{t ∈ (0, T ) | t ∈ K}. We say f belongs to the Morrey
space Mp,λ(K) if

[f ]Mp,λ,K := sup

{

r−λ

∫

Qr(X0)

|f |pdxdt
∣

∣

∣

∣

X0 ∈ K, 0 < r ≤ dK

}

< +∞.

Furthermore, by f ∈ Mp,λ
loc (Q) we mean f ∈ Mp,λ(K) for all compact set K ⊂ Q.

Now we are ready to state the following key lemma.

Lemma 3.2. Let g ∈ M2,λ
loc (Q) for some 2 < λ < 4. For every 0 < τ < 1

2
, 0 <

M,L < +∞, compact set K ⊂ Q and 0 < α < λ−2
2
, there exist positive numbers ε0 =

ε0(τ,M, L,K, α), R0 = R0(τ,M, L,K, α) < dK and δ0 = δ0(τ,M, L,K, α) ≤ 1 such that,

if B ∈ V 2(Q) is a weak solution to (2.1)with 0 < δ ≤ δ0 and u ∈ L8/(4−λ)(Q) such that

(3.8) ‖u‖8/(4−λ),Q ≤ L,

and if for X0 ∈ K and 0 < R ≤ R0 the following condition is fulfilled

(3.9) |BR,X0 | ≤ M, E(R,X0) +Rα ≤ ε0,

then there holds

(3.10) E(τR,X0) ≤ 2τC0(1 +M5)(E(R,X0) +Rα),

where C0 > 0 stands for the constant appearing on the right hand side of (3.3).

Proof Assume the assertion of the Lemma is not true. Then there exist 0 < τ <
1
2
, 0 < M,L < +∞, a compact set K ⊂ Ω and 0 < α < λ−2

2
as well as sequences

{εk}, {δk} ⊂ (0, 1) with εk, δk → 0 as k → +∞, {Rk} ⊂ (0, dK), {Xk} = {(xk, tk)} ⊂ K,
{u(k)} ⊂ L8/(4−λ)(Q) fulfilling

(3.11) ‖u(k)‖8/(4−λ) ≤ L ∀ k ∈ N,

and a sequence {B(k)} ⊂ V 2(Q), being a weak solutions to (2.1) replacing u by u(k) and
δ by δk respectively, such that

(3.12) |B(k)
Rk ,Xk

| ≤ M, Ek(Rk, Xk) +Rα
k = εk

11



and

(3.13) Ek(τRk, Xk) > 2τC0(1 +M5)(Ek(Rk, Xk) +Rα
k ).

Here we have used the notation

Ek(r,Xk) =

(
∫

−
Qr(Xk)

|B(k) −B(k)
r,Xk

|4dxdt
)1/4

, Xk ∈ K, 0 < r ≤ dK

(k ∈ N). Note that (3.12) yields Rk → 0 as k → +∞.
Next, for Y := (y, s) ∈ Q1(0) we define

W k(Y ) =
1

εk
(B(k)(xk +Rky, tk +R2

ks)−B
(k)
Rk,Xk

),

vk(Y ) = u(k)(xk +Rky, tk +R2
ks),

gk(Y ) = g(xk +Rky, tk +R2
ks),

(k ∈ N). Furthermore, we set

Ek(σ) =

(
∫

−
Qσ

|W k − (W k)Qσ |4dyds
)1/4

, 0 < σ ≤ 1.

Then (3.12) and (3.13) turn into

(3.14) |B(k)
Rk ,Xk

| ≤ M, Ek(1) +
Rα

k

εk
= 1,

and

(3.15) Ek(τ) > 2τC0(1 +M5)
(

Ek(1) +
Rα

k

εk

)

= 2τC0(1 +M5)

respectively.
Using the chain rule, restriction of system (2.1) to QRk

(Xk) takes the form

∂tW k −∆W k

= −∇×
(

(∇×W k)×
εkW k +B

(k)
Rk,Xk

1 + δk|εkW k +B
(k)
Rk,Xk

|

)

+
Rk

εk
∇×

(

vk ×
εkW k +B

(k)
Rk ,Xk

1 + δk|εkW k +B
(k)
Rk,Xk

|

)

+
Rk

εk
∇× gk(3.16)

in Q1. Thus, W k ∈ V 2(Q1) is a weak solution to (3.16).

Let 0 < σ < 1. Using the transformation formula, noticing that |B(k)
Rk,Xk

| ≤ M , the
Caccioppoli-type inequality (2.11) with r = Rk and ρ = σRk turns into

‖W k‖L∞(−σ2,0;L2(Bσ)) + ‖∇W k‖2,Bσ

≤ c(1− σ)−1
(

(1 +M)Ek(1) + εkEk(1)
2
)

+
cR−1

k

εk

(

‖u(k)‖2,QRk
(Xk)(εkEk(1) +M) + ‖g‖2,QRk

(Xk)

)

.(3.17)
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As gk ∈ M2,λ(K) observing (3.14), we see that

(3.18)
R−1

k

εk
‖g‖2,QRk

(xk) ≤
R

(λ−2)/2
k

εk
[g]M2,λ(K) ≤ R

(λ−2)/2−α
k [g]M2,λ(K).

Similarly, by (3.11) and (3.14) we get

(3.19)
R−1

k

εk
‖u(k)‖2,QRk

(xk) ≤ c
R

(λ−2)/2
k

εk
‖u(k)‖8/4−λ,Q ≤ cR

(λ−2)/2−α
k L.

Thus, from (3.17) with help of (3.18), (3.19) and (3.14) we obtain

(3.20) ‖W k‖L∞(−σ2,0;L2(Bσ)) + ‖∇W k‖2,Qσ ≤ c(1− σ)−1(M + 1) + c([g]M2,λ(K) + L).

In addition, in view of (3.14) we estimate

(3.21) ‖W k‖4,Q1 = (mesB1)
1/4

Ek(1) ≤ (mesB1)
1/4.

From (3.20) and (3.21) it follows that {W k} is bounded in V 2(Qσ) for all 0 < σ < 1 and
bounded in L4(Q1). Thus, by means of reflexivity, eventually passing to subsequences,
we get W ∈ L4(Q1) with W ∈ V 2(Qσ) for all 0 < σ < 1 and Λ ∈ R

3 such that

W k →W weakly in L4(Q1) as k → +∞,(3.22)

∇W k → ∇W weakly in L2(Qσ) as k → +∞ ∀ 0 < σ < 1,(3.23)

W k →W weakly∗ in L∞(−σ2, 0;L2(Bσ)) as k → +∞ ∀ 0 < σ < 1,(3.24)

Λk → Λ in R
3 as k → +∞.(3.25)

On the other hand, from (3.16) we deduce that the sequence of distributive time derivative
{W ′

k} is bounded in L4/3(−σ2, 0;W−1, 4/3(Bσ)). From this fact together with (3.22) it
follows that

(3.26) W k →W strongly in L2(Qσ) as k → +∞ ∀ 0 < σ < 1.

Thus, we are in a position to carry out the passage to the limit k → +∞ in the weak
formulation of (3.16) to deduce that W is a weak solution to the linear system (3.1).

Our next aim is to prove the strong convergence ofW k →W in L4(Qσ) (0 < σ < 1).
We first state the following energy equality,

1

2

∫

B1

φ2(t)|W k(t)|2dy +
t

∫

−1

∫

B1

φ2|∇W k|2dyds

=
1

2

t
∫

−1

∫

B1

(∂tφ
2 +∆φ2)|W k|2dyds

+

t
∫

−1

∫

B1

(∇×W k)×
εkW k +B

(k)
Rk,Xk

1 + δk|εkW k +B
(k)
Rk,Xk

|
· (W k ×∇φ2)dyds

+
Rk

εk

t
∫

−1

∫

B1

{

vk ×
εkW k +B

(k)
Rk,Xk

1 + δk|εkW k +B
(k)
Rk ,Xk

|
+ gk

}

∇× (φ2W k)dyds(3.27)
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for all t ∈ [−1, 0]. In view of (3.22), (3.23), (3.25) and (3.26) on both sides of (3.27) with
t = 0 letting k → +∞, we infer

lim
k→∞

(

1

2

∫

B1

φ2(0)|W k(0)|2dy +
∫

Q1

φ2|∇W k|2dyds
)

=
1

2

∫

Q1

(∂tφ
2 +∆φ2)|W |2dyds−

∫

Q1

(∇×W )×Λ · (W ×∇φ2)dyds.(3.28)

Since W is a weak solution to (3.1), there holds

1

2

∫

B1

φ2(0)|W (0)|2dy +
∫

Q1

φ2|∇W |2dyds

=
1

2

∫

Q1

(∂tφ
2 +∆φ2)|W |2dyds−

∫

Q1

(∇×W )×Λ · (W ×∇φ2)dyds.(3.29)

Noticing that






(φ(0)W k(0), φ∇W k) → (φ(0)W (0), φ∇W )

weakly in L2(B1)× L2(Q1) as k → +∞

from (3.28) and (3.29), we deduce that

∇W k → ∇W strongly in L2(Qσ) as k → +∞ ∀ 0 < σ < 1.

Accordingly,

(3.30) lim
k→∞

Ek(σ) = E (σ) ∀ 0 < σ < 1,

where E (σ) =

(
∫

−
Bσ

|W −W Bσ |4dy
)1/2

. In particular, thanks to (3.30) (with σ = τ)

from (3.15) we get

(3.31) E (τ) ≥ 2τC0(1 +M5).

Since W is a weak solution to (3.1) and |Λ| ≤ M , appealing to Lemma3.1, we find

(3.32) E (τ) ≤ τC0(1 +M5)E (1).

On the other hand, by virtue of the lower semi continuity of the norm together with (3.15)
and (3.30) we get

E (1) ≤ lim inf
k→∞

(

Ek(1) +
Rα

k

εk

)

≤ 1

2τC0(1 +M5)
lim
k→∞

Ek(τ)

=
1

2τC0(1 +M5)
E (τ).

Estimating the right of (3.32) by the inequality, we have just obtained we are led to
E (τ) ≤ 1

2
E (τ) and hence E (τ) = 0, which contradicts to (3.31). Whence, the assumption

cannot be true, which completes the proof of the Lemma.
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4 Construction of approximate solutions

The aim of the present section is to construct a weak solution of the Hall-MHD system
(1.1)–(1.5) as a limit of a sequence of solutions to the a corresponding approximate sys-
tem. As we will see in the following section, such solution will satisfy the desired partial
regularity as stated in the main result of the present paper.

Let {δm} ⊂ (0, 1) (m ∈ N) be a sequence, such that δm → 0 as m → +∞. Now, we
consider the following approximate system

∂tum+
ωm

1 + δm|Bm|
× um −∆um

= −∇pm + (∇×Bm)×
Bm

1 + δm|Bm|
+ f ,(4.1)

∂tBm+∇×
(

Bm

1 + δm|Bm|
× um

)

−∆Bm

= −∇×
(

∇×Bm × Bm

1 + δm|Bm|
)

+∇× g,(4.2)

∇ · um = 0, ∇ ·Bm = 0,(4.3)

in Q = R
2 × (0, T ), together with the initial condition

(4.4) um = u0, Bm = B0, in R
2 × {0}.

Here (um, pm,Bm) ∈ V 2
div(Q)× L2(Q)× V 2

div(Q) is called a weak solution to (4.1)-(4.3) if

∫

Q

(−um · ∂tϕ+∇um : ∇ϕ− um ⊗ um : ∇ϕ)dxdt

=

∫

Q

pm∇ · ϕdxdt +
∫

Q

(

(∇×Bm)×
Bm

1 + δm|Bm|
)

· ϕdxdt+
∫

Q

f · ϕdxdt,(4.5)

∫

Q

(−Bm · ∂tϕ+∇Bm : ∇ϕ)dxdt

= −
∫

Q

(

(∇×Bm − um)×
Bm

1 + δm|Bm|
)

· ∇ ×ϕdx+

∫

Q

g · ∇ × ϕdxdt(4.6)

for all ϕ ∈ C∞
c (Q).

The existence of weak solutions to (4.1)–(4.4) is given by the following

Lemma 4.1. Let u0 ∈ L2
div,B0 ∈ L2 and f , g ∈ L2(Q). Then for every m ∈ N there

exists a weak solution (um, pm,Bm) ∈ V 2
div(Q) × L2(0, T ;L2

loc) × V 2
div(Q) to (4.1)–(4.4),

such that

(4.7) ∇um ∈ V 2(Qr), ∀Qr ⊂ Q.
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Furthermore, this solution fulfills the energy equality

1

2
‖um(t)‖22 +

1

2
‖Bm(t)‖22 +

t
∫

0

(‖∇um(s)‖22 + ‖∇Bm(s)‖22)ds

=
1

2
‖u0‖22 +

1

2
‖B0‖22 +

t
∫

0

∫

R2

(f · um + g · ∇ ×Bm)dxds(4.8)

for a. e. t ∈ (0, T ).

Proof Let m ∈ N be fixed. Let βl → 0+ as l → +∞. By using the well-known monotone
operator theory we get a weak solution (um,l, pm,l,Bm,l) ∈ V 2

div(Q)×L2(0, T ;L2
loc)×V 2

div(Q)
of the following approximate system

∂tum,l+
ωm,l

1 + δm|Bm,l|+ βl|V m,l|
× um,l −∆um,l

= −∇pm,l + (∇×Bm,l)×
Bm,l

1 + δm|Bm,l|+ βl|V m,l|
+ f ,(4.9)

∂tBm,l+∇× Bm,l

1 + δm|Bm,l|+ βl|V m,l|
× um,l −∆Bm,l

= −∇×
(

∇×Bm,l ×
Bm,l

1 + δm|Bm,l|+ βl|V m,l|
)

+∇× g(4.10)

∇ · um,l = 0, ∇ ·Bm,l = 0(4.11)

in Q = R
2 × (0, T ) together with the initial condition

(4.12) um,l = u0, Bm,l = B0, in R
2 × {0},

where

V m,l = ωm,l +Bm,l.

Clearly, the energy equality (4.8) holds true with um,l in place of um and Bm,l in place
of Bm respectively. In particular, both {um,l} and {Bm,l} are bounded in V 2(Q). Thus,
by a standard reflexivity argument along with Banach-Alaoglu’s compactness lemma,
eventually passing to a subsequence, we may assume there exist um ∈ V 2

div(Q) and Bm ∈
V 2
div(Q) such that

∇um,l → ∇um, ∇Bm,l → ∇Bm weakly in L2(Q),(4.13)

um,l → um, Bm,l → Bm weakly∗ in L∞(0, T ;L2) as l → +∞.(4.14)

Furthermore, by Lions-Aubin’s compactness lemma we see that

(4.15) um,l → um, Bm,l → Bm strongly in L2(Q) as l → +∞.

Hence, thanks to (4.13), (4.14) and (4.15) we are in a position to carry out the passage
to the limit l → +∞ in the weak formulation of (4.9)–(4.11). Accordingly, there exists
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pm ∈ L2(0, T ;L2
loc) such that (um, pm,Bm) is a weak solution to (4.1)–(4.4). Verifying

that um and Bm satisfying the energy equality (4.8), it follows that

(4.16) ∇um,l → ∇um, ∇Bm,l → ∇Bm strongly in L2(Q) as l → +∞.

As V 2(Q) →֒ L4(Q) from (4.16) we infer

(4.17) um,l → um, Bm,l → Bm strongly in L4(Q) as l → +∞.

Next, applying ∇× to both sides of (4.9) and combining the result with (4.10), we are
led to

(4.18) ∂tV m,l −∆V m,l = −∇×
( V m,l

1 + δm|Bm,l|+ βl|V m,l|
× um,l

)

+∇× h in Q,

where h = g + f . By using a routine smoothing argument one gets V m,l ∈ V 2(Qr) for
all Qr ⊂ Q.

Now, let Qr = Qr(X0) ⊂ Q be arbitrarily chosen. Let θ ∈ C∞
c (Br × (t0 − r2, t0]) be a

test function suitable for Qr/2. Testing (4.18) by θ2V m,l, we get

1

2

∫

Br

θ2(t)|V m,l(t)|2dx+

t
∫

t0−r2

∫

Br

θ2|∇V m,l|2dxds

=
1

2

t
∫

t0−r2

∫

Br

(∂tθ
2 +∆θ2)|V m,l|2dxds

−
t

∫

t0−r2

∫

Br

( V m,l

1 + δm|Bm,l|+ βl|V m,l|
× um,l − h

)

· ∇ × (θ2V m,l)dxds(4.19)

for a. e. t ∈ (t0−r2, t0). From the above identity using the embedding V 2(Qr) →֒ L4(Qr),
it is readily seen that

(
∫

Qr

θ4|V m,l|4dxdt
)1/2

≤ c ess sup
t∈(t0−r2,t0)

∫

Br

θ2(t)|V m,l(t)|2dx+ c

∫

Qr

θ2|∇V m,l|2 + r−2|V m,l|2 + |h|2dxdt

≤ cr−2(1 + ‖um,l‖24)
∫

Qr

|V m,l|2dxdt+ c‖h‖22

+ Ĉ‖um,l‖4,Qr

(
∫

Qr

θ4|V m,l|4dxdt
)1/2

,(4.20)
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with an absolute constant Ĉ > 0. As um ∈ L4(Q), we may choose 0 < r <
√
t0 such that

Ĉ‖um‖4,Qr ≤ 1
4
. Observing (4.17), there exists l0 ∈ N such that Ĉ‖um,l‖4,Qr ≤ 1

2
for all

l ≥ l0. Accordingly, (4.20) implies

(
∫

Qr

θ4|V m,l|4dxdt
)1/2

≤ cr−2(1 + ‖um,l‖24)
∫

Qr

|ωm,l + V m,l|2dxdt+ c‖h‖22(4.21)

for l ≥ l0. Since the right of (4.21) is bounded independently of l ∈ N, by a constant
C(u0,B0, f , g) by virtue of the lower semi continuity of the norm from (4.21) together
with (4.19) and (4.20) we get

(4.22) ‖∇V m‖2,Qr/2
+ ‖V m‖L∞(t0−r2/4,t0;L2(Br/2)) + ‖V m‖4,Qr/2

≤ C(u0,B0, f , g),

where V m = Bm +∇× um. By applying a standard covering argument, since Bm ∈ L2

we see that ∇ × um ∈ V 2(Qr) for all Qr ⊂ Q. Whence, the assertion follows from the
inequality

‖∇um‖2,Qr/2
≤ cr−1(‖um‖2,Qr + ‖∇ × um‖2,Qr)

which completes the proof of the lemma.

Next, we are going to carry out the passage to the limit m → +∞, which can be done
by an analogous argument used in the proof of Lemma4.1. Observing the energy equality
(4.8), we find that both {um} and {Bm} are bounded in V 2(Q). Eventually passing to a
subsequence, we get the existence of u,B ∈ V 2

div(Q) such that

∇um → ∇u, ∇Bm → ∇B weakly in L2(Q),(4.23)

um → u, Bm,l → Bm weakly∗ in L∞(0, T ;L2) as m → +∞.(4.24)

Furthermore, by Lions-Aubin’s compactness lemma we see that

(4.25) um → u, Bm → B strongly in L2(Q) as m → +∞.

With the aid of (4.23), (4.24) and (4.25) we are in a position to carry out the passage to
the limit m → +∞ in the weak formulation of (4.1)–(4.4), which yields a weak solution
(u, p,B) to (1.1)–(1.4).

Our next aim is to get a strong L4 convergence of um.

Lemma 4.2. Let {(um, pm,Bm)} be a sequence of weak solutions to (4.1)–(4.4) obtained
by Lemma4.1. Furthermore, suppose (4.23)–(4.25). Then, for every Qr ⊂ Q there holds

(4.26) um → u strongly in L4(Qr) as m → +∞.

In addition, for every X0 ∈ Q there exists 0 < r = r(X0) <
√
t0 such that

‖∇ωm‖2,Qr + ‖ωm‖L∞(t0−r2,t0;L2(Br)) + ‖ωm‖4,Qr

≤ C(u0,B0, f , g) ∀m ∈ N.(4.27)
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Proof Let m ∈ N. In view of Lemma4.1, taking the sum of (4.1) and (4.2), we see that
V m = ωm +Bm ∈ V 2

loc(Q) is a weak solution to the following system

(4.28) ∂tV m −∆V m = −∇×
( V m

1 + δm|Bm|
× um

)

+∇× h in Q.

Here V 2
loc(Q) contains all ϕ ∈ L2(Q) such that ϕ|Qr ∈ V 2(Qr) for all Qr ⊂ Q.

Clearly, there exists vm ∈ V 2
loc(Q) such that ∇× vm = V m. Thus, from (4.28) we infer

that

(4.29) ∂tvm −∆vm = −∇πm − V m

1 + δm|Bm|
× (vm − bm) + h in Q,

where bm = vm − um. By the definition of vm we have ∇× bm = Bm.
Let Qr ⊂ Q be fixed. Eventually, replacing vm by vm(t)− (vm(t))x0,r (t ∈ t0 − r2, t0),

observing (4.23), (4.24) and (4.25), by virtue of Sobolev’s embedding theorem we easily
verify that

V m → V weakly in L2(Qr),(4.30)

bm → b strongly in L6(Qr) as m → +∞.(4.31)

Indeed, we note that |bm(t)x0,Br | = |um(t)x0,Br | ≤ ‖um‖L∞(0,T ;L2). Consequently, by
Sobolev-Poincaré’s inequality we see that ‖bm‖q,Qr ≤ c‖um‖L∞(0,T ;L2) + c‖Bm‖L∞(0,T ;L2)

for every 1 ≤ q < +∞. Once more appealing to (4.25), eventually passing to a subse-
quence we may assume that

(4.32) Bm → B a. e. in Q as m → +∞.

By means of Vitali’s convergence theorem, making use of (4.31) and (4.32), we get

(4.33)
bm

1 + δm|Bm|
→ b strongly in L6(Qr) as m → +∞.

Next, we define the local pressure

∇πm,1 = EBr(∆vm),

∇πm,2 = EBr

(

− V m

1 + δm|Bm|
× (vm − bm) + h

)

,

∇πm,hm = −EBr(vm),

where EBr : W−1, q(Br) → W−1, q(Br) stands for the projection defined by the Stokes
equation. Note that the restriction of EBr to Lq(Qr) (1 < q < +∞) defines a projection
in Lq(Qr) (cf. [23, 24] for details). We also note that πm,hm(t) is harmonic in Br for
a. e. all t ∈ (t0 − r2, t0). As it has been proved in [23],(4.29) implies that the function
zm = vm +∇πm,hm ∈ V 2(Qr) solves the following system in sense of distributions

(4.34) ∂tzm −∆zm = −∇(πm,1 + πm,2)−
V m

1 + δm|Bm|
× um + h in Qr,
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Let φ ∈ C∞
c (Qr) be a non-negative cut-off function. Testing (4.34) by φzm, we obtain

the following energy equality
∫

Qr

φ|∇zm|2dxdt

=
1

2

∫

Qr

(∂tφ+∆φ)|zm|2dxdt+
∫

Qr

( V m

1 + δm|Bm|
× bm + h

)

· φzmdxdt

+

∫

Qr

(πm,1 + πm,2)∇φ · zmdxdt.(4.35)

Verifying

∥

∥

∥

V m

1 + δm|Bm|
× um

∥

∥

∥

L3/2(0,T ;L6/5)
≤ ‖V m‖2‖um‖L6(0,T ;L3) ≤ C(u0, . . .),

we may estimate the pressure πm,2 in L3/2(Qr) by using the Sobolev-Poincaré inequality
as follows

‖πm,2‖3/2,Qr ≤ c‖∇πm,2‖L3/2(t0−r2,t0;L6/5(Br))

≤ c
∥

∥

∥

V m

1 + δm|Bm|
× um

∥

∥

∥

L3/2(0,T ;L6/5)
+ c‖h‖2 ≤ C(u0, . . .).(4.36)

Furthermore, we immediately get

(4.37) ‖πm,1‖2,Qr ≤ c‖∇vm‖2 ≤ c‖∇um‖2 + c‖Bm‖2 ≤ C(u0, . . .).

Observing (4.25) along with (4.31), we find

(4.38) vm → v strongly in L3(Qr) as m → +∞,

where v = u+ b. Thus, having

∇πm,hm → ∇πhm strongly in L3(Qr) as m → ∞,(4.39)

where ∇πhm = −EBr(v), it follows that

(4.40) zm → z strongly in L3(Qr) as m → +∞.

Now, with help of (4.36), (4.37) and (4.40) we get

lim
m→∞

∫

Qr

(πm,1 + πm,2)∇φ · zmdxdt =
∫

Qr

(π1 + π2)∇φ · zdxdt,

where

∇π1 = EBr(∆v),

∇π2 = EBr(−V × u+ h).
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On the other hand, making use of (4.33), together with (4.25) and (4.40) we see that

lim
m→∞

∫

Qr

( V m

1 + δm|Bm|
× bm + h

)

· φzmdxdt =
∫

Qr

(V × b+ h) · φzdxdt.

Furthermore, thanks to (4.40) we obtain

lim
m→∞

1

2

∫

Qr

(∂tφ+∆φ)|zm|2dxdt =
1

2

∫

Qr

(∂tφ+∆φ)|z|2dxdt.

Hence, we are in the position to carry out the passage to the limit m → +∞ in (4.35) to
get

lim
m→∞

∫

Qr

φ|∇zm|2dxdt

=
1

2

∫

Qr

(∂tφ+∆φ)|z|2dxdt +
∫

Qr

(V × b+ h) · φzdxdt+
∫

Qr

(π1 + π2)∇φ · zdxdt.(4.41)

Accordingly, we see that z ∈ V 2(Qr) and

(4.42) ∂tz −∆z = −∇(π1 + π2)− V × u+ h in Qr,

in sense of distributions. Taking into account that z ∈ L4(Qr), and V ×u ∈ L4/3(Q), we
obtain the following energy equality

∫

Qr

φ|∇z|2dxdt

=
1

2

∫

Qr

(∂tφ+∆φ)|z|2dxdt +
∫

Qr

(V × b+ h) · φzdxdt

+

∫

Qr

(π1 + π2)∇φ · zdxdt.(4.43)

Thus, observing (4.25), combining (4.41) and (4.43) using a well-known liminf-limsup
argument noticing that

√
φ∇zm →

√
φ∇z weakly in L2(Qr) we get

√

φ∇zm →
√

φ∇z strongly in L2(Qr) as m → ∞.

On the other hand, since πhm is harmonic, thanks to (4.39) we get

√

φ∇2πm,hm →
√

φ∇2πhm strongly in L2(Qr) as m → ∞.

As ∇vm = ∇zm −∇2πm,hm a. e. in Qr, we arrive at

√

φ∇vm →
√

φ∇v strongly in L2(Qr) as m → ∞.
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Hence, thanks to the embedding V 2(Qr) →֒ L4(Qr) along with (4.31) we get
√

φum →
√

φu strongly in L4(Qr) as m → ∞.

Since the above statement holds for any cylinder Qr ⊂ Q, we get the first claim (4.26) of
the lemma.

Now, it remains to verify (4.27). In fact, according to Lemma4.1, we have V m ∈
L4(Qr), which implies that V m

1+δm|Bm| × um ∈ L2(Qr). This allows us to test (4.28) with

θ2V m, where θ ∈ C∞
c (Br × (t0 − r2, t0]). Arguing as in the proof of Lemma4.1, we obtain

1

2

∫

Br

θ2(t)|V m(t)|2dx+

t
∫

t0−r2

∫

Br

θ2|∇V m|2dxds

=
1

2

t
∫

t0−r2

∫

Br

(∂tθ
2 +∆θ2)|V m|2dxds

−
t

∫

t0−r2

∫

Br

( V m

1 + δm|Bm|
× um − h

)

· ∇ × (θ2V m)dxds

for a. e. t ∈ (t0 − r2, t0), which leads to

(
∫

Qr

θ4|V m|4dxdt
)1/2

≤ cr−2(1 + ‖um‖24)C(u0, . . .) + Ĉ‖um‖4,Qr

(
∫

Qr

θ4|V m|4dxdt
)1/2

.(4.44)

Whence, the proof of (4.27) can be completed by a similar argument to the proof of
Lemma4.1, by using the strong L4 convergence (4.26).

5 Proof of Theorem1.2

Let (um, pm,Bm) ∈ V 2
div(Q)× L2(0, T ;L2

loc)× V 2
div(Q) be a weak solution to the approxi-

mate system (4.1)–(4.4) such that ∇um ∈ V 2
loc(Q) (m ∈ N), which can be guaranteed by

Lemma4.1 (for the definition of V 2
loc(Q) see Section 4).

In our discussion below we use the following notation. Let X0 = (x0, t0) ∈ Q.

Em(r) = Em(r,X0) :=

(
∫

−
Qr(X0)

|Bm − (Bm)r,X0|4dxdt
)1/4

,

Fm(r) = Fm(r,X0) :=

(

r−2

∫

Qr(X0)

|∇Bm|2dxdt
)1/2

,

Hm(r) = Hm(r,X0) := ‖um‖4,Qr + r−1‖g‖2,Qr 0 < r <
√
t0.
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Next, we define the set of possible singularities of B by means of Σ(B) = ∪∞
k=1Σk∪Σ∞,

where

Σk :=
⋃

0<ρ<T

⋂

0<r≤ρ

{

X0 ∈ R
2 × (r, T )

∣

∣

∣

∣

lim inf
m→∞

Fm(r,X0) ≥
1

k

}

, k ∈ N,

Σ∞ :=
{

X0 ∈ Q
∣

∣

∣
sup

0<r<
√
t0

|Br,X0| = +∞
}

.

Let Qr = Qr(X0) ⊂ Q be any cylinder such that condition (2.13) is fulfilled for
B = Bm and u = um, i. e.

(5.1) C1

{

Fm(r)
2 + ‖um‖24,Qr

}

≤ 1

2
.

As stated in Remark 2.4, the condition (2.13) implies (2.15). Thus, (5.1) implies

Em(r/2) ≤ C2(1 + |(Bm)r,X0|2)
{

Fm(r) + Fm(r)
2 +Hm(r) +Hm(r)

2
}

.(5.2)

On the other hand, (2.16) with B = Bm and u = um reads

Fm(r/2) ≤ C3(1 + |(Bm)r,X0 |)
{

Em(r) + Em(r)
2 +Hm(r) +Hm(r)

2
}

.(5.3)

Let X0 ∈ Q \ Σ(B) be fixed. Set d0 =
√
t0/2 and K = Qd0 . Appealing to Lemma4.2,

and applying Sobolev’s embedding theorem, we see that

(5.4) ‖um‖8/(4−λ),K ≤ L ∀m ∈ N,

where L = const > 0 depends on d0,u0,B0, f and g only. Furthermore, we may choose
0 < R1 < d0 such that

(5.5) C1‖um‖24,QR1
≤ 1

16
∀m ∈ N,

where C1 stands for the constant appearing in (5.1). Using Hölder’s inequality, recalling
the assumption on g along with (5.4), it follows that

Hm(r,X0) ≤
(

πλ/8−1/4‖um‖8/(4−λ),K + ‖g‖M2,λ(K)

)

r(λ−2)/2

≤ C4r
(λ−2)/2 ∀ 0 < r ≤ R1.(5.6)

Next, we set

M := 512 sup
0<r<d(X0/2)

(|B|)r,X0 + 1 < +∞.

Let 0 < α < 2−λ
2
. We take τ > 0 such that

(5.7) 2τ 1−αC0(1 +M5) ≤ 1

2
and τα ≤ 1

2
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(Recall, the constant C0 > 0 has been defined in Lemma3.1).
Now, let ε0 = ε0(τ,M, L,K, α), R0 = R0(τ,M, L,K, α) and δ0 = δ0(τ,M, L,K, α)

denote the numbers according to Lemma3.2. In addition, we define ε1 > 0 by the relation

(5.8) 2τ−4ε1 = 1.

Next we may choose 0 < R2 ≤ min{R0, R1} such that the following conditions hold

C2(1 +M2)(C4 + C2
4)R

(λ−2)/2
2 ≤ 1

8
min{ε0, ε1},(5.9)

2Rα
2 ≤ 1

2
min{ε0, ε1}.(5.10)

Now, we take k ∈ N such that

C2(1 +M2)
{1

k
+

1

k2

}

≤ 1

8
min{ε0, ε1} and

C1

k
≤ 1

4
.(5.11)

Owing to X0 ∈ Q \ Σk eventually replacing R2 by a smaller number we may also assume
that lim infm→∞ Fm(R2, X0) <

1
k
. Accordingly we are able to select a subsequence {mj}

such that

(5.12) Fmj
(R2, X0) <

1

k
∀ j ∈ N.

Since Bm → B in L1(QR2) and δm → 0 as m → +∞, there exists m0 ∈ N with the
property

(5.13) (|Bm|)R2,X0 ≤ (|B|)R2,X0 +
1

512
≤ M

512
and δm ≤ δ0 ∀m ≥ m0.

Observing (5.12), (5.11) and (5.5), we have

(5.14) C1

{

Fmj
(R2, X0) + 4‖umj

‖4,QR2
(X0)

}

≤ 1

2
∀ j ∈ N.

As (5.14) implies (5.2), employing (5.13), (5.12) and (5.6), we get

Emj
(R2/2, X0) ≤ C2(1 +M2)

{1

k
+

1

k2
+ (C4 + C2

4)R
(λ−2)/2
2

}

(5.15)

for all mj ≥ m0. In view of (5.11) and (5.9), (5.15) gives

Emj
(R2, X0) ≤

1

4
min{ε0, ε1} ∀mj ≥ m0.(5.16)

Set R3 = R2/2. Let Y ∈ QR2(X0). Clearly,

Emj
(R3, Y ) ≤ 2Emj

(R2, X0) ≤
1

2
min{ε0, ε1},(5.17)

|(Bmj
)R3,Y | ≤ 256

∫

−
QR2

(X0)

|Bmj
|dxdt ≤ M

2
.(5.18)
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We claim that for every i ∈ N ∪ {0}, there holds

Emj
(τ iR3, Y ) ≤ 2−iταiEmj

(R3, Y ) + (1− 2−i)ταiRα
3 ,(5.19)

|(Bmj
)τ iR3,Y | ≤ M − 2−i+1.(5.20)

In fact, for i = 0, (5.19) is trivially fulfilled, while (5.20) holds in view of (5.18).
Now, we assume that both (5.19) and (5.20) are fulfilled for i ∈ N ∪ {0}. Then (5.19)

together with (5.17) and (5.10) implies

(5.21) Emj
(τ iR3, Y ) + ταiRα

3 ≤ ταi(Emj
(R3, Y ) + 2Rα

3 ) ≤ ταi min{ε0, ε1}.

In particular, observing (5.20) we have

Emj
(τ iR3, Y ) + (τ iR3)

α ≤ ε0, |(Bmj
)τ iR3,Y | ≤ M.

Thus, we are in a position to apply Lemma3.2 with R = τ iR3. This together with (5.19)
gives

Emj
(τ i+1R3, Y ) ≤ 2τC0(1 +M5)(Emj

(τ iR3, Y ) + ταiRα
3 )

≤ 1

2
ταEmj

(τ iR3, Y ) +
1

2
τα(i+1)Rα

3

≤ 2−(i+1)τα(i+1)Emj
(R3, Y ) + (1− 2−(i+1))τα(i+1)Rα

3 .(5.22)

Consequently (5.19) holds true for i+ 1.
Now, it remains to show (5.20) for i + 1. First, from (5.19) along with (5.17) and

(5.10) we infer

(5.23) Emj
(τ iR3, Y ) ≤ ταi(Emj

(R3, Y ) +Rα
3 ) ≤ ταiε1.

Using the triangle inequality and Jensen’s inequality, we find

|(Bmj
)τ i+1R3,Y | ≤ |(Bmj

)τ iR3,Y |+
∣

∣

∣
(Bmj

)τ i+1R3,Y − (Bmj
)τ iR3,Y

∣

∣

∣

≤ |(Bmj
)τ iR3,Y |+ 2τ−4Emj

(τ iR3, Y ).

Estimating the first term on the right by using (5.20) and the second one by the aid of
(5.23) together with (5.7) and (5.8), we obtain

|(Bmj
)τ i+1R3,Y | ≤ M − 2−i+1 + 2τ−4ταiε1

≤ M − 2−i+1 + 2−i = M − 2−i.

This completes the proof of (5.20) for i+ 1. Whence, the claim.
Since (5.19) holds true for every Y ∈ QR3(X0), by a standard iteration argument we

get a constant C5 > 0 such that

(5.24)

(
∫

−
Qr(Y )

|Bmj
− (Bmj

)r,Y |4dx
)1/4

≤ C5r
α ∀ 0 < r < R3, ∀Y ∈ QR3(X0).
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Thus, by means of the lower semi continuity of the L4-norm the above inequality remains
true for B. Using the well-known integral characterization of the Hölder continuity in the
parabolic setting[17], we obtain

(5.25) B|QR3
(X0)

∈ Cα,α/2(QR3(X0))

(For the definition of Cα,α/2(QR3(X0)) see appendix below). Clearly, (5.24) shows that

lim
r→0+

Emj
(r, Y ) = 0 uniformly for Y ∈ QR3(X0) and j ∈ N.

Hence, in view of (5.3) we get Y 6∈
⋃∞

k=1Σk. Taking into account that B is Hölder

continuous on Qρ0(X0), it follows that Qρ0(X0) ⊂ Q \ Σ∞ and thus

QR3(X0) ⊂ Q \ Σ(B).

Consequently, Σ(B) is a closed set. This completes the proof of the main theorem.

Theorem 5.1. For the singular set constructed in the proof of Theorem1.2 we have

(5.26) dPβ(Σ(B)) = 0 ∀ β > 2,

where dPβ(·) is the β−dimensional parabolic Hausdorff measure. In particular, the Haus-

dorff dimension of Σ(B) satisfies dimH(Σ(B)) ≤ 2.

Proof Let 2 < β ≤ λ be arbitrarily chosen. First we show that

dPβ(Σk) = 0 ∀ k ∈ N.

Let X0 ∈ Σk. Fix ε > 0. Then there exists 0 < r(X0) < ε and m(X0) ∈ N, such that

(5.27) r(X0)
−2

∫

Qr(X0)
(X0)

|∇Bm|2dxdt ≥
1

2k
∀m ≥ m(X0).

Clearly, the family of cylinders {Qr(X0)(X0)}X0∈Σk
forms a covering of Σk. Thanks to the

Vitali covering lemma there exists a pairwise disjoint family {Qri(Xi)}i∈N (ri := r(Xi))
such that {Q3ri(Xi)}i∈N covers Σk. Let N ∈ N be arbitrarily chosen. Set

mN := max{m(X1), . . . , m(XN)}.

Then, from (5.27) with X0 = Xi (i = 1, . . . , N) and m = mN we infer

N
∑

i=1

rβi ≤ εβ−2

N
∑

i=1

r2i ≤ 2εβ−2k

N
∑

i=1

∫

Qri(Xi)

|∇BmN
|2dxdt ≤ 2εβ−2k

∫

Q

|∇BmN
|2

≤ εβ−2kC(‖u0‖2, . . .).

This shows that

(5.28)

∞
∑

i=1

rβi ≤ εβ−2kC(‖u0‖2, . . .).
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Consequently, dPβ(Σk) = 0, which implies that dPβ

(

⋃∞
k=1Σk

)

= 0.

Now, it remains to prove that dPβ(Σ∞) = 0. As we will see below this follows easily
from the following implication

(5.29) sup
0<r<

√
t0

r−β

∫

Qr(X0)

|∇B|2dxdt < +∞ =⇒ X0 /∈ Σ∞, X0 ∈ Q.

Indeed, let X0 ∈ Q such that the condition on the left in (5.29) holds true. Choose
0 < ρ0 <

√
t0 sufficiently small (specified below) and set ri = 2−iρ0 (i ∈ N).

Fix i ∈ N. By using the parabolic Poincaré-type inequality (see Lemma A.1, appendix
below), arguing as in the proof of (2.12), we estimate

∫

−
Qri

|B −Bri,X0|2dxdt

≤ c(1 + |Bri,X0|2)r−2
i

∫

Qri

|∇B|2dxdt

+ c(1 + |Bri,X0|2)r−2

∫

Qri

(|g|2 + |u|2)dxdt

+ C6

{

r−2
i

∫

Qri

|∇B|2 +
(
∫

Qri

|u|4dxdt
)1/2

}

∫

−
Qri

|B −Bri,X0 |2dxdt(5.30)

for an absolute constant C6 > 0. Due to u ∈ L4(Q) and our assumption on X0 we may
choose ρ0 sufficiently small such that the numerical value in {. . .} is less than 1

2C6
, which

leads to
∫

−
Qri

|B −Bri,X0|2dxdt

≤ 2c(1 + |Bri,X0 |2)r−2
i

∫

Qri

|∇B|2dxdt

+ 2c(1 + |Bri,X0 |2)r−2
i

∫

Qri

(|g|2 + |u|2)dxdt.(5.31)

Appealing to Lemma4.2, we see that u ∈ Lq
loc(Q) for all 1 ≤ q < +∞. In particular,

u ∈ M2,λ(Q√
t0/2). Recalling that g ∈ M2,λ(Q) and β ≤ λ from (5.31), we deduce that

∫

−
Qri

|B −Bri,X0|2dxdt ≤ c(1 + |Bri,X0|2)rβ−2
i(5.32)

with a constant c > 0 depending neither on ri nor on ρ0. Using the triangle inequality
and employing (5.32), it follows that

(5.33)
∣

∣

∣
|Bri+1,X0| − |Bri,X0|

∣

∣

∣
≤ C7(1 + |Bri,X0|)r

(β−2)/2
i ,
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where C7 = const > 0 is independent on ri and ρ0. Thus, eventually replacing ρ0 by a
smaller one, we may assume that

C7

∞
∑

i=0

r
(β−2)/2
i = C7ρ

(β−2)/2
0

1

1− 2(β−2)/2
≤ 1

2
.

Then, with help of LemmaA.2 (see appendix below) from (5.33) we conclude that

(5.34) |Bri,X0 | ≤ 1 + 2|Bρ0,X0| ∀ i ∈ N,

what completes the proof of (5.29).
Now, let ε > 0 be arbitrarily chosen. According to (5.29) for every X0 ∈ Σ∞ we may

choose 0 < r = r(X0) ≤ ε such that

r−β

∫

Qr(X0)

|∇B|2dxdt ≥ 1

ε
.

Thus, by the Vitali covering lemma there exists a pairwise disjoint family {Qri(Xi)}
(ri := r(Xi) such that {Q3ri(Xi)} covers Σ∞. Similarly to the above we conclude

∞
∑

i=1

rβi ≤ cε‖∇B‖22.

Thus, dPβ(Σ∞) = 0, and the proof of the theorem is complete.
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A Appendix

For X = (x, t), Y = (y, s) ∈ R
n+1 we define the parabolic metric

dp(X, Y ) = max{|x− y|, |s− t| 12}, X, Y ∈ R
n+1.

Let Q = Ω × (a, b), where Ω ⊂ R
n is a bounded domain, and −∞ < a < b < +∞.

Then, for 0 < γ < 1 we define the space of Hölder continuous functions on Q, Cγ, γ
2 (Q̄)

by functions f : Q̄ → R such that

[f ]
Cγ,

γ
2
= sup

X,Y ∈Q̄,X 6=Y

|f(X)− f(Y )|
dp(X, Y )γ

< +∞.

The following parabolic version of the Poincare inequality has been proved in [22,
LemmaB.3]
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Lemma A.1 (Parabolic Poincaré-type inequality). Let Qr = Qr(X0) ⊂ R
n+1 (n ∈ N).

Let u ∈ Lp(Qr) be such that ∇u ∈ Lp(Qr) (1 ≤ p < +∞). In addition suppose that there

exists f ∈ L1(Qr)
n such that ∂tu = ∇ · f in sense of distributions, i. e.

(A.1)

∫

Qr

u∂tϕdxdt =

∫

Qr

f · ∇ϕdxdt ∀ϕ ∈ C∞
c (Qr).

Then

(A.2)

∫

−
Qr

|u− uQr |pdxdt ≤ crp
∫

−
Qr

|∇u|pdxdt+ crp
(
∫

−
Qr

|f |dxdt
)p

,

where c = const > 0, depending on n and p only, but not on r, u or f .

The following elementary algebraic lemma has been used in the proof of Theorem5.1.

Lemma A.2. Let {Mi} and {λi} be sequences of positive numbers such that
∑

λi ≤ 1
2
,

and

(A.3) |Mj+1 −Mj | ≤ (1 +Mj)λj ∀ j ∈ N.

Then,

(A.4) Mi ≤ 1 + 2M1 ∀ i ∈ N.

Proof We prove the statement of this lemma by induction. Cleary, for i = 1 the assertion
is trivially fulfilled. Assume, (A.4) holds for j = 1, . . . , i. Then, with help of of triangle
inequality and (A.3) for j = 1, . . . , i we get

Mi+1 ≤ M1 + |Mi+1 −M1| ≤ M1 +

i
∑

j=1

|Mj+1 −Mj |

≤ M1 +

i
∑

j=1

(1 +Mj)λj ≤ M1 + (2 + 2M1)

i
∑

j=1

λj ≤ 1 + 2M1.

Whence, the claim is proved.
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