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Complete Characterizations of Tilt Stability in Nonlinear
Programming under Weakest Qualification Conditions

HELMUT GFRERER∗ and BORIS S. MORDUKHOVICH†

Abstract. This paper is devoted to the study of tilt stability of local minimizers for classical nonlinear
programs with equality and inequality constraints in finitedimensions described by twice continuously differ-
entiable functions. The importance of tilt stability has been well recognized from both theoretical and numerical
perspectives of optimization, and this area of research hasdrawn much attention in the literature, especially in
recent years. Based on advanced techniques of variational analysis and generalized differentiation, we derive
here complete pointbased second-order characterizationsof tilt-stable minimizers entirely in terms of the initial
program data under the new qualification conditions, which are the weakest ones for the study of tilt stability.

Key words. variational analysis, tilt stability in optimization, nonlinear programming, generalized differ-
entiation, second-order theory, constraint qualifications

AMS subject classification.49J53, 90C30, 90C31

Abbreviated title. Tilt stability in nonlinear programming

1 Introduction

The notion oftilt-stable local minimizerswas introduced by Poliquin and Rockafellar [32] for prob-
lems of unconstrained optimization with a general extended-real-valued objective function, which
implicitly incorporates constraints via the indicator function of the feasible region. Motivated by
the justification of convergence properties, stopping criteria, and robustness of numerical algorithms,
the authors of [32] suggested to study and characterize not just arbitrary local minimizers but those
which behave nicely with respect to linear perturbations tilted the objective function in one direction
or another; namely, minimizers that remain locally unique and Lipschitz continuous under small per-
turbations of the aforementioned type. Tilt stability has attracted strong attention in the literature,
particularly in recent years; see, e.g., [3, 5, 6, 7, 17, 18, 25, 27, 29, 36] and the references therein.

In [32], Poliquin and Rockafellar obtained a characterization of tilt-stable local minimizers for a
large class of prox-regular extended-real-valued functions via the positive-definiteness of theirsecond-
order subdifferential/generalized Hessianin the sense of Mordukhovich [21]; see Section 2. Based
on this result and the newly developed second-order calculus rules, Mordukhovich and Rockafellar
[29] derived a characterization of tilt-stable local minimizers for nonlinear programs (NLPs) with
C2-smooth data assuming thelinear independence constraint qualification(LICQ). Under this non-
degeneracy assumption, the characterization of tilt stability was expressed in [29] via Robinson’s
strong second-order sufficient condition(SSOSC) [33] formulated entirelyat the local minimizer in
question; such conditions are calledpointbased(known also aspointwise) in what follows. They are
surely much more preferable for applications than theneighborhoodconditions discussed below.
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In the further lines of research, Mordukhovich and Nghia [25] introduced the notion of tilt-stable
local minimizers withmodulusκ > 0 for an extended-real-valued objective function and derived,
by developing a newdual-spaceapproach to tilt stability, a characterization of such minimizers in
terms of the so-calledcombined second-order subdifferential(see Section 2) via a strong positive-
definiteness condition involvingκ . It is shown in [25] that the obtained characterization reduces to the
one in [32] when the modulusκ is not an issue, and also that the aforementioned result of [25] leads to
a new characterization of tilt-stable local minimizers forNLPs withC2-smooth inequality constraints
without imposing LICQ. Namely, the LICQ assumption was weakened in [25] by the simultaneous
fulfillment of the Mangasarian-Fromovitz constraint qualification(MFCQ) and theconstant rank
constraint qualification(CRCQ) conditions, while the characterization of tilt-stable local minimizers
was given in this setting via the newuniform second-order sufficient condition(USOSC). The new
USOSC is shown in [25] to be strictly weaker than SSOSC, whilebeing reduced to the latter under the
validity of LICQ. However, in contrast to LICQ, MFCQ, and SSOSC, the formulations of CRCQ and
USOSC are not pointbased depending on points in aneighborhoodof the reference local minimizer.

As demonstrated by simple examples (see Section 8), the combination of MFCQ and CRCQ
constitutes a setting, which is not fully satisfactory for the study of tilt-stable minimizers and may
exclude from consideration important situations when tilt-stable minimizers exist and can be recog-
nized. Furthermore, the obtained USOSC characterization in [25] is a neighborhood condition but not
a pointbased one. On the other hand, the results below show that under the MFCQ assumptionalone
a pointbased second-order characterization of tilt stability is not possible, which means that there are
two NLPs with the same derivatives up to the second order at the reference point satisfying MFCQ
but such that one problem admits a tilt-stable minimizer at this point while the other one doesn’t.

To go forward in this paper, we dispense with MFCQ and also with CRCQ by replacing them, in
the general case of bothC2-smoothinequalityandequalityconstraints in NLPs, with another pair of
constraint qualifications such that the simultaneous fulfillment of these conditions isstrictly weaker
than the validity ofeachof the conditions MFCQ and CRCQ and thus of their combination. The first
of these new assumptions/qualification conditions, calledthemetric subregularity constraint qualifi-
cation (MSCQ), weakens the property of metric regularity for the constraint NLP mappingaround
the reference minimizer (the latter property is known to be equivalent to MFCQ of this mapping at
the point in question) by its metricsubregularity at this point. This assumption has been recently
employed in the papers by Gfrerer and Outrata [11, 12] for evaluating generalized derivatives of the
normal cone mapping to inequality systems. An effective pointbased condition for its validity in terms
of the first-order and second-order derivatives of the inequality constraint functions was introduced
earlier by Gfrerer [8] as thesecond-order sufficient condition for metric subregularity (SOSCMS).

The other qualification condition coupled here with (and independent of) MSCQ appears for the
first time in this paper under the name of thebounded extreme point property(BEPP) of the NLP
constraint system. Although it is formulated at the reference solution, neighborhood points are used
in the definition as well. Being much weaker than MFCQ and CRCQ, this new qualification condition
is also implied by the aforementioned SOSCMS property, which is completely pointbased.

Involving only the weakest qualification conditions MSCQ and BEPP, the main results of the
paper providepointbased second-order characterizationsof tilt-stable minimizers for general NLPs
with C2-smooth equality and inequality constraints entirely in terms of their initial data. These char-
acterizations are given as follows: first we derive pointbased sufficientconditions for tilt-stable min-
imizers in full generality and then show that they are alsonecessaryfor tilt stability under some
additional assumptions. The major sufficient condition fortilt-stable minimizers is formulated via the
strong positive-definiteness(depending on modulusκ > 0 of tilt stability and beingmuch weakerthan
SSOSC) of the Hessian of the Lagrange function by using a rather narrow subset ofextreme pointsof
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the collection of those Lagrange multipliers, which are solutions to a certain linear program associ-
ated withcritical directions. Thenecessityof the second-order conditions is justified under different
additional assumptions: eithernondegeneracyin critical directions, or the so-called2-regularity, or
CRCQ. Furthermore, we show that even without these extra assumptions the aforementionedsuffi-
cient conditions becomenecessaryin a slightly modified problem with the same cost function and
constraints reducing to the original ones together with their first and second derivatives at the refer-
ence minimizers. We also provide thequantitative evaluation(estimates and exact formulas) of the
corresponding moduli. All of this allows us to conclude thatthe obtained second-order pointbased
characterizations of tilt-stable minimizers in NLPs arecomplete.

The rest of the paper is organized as follows. Section 2 presents some basic constructions and
properties of variational analysis and generalized differentiation widely used in the main body of the
paper. We also formulate here the notion oftilt-stable minimizersand itsneighborhood characteriza-
tion in the unconstrained extended-real-valued format of optimization.

Section 3 is devoted toqualification conditionsfor NLPs with smooth inequality and equality
constraints. We define here the main MSCQ and BEPP conditionsand establish their connections
with constraint qualifications well recognized in nonlinear programming and used in the paper. The
next Section 4 involves from one side somesecond-order analysisto better understand both MSCQ
and BEPP for NLPs withC2-smooth data, while from the other side it demonstrates a significant role
of these qualification conditions to get the desired properties of the indicator function of the constraint
set and also to describe thecritical coneto this set and the collection of Lagrange multipliers incritical
directionsneeded for the subsequent second-order analysis of tilt-stable minimizers.

Section 5 contains important results on the precise calculation under the imposed weakest quali-
fication conditions MSCQ and BEPP of some second-order generalized differential constructions for
sets of feasible solutions to NLPs withC2-smooth inequality and equality constraints via their initial
data. These results, being certainly of their own interest,are used in this section for evaluating some
second-order terms crucial for the subsequent characterizations of tilt-stable minimizers. Note that
the obtained calculating formulas not only extend the corresponding results of [11] to programs with
equality constraints, but also replace a certain relaxed metric regularity condition used in [11] for the
case of inequalities by the weaker BEPP qualification condition developed in this paper.

Sections 6 and 7 are central in the paper containing the pointbased second-order conditions for
tilt-stable minimizers described above; namely, sufficient conditions in Section 6 and rather general
while different settings for their necessity and complete characterizations presented in Section 7.

The obtained results on tilt stability are discussed and illustrated by various examples in Section 8,
where important features of the developed necessary and sufficient conditions and the imposed quali-
fications are revealed in comparison with known results in this direction while discussing also related
numerical issues. The final Section 9 contains some open questions and topics for the future research.

Our notation is basically standard in variational analysisand optimization; see, e.g., [22, 34]. Re-
call thatB stands for the closed unit ball in the finite-dimensional space in question with the Euclidean
norm‖ ·‖ and the scalar product〈·, ·〉 between two vectors,Br(x) := x+ rB, the symbol∗ indicates in
general a dual operation including the matrix transposition, the polar cone, etc., dist(x;Ω) denotes the
distance from the pointx to the setΩ, the symbol∇q(x̄) stands for the gradient of a scalar function
and for the Jacobian matrix for a vector one at ¯x, and finally we haveN := {1,2, . . .}.
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2 Preliminaries from Variational Analysis

Let f : Rn → R := R∪{∞} be an extended-real-valued function, which is assumed to beproper, i.e.,
dom f := {x∈ R

n | f (x) < ∞} 6= /0, and let ¯x∈ dom f . Theregular subdifferential(known also as the
presubdifferential and as the Fréchet/viscosity subdifferential) is defined by

∂̂ f (x̄) :=

{
v∗ ∈R

n
∣∣∣ lim inf

x→x̄

f (x)− f (x̄)−〈v∗,x− x̄〉
‖x− x̄‖

≥ 0

}
.(2.1)

The limiting subdifferential(known also as the Mordukhovich/basic subdifferential) off at x̄ is

∂ f (x̄) :=
{

v∗ ∈R
n
∣∣ ∃ xk → x̄, v∗k → v∗ with f (xk)→ f (x̄), v∗k ∈ ∂̂ f (xk), k∈N

}
.(2.2)

Both constructions (2.1) and (2.2) reduce to the subdifferential of convex analysis iff is convex.
ForC1-smooth functions the subdifferentialŝ∂ f (x) and∂ f (x) consist only of the gradient∇ f (x).

A lower semicontinuous (l.s.c.) functionf : Rn → R is calledprox-regular at x̄ ∈ dom f for
v̄∗ ∈ ∂ f (x̄) if there are realsr,ε > 0 such that for allx,u∈ Bε(x̄) with | f (u)− f (x̄)| ≤ ε we have

f (x) ≥ f (u)+ 〈v∗,x−u〉−
r
2
‖x−u‖2 wheneverv∗ ∈ ∂ f (u)∩Bε(v̄

∗).(2.3)

Such a function is said to besubdifferentially continuousat x̄∈ dom f for v̄∗ ∈ ∂ f (x̄) if f (xk)→ f (x̄)
for all sequencesxk → x̄ andv∗k → v̄∗ ask→ ∞ with v∗k ∈ ∂ f (xk), k∈ N.

In what follows we also need some concepts from variational geometry. Given a setΩ ⊂ R
d and

a pointz̄∈ Ω, define the (Bouligand-Severi)tangent/contingent coneto Ω at z̄by

(2.4) TΩ(z̄) :=
{

u∈ R
d
∣∣ ∃ tk ↓ 0, uk → u with z̄+ tkuk ∈ Ω for all k

}
.

The (Fréchet)regular normal coneto Ω at z̄∈ Ω can be equivalently defined either by

(2.5) N̂Ω(z̄) :=
{

v∗ ∈R
d
∣∣∣ limsup

z
Ω
→z̄

〈v∗,z− z̄〉
‖z− z̄‖

≤ 0
}
,

wherez
Ω
→ z̄ means thatz→ z̄with z∈ Ω, or as the dual/polar to the contingent cone (2.4), i.e., by

(2.6) N̂Ω(z̄) := TΩ(z̄)
∗.

For convenience, we put̂NΩ(z̄) := /0 for z̄ /∈ Ω. Further, the (Mordukhovich)limiting/basic normal
coneto Ω at z̄∈ Ω is given by

NΩ(z̄) :=
{

v̄∗ ∈ R
d
∣∣∃ zk → z̄, v∗k → v̄∗ with v∗k ∈ N̂Ω(zk) for all k

}
.(2.7)

Note that, in spite of (in fact due to) being nonconvex, the normal cone (2.7) and the corresponding
to it limiting subdifferential and coderivative constructions enjoyfull calculi, which are based on
variational/extremal principles of variational analysis; see, e.g., [22, 34] and the references therein.

It is easy to observe the following relationships:

∂̂ δΩ(z) = N̂Ω(z) and ∂δΩ(z) = NΩ(z) for all z∈ Ω

between the corresponding regular and limiting subdiffential/normal cone constructions defined above,
whereδΩ(z) stands for the indicator function of the setΩ equal to 0 ifz∈ Ω and to∞ otherwise.
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Considering next a set-valued (in particular, single-valued) mappingΨ : Rd
⇒ R

s, we associate
with it thedomaindomΨ and thegraphgphΨ by

domΨ :=
{

z∈ R
d
∣∣ Ψ(z) 6= /0

}
and gphΨ :=

{
(z,w)

∣∣ w∈ Ψ(z)
}

and define the following coderivative constructions. Theregular coderivativeD̂∗Ψ(z̄,w̄) : Rs
⇒ R

d

of Ψ at (z̄,w̄) ∈ gphΨ is generated by the regular normal cone (2.5) via

(2.8) D̂∗Ψ(z̄,w̄)(v∗) :=
{

u∗ ∈ R
d
∣∣ (u∗,−v∗) ∈ N̂gphΨ(z̄,w̄)

}
, v∗ ∈ R

s,

and thelimiting coderivativeD̂∗Ψ(z̄,w̄) : Rs
⇒ R

d of Ψ at (z̄,w̄) ∈ gphΨ is given by

(2.9) D∗Ψ(z̄,w̄)(v∗) :=
{

u∗ ∈ R
d
∣∣ (u∗,−v∗) ∈ NgphΨ(z̄,w̄)

}
, v∗ ∈ R

s.

If Ψ is single-valued at ¯z, we dropw̄ in the notation of (2.8) and (2.9). IfΨ is a single-valued mapping
being smooth around ¯z, then we have the equalities

D̂∗Ψ(z̄)(v∗) = D∗Ψ(z̄)(v∗) =
{

∇Ψ(z̄)∗v∗
}

for all v∗ ∈ R
s.

One of the striking advantages of the limiting coderivative(2.9) (besides full calculus) is the
possibility to derive in its terms complete pointbased characterizations of some basic properties of
well-posednessin nonlinear and variational analysis related to robust Lipschitzian stability, metric
regularity, and linear openness; see, e.g., [22, 34] and thereferences therein. Recall that a set-valued
mappingΨ : Rd

⇒ R
s is Lipschitz-likearound(z̄,w̄) ∈ gphΨ (also known as the pseudo-Lipschitz or

Aubin property) with modulusκ ≥ 0 if there are neighborhoodsU of z̄andV of w̄ such that

(2.10) Ψ(z)∩V ⊂ Ψ(u)+κ‖z−u‖B for all z,u∈U.

The infimum of all suchκ is called theexact Lipschitzian boundof Ψ around(z̄,w̄) and is denoted
by lipΨ(z̄,w̄). If V =R

s, relation (2.10) reduces to the (Hausdorff) local Lipschitzian property of set-
valued mappings around ¯z, while in the single-valued case this is nothing else than the classical local
Lipschitz continuity ofΨ around the reference point. In terms of (2.9) we have the robust coderivative
characterization of the Lipschitz-like property ofΨ around(z̄,w̄) with the exact bound formula

D∗Ψ(z̄,w̄)(0) = {0}, lip Ψ(z̄,w̄) = ‖D∗Ψ(z̄,w̄)‖(2.11)

known as the Mordukhovich criterion [34, Theorem 9.40], where‖·‖ stands for the norm ofD∗Ψ(z̄,w̄)
as a positively homogeneous set-valued mapping fromR

s to R
d. Further, it has been well recognized

thatΨ is Lipschitz-like around(z̄,w̄) with modulusκ > 0 if and only if its inverseΨ−1 =M : Rs→→R
d

is metrically regulararound(w̄, z̄) with the same modulus, i.e.,

dist
(
w;M−1(z)

)
≤ κ dist

(
z;M(w)

)
for all z∈U, w∈V.(2.12)

There are a number of applications for which the robust properties in (2.10) and (2.12) can be
relaxed to the weaker ones with puttingu= z̄ andz= z̄ in (2.10) and (2.12), respectively. The first
property is known ascalmnessof Ψ at (z̄,w̄), while the second one is known asmetric subregularity
of M at (w̄, z̄). Although these properties are equivalent forΨ andM = Ψ−1, we prefer to use metric
subregularity in applications to NLPs due to the possibility to formulate it via the initial program data
of the original NLP constraint system; see Section 3 for morediscussions.
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Next we recall two second-order subdifferential constructions for extended-real-valued functions
employed below and introduced in the direction initiated in[21], i.e., by using a coderivative of a
first-order subdifferential mapping; this is an appropriate dual set-valued extension of the classical
“derivative-of-derivative” approach to second-order differentiation. Proceeding in this way, we take
f : Rn → R, x̄ ∈ dom f , and a basic subgradient ¯v∗ ∈ ∂ f (x̄) from (2.2) and define thesecond-order
subdifferentialof f at x̄ relative tov̄∗ as the set-valued mapping∂ 2 f (x̄, v̄∗) : Rn

⇒ R
n given by [21]

∂ 2 f (x̄, v̄∗)(w) :=
(
D∗∂ f

)
(x̄, v̄∗)(w), w∈ R

n.(2.13)

Thecombined second-order subdifferentialof f at x̄ relative tov̄∗ ∈ ∂ f (x̄) is defined in this scheme
by [25] replacing the limiting coderivative (2.9) with its regular counterpart (2.8), i.e., by

∂̆ 2 f (x̄, v̄∗)(w) :=
(
D̂∗∂ f

)
(x̄, v̄∗)(w), w∈ R

n.(2.14)

When f isC2-smooth around ¯x, we have ¯v∗ = ∇ f (x̄) and

∂ 2 f (x̄, v̄∗)(w) = ∂̆ 2 f (x̄, v̄∗)(w) =
{

∇2 f (x̄)w
}

for any w∈ R
n,

where∇2 f (x̄) stands for the classical (symmetric) Hessian matrix. Thus the second-order subdiffer-
entials (2.13) and (2.14) can be treated as thegeneralized Hessianconstructions.

Now we are ready to formulate and discuss the notion of tilt-stable minimizers for extended-real-
valued functions introduced by Poliquin and Rockafellar [32] without specifying tilt stability moduli
and then quantitatively modified and studied by Mordukhovich and Nghia [25] for the case of given
moduli with an explicit calculation of their exact bound.

Definition 2.1 (tilt-stable minimizers). Let f : Rn → R, and letx̄∈ dom f . Then:
(i) x̄ is aTILT-STABLE LOCAL MINIMIZER of f if there is a numberγ > 0 such that the mapping

(2.15) Mγ(v
∗) := argmin

{
f (x)−〈v∗,x〉

∣∣ x∈ Bγ(x̄)
}
, v∗ ∈R

n,

is single-valued and Lipschitz continuous in some neighborhood ofv̄∗ = 0∈ R
n with Mγ(0) = {x̄}.

(ii) Givenκ > 0, the pointx̄ is a tilt-stable local minimizer of f withMODULUS κ if there isγ > 0
such that Mγ(0) = {x̄} and the mapping Mγ in (2.15) is single-valued and Lipschitz continuous with
modulusκ around the origin0∈R

n.
(iii) TheEXACT BOUND OF TILT STABILITY of f at x̄ is defined by

tilt ( f , x̄) := inf
γ>0

lip Mγ(0)(2.16)

via the exact Lipschitzian bound of the mapping Mγ from (2.15)around the origin.

The main result by Poliquin and Rockafellar [32, Theorem 1.3] gives a characterization of tilt-
stable minimizers forf in the sense of Definition 2.1(i) via the positive-definiteness of the second-
order subdifferential (2.13) at the reference point. In this paper we base our investigations on the
following quantitative characterization by Mordukhovichand Nghia [25, Theorem 3.5], which uses
the combined second-order subdifferential (2.14) in a neighborhood of the reference local minimizer
and provides, in addition to characterizing tilt-stable minimizers in the sense of Definition 2.1(ii), a
precise formula for calculating the exact bound of tilt stability.
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Theorem 2.2(qualitative characterization of tilt-stable minimizers for extended-real-valued func-
tion). Let f : Rn → R̄ be a l.s.c. function having0∈ ∂ f (x̄). Assume that f is both prox-regular and
subdifferentially continuous at̄x for v̄∗ = 0. Then the following assertions are equivalent:

(i) The pointx̄ is a tilt-stable local minimizer of the function f with modulus κ > 0.
(ii) There is a constantη > 0 such that

〈w∗,w〉 ≥
1
κ
‖w‖2 for all w∗ ∈ ∂̆ 2 f (x,x∗)(w), (x,x∗) ∈ gph∂ f ∩Bη(x̄,0).(2.17)

Moreover, the exact bound of tilt stability of f atx̄ is calculated by

tilt ( f , x̄) = inf
η>0

sup

{
‖u‖2

〈u∗,u〉

∣∣∣ u∗ ∈ ∂̆ 2 f (x,x∗)(u), (x,x∗) ∈ gph∂ f ∩Bη(x̄,0)

}
(2.18)

with the convention that0/0 := 0.

3 Qualification Conditions in Nonlinear Programming

In this section we start a preparatory work for the subsequent second-order characterization of tilt-
stable minimizers in NLPs with the system ofC2-smooth equality and inequality constraints:

(3.1)

{
qi(x) = 0 for i ∈ E,
qi(x) ≤ 0 for i ∈ I ,

whereE := {1, . . . , l1} andI := {l1+1, . . . , l1+ l2} are finite index sets for the equality and inequal-
ity constraints, respectively. The main goal of this section is to consider appropriatequalification
conditionsneeded for characterizing tilt stability in NLPs while being of their own interest.

Denotel := l1+ l2 and rewrite the constraint system (3.1) in theinclusion form

Γ :=
{

x∈ R
n | q(x) ∈ Θ

}
with q(x) :=

(
q1(x), . . . ,ql (x)

)
and Θ := {0}l1 ×R

l2
−.(3.2)

Consider further the index set ofactive inequality constraints

I (x) :=
{

i ∈ I
∣∣ qi(x) = 0

}
, x∈ Γ,(3.3)

and for eachx∈ Γ describe thelinearized tangent cone(2.4) toΓ at this point by

T lin
Γ (x) :=

{
u∈ R

n
∣∣ 〈∇qi(x),u〉 = 0 for i ∈ E and 〈∇qi(x),u〉 ≤ 0 for i ∈ I (x)

}
.(3.4)

It is easy to observe that the dual/polar cone to (3.4) admitsthe following representations:

T lin
Γ (x)∗ = ∇q(x)∗NΘ

(
q(x)

)
=
{ l

∑
ı=1

λi∇qi(x)
∣∣∣ λi ≥ 0 for i ∈ I (x) and λi = 0 for i ∈ I \I (x)

}
.

Recall that the conventional terminology of nonlinear programming understands by “constraint
qualifications” (CQs) any conditions imposed on the constraints of NLPs ensuring that the Lagrange
multiplier associated with the cost function in first-ordernecessary optimality conditions is not zero.
For the reader’s convenience, let us list the well-recognized CQs, which are compared in what follows
with the qualification conditions developed in this paper tostudy tilt-stable minimizers:

• The linear independence constraint qualification(LICQ) holds at ¯x if the gradients of theactive
constraints{∇qi(x̄)| i ∈ E∪I (x̄)} are linearly independent inRn.
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• TheMangasarian Fromovitz constraint qualification(MFCQ) holds at ¯x if if the gradients of the
equality constraints{∇qi(x̄)| i ∈ E} are linearly independent inRn and there exists a vectoru∈ R

n

satisfying〈∇qi(x̄),u〉 = 0 for i ∈ E and〈∇qi(x̄),u〉< 0 for i ∈ I (x̄).
• The full rank constraint qualification(FRCQ) holds at ¯x if for every subset of the active con-

straintsA ⊂ E∪I (x̄) we have

rank
{

∇qi(x̄)
∣∣ i ∈ A

}
= min

{
|A |, n

}
,

where|A | stands for the cardinality of the setA .
• Theconstant rank constraint qualification(CRCQ) holds at ¯x if there is a neighborhoodU of x̄

such that for any index setA ⊂ E∪I (x̄) the system{∇qi(x)| i ∈A } has the same rank for allx∈U .

We have the following implications, which relate the aforementioned CQs at ¯x∈ Γ:

LICQ=⇒ MFCQ and LICQ=⇒ FRCQ=⇒CRCQ.(3.5)

Indeed, the implications LICQ=⇒MFCQ and LICQ=⇒FRCQ are obvious. The remaining implica-
tion FRCQ=⇒CRCQ was observed by Janin (see [15, Proposition 2.1]) who was the first to introduce
and study CRCQ in nonlinear programming.

To proceed further, we recall the equivalent descriptions of MFCQ used in what follows; see,
e.g. [34, Examples 6.40 and 9.44]. They actually follow fromthe coderivative characterization (2.11)
applied to the inverse of thecanonically perturbedconstraint mappingMq : Rn

⇒ R
l defined by

(3.6) Mq(x) := q(x)−Θ, x∈R
n.

Proposition 3.1 (equivalent descriptions of MFCQ). Given x̄ ∈ Γ, the validity of MFCQ atx̄ is
equivalent to each of the following conditions:

(i) The mapping Mq is metrically regular around(x̄,0).
(ii)

[
∇q(x̄)∗λ = 0, λ ∈ NΘ

(
q(x̄)

)]
=⇒ λ = 0∈ R

n.
(iii) There exist a positive numberκ such that

(3.7) ∇q(x̄)∗λ ≥
‖λ‖

κ
for all λ ∈ NΘ

(
q(x̄)

)
.

Furthermore, the infimum of the moduliκ for which the metric regularity property holds is equal to

max
λ∈NΘ(q(x̄)),

‖λ‖=1

1
‖∇q(x̄)∗λ‖

.

Having in mind the metric regularity description of MFCQ in Proposition 3.1, we define now
the following qualification condition, which is clearly weaker than MFCQ and occurs to be very
instrumental for the subsequent study of tilt stability.

Definition 3.2 (metric subregularity constraint qualification). Let x̄∈ Γ for the constraint system
(3.2). We say that theMETRIC SUBREGULARITY CONSTRAINT QUALIFICATION (MSCQ)holds atx̄
if the mapping Mq from (3.6) is metrically subregular at(x̄,0).

Since in finite-dimensional space all the norms are equivalent, MSCQ can be equivalently de-
scribed via the existence of a neighborhoodU of x̄ and a positive numberκ (for simplicity we keep
the same notation for the modulus) such that

(3.8) dist(x;Γ) ≤ κ
(

∑
i∈E

|qi(x)|+∑
i∈I

max
{

qi(x),0
})

for all x∈U,
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i.e., for allx∈U sufficiently close to ¯x the distance fromx to the constraint setΓ in (3.2) is proportional
to the residual of (3.1) at these points. Note also that the MSCQ property from Definition 3.2 is
equivalent to the requirement that theinversemappingS: Rl

⇒ R
n given by

S(y) := M−1
q (y) =

{
x∈ R

n
∣∣ y∈ q(x)−Θ

}
, y∈ R

l ,(3.9)

is calm at (0, x̄). We prefer to deal primarily with MSCQ instead of the calmness requirement onS
due to the fact that the condition in (3.8) is formulated in terms of theinitial program data qi while
the inverse mappingSmay not be in hands, and it is usually hard to construct it.

Observe that the imposed MSCQ is indeed aconstraint qualificationat x̄ in the standard sense of
nonlinear programming recalled above. Indeed, the following implication follows from [13, Proposi-
tion 1] and the aforementioned relationship between metricsubregularity and calmness:

[
MSCQ at x̄∈ Γ

]
=⇒

[
TΓ(x̄) = T lin

Γ (x̄)
]
,(3.10)

where the right-hand side equality in (3.10), saying that the tangent cone (2.4) toΓ at x̄ agrees with
the one (3.4) to the linearized constraints, is known as theAbadie constraint qualification(ACQ) for
(3.1) atx̄, which a CQ in the standard NLP sense.

In order to conduct our subsequent analysis of tilt stability for local minimizers in NLPs, MSCQ
alone is not enough. As the reader can see below, just one additional qualification condition on the
constraint system (3.1) at ¯x is needed. To define this new condition, let us first introducesome objects
associated with (3.1) and (3.2). Given vectorsx∈ Γ andx∗ ∈ R

n, consider theset of multipliers

Λ(x,x∗) :=
{

λ ∈ NΘ
(
q(x)

)∣∣ ∇q(x)∗λ = x∗
}

(3.11)

and the corresponding collection ofstrict complementarity indexes

I+(λ ) :=
{

i ∈ I
∣∣ λi > 0

}
for λ = (λ1, . . . ,λl ) ∈ Θ∗.(3.12)

Denote byE (x,x∗) the collection of all theextreme pointsof the closed and convex set of multi-
pliers Λ(x,x∗) and recall thatλ ∈ Λ(x,x∗) belongs toE (x,x∗) if and only if the family of gradients
{∇qi(x) | i ∈ E∪ I+(λ )} is linearly independent. HenceE (x,x∗) 6= /0 if and only if Λ(x,x∗) 6= /0 and
the gradients of the equality constraints{∇qi(x)| i ∈ E} are linearly independent.

Now we are ready to introduce the new qualification conditionfor the constraint system (3.1).

Definition 3.3 (bounded extreme point property). We say that theBOUNDED EXTREME POINT

PROPERTY(BEPP)holds atx̄ if the gradients of the equality constraints{∇qi(x̄)| i ∈ E} are linearly
independent and there exist a neighborhood U ofx̄ and a numberκ > 0 such that

(3.13) E (x,x∗)⊂ κ‖x∗‖B for all x ∈ Γ∩U and x∗ ∈R
n.

In contrast to the case of MSCQ, we do not claim that BEPP is a constraint qualification in the
standard sense. Therefore the term “qualification condition” seems to be appropriate for both MSCQ
and BEPP. In what follows we study the properties MSCQ and BEPP simultaneously and apply them
together to deriving pointbased conditions for tilt stableminimizers in NLPs.

The next proposition shows, in particular, thateachof the constraint qualifications MFCQ and
CRCQ, and thus the stronger ones from (3.5), ensures the validity of bothMSCQ and BEPP.
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Proposition 3.4 (robustness of MSCQ and BEPP with sufficient conditions for their validity).
Givenx̄∈ Γ from (3.2), the following assertions hold:

(i) Both MSCQ and BEPP areROBUST properties in the sense that if either MSCQ or BEPP is
satisfied at the reference point̄x∈ Γ that there is a neighborhood U of̄x such that the corresponding
property is satisfied at any point x∈ Γ∩U.

(ii) Let either MFCQ or CRCQ hold at̄x ∈ Γ and that(in the case of CRCQ) the gradients of
the equality constraints{∇qi(x̄)| i ∈ E} are linearly independent inRn. Then both the qualification
conditions MSCQ and BEPP are satisfied atx̄.

Proof. Assertion (i) for both MSCQ and BEPP follows directly from the definitions of these
qualification conditions. Also it is straightforward to deduce from the the characterization of MFCQ
in Proposition 3.1(i) that the validity of MFCQ at ¯x implies that MSCQ holds at this point.

Suppose now that CRCQ holds at ¯x. Then it follows from [15, Proposition 2.5] that the mapping
S: Rl →→ R

n from (3.9) is calm at(0, x̄), and henceMq(x) = S−1(x) is metrically subregular at(x̄,0).
Further, let us check that MFCQ at ¯x yields the validity of BEPP at this point. Using the equivalent

description of MFCQ in Proposition 3.1(iii), takeκ > 0 from (3.7) and find a neighborhoodU of x̄
such thatI (x) ⊂ I (x̄) and that the estimate‖∇q(x)−∇q(x̄)‖ ≤ 1

2κ holds onΓ∩U . Then for every
x∈ Γ∩U , x∗ ∈ R

n, andλ ∈ E (x,x∗) we getλ ∈ NΘ(q(x)) ⊂ NΘ(q(x̄)) and hence

‖x∗‖= ‖∇q(x)∗λ‖ ≥ ‖∇q(x)∗λ‖−‖∇q(x)−∇q(x̄)‖ · ‖λ‖ ≥
‖λ‖

κ
−

‖λ‖
2κ

=
‖λ‖
2κ

.

This shows thatE (x,x∗)⊂ 2κ‖x∗‖B and thus justifies that BEPP holds at ¯x.
It remains to verify that the validity of CRCQ at ¯x together with the linear independence of

{∇qi(x̄)| i ∈ E} implies that BEPP holds at this point. Assuming the contraryand employing the

imposed linear independence allow us to find sequencesxk
Γ
→ x̄, x∗k ∈ R

n, andλ k ∈ E (xk,x∗k) such that

∇q(xk)
∗ λ k

‖λ k‖
→ 0 as k→ ∞.

Passing to a subsequence if necessary gives us a vectorλ ∈R
n with ‖λ‖= 1 and such thatλ k/‖λ k‖→

λ as k → ∞. Since∇q(x̄)∗λ = 0, it follows from the above that the gradient family{∇qi(x̄)| i ∈
E∪ I+(λ )} with I+(λ ) from (3.12) islinearly dependent, i.e., consists of linearly dependent vectors
in R

n. Then for eachi ∈ I+(λ ) we haveλ k
i > 0 wheneverk ∈ N is sufficiently large, which shows

that i ∈ I (xk)⊂ I (x̄) according to (3.3) and justifies in turn thatI+(λ )⊂ I+(λ k)⊂ I (x̄). Now the
assumed CRCQ at ¯x ensures that the family{∇qi(xk)| i ∈ E∪ I+(λ )} is linearly dependent, and hence
the family{∇qi(xk)| i ∈ E∪ I+(λ k)} is linearly dependent as well. This clearly contradicts, due to the
discussion right before Definition 3.3, thatλ k ∈ E (xk,x∗k) for large numbersk∈ N. Thus BEPP holds
at x̄, which completes the proof of the proposition. △

4 MSCQ and BEPP via Second-Order Analysis

In this section we employ second-order derivatives of the constraint functionsqi at x̄ to effectively
support MSCQ and BEPP and also use these qualification conditions to describe some second-order
constructions of variational analysis needed in what follows.

Note that LICQ, MFCQ, and FRCQ arepointbasedconditions in contrast to CRCQ, MSCQ, and
BEPP that involveneighborhoodpoints in their definitions. It is worth mentioning to this end that the
papers by Gfrerer [8] and by Li and Mordukhovich [19] containsome (different) pointbased sufficient
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conditions for metric subregularity of general set-valuedmappings, which are “almost necessary” for
this property. On the other hand, in the same paper [8] Gfrerer introduced the pointbasedsecond-order
sufficient condition for metric subregularity(SOSCMS) formulated below in Theorem 4.1 that allowed
him to derive “no-gap” second-order necessary and sufficient conditions for metric subregularity,
where the difference between the necessity and sufficiency is the change from inequality to strict
inequality. The reader can find further applications of thiscondition in the recent papers [9, 10, 11, 12].

The next theorem shows that SOSCMS ensures the validity of not only MSCQ but also of BEPP,
i.e., of both qualification conditions we use for our subsequent pointbased characterizations of tilt
stability in NLPs. In fact, this theorem provides a strongerversion of the aforementioned results.
Namely, we consider the case when the constraint system (3.1) can be split into the following two
subsystems with both equality and inequality constraints:

qi(x) = 0 for i ∈ E1 :=
{

1, . . . , l1
1

}
and qi(x) = 0 for i ∈ E2 :=

{
l1
1 +1, . . . , l1

1 + l2
1 = l1},

qi(x)≤ 0 for i ∈ I1 :=
{

1, . . . , l1
2

}
and qi(x)≤ 0 for i ∈ I2 :=

{
l1
2 +1, . . . , l1

2 + l2
2 = l2

}

in such a way that it is known in advance that for the second systemqi(x) = 0 asi ∈ E2 andqi(x) ≤ 0
as i ∈ I2 both MSCQ and BEPP are surely satisfied. In particular, it happens by Proposition 3.4(ii)
if CRCQ is fulfilled at x̄ and the gradient vectors{∇qi(x̄)| i ∈ E2} are linearly independent. One of
the reasons for this is that, although in the absence of FRCQ no pointbased conditions for verifying
CRCQ is known in terms of the gradients∇gi(x̄), there exist other easily verifiable conditions that
ensure the validity of CRCQ without using any derivatives. For instance, it is well known that CRCQ
holds at every ¯x ∈ Γ if the functionsqi are linear wheneveri ∈ E2∪ I2. Note that if we ignore the
(E2, I2)-system in the following theorem (i.e., putE2 = I2 = /0), then it merely asserts the validity of
both MSCQ and BEPP for the original constraint system (3.1) at x̄ under the pointbased SOSCMS
assumption imposed at this point, which is surely implied byMFCQ.

Theorem 4.1 (MSCQ and BEPP from SOSCMS). Let the gradients of the equality constraints
{∇qi(x̄)| i ∈ E} be linearly independent, and the system qi(x) = 0 for i ∈ E2 and qi(x) ≤ 0 for i ∈ I2
fulfill both MSCQ and BEPP at̄x∈ Γ. Impose further the following SOSCMS atx̄: for every vector
0 6= u∈ T lin

Γ (x̄) from the linearized constraint tangent cone(3.4)we have the implication

[
λ ∈ NΘ

(
q(x̄)

)
, ∇q(x̄)∗λ = 0,

〈
u,∇2〈λ ,q〉(x̄)u

〉
≥ 0

]
=⇒ ∑

i∈E1∪I1

|λi |= 0.(4.1)

Then both MSCQ and BEPP are satisfied for the original constraint system(3.1)at x̄.

Proof. Observe first that the implication

SOSCMS=⇒ MSCQ at x̄∈ Γ

in the general setting of Theorem 4.1 follows from the combination of Theorem 2.6 and Lemma 2.7
in [9]. It remains to verify the other implication

SOSCMS=⇒ BEPP at x̄∈ Γ.(4.2)

Assuming the contrary to (4.2), find sequencesxk
Γ
→ x̄ andλ k ∈ NΘ(q(xk)) so that the gradients

{∇qi(xk)| i ∈ E∪ I+(λ k)} are linearly independent inRn and that

‖∇q(xk)
∗λ k‖< ‖λ k‖/k for all k∈ N.
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Passing to a subsequence ofk→ ∞ gives usλ ∈ NΘ(q(x̄)) with ‖λ‖ = 1 such thatλ k/‖λ k‖ → λ and
∇q(x̄)∗λ = 0, which yields the linear dependence of the gradients{∇qi(x̄) | i ∈ E∪ I+(λ )}. Since
I+(λ ) ⊂ I+(λ k) for the index sets (3.12) and the family of gradients{∇qi(xk)| i ∈ E∪ I+(λ k)} is
linearly independent, it follows thatxk 6= x̄ for all k sufficiently large. Passing to a subsequence again
allows us to findu∈ R

n with ‖u‖= 1 for which(xk− x̄)/‖xk− x̄‖ → u ask→ ∞. We obviously have
for any active constrainti ∈ E∪I (x̄) that

〈∇qi(x̄),u〉= lim
k→∞

qi(xk)−qi(x̄)
‖xk− x̄‖

{
= 0 if i ∈ E,

≤ 0 if i ∈ I (x̄)

showing that∇q(x̄)u ∈ TΘ(q(x̄)) and consequently thatu ∈ T lin
Γ (x̄). Furthermore, we deduce from

I+(λ )⊂ I+(λ k) for largek that the condition〈λ ,q(xk)〉= 0 yields

0= lim
k→∞

〈λ ,q(xk)−q(x̄)〉
‖xk− x̄‖2 =

1
2

〈
u,∇2〈λ ,q〉(x̄)u

〉
.

Let us check now that∑i∈E1∪I1 |λi | > 0, which clearly contradicts the SOSCMS assumption in (4.1).
Indeed, settingλ k, j := (λ k

i )i∈E j∪I j andq( j) := (qi)i∈E j∪I j for j = 1,2, we get

‖λ k,2‖

κ2
−
∥∥∇q(1)(xk)

∗λ k,1
∥∥ ≤

∥∥∇q(2)(xk)
∗λ k,2

∥∥−
∥∥∇q(1)(xk)

∗λ k,1
∥∥

≤
∥∥∇q(2)(xk)

∗λ k,2+∇q(1)(xk)
∗λ k,1

∥∥

=
∥∥∇q(xk)

∗λ k
∥∥<

‖λ k‖

k
,

whereκ2 denotes a positive number such that the BEPP assumption (3.13) holds for the “second”
constraint subsystemqi(x) = 0 asi ∈ E2 andqi(x)≤ 0 asi ∈ I2. Dividing the latter inequality by‖λ k‖
and passing to the limit ask→ ∞, we obtain

∥∥∇q(1)(x̄)∗λ (1)
∥∥≥

‖λ (2)‖

κ2
, where λ ( j) := (λi)i∈E j∪I j for j = 1,2.

Since‖λ‖ = ‖(λ (1),λ (2))‖ = 1 we easily conclude thatλ (1) 6= 0, and thus∑i∈E1∪I1 |λi | > 0. The
obtained contradiction with (4.1) justifies (4.2) and completes the proof of the theorem. △

Next we show that the simultaneous validity of MSCQ and BEPP at x̄ ensures that the indicator
function δΓ of the constraint setΓ from (3.2) belongs to the basic in second-order analysis class of
prox-regular and subdifferentially continuous functionsneeded for the second-order characterization
of tilt-stable minimizers in the abstract extended-real-valued setting of Theorem 2.2.

Proposition 4.2(prox-regularity and subdifferential continuity of the con straint indicator func-
tion). Assume that both MSCQ and BEPP hold atx̄∈ Γ. Then there is a neighborhood U of̄x such
that for all x∈ Γ∩U we have the equalities

∂δΓ(x) = ∂̂ δΓ(x) = ∇q(x)∗NΘ
(
q(x)

)
.(4.3)

Furthermore,δΓ is prox-regular and subdifferentially continuous atx̄ for everyx̄∗ ∈ ∂δΓ(x̄).

Proof. The validity of the second equality in (4.3) forx = x̄ under MSCQ at this point fol-
lows from implication (3.10) and the fact that ACQ at ¯x immediately implies the dual condition
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N̂Γ(x̄) = T lin
Γ (x̄)∗(= ∇q(x)∗NΘ(q(x̄))) known as theGuignard constraint qualification(GCQ). Hence

Proposition 3.4(i) ensures the second equality in (4.3) forall x∈ Γ nearx̄. We now show that the first
equality in (4.3) is also satisfied if in addition BEPP holds at x̄ and hence around this point.

Suppose by Definition 3.3 that (3.13) holds with someκ and that for allx ∈ U the gradients

(∇qi(x))i∈E are linearly independent. Fixx∈ Γ∩U andx∗ ∈ ∂δΓ(x) and then find sequencesxk
Γ
→x

andx∗k → x∗ with x∗k ∈ ∂̂ δΓ(xk) for all k. Sincexk ∈ U whenk is large, we getΛ(xk,x∗k) 6= /0 for the
set of multipliers and consequentlyE (xk,x∗k) 6= /0 for the collection of its extreme points. Picking
λ k ∈ E (xk,x∗k) for eachk gives us‖λ k‖ ≤ κ‖x∗k‖. Thus the sequence{λk} is bounded and converges
therefore to someλ ∈ R

l along a subsequence. We obviously haveλ ∈ NΘ(q(x)) and∇q(x)∗λ = x∗

showing thatx∗ ∈ ∂̂ δΓ(x). Since the opposite inclusion̂∂δΓ(x) ⊂ ∂δΓ(x) always holds, it tells us that
∂δΓ(x) = ∂̂ δΓ(x) for everyx∈ Γ∩U proving in this way the first equality in (4.3).

Considering the last statement of the proposition, observeeasily from the definitions thatδΓ is
subdifferentially continuous at ¯x for x̄∗ ∈ ∂δΓ(x̄) and that the epigraph ofδΓ is closed, i.e.,δΓ is l.s.c.
on R

n. Taking nowu,x ∈ Γ∩U andx∗ ∈ ∂δΓ(x), pick λ ∈ E (x,x∗) and get by BEPP (3.13) that
‖λ‖ ≤ κ‖x∗‖. Since〈λ ,q(x)〉 = 0, ∇q(x)∗λ = x∗, andλiqi(u)≤ 0 for i ∈ E∪ I , we conclude that

δΓ(u)−δΓ(x) = 0 ≥ 〈λ ,q(u)−q(x)〉 ≥ 〈λ ,∇q(x)(u−x)〉−
γ
2
‖λ‖ · ‖u−x‖2

≥ 〈x∗,u−x〉−
γ
2

κ‖x∗‖ · ‖u−x‖2,

whereγ := sup
{
‖∇2q(y)‖

∣∣ y∈U
}

. This verifies the prox-regularity (2.3) ofδΓ at x̄ for every sub-
gradient ¯x∗ ∈ ∂δΓ(x̄) and thus completes the proof of the proposition. △

As indicated by one of the referees, the prox-regularity ofδΓ under MSCQ in Proposition 4.2 can
be derived from [4, Theorem 31(b)], although the notion of MSCQ was not defined therein.

To proceed further, recall the definition of thecritical coneto Γ at (x,x∗) ∈ gph∂̂ δΓ given by

K(x,x∗) := TΓ(x)∩{x∗}⊥(4.4)

via the tangent cone (2.4) and define themultiplier set in a direction v∈ R
n by

Λ(x,x∗;v) := argmax
{〈

v,∇2〈λ ,q〉(x)v
〉∣∣ λ ∈ Λ(x,x∗)

}
.(4.5)

Note that (4.5) consists ofoptimal solutionsto a linear programover the feasible set of multipliers
(3.11). This “critical multiplier set” plays a crucial rolein our subsequent study of tilt stability.

The next proposition collects some properties of sets (4.4)and (4.5) needed in what follows.

Proposition 4.3 (critical cone and multipliers in critical directions under MSCQ). Let MSCQ
hold at x̄∈ Γ, and let(x,x∗) ∈ gph∂̂ δΓ be any pair such that x∈ Γ is sufficiently close tōx. Then the
following assertions are satisfied:

(i) For every multiplierλ ∈ Λ(x,x∗) we have

K(x,x∗) =

{
v∈ R

n
∣∣∣ 〈∇qi(x),v〉

{
= 0 if i ∈ E∪ I+(λ )
≤ 0 if i ∈ I (x)\ I+(λ )

}
.

(ii) There exist a multiplier̃λ ∈ Λ(x,x∗) with I+(λ̃ ) = I+ :=
⋃

λ∈Λ(x,x∗) I+(λ ) and some vector
v∈ K(x,x∗) satisfying the conditions

〈∇qi(x),v〉

{
= 0 if i ∈ E∪ I+(λ̃ ),
< 0 if i ∈ I (x)\ I+(λ̃ ).
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(iii) For every vector v∈ K(x,x∗) we haveΛ(x,x∗;v) 6= /0.

Proof. To verify the first assertion, we use the robustness of MSCQ byProposition 3.4(i) and
implication (3.10), which ensure thatT lin

Γ (x) = TΓ(x) for all x∈ Γ around ¯x. This yieldsΛ(x,x∗) 6= /0
and thus (i) follows from the observation thatv∈ K(x,x∗) if and only if

v∈ T lin
Γ (x) and 0= 〈x∗,v〉= ∑

i∈E∪I

λi〈∇qi(x),v〉 = ∑
i∈E∪I+(λ)

λi〈∇qi(x),v〉,

where the multiplierλ ∈ Λ(x,x∗) is chosen arbitrarily. Assertion (ii) follows from [11, Lemma 2].
To justify finally assertion (iii), we employ thedual second-order necessary condition for metric
subregularity from [8, Theorem 6.1] and obtain in this way that for everyv∈ T lin

Γ (x) ⊃ K(x,x∗) and
every λ ∈ NΘ(q(x)) with ∇q(x)∗λ = 0 it follows that 〈v,∇2〈λ ,q〉(x)v〉 ≤ 0. The latter inequality
implies that the linear optimization problem

maximize
〈
v,∇2〈λ ,q〉(x)v

〉
subject toλ ∈ Λ(x,x∗)(4.6)

admits an optimal solution, which exactly means thatΛ(x,x∗;v) 6= /0. △

5 Calculations of Second-Order Generalized Derivatives for NLPs

In this section we presentprecise calculationsof some generalized second-order derivative construc-
tions for the indicator functionδΓ of the feasible solution set (3.2) given by equality and inequality
constraints via the second-order derivatives of the constraint functionsqi as well as the critical cone
(4.4) and the set of multipliers in critical directions (4.5). The theorem below extends the recent results
by Gfrerer and Outrata [11] regarding the following major issues:

• It concerns not only inequality but also equality constraints in (3.1).
• It replaces a certain relaxed uniform metric regularity property in the vicinity of the reference

point employed in [11] by the weaker BEPP qualification condition imposed at this point.

Theorem 5.1(generalized second-order derivatives of the constraint indicator function under
MSCQ and BEPP). Givenx̄∈ Γ, assume that both MSCQ and BEPP hold atx̄. Then for any x∈ Γ
sufficiently close tōx and any regular subgradient x∗ ∈ ∂̂ δΓ(x) the following assertions hold:

(i) The tangent cone(2.4) to the graph of̂∂δΓ is calculated by

(5.1) Tgph∂̂ δΓ
(x,x∗) =

{
(v,v∗) ∈ R

2n
∣∣ ∃λ ∈ Λ(x,x∗;v) with v∗ ∈ ∇2〈λ ,q〉(x)v+NK(x,x∗ )(v)

}
.

(ii) Assume thatΛ(x,x∗; ·) is constant on K(x,x∗)\{0} and take an arbitrary multiplier

λ ∈

{
Λ(x,x∗;v) for v∈ K(x,x∗)\{0} if K(x,x∗) 6= {0},
Λ(x,x∗;0) otherwise.

(5.2)

Then we have the simplified tangent cone formula

(5.3) T
gph∂̂ δΓ

(x,x∗) =
{
(v,v∗) ∈ R

2n
∣∣ v∗ ∈ ∇2〈λ ,q〉(x)v+NK(x,x∗ )(v)

}
.

Furthermore, the regular normal cone(2.5) to the graph of̂∂δΓ is calculated by

(5.4) N̂
gph∂̂ δΓ

(x,x∗) =
{
(w∗,w) ∈ R

2n
∣∣ w∈ K(x,x∗), w∗ ∈ −∇2〈λ ,q〉(x)w+K(x,x∗)∗

}

with an arbitrary multiplierλ taken from(5.2).
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Proof. Consider the equivalent representation ofΓ obtained by replacing the equality constraints
with two inequalities, i.e., the following one:

(5.5) q̃i(x)≤ 0 for i = 1, . . . , l̃ , where l̃ := 2l1+ l2,

q̃i(x) :=





qi(x) if 1 ≤ i ≤ l1,

−qi−l1(x) if l1+1≤ i ≤ 2l1,

qi−l1(x) if 2l1+1≤ i ≤ 2l1+ l2.

It is easy to conclude from the metric subregularity description (3.8) that the modified constraint
mappingMq̃(x) := q̃(x)−R

l̃
− for (5.5) is metrically subregular at(x̄,0) if and only the original oneMq

from (3.6) has the same property at this point. Proceeding similarly to the proof of [11, Theorem 1]
while using the BEPP condition at ¯x (and hence at points nearby), we arrive at the representation

(5.6) Tgph∂̂ δΓ
(x,x∗) =

{
(v,v∗) ∈R

2n
∣∣ ∃ λ̃ ∈ Λ̃(x,x∗;v) with v∗ ∈ ∇2〈λ̃ ,q〉(x)v+NK(x,x∗)(v)

}
,

where the sets of multipliers̃Λ(x,x∗) andΛ̃(x,x∗;v) are defined as in (3.11) and (4.5), respectively,
but for the extended inequality system (5.5), i.e.,

Λ̃(x,x∗) :=
{

λ̃ ∈N
R̃l
−

(
q̃(x)

)∣∣∇q̃(x)∗λ̃ = x∗
}
, Λ̃(x,x∗;v) := argmax

{〈
v,∇2〈λ̃ , q̃〉(x)v

〉∣∣ λ̃ ∈ Λ̃(x,x∗)
}
.

The only essential difference from the proof of [11, Theorem1] is that now we need to justify the

following fact under the MSCQ and BEPP assumptions made: forany sequencesxk
Γ
→x andx∗k → x∗

with x∗k ∈ N̂Γ(xk) there exists aboundedsequence of multipliers̃λ k ∈ Λ̃(xk,x∗k) ask ∈ N. To verify
this, observe that BEPP together with MSCQ guarantees the existence of a sequenceλ k ∈ E (xk,x∗k)
satisfying the estimate‖λ k‖ ≤ κ‖x∗k‖ with some constantκ > 0 independent ofk∈N. Defining

λ̃ k
i+l1

:= λ k
i for i = l1+1, . . . , l ,

λ̃ k
i := λ k

i , λ̃ k
i+l1

= 0 for i = 1, . . . , l1 with λ k
i ≥ 0,

λ̃ k
i := 0, λ̃ k

i+l1
:=−λ k

i for i = 1, . . . , l1 with λ k
i < 0,

we getλ̃ k ∈ Λ̃(xk,x∗k) and‖λ̃ k‖= ‖λ k‖. It shows that the sequence{λ̃ k} is bounded, and so formula
(5.6) holds by [11, Theorem 1]. It is easy to see that the set onthe right-hand side of (5.1) is the same
as the one on the right-hand side of (5.6), which thus verifiesthe claimed representation (5.1).

To justify (5.3) and its dual version (5.4), note that for every pair 0 6= v1,v2 ∈ K(x,x∗) we have
Λ(x,x∗;v1) = Λ(x,x∗;v2) if and only if Λ̃(x,x∗;v1) = Λ̃(x,x∗;v2). Checking carefully the proof of
[11, Theorem 3] allows us to observe that the aforementionedrelaxed metric regularity assumption on
Mq̃ therein can be replaced by the validity of formula (5.6) verified above. Hence we can apply [11,
Theorem 3] to derive the tangent cone and regular normal conerepresentations

T
gph∂̂ δΓ

(x,x∗) =
{
(v,v∗)

∣∣ v∗ ∈ ∇2〈λ̃ , q̃)〉(x)v+NK(x,x∗)(v)
}
,

N̂gph∂̂ δΓ
(x,x∗) =

{
(w∗,w)

∣∣ w∈ K(x,x∗), w∗ ∈ −∇2〈λ̃ , q̃〉(x)w+K(x,x∗)∗
}
,

whereλ̃ is an arbitrarily fixed multiplier from̃Λ(x,x∗;v) for some 06= v∈ K(x,x∗) if K(x,x∗) 6= {0}
and fromΛ̃(x,x∗) = Λ̃(x,x∗;0) otherwise. The obtained formulas easily yield the claimed representa-
tions (5.3) and (5.4) and thus complete the proof of the theorem. △

It is worth mentioning that the trivial replacement of an equality by two inequalities as in (5.5)
usually does not provide valuable results. However, the imposed MSCQ and BEPP qualification
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conditions are so powerful, while being fairly nonrestrictive, that they allow us to do it as shown
above in the proof of Theorem 5.1.

The next result is a consequence of Theorem 5.1(i), which gives us an explicit estimate of the
combined second-order subdifferential(2.14) of the constraint indicator function, which is very in-
strumental in deriving efficient conditions for tilt-stable minimizers in NLPs; see Sections 6 and 7.

Corollary 5.2 (combined second-order subdifferential of the constraint indicator function). As-
sume that both MSCQ and BEPP are satisfied atx̄. Then there is a neighborhood U ofx̄ such that
for every(x,x∗) ∈ gph∂δΓ with x∈ U the following assertion holds: Given any pair(w,w∗) with
w∗ ∈ ∂̆ 2δΓ(x,x∗)(w), we have−w∈ K(x,x∗) and

(5.7) 〈w∗,w〉 ≥
〈
w,∇2〈λ ,q〉(x)w

〉
wheneverλ ∈ Λ(x,x∗;−w).

Proof. Let U be neighborhood of ¯x such that both MSCQ and BEPP hold for everyx ∈ Γ∩U .
Fix x∈ Γ∩U , x∗ ∈ ∂δΓ(x) and(w,w∗) with w∗ ∈ D̂∗∂δΓ(x,x∗)(w). By definition (2.8) of the regular
coderivative and representation (2.6) of the regular normal cone we have

(w∗,−w) ∈ N̂gph∂δΓ(x,x
∗) =

(
Tgph∂δΓ(x,x

∗)
)∗
.

It follows from Theorem 5.1 and Proposition 4.2 that

{0}×K(x,x∗)∗ ⊂ T
gph∂̂ δΓ

(x,x∗) = Tgph∂δΓ(x,x
∗).

This implies consequently the relationships

〈w∗,0〉+ 〈−w,v∗〉 ≤ 0 for all v∗ ∈ K(x,x∗)∗

and hence−w∈K(x,x∗). Fixing now any vectorλ ∈Λ(x,x∗;−w) and using (5.1) give us the inclusion
(−w,−∇2〈λ ,q〉(x)w) ∈ Tgph∂δΓ(x,x

∗), and so (5.7) is implied by

0≥ 〈w∗,−w〉+ 〈−w,−∇2〈λ ,q〉(x)w〉 =−〈w∗,w〉+
〈
w,∇2〈λ ,q〉(x)w

〉
,

which completes the proof of the corollary. △

The next proposition shows that the stronger CRCQ property yields the additional assumption in
Theorem 5.1(ii) and thus justifies the fulfillment of the simplified formulas (5.3) and (5.4) therein.

Proposition 5.3(calculating tangent and regular normal cones under CRCQ).Let CRCQ hold at
x̄∈ Γ. Then there is a neighborhood U ofx̄ such that for every x∈ Γ∩U and x∗,v∈ R

n satisfying
〈
∇qi(x),v

〉
= 0 whenever i∈ E∪ I+ with I+ :=

⋃

λ∈Λ(x,x∗)

I+(λ )(5.8)

the form〈v,∇2〈·,q〉(x)v〉 is constant onΛ(x,x∗). In particular, we haveΛ(x,x∗;v) = Λ(x,x∗), and
therefore representations(5.3)and (5.4)are satisfied.

Proof. The robustness of CRCQ allows us to proceed in what follows for anyx ∈ Γ from some
neighborhoodU of x̄. Consider the case ofΛ(x,x∗) 6= /0 (otherwise the assertion is trivial), fix any
v ∈ R

n with 〈∇qi(x),v〉 = 0, i ∈ E ∪ I+, and choose the maximal subsetJ of E∪ I+ such that the
gradients{∇qi(x)| i ∈ J} are linearly independent. Consider the equations

(5.9) qi
(
x+ tv+A∗z(t)

)
= 0, i ∈ J,
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where the rows of the|J|×n matrix A are given by the gradients∇qi(x), i ∈ J, and where the vectors
z(t)∈R

|J| for any fixedt ∈R are unknown. Att = 0 we have the trivial solutionz(0) = 0 to (5.9) while
the Jacobian matrix of this system with respect toz at t = 0 is the|J|× |J| matrix AA∗, which is in-
vertiblesince the rows ofA are linearly independent. Applying the classicalimplicit function theorem
ensures the existence oft̄ > 0 and aC1-smooth functionz : (−t̄, t̄)→ R

n satisfying the conditions

z(0) = 0, qi
(
x+ tv+A∗z(t)

)
= 0 for all i ∈ J, t ∈ (−t̄, t̄).

By settingx̃(t) := x+ tv+A∗z(t) and differentiating the system (5.9) with respect tot we obtain

0=
d
dt

qi
(
x̃(t)

)∣∣∣
t=0

=
〈
∇qi(x),v+A∗ d

dt
z(0)

〉
=

〈
∇qi(x),A

∗ d
dt

z(0)
〉
, i ∈ J,

showing thatAA∗ d
dt z(0) = 0 and therefored

dt z(0) = 0. Thus we arrive at the conditions

x̃(0) = x,
d
dt

x̃(0) = v, and qi
(
x̃(t)

)
= 0 for all i ∈ J, t ∈ (−t̄, t̄).

It follows from CRCQ that whent ∈ (−t̄, t̄) is sufficiently small, the index setJ is the maximal
subset ofE∪ I+ such that the gradients{∇qi(x̃(t))| i ∈ J} are linearly independent. Hence for every
index i ∈ (E∪ I+) \J and smallt ∈ (−t̄, t̄) the gradient∇qi(x̃(t)) can be represented as some linear
combination∑ j∈J ηi j (t)∇q j(x̃(t)) of ∇q j(x̃(t)), j ∈ J. Employing the standard chain rule tells us that

d
dt

qi
(
x̃(t)

)
=

〈
∇qi

(
x(t)

)
,

d
dt

x̃(t)
〉
= ∑

j∈J
ηi j (t)

〈
∇q j

(
x̃(t)

)
,

d
dt

x̃(t)
〉
= 0, i ∈ (E∪ I+)\J,

and consequently thatqi(x̃(t)) = 0 for all i ∈ E∪ I+ and smallt ∈ (−t̄, t̄). Since we also haveλ (1)
i =

λ (2)
i = 0 asi ∈ I\∈ I+ for anyλ (1),λ (2) ∈Λ(x,x∗), it follows that〈λ (1)−λ (2),q(x̃(t))〉= 0 if t ∈ (−t̄, t̄)

is small enough. Thus by taking into account that∇q(x)∗λ (1) = ∇q(x)∗λ (2) = x∗ we get

0 = lim
t→0

〈
λ (1)−λ (2),q

(
x̃(t)

)
−q(x)

〉

t2

= lim
t→0

〈
λ (1)−λ (2),∇q(x)

(
x̃(t)

)
−x

)〉
+ 1

2

〈
x̃(t)−x,∇2〈λ (1)−λ (2),q〉(x)

(
x̃(t)−x

)〉
+o

(
‖x̃(t)−x‖2

)

t2

=
1
2

〈
v,∇2〈λ (1)−λ (2),q〉(x)v

〉
,

which shows that the form〈v,∇2〈·,q〉(x)v〉 is constant onΛ(x,x∗) and henceΛ(x,x∗;v) = Λ(x,x∗).
Since every critical directionv∈ K(x,x∗) fulfills (5.8) by Proposition 4.3, the validity of the claimed
representations (5.3) and (5.4) follows. △

6 Pointbased Second-Order Sufficient Conditions for Tilt Stability

Consider anNLP problemof minimizing aC2-smooth functionϕ : Rn → R subject to the constraint
system (3.1), where the equality and inequality constraints are described byC2-smooth functions:

{
minimize ϕ(x) subject to
qi(x) = 0 for i ∈ E and qi(x) ≤ 0 for i ∈ I .

(6.1)
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Using the notation of the previous section, rewrite (6.1) inthe unconstrained format

(6.2) minimize f (x) on R
n, where f (x) := ϕ(x)+δΓ(x)

is an extended-real-valued objective. Applying Definition2.1 to the unconstrained problem (6.2), we
arrive at the notions of atilt-stable minimizerx̄ for (6.1), itsmodulusκ , and theexact bound of tilt
stability tilt (ϕ ,q, x̄) of the nonlinear program (6.1) at its tilt-stable minimizerx̄.

It immediately follows from the subdifferential and coderivative sum rules given in [22, Proposi-
tion 1.107 and Theorem 1.62], respectively, that

∂̂ f (x) = ∇ϕ(x)+ ∂̂δΓ(x), ∂ f (x) = ∇ϕ(x)+∂δΓ(x), and

∂̆ 2 f (x,x∗)(v) = ∇2ϕ(x)v+
(
D̂∗∂δΓ

)(
x,x∗−∇ϕ(x)

)
(v) wheneverx∈ Γ, x∗ ∈ ∂ f (x), v∈R

n

for the first-order and second-order subdifferential constructions in (2.1), (2.2), and (2.14). Further-
more, we deduce from the definitions of prox-regularity and subdifferential continuity due to Proposi-
tion 4.2 thatf in (6.2) possesses these properties at anyx∈ Γ close to ¯x for x∗ ∈ ∂ f (x) if both MSCQ
and BEPP qualification conditions are satisfied at ¯x.

By the elementary Fermat rule and sum rule for∂̂ f given above we obviously have that any local
minimizer x̄ for (6.1) fulfills the first-order necessary optimality condition

0∈ ∂̂ f (x̄) = ∇ϕ(x̄)+ ∂̂δΓ(x̄),

which can be equivalently written (provided that the GCQN̂Γ(x̄) = T lin
Γ (x̄)∗ holds, which is surely

the case by (3.10) when MSCQ is satisfied at ¯x) either asΛ(x̄,−∇ϕ(x̄)) 6= /0 for the set of Lagrange
multipliers (3.11), or—more explicitly—in terms of theKKT system

0= ∇xL (x̄,λ ) for some λ ∈ NΘ
(
q(x̄)

)
(6.3)

via the classicalLagrange functiondefined by

L (x,λ ) := ϕ(x)+ 〈λ ,q〉(x) for x∈R
n, λ ∈ R

l .(6.4)

To formulate our results on tilt stability, define the set ofextreme multipliers in critical directions

ΛE (x,x
∗;v) := Λ(x,x∗;v)∩E (x,x∗) for all (x,x∗) ∈ gphN̂Γ, v∈ K(x,x∗),(6.5)

which is the collection of extreme points of the multiplier set Λ(x,x∗) solving thelinear program
(4.6); see the above constructions ofE (x,x∗) andΛ(x,x∗;v)). It is well known in linear programming
thatΛE (x,x∗;v) 6= /0 if and only if both setsΛ(x,x∗;v) andE (x,x∗) are nonempty; in this case the set
ΛE (x,x∗;v) precisely reduces to all the extreme points of the convex polyhedronΛ(x,x∗;v) in (4.5).

Now we are ready to establish the major second-ordersufficientcondition for tilt stability in (6.1),
with a prescribed modulusκ > 0 and a constructive lower estimate for the exact bound of tilt stability
tilt (ϕ ,q, x̄), formulatedat the reference point ¯x∈ Γ. As the reader can see, this pointbased condition
is expressed via thestrong positive-definitenessof the Hessian of the Lagrange function (6.4) on the
subspace orthogonal to the gradients∇qi(x̄) for the equality and strict complementarity constraint
indexes (3.12) generated byextreme multipliersin all the critical directions (6.5) at(x̄,−∇ϕ(x̄)).
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Theorem 6.1(pointbased sufficient condition for tilt-stable minimizers in NLPs with prescribed
moduli). Given a feasible point̄x ∈ Γ and a numberκ > 0, suppose that MSCQ, BEPP, and the
first-order necessary optimality condition(6.3)are satisfied at̄x and that the second-order condition

〈
w,∇2

xL (x̄,λ )w
〉
>

1
κ
‖w‖2 whenever w6= 0 with 〈∇qi(x̄),w〉= 0, i ∈ E∪ I+(λ )(6.6)

holds for all the(finitely many) extreme Lagrange multipliers in critical directions

λ ∈ Λ̄E :=
⋃

06=v∈K(x̄,−∇ϕ(x̄))

ΛE

(
x̄,−∇ϕ(x̄);v

)
.(6.7)

Thenx̄ is a tilt-stable local minimizer for(6.1)with modulusκ . Furthermore, we have the estimate

tilt (ϕ ,q, x̄)≥ sup

{
‖w‖2

〈w,∇2
xL (x̄,λ )w〉

∣∣∣ λ ∈ Λ̄E , 〈∇qi(x̄),w〉= 0, i ∈ E∪ I+(λ )
}
≥ 0(6.8)

of the exact tilt stability bound of(6.1)at x̄ with the convention that0/0 := 0 in (6.8).

Proof. Employing Theorem 2.2 and Proposition 4.2, it suffices to show that the second-order
condition (6.6) withλ from (6.7) implies the validity of (2.17) for the functionf defined in (6.2).
Then the exact bound lower estimate (6.8) follows directly from (2.18) and (6.6).

Suppose on the contrary that (2.17) fails while (6.7) holds and then find sequencesxk → x̄ and
x∗k → 0 ask→ ∞ as well as(wk,w∗

k) ∈ gph∂̆ 2 f (xk,x∗k) such that

(6.9) 〈w∗
k,wk〉<

1
κ
‖wk‖

2 for all large k∈N.

Since(w∗
k,−wk) ∈ N̂gph∂δ f (xk,x∗k) andwk 6= 0 by (6.9), we may assume that‖wk‖ = 1 for all k and

select a subsequencewk → w with somew from the unit sphere ofRn. It follows from Corol-
lary 5.2 that−wk ∈ K(xk,y∗k) with y∗k := x∗k − ∇ϕ(xk). Further, we have by Proposition 4.3(iii)
that Λ(xk,y∗k;−wk) 6= /0, and thus the setΛE (xk,y∗k;−wk) is also nonempty for eachk ∈ N. Since
w∗

k −∇2ϕ(xk)wk ∈ (D̂∗∂δΓ)(xk,y∗k)(wk) by the above constructions and definition (2.14) of the com-
bined second-order subdifferential, we get from the crucial conclusion (5.7) of Corollary 5.2 that there
is a sequence ofλ k ∈ ΛE (xk,y∗k;−wk) satisfying the inequality

〈w∗
k−∇2ϕ(xk)wk,wk〉 ≥

〈
wk,∇2〈λ k,q〉(xk)wk

〉
,

which can be rewritten in terms of the Lagrange function (6.4) as

(6.10) 〈w∗
k,wk〉 ≥

〈
wk,∇2

xL (xk,λ k)wk
〉

with some λ k ∈ ΛE (xk,y
∗
k;−wk), k∈ N.

The imposed BEPP at ¯x ensures that the sequence{λ k} from (6.10) is bounded, and hence we findλ̄
so thatλ k → λ̄ for all k→ ∞ without loss of generality. It is easy to see thatλ̄ ∈ NΘ(q(x̄)) and that

∇q(x̄)∗λ̄ = lim
k→∞

∇q(xk)
∗λ k = lim

k→∞
y∗k =−∇ϕ(x̄)

telling us that̄λ ∈ Λ(x̄,−∇ϕ(x̄)). Let us show next that̄λ ∈ coE (x̄,−∇ϕ(x̄)).
Assuming the contrary gives us̄λ = λ e+λ r with λ e ∈ coE (x̄,−∇ϕ(x̄)) andλ r 6= 0 belonging to

therecession coneof Λ(x̄,−∇ϕ(x̄)), i.e.,λ r
i ≥ 0 for all i ∈ I and∇q(x̄)∗λ r = 0. Since

I+(λ r)⊂ I+(λ̄ )⊂ I+(λ k)⊂ I (xk)
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for the index sets (3.3) and (3.12) whenk is large and since the gradient family(∇qi(xk))i∈E∪I+(λ k) is
linearly independent, we haveλ r ∈ E (xk,∇q(xk)

∗λ r) for suchk. This clearly contradicts BEPP by

lim
k→∞

‖∇q(xk)
∗λ r‖

‖λ r‖
= 0,

and hence the claimed inclusion̄λ ∈ coE (x̄,−∇ϕ(x̄)) is verified.
Furthermore, due to the inclusionsI+(λ̄ ) ⊂ I+(λ k) and −wk ∈ K(xk,y∗k) for large k, we get

〈∇qi(xk),−wk〉 = 0 wheneveri ∈ E∪ I+(λ k) and thus conclude that〈∇qi(x̄),w〉 = 0 for all indexes
i ∈ E∪ I+(λ̄ ) by passing to the limit ask→ ∞. Combining (6.9) and (6.10) gives us

(6.11)
〈
w,∇2

L (x̄, λ̄ )w
〉
≤

1
κ
‖w‖2

by the limiting procedure with the limit pair(w, λ̄ ) constructed above.
Consider now the following two cases, which completely cover the situation. In thefirst case

suppose thatxk 6= x̄ for infinitely manyk and get(xk− x̄)/‖xk − x̄‖ → v by passing to a subsequence
if necessary. Taking into account thatI+(λ̄ )⊂ I+(λ k)⊂ I (xk) for largek, we get the relationships

〈
∇qi(x̄),v

〉
= lim

k→∞

qi(xk)−qi(x̄)
‖xk− x̄‖

{
= 0 if i ∈ E∪ I+(λ̄ ),
≤ 0 if i ∈ I (x̄)\ I+(λ̄ ),

which show that∇q(x̄)∗v∈ TΘ(q(x̄)), 0= 〈λ̄ ,∇q(x̄)v〉 = −〈∇ϕ(x̄),v〉, and sov ∈ K(x̄,−∇ϕ(x̄)) by
(4.4). Moreover,〈λ̄ ,q(xk)〉 = 0 whenk is sufficiently large, and the conditions〈λ − λ̄ ,∇q(x̄)〉 = 0,
〈λ ,q(xk)〉 ≤ 0 hold wheneverλ ∈ Λ(x̄,−∇ϕ(x̄)). Hence we have

0 ≥ 2limsup
k→∞

〈
λ − λ̄ ,q(xk)

〉

‖xk− x̄‖2 = 2limsup
k→∞

〈
λ − λ̄ ,q(xk)〉−

〈
λ − λ̄ ,q(x̄)

〉

‖xk− x̄‖2

= limsup
k→∞

〈
xk− x̄,∇2〈λ − λ̄ ,q〉(x̄)(xk− x̄)

〉

‖xk− x̄‖2 =
〈
v,∇2〈λ − λ̄ ,q〉(x̄)v

〉

showing that̄λ ∈ Λ(x̄,−ϕ(x̄);v). Sinceλ̄ ∈ coE (x̄,−∇ϕ(x̄)) by the above, it has the representation

λ̄ =
N

∑
j=1

β j µ j with µ j ∈ E
(
x̄,−∇ϕ(x̄)

)
, β j > 0,

N

∑
j=1

β j = 1(6.12)

for someN ∈ N. Taking into account that
〈
v,∇2〈µ j ,q〉(x̄)v

〉
≤

〈
v,∇2〈λ̄ ,q〉(x̄)v

〉
due to the definition

of Λ(x̄,−ϕ(x̄);v) in (4.5) and that

0=
N

∑
j=1

β j〈v,∇2〈µ j ,q〉(x̄)v
〉
−
〈
v,∇2〈λ̄ ,q〉(x̄)v

〉
,

we conclude that the following relationships are satisfied:
〈
v,∇2〈µ j ,q〉(x̄)v

〉
=

〈
v,∇2〈λ̄ ,q〉(x̄)v

〉
, and soµ j ∈ ΛE

(
x̄,−ϕ(x̄);v

)
for j = 1, . . . ,N.

The latter allows us to use the assumed second-order condition (6.6) for µ j , which implies that
〈w,∇2

xL (x̄, λ̄ )w〉> 1
κ ‖w‖2 by I+(µ j) ⊂ I+(λ̄ ) and hence contradicts (6.11). This justifies the state-

ment of the theorem in the first case under consideration.
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In the second casewe havexk 6= x̄ only for finitely manyk and so can suppose thatxk = x̄ for
all k ∈ N. Since−wk ∈ K(x̄,y∗k) as shown above, we easily get that−w ∈ K(x̄,−∇ϕ(x̄)) for the
limit point w. It follows now from [2, Theorem 5.3.2(2)] that̄λ ∈ Λ(x̄,−∇ϕ(x̄);−w). Representing
λ̄ ∈ coE (x̄,−∇ϕ(x̄)) as in (6.12) and using the same arguments as in the first case above, we arrive
at a contradiction with (6.11) and thus complete the proof oftheorem. △

Theorem 6.1 provides a pointbased second-order sufficient condition for tilt-stable local mini-
mizers of NLPs with aprescribed modulusκ > 0 via thestrong (involving the given modulusκ)
positive-definiteness of the Hessian∇2L (x̄, λ̄ ) in (6.6) over the subspace therein withλ from (6.7).
A natural question arises about the sufficiency of thepositive-definitenesscounterpart of (6.6) and
(6.7) for tilt stability of x̄ with no modulus specified, i.e., in the sense of Definition 2.1(i). The va-
lidity of this statement can be justified by using the device similar to the proof of Theorem 6.1 while
applying instead of Theorem 2.2 above (taken from [25, Theorem 3.5]) the characterization of tilt
stability in the sense of Definition 2.1(i) in the unconstrained format of optimization obtained in [32,
Theorem 1.3] via the positive-definiteness of the basic second-order subdifferential (2.13). However,
the desired result can be also deduced directly from Theorem6.1 as in the following corollary.

Corollary 6.2 (pointbased sufficient condition for tilt-stable minimizers in NLPs with no modu-
lus specified).Assume hat MSCQ, BEPP, and the first-order necessary optimality condition(6.3)are
satisfied at̄x and that the positive-definiteness condition

〈
w,∇2

xL (x̄,λ )w
〉
> 0 for all λ ∈ Λ̄E ,

〈
∇qi(x̄),w

〉
= 0, i ∈ E∪ I+(λ ), w 6= 0(6.13)

holds. Then there isκ > 0 such thatx̄ is a tilt-stable local minimizer with modulusκ for (6.1).

Proof. Since the set of extreme multipliers̄ΛE is finite as a subset of extreme points of a convex
polyhedron, it is possible to conclude that the positive-definiteness condition (6.13) implies its strong
counterpart (6.7) with the same vectorsλ . Indeed, the suitable modulusκ > 0 can be constructed
so thatκ−1 is the minimum of the minimal eigenvalues of the matricesA∗

i ∇2L (x̄,λ i)Ai , where the
columns ofAi form an orthonormal basis of the subspace

{
w∈ R

n
∣∣ 〈∇qi(x̄),w〉= 0, i ∈ E∪ I+(λ i)

}
with λ i ∈ Λ̄E .

The reader may proceed with more details if necessary. △

Note that the second-order sufficient conditions in both Theorem 6.1 and Corollary 6.2 trivially
hold and ensure tilt stability of ¯x if Λ̄E = /0, i.e., whenK(x̄,−∇ϕ(x̄)) = {0}. However, in this case we
can make a more precise statement, which corresponds to tilt(ϕ ,q, x̄) = 0 in (6.8).

Proposition 6.3(tilt stability with zero exact bound). Let MSCQ, BEPP, and the first-order neces-
sary optimality condition(6.3)hold atx̄∈ Γ. Suppose further that K(x̄,−∇ϕ(x̄)) = {0}. Then for all
γ > 0 sufficiently small there is a neighborhood V of the origin inR

n such that

Mγ(v
∗) =

{
x̄
}

for all v∗ ∈V,

where the argminimum mapping Mγ is defined in(2.15)with f given in(6.2).

Proof. The negation of this statement gives us a sequence ofγk ↓ 0 such that for every neighbor-
hoodV of 0∈ R

n there exists a vectorv∗ ∈V with Mγk(v
∗) 6= {x̄}. Using Theorem 6.1 and passing to

a subsequence if necessary, we can assume that for every fixedk∈ N there is a neighborhoodVk of 0
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on whichMγk is single-valued and Lipschitz continuous with modulusk−1. Hence for eachk we find
v∗k ∈Vk∩

γk
2 B andxk 6= x̄ with Mγk(v

∗
k) = {xk}. Then

‖xk− x̄‖ ≤
1
k
‖v∗k −0‖ ≤

1
2k

γk, k∈N,

which shows by definition (2.1) of the regular subdifferential that 0∈ ∂̂ ( f −〈v∗k, ·〉)(xk). By passing to
a subsequence again if needed, we get that(xk− x̄)/‖xk− x̄‖→ v for some unit vectorv∈R

n and that
MSCQ and BEPP hold atxk. This justifies the KKT form (6.3) of the stationary condition 0∈ ∂̂ ( f −
〈v∗k, ·〉)(xk) and also the existence of a convergent sequenceλk → λ̄ with λk ∈ E (xk,−∇ϕ(xk)+ v∗k).
Using the same arguments as in the proof of Theorem 6.1 yieldsλ̄ ∈ Λ(x̄,−∇ϕ(x̄)) and

〈
∇qi(x̄),v

〉
= lim

k→∞

qi(xk)−qi(x̄)
‖xk− x̄‖

{
= 0 if i ∈ E∪ I+(λ̄ ),
≤ 0 if i ∈ I (x̄)\ I+(λ̄ ),

which imply thatv∈ T lin
Γ (x̄) and−〈∇ϕ(x̄),v〉 = 〈λ ,∇q(x̄)v〉 = 0. This brings us to the contradiction

0 6= v∈ K(x̄,−∇ϕ(x̄) and thus completes the proof of the proposition. △

7 Necessary Conditions and Characterizations of Tilt Stability in NLPs

We start with establishing the necessity of the major second-order sufficient condition of Theorem 6.1
under additional assumptions involving eithernondegeneracy, or the notion of 2-regularity. The latter
notion was initiated (and named) by Tret’yakov [35] in the case of zero Jacobian and then was strongly
developed by Avakov [1] whom we mainly follow in the next definition. The symbol

[
∇2g(x̄)v,w

]

stands therein for thes-vector column with the quadratic form entries〈∇2gi(x̄)v,w〉, i = 1, . . . ,s, gen-
erated by the Hessians of all the componentgi of the mappingg: Rm → R

s.

Definition 7.1 (2-regularity). Let g: Rm→R
s be twice Fŕechet differentiable at̄x∈R

m. We say that
g is 2-REGULAR at the pointx̄ in the direction v∈R

m if for any p∈ R
s the system

(7.1) ∇g(x̄)u+
[
∇2g(x̄)v,w

]
= p, ∇g(x̄)w= 0

admits a solution(u,w) ∈ R
m×R

m.

Note that Avakov [1] used this notion only for directionsv satisfying the conditions∇g(x̄)v= 0
and[∇2g(x̄)v,v] ∈ rge∇g(x̄) for therangeof the derivative/Jacobian operator∇g(x̄).

Givenx̄∈ Γ, fix a tangent directionv∈ T lin
Γ (x̄) from the linearized constraint cone (3.4) and define

the subset of theactive inequalityconstraint indexes (3.3)in the direction vby

I (x̄;v) :=
{

i ∈ I (x̄)
∣∣ 〈∇qi(x̄),v〉= 0

}
.(7.2)

Introduce further the collection of2-regularity vectors in the direction v∈ T lin
Γ (x̄) by

Ξ(x̄;v) :=

{
z∈ R

n
∣∣∣
〈
∇qi(x̄),z

〉
+
〈
v,∇2qi(x̄)v

〉
{
= 0 for i ∈ E,

≤ 0 for i ∈ I (x̄)

}
(7.3)

and consider the corresponding collection ofactive inequality constraintindexes (7.2) in thisdirection

C (x̄;v) :=
{

C ⊂ I (x̄;v)
∣∣∣∃z∈ Ξ(x̄;v) with C =

{
i ∈ I (x̄;v)

∣∣ 〈∇qi(x̄),z
〉
+
〈
v,∇2qi(x̄)v

〉
= 0

}
.

22



The next result shows that 2-regularity of the constraint mapping at the reference point in the given
tangent direction built upon equality and “maximal” activeinequality constraints implies a certain
parametric LICQalong a feasible curve with the same active constraint indexes. In what follows we
understand amaximal elementof a subsetSin a partially ordered set in the usual sense of order theory,
i.e., as an element ofS that is not smaller than any other element inS. It is clear that forS= C (x̄;v)
below a maximal element (by inclusion “⊂”) always exists ifC (x̄;v) 6= /0, but it may not be unique.

Lemma 7.2(parametric LICQ from 2-regularity). Fix x̄∈ Γ, a tangent direction v∈ T lin
Γ (x̄) and a

maximal elementĈ of the index subset collectionC (x̄;v) defined above. Then the 2-regularity of the
constraint mapping(qi)i∈E∪Ĉ

at x̄ in the direction v implies that for every subsetC ⊂ Ĉ there exists
a numberτ̄ > 0 and a mappinĝx : [0, τ̄ ]→ Γ such that

x̂(0) = x̄, I
(
x̂(τ)

)
= C , lim

τ↓0

x̂(τ)− x̄
τ

= v,

and LICQ is satisfied at̂x(τ) for everyτ ∈ (0, τ̄).

Proof. It is done in [12, Proposition 4] for the case of inequality constraints, but the given proof
goes through by replacing each equality by two inequalitiesas in the proof of Theorem 5.1. △

Now we are ready to establish theno-gap necessityof the second-order sufficient condition in
Theorem 6.1 for tilt-stable minimizers with modulusκ > 0, where the strict inequality sign “>” in
(6.6) is replaced by “≥” under the extra alternative assumptions: eithernondegeneracy in critical
directions, or 2-regularity of the underlyingnarrow part of active constraints in critical directions.
Since the latter notion has been formulated in Definition 7.1, it remains to introduce the former one.

Definition 7.3 (nondegeneracy in critical direction). We say that a feasible solution̄x to problem
(6.1) NONDEGENERATES IN THE CRITICAL DIRECTIONv if the set of multipliersΛ(x̄,−∇ϕ(x̄);v)
from (4.5)at (x̄,−∇ϕ(x̄)) in the direction v is a singleton.

It is clear that this notion is a significant relaxation of thestandard notion of nondegeneracity in
NLP, which means that the whole set of Lagrange multipliersΛ(x̄,−∇ϕ(x̄)) from (3.11) is a singleton.

Theorem 7.4(no-gap necessary condition for tilt stability with prescribed moduli under either
nondegeneracy or 2-regularity). Let x̄ be a tilt-stable local minimizer with modulusκ > 0 for pro-
gram (6.1), and let both MSCQ and BEPP hold atx̄. Suppose further that for any nonzero critical
direction0 6= v∈ K(x̄,−∇ϕ(x̄)) from (4.4)one of the following assumptions is satisfied:

(a) either x̄ nondegenerates in the critical directions v,
(b) or for every extreme multiplierλ ∈ΛE (x̄,−∇ϕ(x̄);v) from (6.5)there exists a maximal element

Ĉ ∈ C (x̄;v) such that I+(λ ) ⊂ Ĉ for the strict complementarity index set(3.12)and that the narrow
active constraint mapping(qi)i∈E∪Ĉ

is 2-REGULAR at x̄ in the direction v.

Then we have the pointbased second-order necessary condition for tilt stability

〈
w,∇2

xL (x̄,λ )w
〉
≥

1
κ
‖w2‖ wheneverλ ∈ Λ̄E ,

〈
∇qi(x̄),w

〉
= 0, i ∈ E∪ I+(λ )(7.4)

with modulusκ and with the upper estimate of the exact bound of tilt stability of (6.1)at x̄ given by

tilt (ϕ ,q, x̄)≤ sup

{
‖w‖2

〈w,∇2
xL (x̄,λ )w〉

∣∣∣ λ ∈ Λ̄E , 〈∇qi(x̄),w〉= 0, i ∈ E∪ I+(λ )
}
< ∞(7.5)

under the convention that0/0 := 0 in (7.5).
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Proof. Suppose on the contrary that ¯x is a tilt-stable local minimizer with modulusκ while

〈
w,∇2

xL (x̄,λ )w
〉
<

1
κ
‖w2‖ for some λ ∈ Λ̄E and w∈ R

n with
〈
∇qi(x̄),w

〉
= 0, i ∈ E∪ I+(λ ),

which obviously yieldsw 6= 0. We now show that there exist a numberτ̄ > 0 and a mappinĝx : [0, τ̄ ]→
Γ such that̂x(0) = x̄, I (x̂(τ)) = I+(λ ), LICQ is fulfilled at x̂(τ) for everyτ ∈ (0, τ̄), and

lim
τ↓0

x̂(τ)− x̄
τ

= v,

where the nonzero critical direction 06= v∈ K(x̄,−∇ϕ(x̄)) is chosen such thatλ ∈ ΛE (x̄,−∇ϕ(x̄);v).
Observe that under the assumption made in (b) this follows from Lemma 7.2 withC = I+(λ ). Hence
it remains to consider only the case when

Λ
(
x̄,−∇ϕ(x̄);v

)
= ΛE

(
x̄,−∇ϕ(x̄);v

)
=

{
λ
}
.

Recall that by the definitionλ , it is a solution to the linear optimization problem (4.6) with x =
x̄ andx∗ = −∇ϕ(x̄). Then duality theory in linear optimization ensures the existence of astrictly
complementary dual solutionto (4.6), i.e., somez∈ R

n satisfying

〈
∇qi(x̄),z

〉
+
〈
v,∇2qi(x̄)v

〉
{
= 0 for i ∈ E∪ I+(λ ),
< 0 for i ∈ I (x̄)\ I+(λ ).

(7.6)

Taking into account that〈∇qi(x̄),v〉= 0 for i ∈ E∪ I+(λ ) gives us

qi

(
x̄+ τv+

τ2

2
z
)
= qi(x̄)+ τ

〈
∇qi(x̄),v

〉
+

τ2

2

(〈
∇qi(x̄),z

〉
+
〈
v,∇2qi(x̄)v

〉)
+o(τ2) = o(τ2)

wheneveri ∈ E ∪ I+(λ ). Sinceλ is an extreme point ofΛ(x̄,−∇ϕ(x̄)), the constraint gradients
{∇qi(x̄)| i ∈ E∪ I+(λ )} are linearly independent. Applying the Lyusternik-Gravestheorem on metric
regularity for smooth mappings, we find positive constantsγ andτ such that for everyτ ∈ [−τ̄, τ̄ ]
there is is curvêx(τ) satisfying the conditionsqi(x̂(τ)) = 0 for i ∈ E∪ I+(λ ) and

∥∥∥x̂(τ)−
(

x̄+ τv+
τ2

2
z
)∥∥∥≤ γ

∥∥∥
(

qi
(
x̄+ τv+

τ2

2
z
))

i∈E∪I+(λ)

∥∥∥= o(τ2).

Suppose without loss of generality that the gradients{∇qi(x̂(τ))| i ∈ E∪ I+(λ )} are linearly indepen-
dent for everyτ ∈ [−τ̄ , τ̄]. Then it follows from〈∇qi(x̄),v〉 ≤ 0 with i ∈ I (x̄)\ I+(λ ) that

qi
(
x̂(τ)

)
= qi

(
x̄+ τv+

τ2

2
z
)
+o(τ2)≤

τ2

2

(〈
∇qi(x̄),z

〉
+
〈
v,∇2qi(x̄)v

〉)
+o(τ2)< 0

for all i ∈I (x̄)\I+(λ ) andτ > 0 sufficiently small. Since we also haveqi(x̂(τ))< 0 wheni ∈ I \I (x̄)
andτ is small enough, it gives us the property

I
(
x̂(τ)

)
= I+(λ ) wheneverτ ∈ (0, τ̄),

this verifies the existence of the curvex̂(·) with the claimed properties.
Now we pick an arbitrary sequenceτk ↓ 0 ask→ ∞ with τk < τ̄ for all k and consider the vectors

xk := x̂(τk) andx∗k = ∇q(xk)
∗λ . Denote bywk the unique optimal solution to the quadratic program:

minimize ‖u−w‖2 subject to
〈
∇qi(xk),u

〉
= 0 for all i ∈ E∪ I+(λ ).(7.7)
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Employing standard arguments in such settings (see, e.g., in the proof of [16, Theorem 8.2]) shows
thatwk → w ask→ ∞. Moreover, it follows from Proposition 4.3(i) on the description of the critical
cone (4.4) and from the constraint structure in (7.7) that−wk ∈ K(xk,x∗k) and also that

N̂gph∂δΓ(xk,x
∗
k) = N̂

gph∂̂ δΓ
(xk,x

∗
k) =

{
(u∗,u)

∣∣ u∈ K(xk,x
∗
k), u∗ ∈ −∇2〈λ ,q

〉
(xk)u+K(xk,x

∗
k)

∗
}

by further applying Theorem 5.1 and Proposition 4.2. Therefore we get

(
∇2〈λ ,q〉(xk)wk,−wk

)
∈ N̂gph∂δΓ(xk,x

∗
k), and so∇2

xL (xk,λ )wk ∈ ∂̆ 2 f
(
xk,∇ϕ(xk)+x∗k

)
(wk).

Since∇ϕ(xk)+x∗k = ∇xL (xk,λ )→ 0 ask→ ∞, it follows from Theorem 2.2 that

〈
wk,∇2

xL (xk,λ )wk
〉
≥

1
κ
‖wk‖

2 for all large k∈ N.

By passing to the limit ask→ ∞, this clearly contradicts the assumption made at the beginning of the
proof of this theorem, and hence we arrive at the necessary condition (7.4) for tilt stability. The exact
bound estimate (7.5) easily follows from (7.4), and thus we are done. △

The next result is a consequence of Theorem 7.4 ensuring the necessity of the pointbasedpositive-
definitenesscondition (6.13) from Corollary 6.2 for tilt-stable minimizers of (6.1)with no modulus
specifiedunder the mild assumptions of Theorem 7.4.

Corollary 7.5 (pointbased necessary condition for tilt-stable minimizers in NLPs with no mod-
ulus specified).Let x̄ be a tilt-stable local minimizer of(6.1)under the assumptions of Theorem7.4.
Then the second-order positive-definiteness condition(6.13)is satisfied.

Proof. If x̄ is a tilt-stable minimizers of (6.1), then by Definition 2.1(i) applied to the functionf
from (6.2) there isκ > 0 such that ¯x is tilt stable for (6.1) with modulusκ as formulated in Defini-
tion 2.1(ii). Thus we get condition (7.4) by Theorem 7.4, which obviously implies (6.13). △

Now we are ready to presentcomplete characterizationsof tilt-stable minimizers for (6.1) with
and without prescribed moduli, which are combinations of the results obtained above while definitely
deserve to be formulated as a theorem. Moreover, the following theorem contains theprecise point-
based formulafor calculating the exact bound of tilt stability.

Theorem 7.6(second-order characterizations of tilt stability for NLPs under either nondegen-
eracy or 2-regularity). Let x̄ ∈ Γ be a feasible solution to(6.1) satisfying MSCQ, BEPP, and the
first-order optimality condition(6.3). Suppose further that for every0 6= v ∈ K(x̄,−∇ϕ(x̄)) either
assumptions in(a)or in (b) of Theorem7.4are also satisfied. Then the following assertions hold:

(i) Givenκ > 0, the pointx̄ is a tilt-stable minimizer of(6.1)with any modulusκ ′ > κ if and only
if the second-order condition(6.13)is fulfilled.

(ii) The pointx̄ is tilt-stable minimizer of(6.1) with some modulusκ > 0 if and only if we have
the positive-definiteness condition over the extreme multipliers formulated in(6.13).

Furthermore, the exact bound of tilt stability of(6.1)at x̄ is finite and calculated by

tilt (ϕ ,q, x̄) = sup

{
‖w‖2

〈w,∇2
xL (x̄,λ )w〉

∣∣∣ λ ∈ Λ̄E , 〈∇qi(x̄),w〉= 0, i ∈ E∪ I+(λ )
}
,

where we use the convention that0/0 := 0 as above.
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Proof. It follows from the combination of the results obtained in Theorem 6.1 and Theorem 7.4
for assertion (i) and in Corollary 6.2 and Corollary 7.5 for assertion (ii). △

Note that the second-order necessary conditions for tilt stability obtained above (and hence the
characterizations of Theorem 7.6) involves a certainnondegeneracyin critical directions—either ex-
plicitly assumed in Theorem 7.4(a), or via 2-regularity in Theorem 7.4(b) that reduces to nondegen-
eracy by Lemma 7.2. The next result shows that these nondegeneracy assumptions can be avoided if
our basic qualification conditions MSCQ and BEPP are replaced by the stronger CRCQ at the refer-
ence point. Observe that the pointbased second-order characterizations of tilt stability obtained in the
new setting are somewhat different from those in Theorem 7.4and are expressed via the set ofall the
Lagrange multipliers(3.11), while still being pointbased and constructive. It is also worth mentioning
that, in the absence of LICQ, the assumptions of Theorem 7.4(b) and Theorem 7.7 are strictlycom-
plementaryto each other. Indeed, the assumptions of Theorem 7.4(b) imply that the gradients of the
active inequality constraints arelinearly independent, while CRCQ imposed in Theorem 7.7 requires
its linear dependencearound the reference point.

In the new theorem presented below we exclude the case ofK(x̄,−∇ϕ(x̄)) = {0}, which has been
already considered in Proposition 6.3.

Theorem 7.7(second-order characterizations of tilt stability for NLPs under CRCQ). Let x̄∈ Γ
be a feasible solution to(6.1)satisfying CRCQ and the first-order optimality condition(6.3). Assume
further that the gradients of the equality constraints{∇qi(x̄)| i ∈ E} are linearly independent and that
K(x̄,−∇ϕ(x̄)) 6= {0} for the critical cone(4.4). Then the following assertions hold:

(i) Givenκ > 0, x̄ is a tilt-stable minimizer of(6.1)with any modulusκ ′ > κ if and only if

〈
w,∇2

xL (x̄,λ )w
〉
≥

1
κ
‖w‖2 for all λ ∈ Λ

(
x̄,−∇ϕ(x̄)

)
,
〈
∇qi(x̄),w

〉
= 0, i ∈ E∪ I+,(7.8)

where I+ is defined in(5.8)with x= x̄ and x∗ =−∇ϕ(x̄) while I+(λ ) is taken from(3.12). Moreover,
the latter is equivalent to the condition:

For every w∈R
n with

〈
∇qi(x̄),w

〉
= 0 as i∈ E∪ I+ there isλ ∈ Λ(x̄,−∇ϕ(x̄)) such that

〈
w,∇2

xL (x̄,λ )w
〉
≥

1
κ
‖w‖2.(7.9)

(ii) The pointx̄ is a tilt-stable minimizer of(6.1)without modulus specified if and only if

(7.10)
〈
w,∇2

xL (x̄,λ )w
〉
> 0 for all λ ∈ Λ

(
x̄,−∇ϕ(x̄)

)
, w 6= 0,

〈
∇qi(x̄),w

〉
= 0, i ∈ E∪ I+,

which is equivalent to positive-definiteness condition: for every 0 6= w ∈ R
n with 〈∇qi(x̄),w〉 = 0

whenever i∈ E∪ I+ there is a multiplierλ ∈ Λ
(
x̄,−∇ϕ(x̄)

)
such that

〈
w,∇2

xL (x̄,λ )w
〉
> 0.

In any of these cases the exact bound of tilt stability of(6.1)at x̄ is finite and calculated by

tilt (ϕ ,q, x̄) = sup

{
‖w‖2

〈w,∇2
xL (x̄,λ )w〉

∣∣∣ λ ∈ Λ
(
x̄,−∇ϕ(x̄)

)
, 〈∇qi(x̄),w〉= 0, i ∈ E∪ I+

}

with the convention that0/0 := 0 as above.

Proof. First we justify thesufficiencyof (7.8) for the tilt stability of ¯x with any modulusκ ′ > κ .
Pick anyλ̃ ∈ Λ(x̄,−ϕ(x̄)) with I+(λ̃ ) = I+ by Proposition 4.3(ii) and proceed similarly to the proof
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of Theorem 6.1. Suppose on the contrary that there are sequencesxk → x̄ and x∗k → 0 and pairs
(wk,w∗

k) ∈ gph∂̆ 2 f (xk,x∗k)(wk) satisfying

〈
w∗

k,wk
〉
<

1
κ ′
‖wk‖

2 for some κ ′ > κ and all k∈ N.(7.11)

Let y∗k, λ k, λ̄ , andw be chosen as in the proof of Theorem 6.1. SinceI+(λ̄ )⊂ I+(λ k)⊂ I (xk) for all
k sufficiently large and since we have the equality

(7.12) ∑
i∈E∪I+(λ̄)

(
λ̃i − λ̄i

)
∇qi(x̄)+ ∑

i∈I+\I+(λ̄)
λ̃i∇qi(x̄) = 0

by the definition ofI+(λ ) in (3.12), it follows from the result of Lu [20, Proposition 1] involving
CRCQ thatI+ ⊂I (xk), i.e., all the constraints fori ∈ I+ are active atxk. Hence the critical directions
−wk ∈ K(xk,y∗k) satisfy the relationships

〈
∇qi(xk),−wk

〉
= 0 if i ∈ E∪ I+(λ k) and

〈
∇qi(xk),−wk

〉
≤ 0 if i ∈ I (xk)\ I+(λ k)

for all largek, which readily ensure their limiting counterparts
〈
∇qi(x̄),−w

〉
= 0 if i ∈ E∪ I+(λ̄ ) and

〈
∇qi(x̄),−w

〉
≤ 0 if i ∈ I+ \ I+(λ̄ ).

By scalar multiplication of (7.12) andw with taking into account that̃λi > 0 if i ∈ I+ \ I+(λ̄ ) we get
〈
∇qi(x̄),w

〉
= 0 for i ∈ I+ \ I+(λ̄ ), and so

〈
∇qi(x̄),w

〉
= 0 for i ∈ E∪ I+.

Proceeding then as in the proof of Theorem 6.1 gives us a contradiction with (7.11) and thus verifies
the sufficiency part of this theorem with the lower estimate “≥” in the exact bound formula.

To prove next thenecessityof (7.8) for tilt stability in (i) and hence the upper estimate of tilt(ϕ ,q, x̄),
suppose on the contrary that ¯x is a tilt-stable local minimizer with modulusκ ′ for everyκ ′ > κ , but
there are vectorsλ ∈ Λ(x̄,−∇ϕ(x̄)) andw∈R

n\{0} satisfying

〈
w,∇2

xL (x̄,λ )w
〉
<

1
κ
‖w2‖ with

〈
∇qi(x̄),w

〉
= 0 for all i ∈ E∪ I+.(7.13)

We can clearly chooseκ ′ > κ so close toκ that inequality (7.13) holds and can suppose by Proposi-
tion 5.3 thatλ = λ̃ without loss of generality. Proposition 4.3(ii) allows us to select a critical direction
v∈ K(x̄,−∇ϕ(x̄)) satisfying the conditions

〈
∇qi(x̄),v

〉
= 0 for i ∈ E∪ I+ and

〈
∇qi(x̄),v

〉
< 0 for i ∈ I (x̄)\ I+.

Following the proof of Proposition 5.3 under CRCQ, we find aC1-smooth mapping̃x : (−t̄, t̄)→ R
n

with x̃(0) = x̄, d
dt x̃(0) = v, andqi(x̃(t)) = 0 wheni ∈ E∪ I+ andt ∈ (−t̄, t̄). This yields d

dt qi(x̃(0)) =
∇qi(x̄)v< 0 wheneveri ∈ I (x̄)\ I+, and thus̃x(t) ∈ Γ andI (x̃(t)) = I+ for all smallt > 0.

To complete the proof of this part, we proceed similarly to the case of Theorem 7.4 selecting
an arbitrary sequenceτk ↓ 0, settingxk := x̃(τk) andx∗k := ∇q(xk)

∗λ , and denoting bywk the unique
optimal solution to the quadratic optimization program:

minimize ‖u−w‖2 subject to
〈
∇qi(xk),u

〉
= 0 for all i ∈ J,

whereJ is a maximal subset ofE∪ I+ such that the gradient vectors{∇qi(x̄)| i ∈ J} is linearly in-
dependent. Thenwk → w as in the proof of Theorem 7.4, while the assumed CRCQ tells usthat
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〈∇qi(xk),wk〉 = 0 for all i ∈ E∪ I+ andk sufficiently large. Following again the arguments of the
latter theorem and taking into account thatΛ(x̄,−∇ϕ(x̄);v) = Λ(x̄,−∇ϕ(x̄)) by Proposition 5.3 valid
under CRCQ, we employ the regular normal cone representation (5.4) withλ from (5.2) and thus ar-
rive at a contradiction with (7.13), which establishes the “if and if” statement in (i). The equivalence of
(7.8) for the validity of (7.9) withsomeλ ∈ Λ(x̄,−∇ϕ(x̄)) follows immediately from Proposition 5.3.

Verifying finally assertion (ii), it remains to observe by Proposition 4.3(ii) that the positive-
definiteness condition (7.10) with the selectedλ̃ ∈ Λ(x̄,−∇ϕ(x̄)) from that proposition yields

〈
w,∇2

xL (x̄, λ̃ )w
〉
≥ µ‖w2‖ whenever

〈
∇qi(x̄),w

〉
= 0 as i ∈ E∪ I+

for this fixedλ̃ , where the numberµ is positive and is defined by

µ := inf{
〈
w,∇2

xL (x̄, λ̃ )w
〉∣∣ ‖w‖= 1,

〈
∇qi(x̄),w

〉
= 0, i ∈ E∪ I+

}
.

This completes the proof of the theorem by taking into account the discussions above. △

The final result of this section shows that, as far as second-order analysis is concerned, the point-
based sufficient condition (6.13) of Corollary 6.2 is alsonecessaryfor tilt stability in the sense of
Definition 2.1without either nondegeneracy or CRCQ requirements of Theorems 7.4 and 7.7. The
only assumption needed for this statement is the pointbasedSOSCMSproperty (4.1) by the first au-
thor [8] that has already been discussed in Section 4. The exact meaning of the theorem below is
that violating (6.13) at ¯x∈ Γ for the given NLP (6.1) yields the violation of tilt stability in a modified
NLP with the same cost function and the same values of the constraint functions and their first and
second derivatives at ¯x as in (6.1). Thus (6.13) is in fact anunimprovable pointbased characterization
of tilt-stable minimizers for NLPs withC2-smooth data under the mild SOSCMS assumption.

Theorem 7.8(pointbased second-order characterization of tilt stability under SOSCMS). Let
x̄∈ Γ satisfy the first-order optimality condition(6.3) in NLP (6.1)as well as SOSCMS in the form

(7.14)
[
λ ∈ NΘ

(
q(x̄)

)
, ∇q(x̄)∗λ = 0,

〈
u,∇2〈λ ,q〉(x̄)u

〉
≥ 0

]
=⇒ λ = 0.

Suppose further that the negation of(6.13)holds, i.e.,

〈
w,∇2

xL (x̄,λ )w
〉
≤ 0 for someλ ∈ Λ̄E and w 6= 0 with 〈∇qi(x̄),w〉= 0, i ∈ E∪ I+(λ ).

Then there exist C2-smooth functionŝqi : Rn → R as i= 1, . . . , l satisfying

q̂i(x̄) = qi(x̄), ∇q̂i(x̄) = ∇qi(x̄), and ∇2q̂i(x̄) = ∇2qi(x̄) for all i = 1, . . . , l

and such that̄x is not a tilt-stable local minimizer of the modified nonlinear program

(7.15) minimize ϕ(x) subject toq̂i(x) = 0 for i ∈ E and q̂i(x)≤ 0 for i ∈ I .

Proof. Take a critical direction 06= v∈K(x̄,−ϕ(x̄)) for whichλ ∈ ΛE (x̄,−∇ϕ(x̄);v) and suppose
without loss of generality that‖v‖ = 1. Recall by the definition ofΛE (x̄,−∇ϕ(x̄);v) in (6.5) thatλ
solves the linear program (4.6) withx= x̄ andx∗ =−∇ϕ(x̄). Consider now the problem

minimize
〈
∇ϕ(x̄),z

〉
subject to

〈
∇qi(x̄),z

〉
+
〈
v,∇2qi(x̄)v

〉
{
= 0, i ∈ E,

≤ 0, i ∈ I (x̄),
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which isdual to (4.6) withx= x̄ andx∗ = −∇ϕ(x̄). Sinceλ solves (4.6), classical duality in linear
programming ensures the existence ofz̃∈ R

n that solves the dual program and satisfies

〈
∇qi(x̄), z̃

〉
+
〈
v,∇2qi(x̄)v

〉
{
= 0, i ∈ E∪ I+(λ ),
≤ 0, i ∈ I (x̄)\ I+(λ ).

Denoting nowz= z̃+αv for someα > 0 sufficiently large, we have

〈
v,z

〉
> 0 and

〈
∇qi(x̄),z

〉
+
〈
v,∇2qi(x̄)v

〉
{
= 0, i ∈ E∪ I+(λ ),
≤ 0, i ∈ I (x̄)\ I+(λ ).

Furthermore, the reader can directly check the following inequalities:

1+2
〈
z,v〉〈x− x̄,v〉 ≥ 1−2

〈
z,v

〉
‖x− x̄‖> 0 whenever‖x− x̄‖< 2r with r :=

1

4
〈
z,v

〉 ,

1+2
〈
z,v〉〈x− x̄,v〉+64

〈
z,v

〉3(
‖x− x̄‖− r

)3
≥ 1−2

〈
z,v

〉
‖x− x̄‖+64

〈
z,v

〉3
r2(‖x− x̄‖− r

)

= 2
〈
z,v

〉
‖x− x̄‖> 0 whenever‖x− x̄‖ ≥ 2r.

These relationships allow us to define the real-valued function ϑ : Rn → R by

ϑ(x) :=
−1+

√
1+2

〈
z,v〉〈x− x̄,v〉+64

〈
z,v

〉3
max

{
‖x− x̄‖− r,0

}3

〈
z,v

〉 ,(7.16)

which is clearly twice continuously differentiable inRn satisfying the condition

ϑ
(

x̄+ tv+
1
2

t2z
)
=

−1+
√

1+2t
〈
z,v

〉
+ t2

〈
z,v

〉2

〈
z,v

〉 = t whenever
∥∥∥tv+

1
2

t2z
∥∥∥≤ r

together with∇ϑ(x̄) = v and∇2ϑ(x̄) = 〈z,v〉vv(∗), wherevv(∗) indicated the matrix multiplication of
the vector columnv∈ R

n by the vector rowv(∗). Consider next the index set

Î :=
{

i ∈ I (x̄;v)
∣∣ 〈∇qi(x̄),z

〉
+
〈
v,∇2qi(x̄)v

〉
= 0

}
⊃ I+(λ )

and by using (7.16) define the new constraint functions as follows

q̂i(x) :=





qi(x)−qi
(
x̄+ϑ(x)v+ 1

2ϑ(x)2z
)

for i ∈ E∪ I+(λ ),
qi(x)−qi

(
x̄+ϑ(x)v+ 1

2ϑ(x)2z
)
−‖x− x̄‖4 for i ∈ Î \ I+(λ ),

qi(x) for i ∈ I \ Î .

This gives us the following relationships with the originalconstraint functions:

∇q̂i(x̄) = ∇qi(x̄)−
〈
∇qi(x̄),v

〉
v= ∇qi(x̄),

∇2q̂i(x̄) = ∇2qi(x̄)−
(〈

v,∇2qi(x̄)v
〉
+
〈
∇qi(x̄),z

〉
−〈z,v〉〈∇qi(x̄),v〉

)
vv(∗) = ∇2qi(x̄)

wheneveri ∈ E∪ Î . Furthermore, for 0< t with 0< ‖tv+ 1
2t2z‖ ≤ r it holds

q̂i

(
x̄+ tv+

1
2

t2z
)
=

{
0 for i ∈ E∪ I+(λ ),
−‖tv+ t2z‖4 < 0 for i ∈ Î \ I+(λ ).
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SinceI \ Î can be partitioned into the setsI \I (x̄), I (x̄)\I (x̄;v), andI (x̄;v)\ Î with

qi(x̄)< 0 for I \I (x̄), qi(x̄) = 0,
〈
∇qi(x̄),v

〉
< 0 for i ∈ I (x̄)\I (x̄;v), and

qi(x̄) = 0,
〈
∇qi(x̄),v

〉
= 0,

〈
∇qi(x̄),z

〉
+
〈
v,∇2qi(x̄)v

〉
< 0 for i ∈ I (x̄;v)\ Î

and by the validity of the representation

q̂i

(
x̄+ tv+

1
2

t2b
)

= qi

(
x̄+ tv+

1
2

t2z
)
= qi(x̄)+ t

〈
∇qi(x̄),v

〉
+

t2

2

(〈
∇qi(x̄),z

〉

+
〈
v,∇2qi(x̄)v

〉)
+o(t2),

we conclude that̂qi(x̄+ tv+ 1
2t2z)< 0 for all i ∈ I \ Î and allt > 0 sufficiently small. It follows from

(7.14) that SOSCMS (4.1) is satisfied forq̂ with E2 = I2 = /0, and so Theorem 4.1 shows that both
MSCQ and BEPP holds at ¯x for the modified constraint system̂q(x) ∈ Θ with Θ from (3.2).

To complete the proof, pick an arbitrary sequencetk ↓ 0 ask→ ∞, denote

xk := x̄+ tkv+
1
2

t2
kz and x∗k := ∇q̂(xk)

∗λ ,

and then consider the unique solutionwk to the quadratic program (7.7) withq replaced bŷq. Using
the same arguments as in the proof of Theorem 7.4 gives us the convergencewk → w ask → ∞ and
the following relationships held for allk∈ N: −wk ∈ K̂(xk,x∗k),

N̂gph∂δΓ̂
(xk,x

∗
k) = N̂

gph∂̂ δΓ̂
(xk,x

∗
k) =

{
(u∗,u)

∣∣ u∈ K̂(xk,x
∗
k), u∗ ∈ −∇2〈λ ,q

〉
(xk)u+ K̂(xk,x

∗
k)

∗
}
,

and∇2
xL̂ (xk,λ )wk ∈ ∂̆ 2 f̂ (xk,∇ϕ(xk)+x∗k)(wk), where

Γ̂ :=
{

x∈ R
n
∣∣ q̂(x) ∈ Θ}, f̂ := ϕ +δΓ̂, L̂ (·,λ ) := ϕ + 〈λ , q̂〉,

and K̂ denotes the critical cone (4.4) generated by the aforementioned hat-constructions. Since we
obviously have∇ϕ(xk)+x∗k = ∇xL̂ (xk,λ )→ 0 ask→ ∞ as well as

lim
k→∞

〈
wk,∇2

xL̂ (xk,λ )wk
〉
=

〈
w,∇2

xL̂ (x̄,λ )w
〉
≤ 0,

it follows from Theorem 2.2 that ¯x is not a tilt-stable minimizer of (7.15), and we are done. △

8 Discussions and Examples

In this section we discuss some remarkable features of the obtained second-order sufficient conditions
and characterizations of tilt-stable minimizers in NLPs aswell as the imposed MSCQ and BEPP qual-
ification conditions, which ensure their validity. The presented examples reveal striking differences
between the new results and those known in the literature andalso illustrate new phenomena on tilt
stability that have not been observed earlier.

Recall that the firstcharacterizationof tilt-stable minimizers in NLPs is obtained in [29, Theo-
rem 5.2]under LICQin the pointbased form of the classicalSSOSC[33]:

〈
w,∇2

xL (x̄,λ )w
〉
> 0 wheneverw 6= 0 with 〈∇qi(x̄),w〉= 0 for all i ∈ E∪ I+(λ ),(8.1)

whereλ ∈ R
l is theuniqueLagrange multiplier satisfying the KKT system (6.3). It hasbeen well

recognized that the simultaneous fulfillment of LICQ and SSOSC is acharacterizationof Robinson’s
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strong regularity[33] for the variational inequality associated with KKT (6.3), and thus tilt stability of
the local minimizer ¯x in (6.1) isequivalentto strong regularity of ¯x in (6.3) under the validity of LICQ,
which is a necessary condition for strong regularity; see [29, Corollary 5.3] with the references and
discussions therein. All the examples presented below demonstrate that in the results obtained in this
paper in the absence of LICQ, which is surely not mandatory for tilt-stable minimizers, the property
of tilt stability is far removedfrom strong regularity while postulating nevertheless a nice behavior of
local minimizers from both qualitative and quantitative/numerical viewpoints.

It is shown in [27, Theorem 3.5] that SSOSC (8.1), assumed to hold for all the Lagrange multipli-
ers in (6.3), is still asufficientcondition for tilt-stable minimizers in NLPs with inequality constraints
when LICQ is relaxed to the simultaneous fulfillment of MFCQ and CRCQ at the reference point.
The subsequent result of [25, Theorem 4.3] provides a characterization of tilt-stable minimizers in the
same setting as in [27] while being expressed via thenon-pointbasedUSOSC discussed above in Sec-
tion 1. Furthermore, [25, Example 4.5] demonstrates that the pointbased SSOSCfails in this setting,
i.e., it cannot recognize a tilt-stable minimizer under MFCQ and CRCQ. It is worth mentioning to this
end that the major difference of SSOSC (8.1) from the similarly looking condition (7.10) is that the
positive-definiteness of the Hessian∇2

xL (x̄,λ ) in the latter one is required for thelarger index set
I+ from (5.8) independentof λ . Thus condition (7.10) is weaker than (8.1) providing apointbased
characterizationof tilt stability under the validity of CRCQ by Theorem 7.7 while SSOSC fails to do
it even under assuming in addition that MFCQ holds at this point.

We now show that the usage of the new sufficient condition (6.13) from Corollary 6.2, which
involves not all the Lagrange multiplies but only theextremeones incritical directionsλ ∈ Λ̄E from
(6.7), allows us to recognize a tilt-stable minimizer that does exist in [25, Example 4.5].

Example 8.1(pointbased recognizing tilt stability via extreme multipliers in critical directions
under MFCQ and CRCQ). Consider the following nonlinear program inR3:

minimize ϕ(x) :=
1
4

x1+x3+x2
3−x1x2 for x= (x1,x2,x3)

subject to q1(x) := x1−x3 ≤ 0, q2(x) :=−x1−x3 ≤ 0,
q3(x) := x2−x3 ≤ 0, q4(x) :=−x2−x3 ≤ 0.

It is easy to check that MFCQ and CRCQ hold at ¯x= (0,0,0), and thus both MSCQ and BEPP are
satisfied at ¯x by Proposition 3.4(ii). We can directly calculate that

Λ
(
x̄,−∇ϕ(x̄)

)
=

{
λ ∈ R

4
+

∣∣ λ1−λ2 =−
1
4
, λ4 = λ3, λ1+λ2+λ3+λ4 = 1

}
,

E
(
x̄,−∇ϕ(x̄)

)
=

{(
0,

1
4
,
3
8
,
3
8

)
,
(3

8
,
5
8
,0,0

)}
, and K

(
x̄,−∇ϕ(x̄)

)
=

(
0,0,0

)
.

Hence the second-order sufficient condition (6.13) is trivially fulfilled due to Λ̄E = /0, and thus it
recognizes tilt stability of the local minimizer ¯x in this example.

Remark 8.2 (other consequences of Example 8.1).Besides the main purpose of Example 8.1, it
allows us to illustrate some other remarkable phenomena on tilt stability.

(i) The tilt-stable minimizer ¯x in Example 8.1 cannot be recognized not only by SSOSC (8.1), but
also by itsrelaxed versioninvolving extreme multipliers:

〈
w,∇2

xL (x̄,λ )w
〉
> 0 wheneverλ ∈ Λ

(
x̄,−∇ϕ(x̄)

)
∩E

(
x̄,−∇ϕ(x̄)

)
,

0 6= w∈ R
n, and

〈
∇qi(x̄),w

〉
= 0 for all i ∈ E∪ I+(λ ),(8.2)
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which differs from our new condition (6.13) by omitting thecritical directions in the construction of
Λ̄E . Indeed, takingλ = (3

8,
5
8,0,0) ∈ Λ(x̄,−∇ϕ(x̄))∩E (x̄,−∇ϕ(x̄)) andw= (0,1,0) in the setting of

Example 8.1, we arrive at the relationships
〈
∇qi(x̄),w

〉
= 0 for i ∈ {1,2} = I+(λ ) while

〈
w,∇2

xL (x̄,λ )w
〉
= 0,

which show that the “non-critical” counterpart (8.2) of (6.13) fails at the tilt-stable minimizer ¯x.
(ii) Example 8.1 cannot be directly used to illustrate Theorem 7.7, since the critical cone is trivial

in this example while the opposite is assumed in the theorem.However, increasing the dimension
of the problem by adding the term12x2

4 to the cost function in Example 8.1 gives us an NLP with
K(x̄,−∇ϕ(x̄)) = (0,0,0)×R 6= {0} at the tilt-stable minimizer ¯x= 0 and such that the new condition
(7.10) holds while SSOSC (8.1) fails therein. Indeed, in this case we haveI+ = {1,2,3,4}, and
therefore[〈∇qi(x̄),w〉= 0 for all i ∈ I+] implies thatw= (0,0,0,w4) and

〈
w,∇2

xL (x̄,λ )w
〉
= w2

4 for
all λ ∈Λ

(
x̄,−∇ϕ(x̄)

)
, i.e., condition (7.10) is satisfied. On the other hand, we get I+(3/8,5/8,0,0) =

{1,2}, which shows the violation of (8.1) forw= (0,1,0,0).

The next example reveals the situation when both MFCQ and CRCQ fail at a local minimizer ¯x
while SOSCMS (4.1), and hence MSCQ and BEPP by Theorem 4.1, are satisfied at this point together
with the other assumptions of Theorem 7.6 ensuring therefore that the second-order condition (6.13)
provides a completepointbased characterizationof tilt stability for x̄.

Example 8.3(pointbased characterization of tilt stability under 2-regularity but without MFCQ
and CRCQ). Given a parameter pair(a,b) ∈ R

2, consider the following NLP inR3:

minimize ϕ(x) :=−x1+
a
2

x2
2+

b
2

x2
3 for x= (x1,x2,x3)

subject to q1(x) := x1−
1
2

x2
2 ≤ 0, q2(x) := x1−

1
2

x2
3 ≤ 0,

q3(x) :=−x1−
1
2

x2
2−

1
2

x2
3 ≤ 0.

(8.3)

Letting x̄= (0,0,0), it is easy to observe that both MFCQ and CRCQ are violated at ¯x while SOSCMS
(4.1) holds withE2 = I2 = /0 therein. To check the latter, pick any vectors 06= u = (u1,u2,u3) and
0 6= (λ1,λ2,λ3) ∈ NΘ(q(x̄)) satisfying∇q(x̄)u ∈ TΘ(q(x̄)) and 〈∇q(x̄),λ 〉 = 0 and then getu1 = 0,
λ1+λ2−λ3 = 0, λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0, and soλ3 = λ1+λ2 > 0. This gives us

〈
u,∇2〈λ ,q〉(x̄)u

〉
=−

(
λ1+λ3

)
u2

2−
(
λ2+λ3

)
u2

3 < 0

and thus verifies the validity of SOSCMS in this setting.
The corresponding set of multipliers (3.11) and its extremepoints are calculated by, respectively,

Λ
(
x̄,−∇ϕ(x̄)

)
=

{
λ ∈ R

3
+

∣∣ λ1+λ2−λ3 = 1
}
, E

(
x̄,−∇ϕ(x̄)

)
=

{
(1,0,0),(0,1,0)

}
.

The critical cone amounts toK(x̄,−∇ϕ(x̄)) = {0}×R×R, and for 06= v∈ K(x̄,−∇ϕ(x̄)) we have

Λ
(
x̄,−∇ϕ(x̄);v

)
=





(1,0,0) if v2
2 < v2

3,{
(λ1,λ2,0) ∈ R

3
+

∣∣ λ1+λ2 = 1
}

if v2
2 = v2

3,(
0,1,0

)
if v2

2 > v2
3.

This tells us thatΛ(x̄,−∇ϕ(x̄);v) is a singleton whenv2
2 6= v2

3, and thus we meet the assumptions
of Theorem 7.4(b) used also in Theorem 7.6 by showing that forevery 06= v∈ K(x̄,−∇ϕ(x̄)) with
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v2
2 = v2

3 and everyλ ∈ ΛE (x̄,−∇ϕ(x̄);v) = {(1,0,0),(0,1,0)} there is a maximal subset̂C of C (x̄;v)
such thatI+(λ ) ⊂ Ĉ and(qi)i∈E∪Ĉ

is 2-regular at ¯x in the directionv. To proceed, observe from the
above thatv1 = 0 andv2

2 = v2
3 6= 0 in our case and that the setΞ from (7.3) is

Ξ(x̄;v) =
{
(z1,z2,z3)

∣∣ z1−v2
2 ≤ 0, z1−v2

3 ≤ 0, −z1−v2
2−v2

3 ≤ 0
}
,

which gives usC (x̄;v) = { /0,{3},{1,2}}. Then we have that̂C = {1,2} is a maximal element of
C (x̄;v), I+(λ )⊂ Ĉ , λ ∈ {(1,0,0),(0,1,0)}, and for everyα ∈ R

2 the system

〈
∇q1(x̄),u

〉
+
〈
v,∇2q1(x̄)w

〉
= u1−v2w2 = α1,

〈
∇q1(x̄),w

〉
= w1 = 0,

〈
∇q2(x̄),u

〉
+
〈
v,∇2q2(x̄)w

〉
= u1−v3w3 = α2,

〈
∇q2(x̄),w

〉
= w1 = 0

has a solution(u,w), e.g., u = (α1,0,0) and w = (0,0,(α1 − α2)/v3). This verifies the required
2-regularity in Theorem 7.6, and so we can apply the tilt-stability characterizations therein. The
straightforward second-order calculation in the positive-definiteness condition (6.13) shows that ¯x is
a tilt-stable local minimizer in (8.3)if and only if a> 1 andb> 1. Furthermore, we can compute the
exact bound of tilt stability of ¯x in this program by tilt(ϕ ,q, x̄) = 1/min{a−1,b−1}.

Note finally that in this example SSOSC (8.1) fails at ¯x if a= b= 2, λ = (0,2,1) ∈ Λ(x̄,−∇ϕ(x̄)),
andw= (0,0,1). Indeed, we have then〈∇q2(x̄),w〉= 〈∇q3(x̄),w〉= 0 while 〈w,∇2

xL (x̄,λ )w〉=−1.

The next example demonstrates that the additional assumptions of Theorem 7.6 (taken from The-
orem 7.4) ensuring thenecessityof the second-order sufficient condition (6.13) for tilt-stable mini-
mizers,cannot be droppedeven under the validity of MFCQ.

Example 8.4(nondegeneracy and 2-regularity are essential for pointbased characterizing tilt-stable
minimizers). Consider the the following NLP inR3:

minimize ϕ(x) :=−x1+
1
2

x2
2, x= (x1,x2,x3),

subject to q1(x) := x1+x2
3 ≤ 0, q2(x) := x1 ≤ 0.

(8.4)

We obviously have thatMFCQ holdsat x̄ = (0,0,0), and hence both MSCQ and BEPP assumed in
Theorem 6.1 are satisfied at this point. Since the second constraint in (8.4) is clearly redundant, we can
consider the equivalent version of this problemwithout the latter constraint and easily deduce from
Theorem 6.1 that ¯x is a tilt-stable minimizer in it with modulusκ = 1. However, applying Theorem 6.1
to the original (“full”) version of (8.4) shows that the second-order sufficient condition (6.13) fails,
and so we cannot make a conclusion about tilt stability of ¯x in (8.4) by using this theorem. Indeed,
takingv= (0,1,0), λ = (0,1), andw= (0,0,1) gives us

v∈ K
(
x̄,−∇ϕ(x̄)

)
=

{
v∈ R

3
∣∣ v1 = 0

}
, λ ∈ ΛE

(
x̄,−∇ϕ(x̄);v

)
=
{
(1,0),(0,1)

}
,

I+(λ ) =
{

2
}
,
〈
∇q2(x̄),w

〉
= 0, and

〈
w,∇2

xL (x̄,λ )w
〉
= 0,

which shows that the sufficient condition (6.13) for tilt stability is not fulfilled at x̄. The reason
is that the additional assumption of Theorem 7.4 ensuring the necessity of (6.13) for tilt stability
are not satisfied here. To see this, observe that the set of Lagrange multipliers (4.5) in the critical
directionv is not a singleton(i.e., x̄ degenerates in this direction), which violates the assumption in
Theorem 7.4(a). Furthermore, the set of active inequality constraint indexes (7.2) in this direction is
C (x̄;v)= { /0,{1,2}}, which shows that the2-regularityassumption of Theorem 7.4(b) is also violated.
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The last example in this section is a modification of Example 8.4 illustrating the phenomenon
on tilt stability revealed in Theorem 7.8, which shows that there are two NLPs with the same cost
function and the same values of the constraints functions and their derivatives up to the second order
at the reference point such that this point satisfies SOSCMS and gives a tilt-stable local minimum
for one program but not for the other one. The example presented below illustrates this phenomenon
under MFCQ (which is stronger than SOSCMS) in the case where the constraint functions and their
derivatives up the third order are the same in at the point in question. Actually this example can be
further modified to exhibit the aforementioned phenomenon under the validity of MFCQ in the case
where the constraint functions and their derivative ofany orderare the same at the reference point.

Example 8.5(pointbased characterizations of tilt stability are not possible under MFCQ alone).
Consider the following NLP inR3, which differs from (8.4) by the term−x4

2 in the functionq1(x):

minimize ϕ(x) :=−x1+
1
2

x2
2, x= (x1,x2,x3),

subject to q1(x) := x1−x4
2+x2

3 ≤ 0, q2(x) := x1 ≤ 0.
(8.5)

We obviously have that MFCQ holds at ¯x= (0,0,0) in (8.5) and the values of the constraint functions
and their derivatives up to the third order at ¯x are same in (8.4) and (8.5). As shown in Example 8.4, ¯x
is a tilt stable minimizer of (8.4) while the second-order sufficient condition (6.13) fails for ¯x in (8.4).

To verify thatx̄ is nota tilt-stable minimizer for NLP in (8.5), pick the same elementsv= (0,1,0),
λ = (0,1), andw= (0,0,1) as in Example 8.4 and then, according to Definition 2.1 of tiltstability
and its adjustment for NLPs in Section 6, consider the problem

minimize −x1+
1
2

x2
2−ux2 subject tox1−x4

2+x2
3 ≤ 0, x1 ≤ 0

with only one tilt parameteru ∈ R in this case. For eachu 6= 0 the latter parametric optimization
problem has two distinct solutions(0,u,±u2), which excludes the validity of tilt stability of ¯x in (8.5).

Note that we can also construct an NLP equivalent (in the second-order) to (8.4) but without tilt
stability atx̄ by using the proof of Theorem 7.8. Indeed, letz= v= (0,1,0) and thus get the functions

q̂1(x) = x1+x2
3−

(
x2

1+x2
2+x2

3

)2
and q̂2(x) = x1

in the proof therein, wherêq1 is surely more complicated in comparison with (8.5).

Remark 8.6 (tilt stability and critical multipliers). Finally in this section, we discuss somenu-
merical consequencesof the obtained results on tilt stability. This concerns relationships between tilt
stability of local minimizers in NLPs and the so-calledcritical minimizersthat have been recently
discovered and then strongly investigated in the excellentbook by Izmailov and Solodov [14]. It is
shown in [14] that critical multipliers, which may appear even in the case of unique multipliers under
LICQ, are largely responsible forslow convergenceof major primal-dual numerical algorithms includ-
ing Newton and Newton-type methods, the augmented Lagrangian method, the sequential quadratic
programming method, etc. Therefore it is highly desired from the numerical viewpoint torule outthe
existence of critical multipliers and so to be able making such a conclusion based on theinitial data
of the NLP in question. These and related issues have been discussed in the recent comments of the
second author [23] on the survey by Izmailov and Solodov devoted to critical multipliers, which is
based on their book [14]. It isconjecturedin [23] that under appropriate qualification conditions tilt
stability excludes the existence of critical multipliers.
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The results obtained in this paper shed light on this conjecture and its consequences for primal-
dual algorithms of numerical optimization. Indeed, it can be derived from [25, Theorem 4.3] that
the simultaneous validity of MFCQ and CRCQ (and surely in thecase of LICQ) at the given tilt
minimizer x̄ ensures that critical multipliersdo not appearat x̄, i.e., the above conjecture is valid
in this setting. Thus the pointbasednecessaryconditions for (as well as the characterizations of)
tilt-stable minimizers established in Section 7 allow us toexclude, under the validity of MFCQ and
CRCQ at ¯x, undesired behavior of the aforementioned numerical algorithms. Observe, in particular,
that our major pointbased second-order condition (6.13), which characterizes the tilt stability of ¯x by
Theorem 7.6(ii) via the positive-definiteness of the Hessian of the Lagrange function only forextreme
multipliers incritical directions(6.7), tells us now thatall the Lagrange multipliers arenoncritical at
x̄ in the sense of [14] in this rather general setting.

On the other hand,MFCQ alonedoes not allow us to exclude the existence of critical multipliers
at tilt stable minimizers. It happens, in particular, in thesetting of Example 8.4 under MFCQ and also
in Example 8.3 under the weaker SOSCMS. Alexey Izmailov (private communication) informed us
about a two-dimensional example admitting theuniquecritical Lagrange multiplier under the validity
of MFCQ (but not LICQ) at a tilt-stable minimizer. Thus the question remains on what (weaker than
CRCQ) should be added to MFCQ, or even what can replace MFCQ and CRCQ together, to ensure
that tilt stability excludes critical multipliers at the reference local minimizer.

9 Open Questions and Further Research

It seems to us that this paper basically clarifies the situation with second-order necessary and sufficient
conditions for tilt-stable local minimizers in finite-dimensional NLPs, and not much is expected to be
added to this theory. However, principal questions remain about using the obtained results and the very
notion of tilt stability innumerical optimizationincluding, in particular, more work on relationships
between tilt stability and critical multipliers discussedat the end of Section 8. Challenging issues
arise on infinite-dimensional (mainly Hilbert space) extensions of the obtained pointbased characteri-
zations and also on establishing appropriate counterpartsof the NLP tilt stability theory above in other
remarkable classes of constrained optimization, particularly for problems ofconic programming.

Among the most natural topics of the future research we mention developing a comprehensive
theory of full stability for local minimizers in NLPs as well as in other classes of constrained opti-
mization and variational problems. The notion of full stability was introduced by Levy, Poliquin and
Rockafellar [17] in the extended-real-valued framework ofunconstrained optimization as a far-going
generalization of tilt stability. Recently it has been largely extended to various classes of constrained
optimization problems in [24, 26, 28, 30, 31]. However, mostof the results obtained in these papers
imposenondegeneracyassumptions (analogs of LICQ) on the corresponding constraints. The only
exception is [24], where neighborhood characterizations of full stability in NLPs are obtained under
the simultaneous validity of partial versions of MFCQ and CRCQ. A major goal of the future research
is to extend the theory of tilt stability developed in this paper to the case of fully stable local min-
imizers in NLPs. Note that full stable minimizers seem to be more appropriate to rule out critical
multipliers according to the second conjecture in [23].
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[10] H. GFRERER, D. KLATTE, Lipschitz and Ḧolder stability of optimization problems and gener-
alized equations, Math.Program., Ser. A, DOI 10.1007/s10107-015-0914-1.

[11] H. GFRERER AND J. V. OUTRATA, On computation of generalized deriva-
tives of the normal-cone mapping and their applications, submitted (2014);
http://www.numa.uni-linz.ac.at/publications/List/2014/2014-01.pdf.

[12] H. GFRERER AND J. V. OUTRATA, On computation of limiting coderivatives of the
normal-cone mapping to inequality systems and their applications, Optimization, DOI
10.1080/02331934.2015.1066372

[13] R. HENRION AND J. V. OUTRATA, Calmness of constraint systems with applications, Math.
Program., 104 (2005), pp. 437–464.

[14] A. F. IZMAILOV AND M. V. SOLODOV, Newton-Type Methods for Optimization and Variational
Problems, Springer, New York, 2014.

36

http://www.numa.uni-linz.ac.at/publications/List/2014/2014-01.pdf


[15] R. JANIN , Directional derivative of the marginal function in nonlinear programming, Math.
Program. Studies, 21 (1984), pp. 110–126.

[16] D. KLATTE AND B. KUMMER, Nonsmooth Equations in Optimization. Regularity, Calculus,
Methods and Applications, Kluwer Academic Publishers, Dordrecht, 2002.

[17] A. B. LEVY, R. A. POLIQUIN AND R. T. ROCKAFELLAR, Stability of locally optimal solutions,
SIAM J. Optim., 10 (2000), pp. 580–604.

[18] A. S. LEWIS AND S. ZHANG, Partial smoothness, tilt stability, and generalized Hessians, SIAM
J. Optim., 23 (2013), pp. 74–94.
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