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CONVEX INTEGRATION AND INFINITELY MANY WEAK

SOLUTIONS TO THE PERONA-MALIK EQUATION

IN ALL DIMENSIONS

SEONGHAK KIM AND BAISHENG YAN

Abstract. We prove that for all smooth nonconstant initial data the initial-
Neumann boundary value problem for the Perona-Malik equation in image process-
ing possesses infinitely many Lipschitz weak solutions on smooth bounded convex
domains in all dimensions. Such existence results have not been known except for
the one-dimensional problems. Our approach is motivated by reformulating the
Perona-Malik equation as a nonhomogeneous partial differential inclusion with lin-
ear constraint and uncontrollable components of gradient. We establish a general
existence result by a suitable Baire’s category method under a pivotal density hy-
pothesis. We finally fulfill this density hypothesis by convex integration based on
certain approximations from an explicit formula of lamination convex hull of some
matrix set involved.

1. Introduction

In this paper, we study the initial and Neumann boundary value problem:

(1.1)











ut = div
(

Du
1+|Du|2

)

in Ω× (0, T ),

∂u/∂n = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

where Ω ⊂ Rn is a smooth bounded convex domain, T > 0 is a given number,
u = u(x, t) is the unknown function with ut denoting its time-derivative and Du =
(ux1, · · · , uxn) its spatial gradient, n is outer unit normal on ∂Ω, and u0(x) is a given
smooth function satisfying

(1.2) Du0 6≡ 0 in Ω, ∂u0/∂n = 0 on ∂Ω.

Problem (1.1), especially when n = 2, is a famous Perona-Malik model in image
processing introduced by Perona and Malik [27] for denoising and edge enhancement
of a computer vision. In this model, u(x, t) represents an improved version of the
initial gray level u0(x) of a noisy picture. The anisotropic diffusion div( Du

1+|Du|2
) is

forward parabolic in the subcritical region where |Du| < 1 and backward parabolic
in the supercritical region where |Du| > 1.

The expectation of the Perona-Malik model is that disturbances with small gradient
in the subcritical region will be smoothed out by the forward parabolic diffusion,
while sharp edges corresponding to large gradient in the supercritical region will
be enhanced by the backward parabolic equation. Such expected phenomenology has
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been implemented and observed in some numerical experiments, showing the stability
and effectiveness of the model. On the other hand, many analytical works have
shown that the model is highly ill-posed when the initial datum u0 is transcritical

in Ω; namely, there are subregions in Ω where |Du0| < 1 and where |Du0| > 1,
respectively. For transcritical initial data, due to the backward parabolicity, even a
proper notion and the existence of well-posed solutions to (1.1) have remained largely
unsettled. Most analytical works have focused on the study of singular perturbations,
Young measure solutions, numerical scheme analyses, and examples and properties
of certain classical solutions; see, e.g., [3, 6, 12, 13, 14, 17, 18].

The present paper addresses the analytical issue concerning the existence of certain
exact weak solutions to problem (1.1). Let ΩT = Ω× (0, T ). We say that a Lipschitz
function u ∈ W 1,∞(ΩT ) is a weak solution to (1.1) provided for all ζ ∈ C∞(Ω̄T ) and
s ∈ [0, T ],

(1.3)

∫

Ω

u(x, s)ζ(x, s)dx+

∫ s

0

∫

Ω

(−uζt + σ(Du) ·Dζ)dxdt =
∫

Ω

u0(x)ζ(x, 0)dx,

where σ(p) = p
1+|p|2

(p ∈ Rn) is the Perona-Malik function. The first existence re-

sult on such weak solutions was established by K.Zhang [32] for the one-dimensional
problem, whose pivotal idea is to reformulate the one-dimensional Perona-Malik equa-
tion as a differential inclusion with linear constraint and then prove the existence using
a modified method of convex integration following the ideas of [20, 24]. Based on a
similar approach of differential inclusion, we have recently proved in [19] that for all
dimensions n if the domain Ω is a ball and the nonconstant initial function u0 is
smooth and radially symmetric then (1.1) admits infinitely many radially symmetric
Lipschitz weak solutions.

The main purpose of this paper is to extend the results of [19, 32] to problem (1.1)
on all n-dimensional smooth convex domains for all nonconstant smooth initial data.

Our main result of the paper is the following theorem.

Theorem 1.1. Let Ω ⊂ Rn be a bounded convex domain with ∂Ω of C2+α and

let u0 ∈ C2+α(Ω̄) satisfy (1.2) for some constant 0 < α < 1. Then (1.1) possesses

infinitely many weak solutions. Moreover, if ‖Du0‖L∞(Ω) ≥ 1 and λ > 0, then these

weak solutions u will satisfy the almost gradient maximum principle:

‖Du‖L∞(ΩT ) ≤ ‖Du0‖L∞(Ω) + λ.

This theorem asserts that the Perona-Malik problem (1.1) admits infinitely many
Lipschitz weak solutions no matter whether the initial datum is subcritical, super-
critical, or transcritical.

Existence of classical solutions to Problem (1.1) depends heavily on the initial data
u0. Kawohl & Kutev [17] showed that a classical solution exists in any dimension
if u0 is subcritical in Ω̄ (see also [18]). Later, Gobbino [15] showed that the problem
cannot admit a global classical solution when n = 1 if u0 is transcritical. Recently,
Ghisi & Gobbino [13, 14] have studied the existence and properties of certain clas-
sical solutions of the Perona-Malik equation in the one-dimensional or n-dimensional
radially symmetric cases with suitably chosen initial data; their initial values can be
arbitrarily given in the subcritical region, but the values in the supercritical region
must be predetermined by the subcritical initial values.
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We remark that the convexity of the domain is needed to guarantee a gradient max-

imum principle for the classical solution to initial-Neumann boundary value problem
of a class of quasilinear uniformly parabolic equations (see Theorem 2.1 below). This
gradient maximum principle turns out to be crucial for the proof of main theorem,
and an example in [1, Theorem 4.1] showed that such a gradient maximum princi-
ple may fail even for heat equation without the convexity of the domain. However,
domain convexity seemed to be overlooked in [17, Theorem 6.1].

For the proof of Theorem 1.1, in what follows, we assume the initial function u0
satisfies

(1.4)

∫

Ω

u0(x)dx = 0,

since otherwise one can solve solution ũ of (1.1) with new initial datum ũ0 = u0 −
1
|Ω|

∫

Ω
u0dx; then u = ũ+ 1

|Ω|

∫

Ω
u0dx will solve (1.1).

Our proof is based on a crucial generalization of the ideas of [19, 32, 33]. Let us
discuss this generalization in some details because it exhibits several different features
from the one-dimensional setup.

Assume u ∈ W 1,∞(ΩT ) is a weak solution to (1.1) and suppose there exists a vector
function v ∈ W 1,∞(ΩT ;R

n) such that div v = u and vt = σ(Du) a.e. in ΩT . Let
w = (u, v) : ΩT → R1+n, with space-time Jacobian matrix denoted by

∇w =

(

Du ut
Dv vt

)

as an element in the matrix space M(1+n)×(n+1). Given s ∈ R, define the set K(s) in
M(1+n)×(n+1) by

(1.5) K(s) =

{(

p c
B σ(p)

)

∣

∣

∣
p ∈ Rn, c ∈ R, B ∈ Mn×n, trB = s

}

.

Then w = (u, v) solves the nonhomogeneous partial differential inclusion:

∇w(x, t) ∈ K(u(x, t)), a.e. (x, t) ∈ ΩT .

Conversely, suppose we have found a function Φ = (u∗, v∗), where u∗ ∈ W 1,∞(ΩT )
and v∗ ∈ W 1,∞(ΩT ;R

n), such that

(1.6)











u∗(x, 0) = u0(x) (x ∈ Ω),

div v∗ = u∗ a.e. in ΩT ,

v∗(·, t) · n|∂Ω = 0 ∀ t ∈ [0, T ].

Assume w = (u, v) ∈ W 1,∞(ΩT ;R
1+n) solves the Dirichlet problem of nonhomoge-

neous differential inclusion:

(1.7)

{

∇w(x, t) ∈ K(u(x, t)), a.e. (x, t) ∈ ΩT ,

w(x, t) = Φ(x, t), (x, t) ∈ ∂ΩT .

Then it can be verified that u is a weak solution to (1.1) (see Lemma 3.2).
The Dirichlet problem (1.7) falls into the framework of general nonhomogeneous

partial differential inclusions studied by Dacorogna & Marcellini [10] using
Baire’s category method and by Müller & Sychev [26] using the convex inte-
gration method; see also [20]. Study of such differential inclusions has stemmed
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from the successful understanding of homogeneous differential inclusions of the form
Du(x) ∈ K first encountered in the study of crystal microstructure by Ball &

James [2], Chipot & Kinderlehrer [7] and Müller & Šverák [24]. Recently,
the method of differential inclusions has been successfully applied to other important
problems ; see, e.g., [8, 11, 23, 25, 30, 31].

We point out that the existence result of [26] is not applicable to problem (1.7)
even in dimension n = 1, as has already been noticed in [32, 33]. A key condition
in the main existence theorem of [26], when applied to (1.7), would require that the
boundary function Φ satisfy

∇Φ(x, t) ∈ U(u∗(x, t)) ∪K(u∗(x, t)), a.e. (x, t) ∈ ΩT ,

where U(s) ⊂ M(1+n)×(n+1) (s ∈ R) are bounded sets that are reducible to K(s) in
the sense that, for every s0 ∈ R, ξ0 ∈ U(s0), ǫ > 0, and bounded Lipschitz domain
G ⊂ Rn+1, there exist a piecewise affine function w ∈ W 1,∞

0 (G;R1+n) and a δ > 0
satisfying, for a.e. z = (x, t) ∈ G,

ξ0 +∇w(z) ∈
⋂

|s−s0|<δ

U(s),

∫

G

dist(ξ0 +∇w(z), K(s0)) dz < ǫ|G|.

The second condition would imply trB0 = s0 for each ξ0 =

(

p0 c0
B0 β0

)

∈ U(s0) and

s0 ∈ R; but then ∩|s−s0|<δU(s) = ∅, which makes the first condition impossible.
However, certain geometric structures of the setK(0) turn out still useful, especially

when it comes to the relaxation of homogeneous differential inclusion ∇ω(z) ∈ K(0)
with ω = (ϕ, ψ). We explicitly compute the first-order lamination set L(K(0)) of
K(0) consisting of all ξ ∈ M(1+n)×(n+1) \K(0) such that ξ = λξ1 + (1− λ)ξ2 for some
λ ∈ (0, 1) and ξ1, ξ2 ∈ K(0) with rank(ξ1 − ξ2) = 1. We obtain the explicit formula
(see Theorem 4.1)

L(K(0)) =

{(

p c
B β

)

∣

∣

∣
trB = 0, |β|2 + (p · β)2 − p · β < 0

}

,

which enables us to extract enough information on the diagonal components of dif-
ferential inclusion ∇ω(z) ∈ K(0) and establish a relaxation result on (Dϕ, ψt) (see
Theorem 4.6). Although for such relaxation we must have divψ = 0, the resulting ϕt

can be arbitrarily small; this is important for the subsequent handling of the linear
constraint div v = u in problem (1.7).

Another difficulty concerning problem (1.7) is that when n = 1, one can control
‖vx‖L∞(ΩT ) in terms of u = vx (see [32]); however, for n ≥ 2, it is impossible to
control ‖Dv‖L∞(ΩT ) in terms of u = div v. So, if n ≥ 2, the space W 1,∞(ΩT ;R

n) is
not suitable for the function v. It turns out that a suitable space for v is the space
W 1,2((0, T );L2(Ω;Rn)) of abstract functions (see Lemma 3.1); in this setting, the
linear constraint div v = u must be understood in the sense of distributions.

We design a new approach to overcome the lack of control on Dv : instead of
defining an admissible class for w = (u, v), we define a suitable admissible class for
only the functions u ∈ W 1,∞(ΩT ), treating v as auxiliary functions. Of course, during
all the relevant constructions, the linear constraint div v = u must be satisfied. In
this regard, we need a linear operator R that serves as a (distributional) right inverse
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of the divergence operator: divR = Id. By the results of [4], such an operator may
not exist as a bounded operator on certain spaces, but for our purpose, it suffices to
construct such an operator R that is bounded from L∞(Q× I) to L∞(Q× I;Rn) for
the box domains Q × I in Rn+1; this is achieved by following some construction in
[4].

Finally we remark that although the result of this paper heavily relies on the explicit
formula of L(K(0)), the method can handle some general forward-backward parabolic
equations; however, we do not intend to discuss further results of this direction in the
present paper.

The rest of the paper is organized as follows. In Section 2, we collect several nec-
essary preliminary results, some of which cannot be found in the standard references.
In Section 3, we set up a new general procedure for proving Theorem 1.1 under a
pivotal density hypothesis of an admissible class U ; this setup is suitable for a Baire’s
category method and simplifies some of the arguments even for the one-dimensional
problem. In Section 4, as the heart of the matter for fulfilling the density hypothe-
sis and thus proving Theorem 1.1, we present the essential geometric considerations,
including an explicit computation of the set L(K(0)) above and establishing a crit-
ical relaxation property (Theorem 4.6) by convex integration with linear constraint.
In Section 5, we construct the suitable admissible class U after defining a specific
boundary function Φ = (u∗, v∗). In Section 6, we fulfill the key density hypothesis
for admissible class U (Theorem 6.1) and finally complete the proof of Theorem 1.1
according to the setup of Section 3.

2. Some preliminary results

2.1. Uniformly parabolic quasilinear equations. We refer to the standard ref-
erences (e.g., [21, 22]) for general theory of parabolic equations, including some no-
tation concerning functions and domains of class Ck+α for integer k ≥ 0 and number
0 < α < 1.

Assume f ∈ C3([0,∞)) is a function satisfying

(2.1) θ ≤ f(s) + 2sf ′(s) ≤ Θ ∀ s ≥ 0,

where Θ ≥ θ > 0 are constants. This condition is equivalent to θ ≤ (sf(s2))′ ≤ Θ for
all s ∈ R; hence, θ ≤ f(s) ≤ Θ for all s ≥ 0. Let

A(p) = f(|p|2)p (p ∈ Rn).

Then we have

Ai
pj
(p) = f(|p|2)δij + 2f ′(|p|2)pipj (i, j = 1, 2, · · · , n; p ∈ Rn)

and hence the uniform ellipticity condition:

(2.2) θ|q|2 ≤
n

∑

i,j=1

Ai
pj
(p)qiqj ≤ Θ|q|2 ∀ p, q ∈ Rn.

Theorem 2.1. Let Ω ⊂ Rn be a bounded convex domain with ∂Ω of C2+α and

u0 ∈ C2+α(Ω̄) satisfy Du0 · n = 0 on ∂Ω. Then the initial-Neumann boundary value
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problem

(2.3)











ut = div(A(Du)) in ΩT ,

∂u/∂n = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) for x ∈ Ω

has a unique solution u ∈ C2+α, 2+α
2 (Ω̄T ). Moreover, the gradient maximum principle

holds:

(2.4) ‖Du‖L∞(ΩT ) = ‖Du0‖L∞(Ω).

Proof. 1. As problem (2.3) is uniformly parabolic by (2.2), the existence of unique

classical solution u in C2+α, 2+α
2 (Ω̄T ) follows from the standard theory; see [22, The-

orem 13.24]. To prove the gradient maximum principle (2.4), note that, since A ∈
C3(Rn), a standard bootstrap argument based on the regularity theory of linear para-
bolic equations [21, 22] shows that the solution u has all continuous partial derivatives
uxixjxk

and uxit within ΩT for 1 ≤ i, j, k ≤ n.
2. Let v = |Du|2. Then, within ΩT , we compute

∆v = 2Du ·D(∆u) + 2|D2u|2,
ut = div(A(Du)) = div(f(v)Du) = f ′(v)Dv ·Du+ f(v)∆u,

Dut =f
′′(v)(Dv ·Du)Dv + f ′(v)(D2u)Dv

+ f ′(v)(D2v)Du+ f ′(v)(∆u)Dv + f(v)D(∆u).

Plugging these equations into vt = 2Du ·Dut, we obtain

(2.5) vt −L(v)− B ·Dv = −2f(|Du|2)|D2u|2 ≤ 0 in ΩT ,

where operator L(v) and coefficient B are defined by

L(v) = f(|Du|2)∆v + 2f ′(|Du|2)Du · (D2v)Du,

B = 2f ′′(v)(Dv ·Du)Du+ 2f ′(v)(D2u)Du+ 2f ′(v)(∆u)Du.

We write L(v) = ∑n
i,j=1 aijvxixj

, with coefficients aij = aij(x, t) given by

aij = Ai
pj
(Du) = f(|Du|2)δij + 2f ′(|Du|2)uxi

uxj
(i, j = 1, · · · , n).

Note that on Ω̄T all eigenvalues of the matrix (aij) lie in [θ,Θ].
3. We show

max
(x,t)∈Ω̄T

v(x, t) = max
x∈Ω̄

v(x, 0),

which proves (2.4). We prove this by contradiction. Suppose

(2.6) M := max
(x,t)∈Ω̄T

v(x, t) > max
x∈Ω̄

v(x, 0).

Let (x0, t0) ∈ Ω̄T be such that v(x0, t0) = M ; then t0 > 0. If x0 ∈ Ω, then the strong
maximum principle applied to (2.5) would imply that v is constant on Ωt0 , which
yields v(x, 0) ≡ M on Ω̄, a contradiction to (2.6). Consequently x0 ∈ ∂Ω and thus
v(x0, t0) = M > v(x, t) for all (x, t) ∈ ΩT . We can then apply Hopf’s Lemma for
parabolic equations [28] to (2.5) to deduce ∂v(x0, t0)/∂n > 0. However, a result of
[1, Lemma 2.1] (see also [16, Theorem 2]) asserts that ∂v/∂n ≤ 0 on ∂Ω × [0, T ]
(convexity of Ω is used and necessary here), which gives a desired contradiction. �
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2.2. Modification of the Perona-Malik function. We need to modify the Perona-
Malik function σ(p) = p

1+|p|2
to obtain a uniformly parabolic problem of type (2.3).

For this purpose, let

ρ(s) =
s

1 + s2
(s ≥ 0)

and, for 0 < δ < 1/2, let m = m±(δ) be the solutions of ρ(m) = δ; that is,

(2.7) m±(δ) =
1±

√
1− 4δ2

2δ
.

The following result can be proved in a similar way as in [6, 32]; we omit the proof
(see Figure 1).

Lemma 2.2. Let 0 < δ < 1/2 and 1 < Λ < m+(δ). Then there exists a function

ρ∗ ∈ C3([0,∞)) satisfying that

ρ∗(s) = ρ(s) ∀ 0 ≤ s ≤ m−(δ),

ρ∗(s) < ρ(s) ∀ m−(δ) < s ≤ Λ,

θ ≤ (ρ∗)′(s) ≤ Θ ∀ 0 ≤ s <∞
for some constants Θ > θ > 0. Moreover, define f(0) = 1 and f(s) = ρ∗(

√
s)/

√
s for

s > 0; then f ∈ C3([0,∞)) and (2.1) is fulfilled.

s0

ρ(s) = s
1+s2

1
2

δ

ρ(Λ)

m+(δ)

ρ∗(s)

Λ1m−(δ)

Figure 1. The graphs of function ρ(s) and the modified function ρ∗(s)
in Lemma 2.2.

2.3. Right inverse of the divergence operator. To deal with the linear constraint
div v = u, we follow an argument of [4, Lemma 4] to construct a right inverse R of
the divergence operator: divR = Id (in the sense of distributions in ΩT ). For the
purpose of this paper, the construction of R is restricted to the box domains, by which
we mean domains given by Q = J1 × J2 × · · · × Jn, where Ji = (ai, bi) ⊂ R is a finite
open interval.

Given such a box Q, we define a linear operator Rn : L
∞(Q) → L∞(Q;Rn) induc-

tively on dimension n. If n = 1, for u ∈ L∞(J1), we define v = R1u by

v(x1) =

∫ x1

a1

u(s)ds (x1 ∈ J1).
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Assume n = 2. Let u ∈ L∞(J1 × J2). Set ũ(x1) =
∫ b2
a2
u(x1, s) ds for x1 ∈ J1. Then

ũ ∈ L∞(J1). Let ṽ = R1ũ; that is,

ṽ(x1) =

∫ x1

a1

ũ(s)ds =

∫ x1

a1

∫ b2

a2

u(s, τ) dτds (x1 ∈ J1).

Let ρ2 ∈ C∞
c (a2, b2) be such that 0 ≤ ρ2(s) ≤ C0

b2−a2
and

∫ b2
a2
ρ2(s)ds = 1. Define

v = R2u ∈ L∞(J1 × J2;R
2) by v = (v1, v2) with v1(x1, x2) = ρ2(x2)ṽ(x1) and

v2(x1, x2) =

∫ x2

a2

u(x1, s)ds− ũ(x1)

∫ x2

a2

ρ2(s)ds.

Note that if u ∈ W 1,∞(J1 × J2) then ũ ∈ W 1,∞(J1); hence v = R2u ∈ W 1,∞(J1 ×
J2;R

2) and div v = u a.e. in J1 × J2. Moreover, if u ∈ C1(J1 × J2) then v is in
C1(J1 × J2;R

2).
Assume that we have defined the operator Rn−1. Let u ∈ L∞(Q) with Q =

J1× J2× · · ·× Jn and x = (x′, xn) ∈ Q, where x′ ∈ Q′ = J1× · · ·× Jn−1 and xn ∈ Jn.

Set ũ(x′) =
∫ bn
an
u(x′, s) ds for x′ ∈ Q′. Then ũ ∈ L∞(Q′). By the assumption, ṽ =

Rn−1ũ ∈ L∞(Q′;Rn−1) is defined. Write ṽ(x′) = (Z1(x′), · · · , Zn−1(x′)), and let ρn ∈
C∞

c (an, bn) be a function satisfying 0 ≤ ρn(s) ≤ C0

bn−an
and

∫ bn
an
ρn(s)ds = 1. Define v =

Rnu ∈ L∞(Q;Rn) as follows. For x = (x′, xn) ∈ Q, v(x) = (v1(x), v2(x), · · · , vn(x))
is defined by

vk(x′, xn) = ρn(xn)Z
k(x′) (k = 1, 2, · · · , n− 1),

vn(x′, xn) =

∫ xn

an

u(x′, s)ds− ũ(x′)

∫ xn

an

ρn(s)ds.

Then Rn : L
∞(Q) → L∞(Q;Rn) is a well-defined linear operator; moreover,

(2.8) ‖Rnu‖L∞(Q) ≤ Cn (|J1|+ · · ·+ |Jn|)‖u‖L∞(Q),

where Cn > 0 is a constant depending only on n.
As in the case n = 2, we see that if u ∈ W 1,∞(Q) then v = Rnu ∈ W 1,∞(Q;Rn)

and div v = u a.e. in Q. Also, if u ∈ C1(Q̄) then v = Rnu is in C1(Q̄;Rn). Moreover,
if u ∈ W 1,∞

0 (Q) satisfies
∫

Q
u(x)dx = 0, then one can easily show that v = Rnu ∈

W 1,∞
0 (Q;Rn).
Let I be a finite open interval in R. We now extend the operator Rn to an operator

R on L∞(Q× I) by defining, for a.e. (x, t) ∈ Q× I,

(2.9) (Ru)(x, t) = (Rnu(·, t))(x) ∀ u ∈ L∞(Q× I).

Then R : L∞(Q× I) → L∞(Q× I;Rn) is a bounded linear operator.
We have the following result.

Theorem 2.3. Let u ∈ W 1,∞
0 (Q × I) satisfy

∫

Q
u(x, t) dx = 0 for all t ∈ I. Then

v = Ru ∈ W 1,∞
0 (Q× I;Rn), div v = u a.e. in Q× I, and

(2.10) ‖vt‖L∞(Q×I) ≤ Cn (|J1|+ · · ·+ |Jn|)‖ut‖L∞(Q×I),

where Q = J1 × · · · × Jn and Cn is the same constant as in (2.8). Moreover, if

u ∈ C1(Q× I) then v = Ru ∈ C1(Q× I;Rn).
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Proof. Given u ∈ W 1,∞
0 (Q × I), let v = Ru. We easily verify that v is Lipschitz

continuous in t and hence vt exists. It also follows that vt = R(ut). Clearly, if
∫

Q
u(x, t)dx = 0 then v(x, t) = 0 whenever t ∈ ∂I or x ∈ ∂Q. This proves

v ∈ W 1,∞
0 (Q × I;Rn) and the estimate (2.10) follows from (2.8). Finally, from the

definition of Ru, we see that if u ∈ C1(Q× I) then v = Ru ∈ C1(Q× I;Rn). �

3. General setup for existence

In this section we set up the general procedure for proving our main theorem,
Theorem 1.1.

3.1. Sufficient conditions for weak solutions. Since our setup differs from the
usual formulation of differential inclusions, we first prove the next two results to
clarify some relevant issues, which are elementary but not too obvious.

Lemma 3.1. Suppose u ∈ W 1,∞(ΩT ) is such that u(x, 0) = u0(x) (x ∈ Ω), there exists
a vector function v ∈ W 1,2((0, T );L2(Ω;Rn)) with weak time-derivative vt satisfying
vt = σ(Du) a.e. in ΩT , and for each ζ ∈ C∞(Ω̄T ) and t ∈ [0, T ],

(3.1)

∫

Ω

v(x, t) ·Dζ(x, t) dx = −
∫

Ω

u(x, t)ζ(x, t) dx.

Then u is a weak solution to (1.1).

Proof. To verify (1.3), given any ζ ∈ C∞(Ω̄T ), let

g(t) =

∫

Ω

u(x, t)ζ(x, t)dx, h(t) =

∫

Ω

u(x, t)ζt(x, t)dx (0 ≤ t ≤ T ).

Then for each ψ ∈ C∞
c (0, T ), by (3.1),

∫ T

0

ψt(t)g(t) dt = −
∫ T

0

∫

Ω

ψt(t)v(x, t) ·Dζ(x, t) dxdt,
∫ T

0

ψ(t)h(t) dt = −
∫ T

0

∫

Ω

ψ(t)v(x, t) ·Dζt(x, t) dxdt.

Since v ∈ W 1,2((0, T );L2(Ω;Rn)) and vt = σ(Du), one has
∫ T

0

∫

Ω

(ψ(t)Dζ(x, t))t · v(x, t)dxdt = −
∫ T

0

∫

Ω

ψ(t)σ(Du(x, t)) ·Dζ(x, t) dxdt.

Now as (ψDζ)t = ψtDζ + ψDζt, combining previous equations, we have
∫ T

0

ψt(t)g(t) dt =

∫ T

0

ψ(t)

(

−h(t) +
∫

Ω

σ(Du(x, t)) ·Dζ(x, t) dx
)

dt;

this proves that g is weakly differentiable in (0, T ) with weak derivative

g′(t) = h(t)−
∫

Ω

σ(Du(x, t)) ·Dζ(x, t) dx a.e. t ∈ (0, T ).

From this, upon integrating, (1.3) follows for all s ∈ [0, T ]. �
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Let Φ = (u∗, v∗) ∈ W 1,∞(ΩT ;R
1+n) satisfy (1.6), and letW 1,∞

u∗ (ΩT ) andW
1,∞
v∗ (ΩT ;R

n)
denote the usual Dirichlet classes with boundary traces u∗, v∗, respectively.

Let U be some nonempty and bounded subset of W 1,∞
u∗ (ΩT ) such that for each

u ∈ U , there exists a vector function v ∈ W 1,∞
v∗ (ΩT ;R

n) satisfying div v = u a.e. in
ΩT and ‖vt‖L∞(ΩT ) ≤ 1/2. Any such set U is called an admissible class.

Given any ǫ > 0, define Uǫ to be the set of u ∈ U such that there exists a vector
function v ∈ W 1,∞

v∗ (ΩT ;R
n) satisfying div v = u a.e. in ΩT , ‖vt‖L∞(ΩT ) ≤ 1/2, and

∫

ΩT

|vt(x, t)− σ(Du(x, t))| dxdt ≤ ǫ|ΩT |.

(Note that Uǫ = U for all ǫ ≥ 1.)

Lemma 3.2. Let u ∈ U . Then any vector function v ∈ W 1,∞
v∗ (ΩT ;R

n) determined

above satisfies the integral identity (3.1) for each ζ ∈ C∞(Ω̄T ) and t ∈ [0, T ].

Proof. Let ζ ∈ C∞(Ω̄T ) and define

h(t) =

∫

Ω

(v(x, t) ·Dζ(x, t) + u(x, t)ζ(x, t)) dx.

Then h is continuous on [0, T ] and for each ψ ∈ C1[0, T ],
∫ T

0

h(t)ψ(t) dt =

∫ T

0

∫

Ω

ψ(t) (v(x, t) ·Dζ(x, t) + u(x, t)ζ(x, t)) dxdt

=

∫ T

0

∫

Ω

ψ(t) (v(x, t) ·Dζ(x, t) + div v(x, t)ζ(x, t)) dxdt

=

∫ T

0

∫

Ω

div(ζ(x, t)ψ(t)v(x, t)) dxdt

=

∫ T

0

∫

Ω

div(ζ(x, t)ψ(t)v∗(x, t)) dxdt = 0,

resulting from v|∂ΩT
= v∗|∂ΩT

and v∗(·, t) · n|∂Ω = 0 for all t ∈ [0, T ]. Hence h ≡ 0 on
[0, T ]. This completes the proof. �

3.2. General existence theorem by Baire’s category method. We prove a
general existence theorem under a density hypothesis.

Theorem 3.3. Let U ⊂ W 1,∞
u∗ (ΩT ) be an admissible class. Assume, for each ǫ > 0,

Uǫ is dense in U under the L∞-norm. Then, given any ϕ ∈ U , for each η > 0, there
exists a weak solution u ∈ W 1,∞

u∗ (ΩT ) to problem (1.1) satisfying ‖u− ϕ‖L∞(ΩT ) < η.

Furthermore, if U contains a function in W 1,∞
u∗ (ΩT ) that is not a weak solution to

(1.1), then (1.1) admits infinitely many weak solutions.

Proof. 1. Let X be the closure of U in the metric space L∞(ΩT ). Then (X , L∞) is a
complete metric space. By assumption, Uǫ is a dense subset of X . Furthermore, since
U is bounded in W 1,∞

u∗ (ΩT ), we have X ⊂W 1,∞
u∗ (ΩT ).

2. Let Y = L1(ΩT ;R
n). For h > 0, define Th : X → Y as follows. Given any

u ∈ X , write u = u∗ + w with w ∈ W 1,∞
0 (ΩT ) and define

Th(u) = Du∗ +D(ρh ∗ w),
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where ρh(z) = h−Nρ(z/h), with z = (x, t) and N = n+1, is the standard mollifier on
RN , and ρh ∗ w is the usual convolution on RN with w extended to be zero outside
ΩT . Then, for each h > 0, the map Th : (X , L∞) → (Y , L1) is continuous, and for each
u ∈ X ,

lim
h→0+

‖Th(u)−Du‖L1(ΩT ) = lim
h→0+

‖ρh ∗Dw −Dw‖L1(ΩT ) = 0.

Therefore, the spatial gradient operatorD : X → Y is the pointwise limit of a sequence
of continuous functions Th : X → Y ; hence D : X → Y is a Baire-one function. By
Baire’s category theorem (e.g., [5, Theorem 10.13]), there exists a residual set G ⊂ X
such that the operator D is continuous at each point of G. Since X \ G is of first
category, the set G is dense in X . Therefore, given any ϕ ∈ X , for each η > 0, there
exists a function u ∈ G such that ‖u− ϕ‖L∞(ΩT ) < η.

3. We now prove that each function u ∈ G is a weak solution to (1.1). Let u ∈ G
be given. By the density of Uǫ in (X , L∞), for each j ∈ N, there exists a function
uj ∈ U1/j such that ‖uj−u‖L∞(ΩT ) < 1/j. Since the operatorD : (X , L∞) → (Y , L1) is
continuous at u, we have Duj → Du in L1(ΩT ;R

n). Furthermore, from the definition

of U1/j , there exists a vector function vj ∈ W 1,∞
v∗ (ΩT ;R

n) such that, for each ζ ∈
C∞(Ω̄T ) and t ∈ [0, T ],

∫

Ω

vj(x, t) ·Dζ(x, t)dx = −
∫

Ω

uj(x, t)ζ(x, t) dx,

‖(vj)t‖L∞(ΩT ) ≤
1

2
,

∫ T

0

∫

Ω

|(vj)t − σ(Duj)| dxdt ≤
1

j
|ΩT |.

(3.2)

Since vj(x, 0) = v∗(x, 0) ∈ W 1,∞(Ω;Rn), from ‖(vj)t‖L∞(ΩT ) ≤ 1/2, it follows that
both sequences {vj} and {(vj)t} are bounded in L2(ΩT ;R

n) ≈ L2((0, T );L2(Ω;Rn)).
We may assume vj ⇀ v and (vj)t ⇀ vt weakly in L2((0, T );L2(Ω;Rn)) for some
v ∈ W 1,2((0, T );L2(Ω;Rn)). Upon taking the limit as j → ∞ in (3.2) and noticing
v ∈ C([0, T ];L2(Ω;Rn)), we obtain that

∫

Ω

v(x, t)·Dζ(x, t) dx = −
∫

Ω

u(x, t)ζ(x, t) dx (t ∈ [0, T ]),

vt(x, t) = σ(Du(x, t)) a.e. (x, t) ∈ ΩT .

Consequently, by Lemma 3.1, u is a weak solution to (1.1).
4. Finally, assume U contains a function that is not a weak solution to (1.1); hence

G 6= U . Then G cannot be a finite set since otherwise the L∞-closure X = G = U
would be a finite set, making U = G; therefore, in this case, (1.1) admits infinitely
many weak solutions. This completes the proof. �

The rest of the paper is devoted to the construction of a suitable admissible class
U ⊂W 1,∞(ΩT ) fulfilling the density property :

(3.3) Uǫ is dense in U under the L∞-norm for each ǫ > 0.
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4. Geometric considerations: Relaxation of ∇ω(z) ∈ K(0)

Let K(s) be the matrix set defined by (1.5) above. Since K(s) is a translation of
set K(0), we focus on the set K0 = K(0); that is,

K0 =

{(

p c
B σ(p)

)

∣

∣

∣
p ∈ Rn, c ∈ R, B ∈ Mn×n, trB = 0

}

,

where σ(p) = p
1+|p|2

is the Perona-Malik function.

4.1. Rank-one lamination of K0. We first compute certain rank-one structures of
the set K0.

Let L(K0) be the set of all matrices ξ ∈ M(1+n)×(n+1) that are not in K0 but are
representable by ξ = λξ1 + (1 − λ)ξ2 for some λ ∈ (0, 1) and ξ1, ξ2 ∈ K0 with
rank(ξ1 − ξ2) = 1, or equivalently,

L(K0) = {ξ /∈ K0 | ξ + t±η ∈ K0 for some t− < 0 < t+ and rank η = 1}.

Suppose ξ =

(

p c
B β

)

∈ L(K0), with ξ + t±η ∈ K0, where t− < 0 < t+ and η is a

rank-one matrix given by

η =

(

a
α

)

⊗ (q, b) =

(

aq ab
α⊗ q bα

)

, a2 + |α|2 6= 0, b2 + |q|2 6= 0,

for some a, b ∈ R and α, q ∈ Rn; here α ⊗ q denotes the rank-one or zero matrix
(αiqj) in Mn×n.

Condition ξ + t±η ∈ K0 with t− < 0 < t+ is equivalent to the following:

(4.1) trB = 0, α · q = 0, σ(p+ t±aq) = β + t±bα.

If aq = 0, then σ(p) = β + tbα has two different solutions of t only when bα = 0, but
then we would have σ(p) = β and thus ξ ∈ K0, a contradiction. Therefore, aq 6= 0.
By rescaling η and t±, we assume a = 1 and |q| = 1; namely,

η =

(

q b
α⊗ q bα

)

, |q| = 1, α · q = 0.

Case 1. Assume bα = 0. In this case, by (4.1), the equation σ(p + tq) = β has two
solutions of t of opposite signs and thus we must have p = xq and β = uq, and
σ(xq + tq) = uq becomes a quadratic equation x + t = u + u(x2 + 2xt + t2), which
has two solutions t = t± of opposite signs if and only if u 6= 0 and x2 − x

u
+ 1 < 0;

this condition can be written as

|β|2 + (p · β)2 − p · β = u2 + (xu)2 − xu < 0.

Remark 4.1. In this case one can always select η =

(

q b
0 0

)

, |q| = 1, b ∈ R. This is

the case for the one-dimensional problems studied in [19, 32, 33], where the existence
results are primarily proved based on the structure of such η’s. However, if n ≥ 2,
such η’s are not sufficient to characterize all the rank-one structures. Case 2 below
thus becomes pivotal.
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Case 2. Assume bα 6= 0; so b 6= 0 and α 6= 0. In this case, we write

η =

(

q b
1
b
γ ⊗ q γ

)

, |q| = 1, γ · q = 0, γ 6= 0, b 6= 0.

Since the equation σ(p + tq) = β + tγ has two solutions t = t± of opposite signs, we
must have p = xq+yγ and β = uq+vγ, and the equation σ(p+ tq) = β+ tγ becomes
a system of two equations:

(4.2)

{

x+ t = u(1 + (x+ t)2 + |γ|2y2),
y = (v + t)(1 + (x+ t)2 + |γ|2y2).

This system has two solutions t = t± of opposite signs, and thus u 6= 0 and y 6= 0. So
(4.2) is equivalent to a system of two quadratic equations:

(4.3)

{

t2 + (2x− 1
u
)t + x2 + |γ|2y2 + 1− x

u
= 0,

t2 + (v + x)t + xv − yu = 0.

The necessary and sufficient condition for (4.3) to have two solutions t = t± of
opposite signs is that the two quadratic equations of t have the same coefficients and
the constant terms are negative, which yields that

x =
1

u
+ v, x2 + |γ|2y2 + 1− x

u
= xv − yu < 0.

Here, if v = 0, then x = 1
u
, and taking this into the inequality, we have 1+ |γ|2y2 < 0,

a contradiction. So v 6= 0. Therefore

(4.4) uv = xu− 1, |γ|2 = 1− xu

yv
− 1

y2
,

and

(4.5) xv − yu =
(x

u
− y

v

)

(xu− 1) < 0.

We now solve for x, y, u, v from (4.4) in terms of p and β. From p = xq + yγ, β =
uq + vγ, it follows that

(4.6) q =
1

xv − yu
(vp− yβ), γ =

1

xv − yu
(−up+ xβ).

By (4.4) and (4.6), we have

p · β = xu+ yv|γ|2 = 1− v

y
,

x

u
=

v
y
|p|2 − p · β

v
y
p · β − |β|2 ,

where v
y
p · β − |β|2 6= 0 by (4.5). Let k = x/u, l = y/v. Then

(4.7) l =
1

1− p · β , k =
(1− p · β)|p|2 − p · β
(1− p · β)p · β − |β|2 .

Moreover,

k − l =
x

u
− y

v
=

|p|2 − lp · β
p · β − l|β|2 − l =

|p− lβ|2
p · β − l|β|2 .
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From |q| = 1, we have xv − yu = (k − l)uv = −|vp− lvβ| and hence

(4.8) u = −sgn(v)
|p− lβ|
k − l

= −sgn(v)
p · β − l|β|2
|p− lβ| ,

where sgn(v) = v/|v| is the sign of v 6= 0. We then obtain x, v, y by

(4.9) x = ku, v = x− 1

u
= ku− 1

u
, y = lv = lku− l

u
.

In this way, we have solved x, y, u, v in terms of p, β, uniquely up to the sign change.
We can check that both conditions in (4.4) are satisfied.

Let us consider inequality (4.5) for these solutions. Equation on |γ|2 in (4.4) implies
y
v
(1 − xu) > 1 and hence the inequality (4.5) yields x

u
(1 − xu) > y

v
(1 − xu) > 1. So

0 < xu < 1 and thus x/u > y/v > 1, i.e., k > l > 1. Then we deduce the inequality

(4.10) |β|2 + (p · β)2 − p · β < 0.

4.2. Exact formula of L(K0). In fact, inequality (4.10) exactly characterizes the
set L(K0). We have the following result.

Theorem 4.1.

(4.11) L(K0) =

{(

p c
B β

)

∣

∣

∣
trB = 0, |β|2 + (p · β)2 − p · β < 0

}

.

Moreover, given any ξ ∈ L(K0), there exist a rank-one matrix

η =

(

q b
1
b
γ ⊗ q γ

)

with |q| = 1, γ · q = 0, b 6= 0 and two numbers t− < 0 < t+ such that

ξ + t±η ∈ K0,

where |b| > 0 can be arbitrarily small.

Proof. Let S be the set defined on the right-hand side of (4.11). The previous cal-
culations show that L(K0) ⊆ S. To verify the reverse inclusion S ⊆ L(K0), let

ξ =

(

p c
B β

)

∈ S. Then |β|2 + (p · β)2 − p · β < 0. So 0 < p · β < 1 and

(1 − p · β)p · β − |β|2 > 0, and hence we can define l, k by (4.7), so that l > 0,
k > 0. To fix the sign, we define u by (4.8) with + sign:

u =
p · β − l|β|2
|p− lβ| =

(1− p · β)p · β − |β|2
|(1− p · β)p− β| > 0.

We now define x, v, y by (4.9). Then x > 0, v < 0, and y < 0. After deducing that
xv − yu < 0, we finally define q, γ by (4.6). It is then straightforward to check the
following:

p = xq + yγ, β = uq + vγ, |q| = 1, γ · q = 0,

x =
1

u
+ v, x2 + |γ|2y2 + 1− x

u
= xv − yu < 0.

In particular, equation σ(p+ tq) = β + tγ has two solutions t = t± with t− < 0 < t+.

Now let η =

(

q b
1
b
γ ⊗ q γ

)

, where b 6= 0 is arbitrary. Then ξ + t±η ∈ K0, and so

ξ ∈ L(K0). The proof is now complete. �
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Remark 4.2. The quantities q ∈ Sn−1, γ ∈ Rn and t± defined in the proof depend
continuously on (p, β) ∈ Rn+n with |β|2+ (p ·β)2 − p · β < 0. We may also take b > 0
(or b < 0) to be a continuous function of all such (p, β).

4.3. The approximating sets Sδ and Sδ. Given any 0 ≤ δ ≤ 1/2, let

(4.12) Sδ = {(p, β) ∈ Rn+n | δ|(1− p · β)p− β|+ |β|2 + (p · β)2 − p · β < 0},

Sδ =

{(

p c
B β

)

∣

∣

∣
trB = 0, (p, β) ∈ Sδ

}

.

Then S0 = L(K0). Immediate properties of the open sets Sδ are that

Sδ2 ⊂ Sδ1 for 0 ≤ δ1 < δ2 ≤ 1/2, S1/2 = ∅,

Sδ 6= ∅ for 0 ≤ δ < 1/2, S0 =
⋃

0<δ<1/2

Sδ.

In what follows we always assume 0 < δ < 1/2 unless otherwise stated.

Proposition 4.2. Let ξ ∈ Sδ and ξ± ∈ K0 with rank(ξ+ − ξ−) = 1 satisfy that ξ lies

in the open line segment (ξ−, ξ+). Then (ξ−, ξ+) ⊂ Sδ.

Proof. Consider functions

F (ξ) = |(1− p · β)p− β|, G(ξ) = |β|2 + (p · β)2 − p · β, ∀ ξ =
(

p c
B β

)

.

Then both F and G vanish on set K0. For the given ξ and ξ±, let f(τ) = F (ξτ) and
g(τ) = G(ξτ), where ξτ = τξ+ + (1 − τ)ξ−. The rank-one condition implies that the
corresponding term pτ · βτ is linear in τ ; hence g(τ) is a quadratic polynomial of τ
and f(τ) is the length of a vector quadratic in τ. Since both f(τ) and g(τ) vanish
when τ = 0 and 1, we must have g(τ) = C1τ(1− τ) and f(τ) = C2τ(1 − τ) for some
constants C1, C2. Since ξ = ξλ ∈ Sδ for some 0 < λ < 1, we have

δf(λ) + g(λ) = λ(1− λ)(δC2 + C1) < 0.

This implies the constant δC2+C1 is negative. Hence δf(τ) + g(τ) = τ(1− τ)(δC2+
C1) < 0 for all τ ∈ (0, 1), which proves exactly ξτ ∈ Sδ for all τ ∈ (0, 1). �

Remark 4.3. The lamination convex hull K lc of a set K ⊂ Mm×n is defined to be
the smallest set S ⊂ Mm×n containing K with the property that if ξ± ∈ S with
rank(ξ+ − ξ−) = 1 then (ξ−, ξ+) ⊂ S (see [9]). As in the proof of Proposition 4.2, one
can see that K lc

0 = K0 ∪ L(K0).

Lemma 4.3. Let m±(δ) be defined by (2.7) above. It follows that

sup
(p,β)∈Sδ

|p| = m+(δ), inf
(p,β)∈Sδ

|p| = m−(δ).

Proof. Let (p, β) ∈ Sδ. Then 0 < p · β < 1 and β · ((1− p · β)p− β) > 0. We write

p · β = |p||β| cos θ, β · ((1− p · β)p− β) = |β||(1− p · β)p− β| cos θ′

for some 0 ≤ θ, θ′ < π/2. A simple geometry shows that θ ≤ θ′. As |β|2 + (p · β)2 −
p · β < 0, we have

|β|2 + |p|2|β|2 cos2 θ − |p||β| cos θ < 0,
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and so,

|β| < 1

2
,

1−
√

1− 4|β|2
2|β| cos θ < |p| < 1 +

√

1− 4|β|2
2|β| cos θ .

Condition (p, β) ∈ Sδ becomes δ < |β| cos θ′; so |β| ≥ |β| cos θ > δ and

1−
√
1− 4δ2

2δ
<

1−
√

1− 4|β|2
2|β| ≤ 1−

√

1− 4|β|2
2|β| cos θ

< |p| < 1 +
√

1− 4|β|2
2|β| cos θ <

1 +
√
1− 4δ2

2δ
.

This proves

(4.13)
1−

√
1− 4δ2

2δ
≤ inf

(p,β)∈Sδ

|p| ≤ sup
(p,β)∈Sδ

|p| ≤ 1 +
√
1− 4δ2

2δ
.

Next, fix any β ∈ Rn with δ < |β| < 1/2. Let l, l′ be any numbers satisfying

(4.14)
1−

√

1− 4|β|2
2|β| < l < l′ <

1 +
√

1− 4|β|2
2|β| ,

and p = l
|β|
β, p′ = l′

|β|
β. Then (p, β), (p′, β) are both in Sδ with |p| = l, |p′| = l′; so

inf
(p,β)∈Sδ

|p| ≤ l < l′ ≤ sup
(p,β)∈Sδ

|p|.

As l, l′ are arbitrary and satisfy (4.14), we have

inf
(p,β)∈Sδ

|p| ≤ 1−
√

1− 4|β|2
2|β| <

1 +
√

1− 4|β|2
2|β| ≤ sup

(p,β)∈Sδ

|p|.

Finally, taking |β| → δ+ and combining with (4.13) complete the proof. �

As an immediate consequence of the previous lemma, we have

Corollary 4.4. Sδ ⊂ {(p, β) | m−(δ) < |p| < m+(δ), δ < |β| < 1/2}.
4.4. A useful convex integration lemma. The following result is important for
convex integration with linear constraint. For a more general case, see [29, Lemma
2.1].

Lemma 4.5. Let λ1, λ2 > 0 and η1 = −λ1η, η2 = λ2η with

η =

(

q b
1
b
γ ⊗ q γ

)

, |q| = 1, γ · q = 0, b 6= 0.

Let G ⊂ Rn+1 be a bounded domain. Then for each ǫ > 0, there exists a function ω =
(ϕ, ψ) ∈ C∞

c (Rn+1;R1+n) with supp(ω) ⊂⊂ G that satisfies the following properties:

(a) divψ = 0 in G,

(b) |{z ∈ G | ∇ω(z) /∈ {η1, η2}}| < ǫ,

(c) dist(∇ω(z), [η1, η2]) < ǫ for all z ∈ G,

(d) ‖ω‖L∞(G) < ǫ,

(e)
∫

Rn ϕ(x, t) dx = 0 for each t ∈ R.
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Proof. 1. The proof follows a simplified version of [29, Lemma 2.1]. Define a map
P : C1(Rn+1) → C0(Rn+1;R1+n) by setting P(h) = (u, v), where, for h(x, t) ∈
C1(Rn+1),

u(x, t) = q ·Dh(x, t), v(x, t) =
1

b
(γ ⊗ q − q ⊗ γ)Dh(x, t).

We easily see that P(h) = (u, v) ∈ C∞
c (Rn+1;R1+n), supp(P(h)) ⊂ supp(h), div v ≡

0, and
∫

Rn u(x, t) dx = 0 for all t ∈ R, for all h ∈ C∞
c (Rn+1). For h(x, t) = f(q ·

x + bt) with f ∈ C∞(R), w = (u, v) = P(h) is given by u(x, t) = f ′(q · x + bt) and
v(x, t) = f ′(q · x + bt)γ

b
, and hence ∇w(x, t) = f ′′(q · x + bt)η. We also note that

P(gh) = gP(h) + hP(g) and hence

(4.15) ∇P(gh) = g∇P(h) + h∇P(g) + B(∇g,∇h) ∀ g, h ∈ C∞(Rn+1),

where B(∇g,∇h) is a bilinear map of ∇g and ∇h; so |B(∇h,∇g)| ≤ C|∇h||∇g| for
some constant C > 0.

2. Let Gǫ ⊂⊂ G be a smooth sub-domain such that |G \ Gǫ| < ǫ/2, and let
ρǫ ∈ C∞

c (G) be a cut-off function satisfying 0 ≤ ρǫ ≤ 1 in G, ρǫ = 1 on Gǫ. As G is
bounded, G ⊂ {(x, t) | k < q ·x+ bt < l} for some numbers k < l. For each τ > 0, we
can find a function fτ ∈ C∞

c (k, l) satisfying

−λ1 ≤ f ′′
τ ≤ λ2, |{s ∈ (k, l) | f ′′

τ (s) /∈ {−λ1, λ2}}| < τ, ‖fτ‖L∞ + ‖f ′
τ‖L∞ < τ.

3. Define ω = (ϕ, ψ) = P(ρǫ(x, t)hτ (x, t)), where hτ (x, t) = fτ (q · x + bt). Then
‖hτ‖C1 ≤ C‖fτ‖C1 ≤ Cτ , ω ∈ C∞

c (Rn+1;R1+n), supp(ω) ⊂ supp(ρǫ) ⊂⊂ G, and (a)
and (e) are satisfied. Note that

|ω| ≤ |ρǫ||P(hτ )|+ |hτ ||P(ρǫ)| ≤ Cǫτ,

where Cǫ > 0 is a constant depending on ‖ρǫ‖C1(G). So we can choose a τ1 > 0 so
small that (d) is satisfied for all 0 < τ < τ1. Note also that

{z ∈ G | ∇ω(z) /∈ {η1, η2}} ⊆ (G \Gǫ) ∪ {z ∈ Gǫ | f ′′
τ (q · x+ bt) /∈ {−λ1, λ2}}.

Since |{z ∈ Gǫ | f ′′
τ (q · x+ bt) /∈ {−λ1, λ2}| ≤ N |{s ∈ (k, l) | f ′′

τ (s) /∈ {−λ1, λ2}}| for
some constant N > 0 depending only on set G, there exists a τ2 > 0 such that

|{z ∈ G | ∇ω(z) /∈ {η1, η2}}| ≤
ǫ

2
+Nτ < ǫ

for all 0 < τ < τ2. Therefore, (b) is satisfied. Finally, note that

ρǫ∇P(hτ (x, t)) = ρǫf
′′
τ (q · x+ bt)η ∈ [η1, η2] in G

and, by (4.15), for all z = (x, t) ∈ G,

|∇ω(z)− ρǫ∇P(hτ (x, t))| ≤ |hτ ||∇P(ρǫ)|+ |B(∇hτ ,∇ρǫ)| ≤ C ′
ǫτ < ǫ

for all 0 < τ < τ3, where C
′
ǫ > 0 is a constant depending on ‖ρǫ‖C2(G), and τ3 > 0 is

another constant. Hence (c) is satisfied. Taking 0 < τ < min{τ1, τ2, τ3}, the proof is
complete. �
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4.5. Relaxation of ∇ω(z) ∈ K0. We now study the relaxation of homogeneous
inclusion∇ω(z) ∈ K0. We prove the following result in a form suitable for later use.

Theorem 4.6. Let K be a compact subset of Sδ. Let Q̃× Ĩ be a box in Rn+1. Then,
given any ǫ > 0, there exists a ρ0 > 0 such that for each box Q × I ⊂ Q̃ × Ĩ, point
(p, β) ∈ K, and number ρ > 0 sufficiently small, there exists a function ω = (ϕ, ψ) ∈
C∞

c (Q× I;R1+n) satisfying the following properties:

(a) divψ = 0 in Q× I,

(b) (p′ +Dϕ(z), β ′ + ψt(z)) ∈ Sδ for all z ∈ Q× I and |(p′, β ′)− (p, β)| ≤ ρ0,

(c) ‖ω‖L∞(Q×I) < ρ,

(d)
∫

Q×I
|β + ψt(z)− σ(p+Dϕ(z))|dz < ǫ|Q× I|/|Q̃× Ĩ|,

(e)
∫

Q
ϕ(x, t)dx = 0 for all t ∈ I,

(f) ‖ϕt‖L∞(Q×I) < ρ.

Proof. Let ξ = ξ(p, β) =

(

p 0
O β

)

for (p, β) ∈ K ⊂ Sδ, where O is the n × n zero

matrix. We omit the dependence on (p, β) in the following whenever it is clear from
the context. Since ξ ∈ Sδ ⊂ L(K0) on K, it follows from Theorem 4.1 and its remark
that given any ρ > 0, there exist continuous functions q : K → Sn−1, γ : K → Rn,
t± : K → R, and b : K → (0,∞) with γ · q = 0, t− < 0 < t+ on K such that letting

η =

(

q b
1
b
γ ⊗ q γ

)

on K, we have

ξ + t±η ∈ K0, 0 < b <
ρ

t+ − t−
on K.

Writing ξ± =

(

p± c±
B± β±

)

= ξ + t±η on K, we have ξ = λξ+ + (1− λ)ξ−, λ = −t−
t+−t−

∈
(0, 1) on K.

Proposition 4.2 implies that onK, both ξτ− = τξ++(1−τ)ξ− and ξτ+ = (1−τ)ξ++τξ−
belong to Sδ for each τ ∈ (0, 1). Let 0 < τ < minK min{λ, 1 − λ} ≤ 1

2
be a small

number to be selected later. Let λ′ = λ−τ
1−2τ

on K. Then λ′ ∈ (0, 1), ξ = λ′ξτ++(1−λ′)ξτ−
onK. Moreover, onK, ξτ+−ξτ− = (1−2τ)(ξ+−ξ−) is rank-one, [ξτ−, ξτ+] ⊂ (ξ−, ξ+) ⊂ Sδ,
and

cτ ≤ |ξτ+ − ξ+| = |ξτ− − ξ−| = τ |ξ+ − ξ−| = τ(t+ − t−)|η| ≤ Cτ,

where C = maxK(t+ − t−)|η| ≥ minK(t+ − t−)|η| = c > 0. By continuity, Hτ =
∪(p,β)∈K[ξ

τ
−(p, β), ξ

τ
+(p, β)] is a compact subset of Sδ, where Sδ is open in

Σ0 =

{(

p c
B β

)

∣

∣

∣
trB = 0

}

.

So dτ = dist(Hτ , ∂|Σ0Sδ) > 0, where ∂|Σ0 is the relative boundary in the space Σ0.
Let η1 = −λ1η = −λ′(1 − 2τ)(t+ − t−)η, η2 = λ2η = (1 − λ′)(1 − 2τ)(t+ − t−)η

on K, where λ1 = τ(−t+) + (1 − τ)(−t−) > 0, λ2 = (1 − τ)t+ + τt− > 0 on K with
τ > 0 sufficiently small. Applying Lemma 4.5 to matrices η1, η2 and set G = Q× I,
we obtain that for each ρ > 0, there exists a function ω = (ϕ, ψ) ∈ C∞

c (Q× I;R1+n)
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and an open set Gρ ⊂⊂ Q× I satisfying the following conditions:

(4.16)







































(1) divψ = 0 in Q× I,

(2) |(Q× I) \Gρ| < ρ; ξ +∇ω(z) ∈ {ξτ−, ξτ+} for all z ∈ Gρ,

(3) ξ +∇ω(z) ∈ [ξτ−, ξ
τ
+]ρ for all z ∈ Q× I,

(4) ‖ω‖L∞(Q×I) < ρ,

(5)
∫

Q
ϕ(x, t) dx = 0 for all t ∈ I,

(6) ‖ϕt‖L∞(Q×I) < 2ρ,

where [ξτ−, ξ
τ
+]ρ denotes the ρ-neighborhood of closed line segment [ξτ−, ξ

τ
+]. From

(4.16.3), (4.16.6) follows as

|ϕt| < |c+ − c−|+ ρ = (t+ − t−)|b|+ ρ < 2ρ in Q× I.

By (4.16.3), |β + ψt(z)| ≤ C + ρ for z ∈ Q× I; hence
∫

Q×I

|β + ψt − σ(p+Dϕ)|dz

≤
∫

Gρ

|β + ψt − σ(p+Dϕ)|dz + (C + ρ+
1

2
)ρ

≤ |Q× I|max{|βτ
± − σ(pτ±)|}+ (C + ρ+

1

2
)ρ

≤ C|Q× I|τ + |Q× I|max{|σ(p±)− σ(pτ±)|}+ (C + ρ+
1

2
)ρ,

(4.17)

where ξτ± =

(

pτ± cτ±
Bτ

± βτ
±

)

.

Note (a), (c), (e), and (f) follow from (4.16), where 2ρ in (4.16.6) can be adjusted to
ρ as in (f). By the uniform continuity of σ on the set J = {p′ ∈ Rn | |p′| ≤ m+(δ)+1},
we can find a ρ′ > 0 such that |σ(p′) − σ(p′′)| < ǫ

3|Q̃×Ĩ|
whenever p′, p′′ ∈ J and

|p′ − p′′| < ρ′, where m+(δ) > 0 is the number defined in Lemma 4.3. We then
choose a τ > 0 so small that Cτ < ρ′ and C|Q̃ × Ĩ|τ < ǫ

3
. Since p±, p

τ
± ∈ J and

|p±−pτ±| ≤ Cτ < ρ′, it follows from (4.17) that (d) holds for any choice of ρ > 0 with

(C + ρ + 1
2
)ρ < ǫ|Q×I|

3|Q̃×Ĩ|
. Next, we choose a ρ0 > 0 such that ρ0 <

dτ
2
. If 0 < ρ < ρ0,

then by (4.16.1) and (4.16.3), for all z ∈ Q× I and |(p′, β ′)− (p, β)| ≤ ρ0,

ξ(p′, β ′) +∇ω(z) ∈ Σ0, dist(ξ(p′, β ′) +∇ω(z), Hτ) < dτ ,

and so ξ(p′, β ′) +∇ω(z) ∈ Sδ, that is, (p
′ +Dϕ(z), β ′ + ψt(z)) ∈ Sδ. Thus (b) holds.

The proof is now complete. �

5. Construction of admissible class U
In this section, we define a suitable admissible class U as required in Section 3.

Assume Ω and u0 are as given in Theorem 1.1, with (1.4) fulfilled in addition. Let
M = ‖Du0‖L∞(Ω) > 0.



20 SEONGHAK KIM AND BAISHENG YAN

5.1. The modified uniformly parabolic problem. We first apply Lemma 2.2 to
construct the function f ∈ C3([0,∞)) with a suitable choice of δ ∈ (0, 1/2) and
1 < Λ < m+(δ) according to the value of M as follows (see Figure 1).

(i) If 0 < M < 1, we select 0 < δ < M
1+M2 and arbitrary 1 < Λ < m+(δ).

(ii) If M ≥ 1 and λ > 0, we select δ = M+λ
1+(M+λ)2

and arbitrary Λ ∈ (M,M + λ);

in this case, m+(δ) =M + λ.

Note that in both cases we have M < Λ. Once f ∈ C3([0,∞)) is constructed, we
define

A(p) = f(|p|2)p (p ∈ Rn).

By Lemma 2.2, equation ut = divA(Du) is uniformly parabolic. We have the follow-
ing result.

Lemma 5.1. With δ selected above and Sδ defined by (4.12), one has

(p, A(p)) ∈ Sδ ∀ m−(δ) < |p| ≤M.

Proof. From the definition of set Sδ, it follows that (p, A(p)) ∈ Sδ if and only if

δ

|p| < f(|p|2) < 1

1 + |p|2 ; namely, ρ(m−(δ)) = δ < ρ∗(|p|) < ρ(|p|).

By Lemma 2.2, this condition is satisfied if m−(δ) < |p| ≤ Λ. �

5.2. The suitable boundary function Φ. By Theorem 2.1, the initial-Neumann
boundary value problem

(5.1)











u∗t = div(A(Du∗)) in ΩT ,

∂u∗/∂n = 0 on ∂Ω × [0, T ],

u∗(x, 0) = u0(x), x ∈ Ω

admits a unique classical solution u∗ ∈ C2+α, 2+α
2 (Ω̄T ) satisfying

|Du∗(x, t)| ≤M, (x, t) ∈ ΩT .

From conditions (1.2) and (1.4), we can find a function h ∈ C2+α(Ω̄) satisfying

∆h = u0 in Ω, ∂h/∂n = 0 on ∂Ω.

Now let v0 = Dh ∈ C1+α(Ω̄;Rn) and define, for (x, t) ∈ ΩT ,

(5.2) v∗(x, t) = v0(x) +

∫ t

0

A(Du∗(x, s)) ds.

Define Φ = (u∗, v∗) ∈ C1(Ω̄T ;R
1+n). Then it is easy to see that Φ satisfies condition

(1.6) above; i.e.,










u∗(x, 0) = u0(x) (x ∈ Ω),

div v∗ = u∗ in ΩT ,

v∗(·, t) · n|∂Ω = 0 ∀ t ∈ [0, T ].

Lemma 5.2. Let

Kδ = {(p, σ(p)) | |p| ≤ m−(δ)}.
Then

(Du∗(x, t), v∗t (x, t)) ∈ Sδ ∪ Kδ ∀ (x, t) ∈ ΩT .
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Proof. Given (x, t) ∈ ΩT , let p = Du∗(x, t); then |p| ≤ M. By (5.2), v∗t (x, t) = A(p).
If |p| ≤ m−(δ), then A(p) = σ(p) and hence

(Du∗(x, t), v∗t (x, t)) = (p, A(p)) = (p, σ(p)) ∈ Kδ.

If m−(δ) < |p| ≤M, then by Lemma 5.1

(Du∗(x, t), v∗t (x, t)) = (p, A(p)) ∈ Sδ.

Hence (Du∗, v∗t ) ∈ Sδ ∪ Kδ in ΩT . �

5.3. The admissible class U . In what follows, we say that a function u is piecewise
C1 in ΩT and write u ∈ C1

pc(ΩT ) provided that there exists a sequence of disjoint
open sets {Gj}∞j=1 in ΩT with |∂Gj | = 0 such that

u ∈ C1(Ḡj) ∀ j ∈ N = {1, 2, · · · }, |ΩT \ ∪∞
j=1Gj | = 0.

(For our purpose it is also acceptable to allow only finitely many pieces in this defi-
nition.)

Definition 5.1. Let µ = ‖u∗t‖L∞(ΩT ) + 1. We define the admissible class

U =
{

u ∈ C1
pc ∩W 1,∞

u∗ (ΩT )
∣

∣ ‖ut‖L∞ < µ; ∃v ∈ C1
pc ∩W 1,∞

v∗ (ΩT ;R
n)

such that div v = u and (Du, vt) ∈ Sδ ∪ Kδ a.e. in ΩT

}

.
(5.3)

For each ǫ > 0, let Uǫ be defined by

Uǫ =
{

u ∈ U
∣

∣ ∃ v ∈ C1
pc ∩W 1,∞

v∗ (ΩT ;R
n) such that div v = u and

(Du, vt) ∈ Sδ ∪ Kδ a.e. in ΩT , and
∫

ΩT
|vt − σ(Du)|dxdt ≤ ǫ|ΩT |

}

.

Remark 5.2. Clearly u∗ ∈ U ; so U is nonempty. Also U is a bounded subset of
W 1,∞

u∗ (ΩT ) as Sδ ∪ Kδ is bounded. Moreover, by Corollary 4.4, for each u ∈ U ,
its corresponding vector function v satisfies ‖vt‖L∞(ΩT ) ≤ 1/2. Finally, note that
m−(δ) < |Du∗| ≤ M on some nonempty open subset of ΩT and A(Du∗) 6= σ(Du∗)
on this set; hence u∗ itself is not a weak solution to (1.1).

6. Density property and Proof of Theorem 1.1

In this final section, we prove the density property of the sets Uǫ and then complete
the proof of Theorem 1.1.

6.1. The density property of U . Let U and Uǫ be as defined in Section 5. We
establish the density property (3.3).

Theorem 6.1. For each ǫ > 0, Uǫ is dense in U under the L∞-norm.

Proof. Let u ∈ U , η > 0. The goal is to show that there exists a function ũ ∈ Uǫ such
that ‖ũ− u‖L∞(ΩT ) < η. For clarity, we divide the proof into several steps.

1. Note ‖ut‖L∞(ΩT ) < µ − τ0 for some τ0 > 0 and there exists a function v ∈
C1

pc∩W 1,∞
v∗ (ΩT ;R

n) such that div v = u and (Du, vt) ∈ Sδ ∪Kδ a.e. in ΩT . Since both

u and v are piecewise C1 in ΩT , there exists a sequence of disjoint open sets {Gj}∞j=1

in ΩT with |∂Gj | = 0 ∀j ≥ 1 such that

u ∈ C1(Ḡj), v ∈ C1(Ḡj;R
n) ∀j ≥ 1, |ΩT \ ∪∞

j=1Gj | = 0.
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2. Let j ∈ N be fixed. Note that (Du(z), vt(z)) ∈ S̄δ ∪ Kδ for all z ∈ Gj and
that Hj = {z ∈ Gj | (Du(z), vt(z)) ∈ ∂Sδ} is a (relatively) closed set in Gj with

measure zero. So G̃j = Gj \ Hj is an open subset of Gj with |G̃j| = |Gj |, and

(Du(z), vt(z)) ∈ Sδ ∪ Kδ for all z ∈ G̃j.
3. For each τ > 0, let Gτ = {(p, β) ∈ Sδ | |β − σ(p)| > τ, dist((p, β), ∂Sδ) > τ)};

then Gτ ⊂⊂ Sδ. We can find a τj > 0 such that

(6.1)

∫

Fj

|vt(z)− σ(Du(z))| dz < ǫ

3 · 2j |ΩT |,

where z = (x, t) and Fj = {z ∈ G̃j | (Du(z), vt(z)) /∈ Gτj}. To check this, note

Fj = F 1
τj
∪ F 2

τj
, where F 1

τ = {z ∈ G̃j | |vt(z) − σ(Du(z))| ≤ τ} and F 2
τ = {z ∈

G̃j | dist((Du(z), vt(z)), ∂Sδ) ≤ τ}. Clearly,
∫

F 1
τ
|vt − σ(Du)|dz ≤ τ |ΩT | → 0 as

τ → 0+. Since F 2
τ is decreasing as τ → 0+ and vt = σ(Du) on ∩τ>0F

2
τ , it follows that

∫

F 2
τ
|vt − σ(Du)|dz → 0 as τ → 0+.

4. Let Oj = G̃j \ Fj . Furthermore, we may require that the number τj be chosen
in such a way that either Oj is empty or Oj is a nonempty open set with |∂Oj| = 0

(see [32]). Let J be the set of all j ∈ N with Oj 6= ∅. Then for j 6∈ J , Fj = G̃j.

5. We now fix a j ∈ J . Note that Oj = {z ∈ G̃j | (Du(z), vt(z)) ∈ Gτj} and

that Kj := Ḡτj is a compact subset of Sδ. Let Q̃ ⊂ Rn be an open box with Ω ⊂ Q̃

and Ĩ = (0, T ). Applying Theorem 4.6 to box Q̃× Ĩ , Kj, and ǫ
′ = ǫ|ΩT |

12
, we obtain a

constant ρj > 0 that satisfies the conclusion of the theorem. By the uniform continuity
of σ on compact subsets of Rn, we can find a θ = θǫ,δ > 0 such that

(6.2) |σ(p)− σ(p′)| < ǫ

12

if |p|, |p′| ≤ m+(δ) and |p− p′| ≤ θ. Also by the uniform continuity of u, v, and their
gradients on Ḡj, there exists a νj > 0 such that

(6.3)
|u(z)− u(z′)|+ |∇u(z)−∇u(z′)|+ |v(z)− v(z′)|

+|∇v(z)−∇v(z′)| < min{ρj
2
, ǫ
12
, θ}

whenever z, z′ ∈ Ḡj and |z − z′| ≤ νj. We now cover Oj (up to measure zero) by a
sequence of disjoint open cubes {Qi

j × I ij}∞i=1 in ΩT whose sides are parallel to the

axes with center zij and diameter lij < νj .

6. Fix i ∈ N and write w = (u, v), ξ =

(

p c
B β

)

= ∇w(zij) =
(

Du(zij) ut(z
i
j)

Dv(zij) vt(z
i
j)

)

.

By the choice of ρj > 0 in Step 5 via Theorem 4.6, since Qi
j × I ij ⊂ Q̃ × Ĩ and

(p, β) ∈ Kj , for all sufficiently small ρ > 0, there exists a function ωi
j = (ϕi

j, ψ
i
j) ∈

C∞
c (Qi

j × I ij ;R
1+n) satisfying

(a) divψi
j = 0 in Qi

j × I ij,

(b) (p′ +Dϕi
j(z), β

′ + (ψi
j)t(z)) ∈ Sδ for all z ∈ Qi

j × I ij
and all |(p′, β ′)− (p, β)| ≤ ρj ,

(c) ‖ωi
j‖L∞(Qi

j×Iij)
< ρ,

(d)
∫

Qi
j×Iij

|β + (ψi
j)t(z)− σ(p+Dϕi

j(z))|dz < ǫ′|Qi
j × I ij|/|Q̃× Ĩ|,

(e)
∫

Qi
j
ϕi
j(x, t)dx = 0 for all t ∈ I ij,
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(f) ‖(ϕi
j)t‖L∞(Qi

j×Iij)
< ρ.

Here, we let 0 < ρ ≤ min{τ0, ρj
2C
, ǫ
12C

, η}, where Cn is the constant in Theorem

2.3 and C is the product of Cn and the sum of the lengths of all sides of Q̃. By
(e), we can apply Theorem 2.3 to ϕi

j on Qi
j × I ij to obtain a function gij = Rϕi

j ∈
C1(Qi

j × I ij;R
n) ∩W 1,∞

0 (Qi
j × I ij ;R

n) such that div gij = ϕi
j in Q

i
j × I ij and

(6.4) ‖(gij)t‖L∞(Qi
j×Iij)

≤ C‖(ϕi
j)t‖L∞(Qi

j×Iij)
≤ ρj

2
.

7. As |vt|, |σ(Du)| ≤ 1/2 a.e. in ΩT , we can select a finite index set I ⊂ J ×N so
that

(6.5)

∫

⋃
(j,i)∈(J×N)\I Qi

j×Iij

|vt(z)− σ(Du(z))|dz ≤ ǫ

3
|ΩT |.

We finally define

(ũ, ṽ) = (u, v) +
∑

(j,i)∈I

χQi
j×Iij

(ϕi
j , ψ

i
j + gij) in ΩT .

As a side remark, note here that only finitely many functions (ϕi
j, ψ

i
j+g

i
j) are disjointly

patched to the original (u, v) to obtain a new function (ũ, ṽ) towards the goal of the
proof. The reason for using only finitely many pieces of gluing is due to the lack of
control over the spatial gradients D(ψi

j + gij), and overcoming this difficulty is at the
heart of this paper.

8. Let us now check that ũ together with ṽ indeed gives the desired result. By
construction, it is clear that ũ ∈ C1

pc ∩W 1,∞
u∗ (ΩT ), ṽ ∈ C1

pc ∩W 1,∞
v∗ (ΩT ;R

n). By the
choice of ρ in (f) as ρ ≤ τ0, we have ‖ũt‖L∞(ΩT ) < µ. Next, let (j, i) ∈ I, and observe
that for z ∈ Qi

j × I ij, with (p, β) = (Du(zij), vt(z
i
j)) ∈ Gτj , since |z − zij | < lij < νj, it

follows from (6.3) and (6.4) that

|(Du(z), vt(z) + (gij)t(z))− (p, β)| ≤ ρj ,

and so (Dũ(z), ṽt(z)) ∈ Sδ, by (b) above. From (a) and div gij = ϕi
j , for z ∈ Qi

j × I ij ,

div ṽ(z) = div(v + ψi
j + gij)(z) = u(z) + 0 + ϕi

j(z) = ũ(z).

Therefore, ũ ∈ U . Next, observe
∫

ΩT

|ṽt − σ(Dũ)|dz =
∫

∪j∈NFj

|vt − σ(Du)|dz

+

∫

∪(j,i)∈(J×N)\IQ
i
j×Iij

|vt − σ(Du)|dz +
∫

∪(j,i)∈IQ
i
j×Iij

|ṽt − σ(Dũ)|dz

= I1 + I2 + I3.

From (6.1) and (6.5), we have I1 + I2 ≤ 2ǫ
3
|ΩT |. Note also that for (j, i) ∈ I and

z ∈ Qi
j × I ij , from (6.3), (6.4), and (f),

|ṽt(z)− σ(Dũ(z))| = |vt(z) + (ψi
j)t(z) + (gij)t(z)− σ(Du(z) +Dϕi

j(z))|
≤ |vt(z)− vt(z

i
j)|+ |vt(zij) + (ψi

j)t(z)− σ(Du(zij) +Dϕi
j(z))|

+|(gij)t(z)| + |σ(Du(zij) +Dϕi
j(z))− σ(Du(z) +Dϕi

j(z))|
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≤ ǫ

6
+ |vt(zij) + (ψi

j)t(z)− σ(Du(zij) +Dϕi
j(z))|

+|σ(Du(zij) +Dϕi
j(z))− σ(Du(z) +Dϕi

j(z))|.
Here, as (Dũ(z), ṽt(z)) ∈ Sδ, we have |Du(z) +Dϕi

j(z)| = |Dũ(z)| ≤ m+(δ), and by

(6.3), |Du(zij)−Du(z)| < θ. From (6.2) we now have

|σ(Du(zij) +Dϕi
j(z))− σ(Du(z) +Dϕi

j(z))| <
ǫ

12
.

Integrating the above inequality over Qi
j × I ij , we thus obtain from (d) that

∫

Qi
j×Iij

|ṽt(z)− σ(Dũ(z))|dz ≤ ǫ

4
|Qi

j × I ij |+
ǫ|ΩT |
12

|Qi
j × I ij |

|Q̃× Ĩ|

≤ ǫ

3
|Qi

j × I ij |,
which yields that I3 ≤ ǫ

3
|ΩT |. Hence I1+ I2+ I3 ≤ ǫ|ΩT |, and so ũ ∈ Uǫ. Finally, from

(c) with ρ ≤ η and the definition of ũ, we have

‖ũ− u‖L∞(ΩT ) < η.

This completes the proof. �

6.2. Completion of Proof of Theorem 1.1. The existence of infinitely many weak
solutions to problem (1.1) readily follows from a combination of Remark 5.2, Theorem
6.1, and Theorem 3.3.

To prove the last statement of Theorem 1.1, assume M = ‖Du0‖L∞(Ω) ≥ 1 and

λ > 0. Recall that in this case δ = M+λ
1+(M+λ)2

. By the definition of U and Corollary 4.4,

we have |Du| ≤ m+(δ) =M+λ a.e. in ΩT for all u ∈ U . On the other hand, following
Step 3 in the proof of Theorem 3.3, every weak solution u ∈ G is the L∞-limit of some
sequence uj ∈ U such that Duj → Du a.e. in ΩT . So these weak solutions u ∈ G
must satisfy ‖Du‖L∞(ΩT ) ≤ M + λ.
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