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Complete Characterizations of Tilt Stability in Nonlinear
Programming under Weakest Qualification Conditions
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Abstract. This paper is devoted to the study of tilt stability of locainimizers for classical nonlinear
programs with equality and inequality constraints in fidimensions described by twice continuously differ-
entiable functions. The importance of tilt stability hagbevell recognized from both theoretical and numerical
perspectives of optimization, and this area of researcldt@gn much attention in the literature, especially in
recent years. Based on advanced techniques of variatioablsas and generalized differentiation, we derive
here complete pointbased second-order characterizatidifisstable minimizers entirely in terms of the initial
program data under the new qualification conditions, whiehtlae weakest ones for the study of tilt stability.
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1 Introduction

The notion oftilt-stable local minimizersvas introduced by Poliquin and Rockafellar][32] for prob-
lems of unconstrained optimization with a general extendedtvalued objective function, which
implicitly incorporates constraints via the indicator ftion of the feasible region. Motivated by
the justification of convergence properties, stoppingeaddt and robustness of numerical algorithms,
the authors ofi[32] suggested to study and characterizeusbybitrary local minimizers but those
which behave nicely with respect to linear perturbatioliedithe objective function in one direction
or another; namely, minimizers that remain locally uniqad &aipschitz continuous under small per-
turbations of the aforementioned type. Tilt stability hdisaated strong attention in the literature,
particularly in recent years; see, e.9l,[I3,15,16, 7/ 17| 5822 29[ 36] and the references therein.

In [32], Poliquin and Rockafellar obtained a characternmabf tilt-stable local minimizers for a
large class of prox-regular extended-real-valued funstida the positive-definiteness of thegcond-
order subdifferential/generalized Hessianthe sense of Mordukhovich [21]; see Section 2. Based
on this result and the newly developed second-order caaulies, Mordukhovich and Rockafellar
[29] derived a characterization of tilt-stable local mimmers for nonlinear programs (NLPs) with
C?-smooth data assuming thieear independence constraint qualificati¢nlCQ). Under this non-
degeneracy assumption, the characterization of tilt litabvas expressed if_[29] via Robinson’s
strong second-order sufficient conditig@SOSC)[[33] formulated entirelgt the local minimizer in
question; such conditions are callpdintbasedknown also apointwisg in what follows. They are
surely much more preferable for applications thanrteigthborhoodconditions discussed below.
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In the further lines of research, Mordukhovich and Nghig] jaEoduced the notion of tilt-stable
local minimizers withmodulusk > 0 for an extended-real-valued objective function and @ekiv
by developing a nevdual-spaceapproach to tilt stability, a characterization of such mmizers in
terms of the so-calledombined second-order subdifferent{gkee Section 2) via a strong positive-
definiteness condition involving. Itis shown in[25] that the obtained characterization meguto the
one in [32] when the modulus is not an issue, and also that the aforementioned resulbbfdads to
a new characterization of tilt-stable local minimizers fidrPs withC2-smooth inequality constraints
without imposing LICQ. Namely, the LICQ assumption was weradd in [25] by the simultaneous
fulfillment of the Mangasarian-Fromovitz constraint qualificatiqfMFCQ) and theconstant rank
constraint qualificationfCRCQ) conditions, while the characterization of tiltid&alocal minimizers
was given in this setting via the newniform second-order sufficient conditiggd SOSC). The new
USOSC is shown in [25] to be strictly weaker than SSOSC, wigiag reduced to the latter under the
validity of LICQ. However, in contrast to LICQ, MFCQ, and SSO, the formulations of CRCQ and
USOSC are not pointbased depending on pointsriaighborhoocf the reference local minimizer.

As demonstrated by simple examples (see Section 8), theigatiun of MFCQ and CRCQ
constitutes a setting, which is not fully satisfactory foe tstudy of tilt-stable minimizers and may
exclude from consideration important situations whenstidtble minimizers exist and can be recog-
nized. Furthermore, the obtained USOSC characterizati26i] is a neighborhood condition but not
a pointbased one. On the other hand, the results below staiwrtkder the MFCQ assumpti@hone
a pointbased second-order characterization of tilt stalié not possiblewhich means that there are
two NLPs with the same derivatives up to the second ordereateference point satisfying MFCQ
but such that one problem admits a tilt-stable minimizeht point while the other one doesn't.

To go forward in this paper, we dispense with MFCQ and alsb ®@RRCQ by replacing them, in
the general case of bo@?-smoothinequalityandequality constraints in NLPs, with another pair of
constraint qualifications such that the simultaneous fiuéht of these conditions strictly weaker
than the validity ofeachof the conditions MFCQ and CRCQ and thus of their combinatitime first
of these new assumptions/qualification conditions, calednetric subregularity constraint qualifi-
cation (MSCQ), weakens the property of metric regularity for thastoaint NLP mappinground
the reference minimizer (the latter property is known to Qeialent to MFCQ of this mapping at
the point in question) by its metrisulregularity at this point. This assumption has been recently
employed in the papers by Gfrerer and Outrata [11, 12] foluewimg generalized derivatives of the
normal cone mapping to inequality systems. An effectivafii@ised condition for its validity in terms
of the first-order and second-order derivatives of the iaéityuconstraint functions was introduced
earlier by Gfrerer([B] as theecond-order sufficient condition for metric subregulafEOSCMS).

The other qualification condition coupled here with (andejmeindent of) MSCQ appears for the
first time in this paper under the name of theunded extreme point propertBEPP) of the NLP
constraint system. Although it is formulated at the refeeesolution, neighborhood points are used
in the definition as well. Being much weaker than MFCQ and CRGI9 new qualification condition
is also implied by the aforementioned SOSCMS property, iwlicompletely pointbased.

Involving only the weakest qualification conditions MSCQaBEPP, the main results of the
paper providepointbased second-order characterizatiaoftilt-stable minimizers for general NLPs
with C?-smooth equality and inequality constraints entirely imrte of their initial data. These char-
acterizations are given as follows: first we derive poingliesifficientconditions for tilt-stable min-
imizers in full generality and then show that they are alecessaryfor tilt stability under some
additional assumptions. The major sufficient conditiontilbistable minimizers is formulated via the
strong positive-definitenegdepending on modulus > 0 of tilt stability and beingnuch weakethan
SSOSC) of the Hessian of the Lagrange function by using araidrrow subset axtreme pointsf
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the collection of those Lagrange multipliers, which areusohs to a certain linear program associ-
ated withcritical directions Thenecessityof the second-order conditions is justified under different
additional assumptions: eithaondegeneracyn critical directions, or the so-calle®-regularity, or
CRCQ Furthermore, we show that even without these extra assomspthe aforementionesluffi-
cient conditions becom@ecessaryn a slightly modified problem with the same cost function and
constraints reducing to the original ones together witlir thiest and second derivatives at the refer-
ence minimizers. We also provide theantitative evaluatiorfestimates and exact formulas) of the
corresponding moduli. All of this allows us to conclude tktizd obtained second-order pointbased
characterizations of tilt-stable minimizers in NLPs acnplete

The rest of the paper is organized as follows. Section 2 ptesmme basic constructions and
properties of variational analysis and generalized difiéation widely used in the main body of the
paper. We also formulate here the notiortittfstable minimizersand itsneighborhood characteriza-
tion in the unconstrained extended-real-valued format of dpétion.

Section 3 is devoted tqualification conditiondor NLPs with smooth inequality and equality
constraints. We define here the main MSCQ and BEPP conditindsestablish their connections
with constraint qualifications well recognized in nonlingaogramming and used in the paper. The
next Section 4 involves from one side soserond-order analysi® better understand both MSCQ
and BEPP for NLPs witle2-smooth data, while from the other side it demonstratesrafgignt role
of these qualification conditions to get the desired pragef the indicator function of the constraint
set and also to describe thetical coneto this set and the collection of Lagrange multipliersiittical
directionsneeded for the subsequent second-order analysis ofdiitestninimizers.

Section 5 contains important results on the precise cdlonlander the imposed weakest quali-
fication conditions MSCQ and BEPP of some second-order gbéred differential constructions for
sets of feasible solutions to NLPs wiflf-smooth inequality and equality constraints via theiriait
data. These results, being certainly of their own inter@®t,used in this section for evaluating some
second-order terms crucial for the subsequent charaatieris of tilt-stable minimizers. Note that
the obtained calculating formulas not only extend the spoeding results of [11] to programs with
equality constraints, but also replace a certain relaxemicmegularity condition used in[11] for the
case of inequalities by the weaker BEPP qualification cardideveloped in this paper.

Sections 6 and 7 are central in the paper containing thel@satl second-order conditions for
tilt-stable minimizers described above; namely, sufficienditions in Section 6 and rather general
while different settings for their necessity and complétaracterizations presented in Section 7.

The obtained results on tilt stability are discussed angtithted by various examples in Section 8,
where important features of the developed necessary afidienif conditions and the imposed quali-
fications are revealed in comparison with known resultsimdirection while discussing also related
numerical issues. The final Section 9 contains some opetiguesnd topics for the future research.

Our notation is basically standard in variational analgsid optimization; see, e.d., [22,134]. Re-
call thatB stands for the closed unit ball in the finite-dimensionakspa question with the Euclidean
norm|| - || and the scalar produ¢t, -) between two vector®, (x) := x+rB, the symbol* indicates in
general a dual operation including the matrix transpasitibe polar cone, etc., dist Q) denotes the
distance from the point to the setQ, the symbollq(x) stands for the gradient of a scalar function
and for the Jacobian matrix for a vector onegand finally we havéN := {1,2,...}.



2 Preliminaries from Variational Analysis

Let f : R" — R :=RU{} be an extended-real-valued function, which is assumed prdger, i.e.,
domf := {x € R"| f(x) < o} # 0, and letx € domf. Theregular subdifferentia(known also as the
presubdifferential and as the Fréchet/viscosity subrkfitial) is defined by

)= (X = (V' x=
ipigt R 20

(2.1) Af(X) == {\ﬁ eR"

Thelimiting subdifferential(known also as the Mordukhovich/basic subdifferentialf @ft x is
(2.2) 9f(X) = {V' €R"| Ik = X Vi — V' with f(x) — f(X), Vi € af (%), ke N}.

Both constructiond (211) and (2.2) reduce to the subdifiitiaeof convex analysis if is convex.
ForCl-smooth functions the subdifferentials (x) andd f (x) consist only of the gradiert f (x).

A lower semicontinuous (I.s.c.) functioh: R" — R is called prox-regular at x € domf for
v* € df(x) if there are reals, & > 0 such that for alk, u € B¢ (x) with | f(u) — f(X)| < € we have

(2.3) f(x) > f(u)+ (v',x—u) — %HX—UHZ wheneverv' € df(u) NBg (V).

Such a function is said to lmibdifferentially continuouatx € domf for v € df(X) if f(x) — f(X)
for all sequences, — x andvj — v* ask — o with v € 9 f(x), ke N.

In what follows we also need some concepts from variatioeahuetry. Given a sé® c RY and
a pointz € Q, define the (Bouligand-Sevetiangent/contingent corte Q atzby

(2.4) To(2) == {ue R 3t/ 0, ux — u with z+teu € Q for all k}.

The (Fréchetjegular normal condo Q atz € Q can be equivalently defined either by

(2.5) No(Z) := {\fk € Rd‘ Ilmsup< Iz i—Hi} < 0},

wherez 2 Zmeans thaz — Zwith z ¢ Q, or as the dual/polar to the contingent cdnel(2.4), i.e., by
(2.6) No(2) :=Ta(Z)".

For convenience, we pu}AﬂQ(Z) := 0 for z¢ Q. Further, the (Mordukhovichlmiting/basic normal
coneto Q atze Q is given by

(2.7) No(2) = {V' € RY 3z —Z vi — V" with Vi € No(z) for all k}.

Note that, in spite of (in fact due to) being nonconvex, themma cone [[2.]7) and the corresponding

to it limiting subdifferential and coderivative constrigets enjoyfull calculi, which are based on

variational/extremal principles of variational analysiee, e.g.[[22, 34] and the references therein.
It is easy to observe the following relationships:

33q(2) = No(2) and 98 (2) =Nq(2) forall ze Q

between the corresponding regular and limiting subdiiémormal cone constructions defined above,
wheredq (z) stands for the indicator function of the $2tequal to 0 ifz€ Q and to otherwise.
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Considering next a set-valued (in particular, single-edlumapping® : RY = RS, we associate
with it the domaindomW¥ and thegraphgphW by

dom¥ := {ze RY| W(z) £ 0} and gp¥ = {(zw)|we ¥(2)}

and define the following coderivative constructions. Tégular coderivativeﬁ*kP(Z W) : RS = RY
of W at (z,w) € gphW is generated by the regular normal canel(2.5) via

(2.8) D*W(ZwW) (V') := {u" € RY| (u",—V") € Ngprw(ZW) }, V' € R,
and thelimiting coderivativeﬁ*qJ(ZvV) : RS = RY of W at (z,w) € gphW¥ is given by
(2.9) D*W(ZW)(V') := {u" € ]Rd| (U, —V*) € Ngprw(ZW) },  v* € R,

If Wis single-valued at, we dropw in the notation of[(2)8) and(2.9). ¥ is a single-valued mapping
being smooth aroung then we have the equalities

D'W(Z)(v') =D*W(Z)(v") = {OW(Z)*v'} forall v' € RS,

One of the striking advantages of the limiting coderivat{Zed) (besides full calculus) is the
possibility to derive in its terms complete pointbased abtarizations of some basic properties of
well-posednes# nonlinear and variational analysis related to robuststiptzian stability, metric
regularity, and linear openness; see, e.g.,[[22, 34] andefieeences therein. Recall that a set-valued
mapping¥ : RY = RS is Lipschitz-likearound(z,w) € gph¥ (also known as the pseudo-Lipschitz or
Aubin property) with modulug > 0 if there are neighborhoods$ of zandV of w such that

(2.10) Wz NV Cc Y(u)+kK|z—u|B forall zueU.

The infimum of all suchk is called theexact Lipschitzian boundf W around(z w) and is denoted
by lipW(z,w). If V = RS, relation [2.10) reduces to the (Hausdorff) local Lipsohm property of set-
valued mappings arour while in the single-valued case this is nothing else thancthssical local
Lipschitz continuity of#¥ around the reference point. In terms[of{2.9) we have thestatderivative
characterization of the Lipschitz-like property Wfaround(z,w) with the exact bound formula

(2.11) D*W(zw)(0) = {0}, lipW(zw) = [D"W(Zw)|

known as the Mordukhovich criterion [34, Theorem 9.40], vehe || stands for the norm d*W(z w)

as a positively homogeneous set-valued mapping fiSito RY. Further, it has been well recognized
thatW is Lipschitz-like aroundz,w) with modulusk > 0 if and only if its inverséV~* = M: RS = RY

is metrically regulararound(w, z) with the same modulus, i.e.,

(2.12) dist(w;M~*(z)) < kdist(zM(w)) forall zeU, weV.

There are a number of applications for which the robust pt@sein [2.10) and[{2.12) can be
relaxed to the weaker ones with putting= zandz = zin (Z.10) and[(Z.12), respectively. The first
property is known asalmnesf W at (z, w), while the second one is known aetric subregularity
of M at (w,z). Although these properties are equivalent$oandM = W=1, we prefer to use metric
subregularity in applications to NLPs due to the possiptlit formulate it via the initial program data
of the original NLP constraint system; see Section 3 for naiseussions.



Next we recall two second-order subdifferential constand for extended-real-valued functions
employed below and introduced in the direction initiateddfi], i.e., by using a coderivative of a
first-order subdifferential mapping; this is an appromridual set-valued extension of the classical
“derivative-of-derivative” approach to second-orderfali¢ntiation. Proceeding in this way, we take
f :R" — R, x€ domf, and a basic subgradieut € d f (X) from (Z2) and define theecond-order
subdifferentialof f at X relative tov® as the set-valued mappig f (X,V*) : R" = R" given by [21]

(2.13) 0%f (X, V) (w) == (D*Af) (X V) (w), weR"

The combined second-order subdifferentdl f at x relative tov® € d f(X) is defined in this scheme
by [25] replacing the limiting coderivativé (2.9) with itegular counterparf (2.8), i.e., by

(2.14) P2 F (X, V) (W) := (D" F) (X V) (W), weR"
When f is C?>-smooth arouna, we havev™ = [ (X) and
92 F (X, V) (W) = 9% (X, V') (w) = {0?f (x)w} for any w e R",

where[d?f (x) stands for the classical (symmetric) Hessian matrix. Thassecond-order subdiffer-
entials [2.1B) and(2.14) can be treated asgeeeralized Hessiaoonstructions.

Now we are ready to formulate and discuss the notion ofttillble minimizers for extended-real-
valued functions introduced by Poliquin and Rockafell&] [&ithout specifying tilt stability moduli
and then guantitatively modified and studied by Mordukhimvaod Nghial[25] for the case of given
moduli with an explicit calculation of their exact bound.

Definition 2.1 (tilt-stable minimizers). Let f:R" — R, and letx € domf. Then:
(i) Xis aTILT-STABLE LOCAL MINIMIZER of f if there is a numbey > 0 such that the mapping

(2.15) My (v*) := argmin{ f(x) — (V",x)| xe B(X)}, V' €R",

is single-valued and Lipschitz continuous in some neighdod ofv* = 0 € R" with M,(0) = {x}.

(i) Givenk > 0, the pointxis a tilt-stable local minimizer of f witlmobuLus k if there isy > 0
such that M(0) = {x} and the mapping Min (2.15)is single-valued and Lipschitz continuous with
modulusk around the origin0 € R".

(iii) TheEXACT BOUND OF TILT STABILITY of f atxis defined by

(2.16) tilt (f,%) := inf lip M(0)
y>0

via the exact Lipschitzian bound of the mappingfsm (2.15)around the origin.

The main result by Poliquin and Rockafellar [32, Theoren] @jies a characterization of tilt-
stable minimizers forf in the sense of Definition 2.1(i) via the positive-definitsmef the second-
order subdifferential({2.13) at the reference point. Irs thaper we base our investigations on the
following quantitative characterization by Mordukhoviehd Nghia[[25, Theorem 3.5], which uses
the combined second-order subdifferenfial (2.14) in almsghood of the reference local minimizer
and provides, in addition to characterizing tilt-stablenimiizers in the sense of Definition 2.1(ii), a
precise formula for calculating the exact bound of tilt dtgb



Theorem 2.2(qualitative characterization of tilt-stable minimizers for extended-real-valued func-
tion). Let f: R" — R be a |.s.c. function having e df(x). Assume that f is both prox-regular and
subdifferentially continuous atfor v = 0. Then the following assertions are equivalent:

(i) The pointx is a tilt-stable local minimizer of the function f with mdalsik > 0.

(i) There is a constary > 0 such that

(217) (w,w) > %HWHZ forall w* € ézf(x,x*)(w), (x,X") € gphd f NB,(x,0).

Moreover, the exact bound of tilt stability of f xais calculated by

Jui?
(us,u)

(2.18) tilt(f,x) = ’;rlfosup{

u* € 92 (x,x*)(u), (x,x*) € gpha f ﬂIB%,](ZO)}

with the convention thad/0 := 0.

3 Qualification Conditions in Nonlinear Programming

In this section we start a preparatory work for the subseigsecond-order characterization of tilt-
stable minimizers in NLPs with the system@#-smooth equality and inequality constraints:

gi(x) =0 for i € E,
(3-1) { G(x) <0 foricl,

whereE :={1,...,1;} andl :={l1+1,...,11 + 1>} are finite index sets for the equality and inequal-
ity constraints, respectively. The main goal of this setti® to consider appropriatgualification
conditionsneeded for characterizing tilt stability in NLPs while bgiof their own interest.

Denotel := I, + |, and rewrite the constraint systein (3.1) in thelusion form

(32) I:={xeR" q(x) €O} with q(x) := (qu(x),...,q(x)) and @ := {0} x R
Consider further the index set attive inequality constraints

(3.3) J(x):={iel|g(x) =0}, xeT,

and for each e I' describe thdinearized tangent con@.4) tol" at this point by

(3.4) T (x) := {ueR"| (Ogi(x),u) =0 for i € E and (Og;(x),u) <0 for i € .#(x)}.

It is easy to observe that the dual/polar coné tal (3.4) adimit$ollowing representations:
_ [
T (x)* = Dg(x)"Ne (q(x)) = { Z/\imqi(x)( A >0 forie.7(x) and A, =0 for il \f(x)}.
1=

Recall that the conventional terminology of nonlinear pemgming understands by “constraint
qualifications” (CQs) any conditions imposed on the coivssaof NLPs ensuring that the Lagrange
multiplier associated with the cost function in first-oraecessary optimality conditions is not zero.
For the reader’s convenience, let us list the well-recaghiZQs, which are compared in what follows
with the qualification conditions developed in this papesttady tilt-stable minimizers:

e Thelinear independence constraint qualificatiidCQ) holds atxif the gradients of thactive
constraints{[lq; (X)| i € EU.#(X)} are linearly independent iR".
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e TheMangasarian Fromovitz constraint qualificatigfMFCQ) holds ak if if the gradients of the
equality constraint§[q;(x)| i € E} are linearly independent iR" and there exists a vectore R"
satisfying(Og;j(x),u) = 0 fori € E and(0q;(x),u) < O fori € .7 (x).

e Thefull rank constraint qualificatiofFRCQ) holds ak if for every subset of the active con-
straintse/ C EU .7 (X) we have

rank{0q;(X)| i € &} =min{|«|, n},

where|.7| stands for the cardinality of the set.
e Theconstant rank constraint qualificatioffCRCQ) holds ak if there is a neighborhood of x
such that for any index set C EU.#(X) the syster{Jq;(X)| i € &/ } has the same rank for allc U.

We have the following implications, which relate the afosstiioned CQs at € I':
(3.5) LICQ= MFCQ and LICQ = FRCQ— CRCQ

Indeed, the implications LIC&=MFCQ and LICG=-FRCQ are obvious. The remaining implica-
tion FRCQ=-CRCQ was observed by Janin (see€ [15, Proposition 2.1]) wisdhefirst to introduce
and study CRCQ in nonlinear programming.

To proceed further, we recall the equivalent descriptiohMBCQ used in what follows; see,
e.g. [34, Examples 6.40 and 9.44]. They actually follow fritve coderivative characterizatidn (2.11)
applied to the inverse of theanonically perturbeaonstraint mapping, : R" = R' defined by

(3.6) Mg(x) :=q(x) —©, xeR"

Proposition 3.1 (equivalent descriptions of MFCQ). Givenx € I, the validity of MFCQ atx is
equivalent to each of the following conditions:
() The mapping Mis metrically regular aroundx, 0).
(i) [Oa(X)*A =0, A € No(q(X))] = A =0€R".
(iii) There exist a positive numbersuch that
(3.7) Og(x)*A > @ forall A € No(q(X)).
Furthermore, the infimum of the modulifor which the metric regularity property holds is equal to
A0 10a() Al

Having in mind the metric regularity description of MFCQ imoposition[3.1, we define now
the following qualification condition, which is clearly wiear than MFCQ and occurs to be very
instrumental for the subsequent study of tilt stability.

Definition 3.2 (metric subregularity constraint qualification). Letx e I" for the constraint system
(B.2). We say that th&lETRIC SUBREGULARITY CONSTRAINT QUALIFICATION (MSCQ)holds atx’
if the mapping M from 3.8) is metrically subregular atx;0).

Since in finite-dimensional space all the norms are equitaldSCQ can be equivalently de-
scribed via the existence of a neighborhddaf X and a positive numbext (for simplicity we keep
the same notation for the modulus) such that

(3.8) dist(x; ) < K<_§E|qi(x)|+Zmax{qi(x),o}) for all x e U,
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i.e., for allx € U sufficiently close toxthe distance fromto the constraint sétin (3.2) is proportional
to the residual of (3.1) at these points. Note also that the MSCQ propertynfidefinition[3.2 is
equivalent to the requirement that timeersemappingS: R' = R" given by

(3.9) Sly) =Mgi(y) = {xeR"|yeqx) -0}, yeR

is calmat (0,x). We prefer to deal primarily with MSCQ instead of the calmnesguirement o1
due to the fact that the condition in(8.8) is formulated imte of theinitial program data g while
the inverse mappin§ may not be in hands, and it is usually hard to construct it.

Observe that the imposed MSCQ is indeerbastraint qualificatiorat x in the standard sense of
nonlinear programming recalled above. Indeed, the foligwmplication follows from([13, Proposi-
tion 1] and the aforementioned relationship between metrregularity and calmness:

(3.10) [MSCQat Xe '] = [Tr(X) = TI"(%]],

where the right-hand side equality [0_(3.10), saying thattingent cond_(2.4) to at x agrees with
the one[(3.4) to the linearized constraints, is known asMbedie constraint qualificatio(ACQ) for
(32) atx, which a CQ in the standard NLP sense.

In order to conduct our subsequent analysis of tilt stabitit local minimizers in NLPs, MSCQ
alone is not enough. As the reader can see below, just ongamddiqualification condition on the
constraint systeni (3.1) atis needed. To define this new condition, let us first introdkm®e objects
associated witH (311) and (8.2). Given vectwrs™ andx* € R", consider theset of multipliers

(3.11) AXX) = {A € No(q(x))| Oa(x)*A =x"}
and the corresponding collection stfict complementarity indexes
(3.12) I"(A):={i€l|Ai>0} for A =(Ay,...,A) € O

Denote by&’(x,x*) the collection of all theextreme point®f the closed and convex set of multi-
pliers A(x,x*) and recall that € A(x,Xx") belongs to&’(x,x*) if and only if the family of gradients
{Oqgi(x)|i € EUIT(A)} is linearly independent. Hene€(x,x*) # 0 if and only if A(x,x*) # 0 and
the gradients of the equality constraiffsq; (x)| i € E} are linearly independent.

Now we are ready to introduce the new qualification condif@mrthe constraint systerh (3.1).

Definition 3.3 (bounded extreme point property). We say that th@8OUNDED EXTREME POINT
PROPERTY(BEPP)holds atx if the gradients of the equality constraintg8iq; (x)| i € E} are linearly
independent and there exist a neighborhood & ahd a numbek > 0 such that

(3.13) &(x,X") CK||X||B forall xeFNU and X € R".

In contrast to the case of MSCQ, we do not claim that BEPP isnatcaint qualification in the
standard sense. Therefore the temudlification conditiofi seems to be appropriate for both MSCQ
and BEPP. In what follows we study the properties MSCQ andB&Rultaneously and apply them
together to deriving pointbased conditions for tilt statli@mimizers in NLPs.

The next proposition shows, in particular, tlegtchof the constraint qualifications MFCQ and
CRCQ, and thus the stronger ones fréml(3.5), ensures thtyalf bothMSCQ and BEPP.



Proposition 3.4 (robustness of MSCQ and BEPP with sufficient conditions for tkeir validity).
Givenx e I from ([3.2), the following assertions hold:

(i) Both MSCQ and BEPP arroBUST properties in the sense that if either MSCQ or BEPP is
satisfied at the reference poixt I that there is a neighborhood U afsuch that the corresponding
property is satisfied at any pointxl" NU.

(i) Let either MFCQ or CRCQ hold at € I' and that(in the case of CRC{Xhe gradients of
the equality constraint$q;(X)| i € E} are linearly independent ifR". Then both the qualification
conditions MSCQ and BEPP are satisfiedkat

Proof. Assertion (i) for both MSCQ and BEPP follows directly frometdefinitions of these
qualification conditions. Also it is straightforward to dee from the the characterization of MFCQ
in Propositior 3.11(i) that the validity of MFCQ atimplies that MSCQ holds at this point.

Suppose now that CRCQ holdsxatThen it follows from [15, Proposition 2.5] that the mapping
S: R' = R" from (3.9) is calm at0,x), and hencéVlq(x) = S~1(x) is metrically subregular gk, 0).

Further, let us check that MFCQayields the validity of BEPP at this point. Using the equivdle
description of MFCQ in Propositidn_3.1(iii), take > 0 from (3.7) and find a neighborhoadl of x
such that# (x) C .#(X) and that the estimatgq(x) — Oq(X)|| < = holds onl" "U. Then for every
xelNU,x* € R", andA € &(x,x*) we getA € No(q(x)) C Ne(q(x)) and hence

Al [AT 1A
K 2K 2K
This shows tha#’(x,x") C 2k ||x*||B and thus justifies that BEPP holdsxat

It remains to verify that the validity of CRCQ at together with the linear independence of
{Oqi(x)| i € E} implies that BEPP holds at this point. Assuming the contiamg employing the

imposed linear independence allow us to find sequexces, x; € R", andAk € & (x,x;) such that

X[ = 0a()"All = 10a0C)*A || = |Ba(x) — Dax) |l - [|A[] > |

k
DQ(Xk)*Hg—k” — 0 ask— oo.
Passing to a subsequence if necessary gives us a veetBf' with ||A|| = 1 and such thaxk/||AX|| —
A ask — . Sincelq(x)*A = 0, it follows from the above that the gradient fami{{/lq (X)| i €
EUIT(A)} with I7(A) from (312) islinearly dependenti.e., consists of linearly dependent vectors
in R". Then for each € 17(A) we haveAX > 0 wheneveik € N is sufficiently large, which shows
thati € .7 (x¢) C .# (X) according to[(3.18) and justifies in turn tHat(A) c I+ (AX) c .#(X). Now the
assumed CRCQ atensures that the familfq; (x)| i € EUIT(A)} is linearly dependent, and hence
the family { (g (x<)| i € EUIT(AX)} is linearly dependent as well. This clearly contradicts thithe
discussion right before Definitidn 3.3, thalf € &' (x,x;) for large numberg € N. Thus BEPP holds
atx, which completes the proof of the proposition. A

4 MSCQ and BEPP via Second-Order Analysis

In this section we employ second-order derivatives of thestraint functionsy; at x to effectively
support MSCQ and BEPP and also use these qualification aomglito describe some second-order
constructions of variational analysis needed in what fodlo

Note that LICQ, MFCQ, and FRCQ apmintbasecconditions in contrast to CRCQ, MSCQ, and
BEPP that involvaneighborhoodpoints in their definitions. It is worth mentioning to thiscethat the
papers by Gfrerel[8] and by Li and Mordukhovich [19] contaime (different) pointbased sufficient
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conditions for metric subregularity of general set-valaeabpings, which are “almost necessary” for
this property. On the other hand, in the same paper [8] Gfiet®duced the pointbase®cond-order
sufficient condition for metric subregulariggOSCMS) formulated below in Theorém#.1 that allowed
him to derive “no-gap” second-order necessary and sufficenditions for metric subregularity,
where the difference between the necessity and sufficientlyel change from inequality to strict
inequality. The reader can find further applications of taisdition in the recent papefs [9, 10] 11, 12].

The next theorem shows that SOSCMS ensures the validitytadmp MSCQ but also of BEPP,
i.e., of both qualification conditions we use for our subsequent poithasharacterizations of tilt
stability in NLPs. In fact, this theorem provides a strongersion of the aforementioned results.
Namely, we consider the case when the constraint sys$tedh d&rlbe split into the following two
subsystems with both equality and inequality constraints:

Gi(x)=0 for i€ Ep:={1,...,11} andgi(x) =0 for i e Ex:={I} +1,.... 11 +1F =1},

Gi(x) <0 forieli:={1,...,13} andgi(x) <0 foriel:={I13+1,....13+12=15}

in such a way that it is known in advance that for the secontksyg;(x) = 0 asi € E; andg;(x) <0
asi € |, both MSCQ and BEPP are surely satisfied. In particular, ipbap by Proposition3.4(ii)
if CRCQ is fulfilled atx and the gradient vectoddlqi(X)| i € Ez} are linearly independent. One of
the reasons for this is that, although in the absence of FR&C@bmtbased conditions for verifying
CRCAQ is known in terms of the gradieni®y;(x), there exist other easily verifiable conditions that
ensure the validity of CRCQ without using any derivativesr istance, it is well known that CRCQ
holds at every € I if the functionsg; arelinear whenevern € E; Ul,. Note that if we ignore the
(Ez,12)-system in the following theorem (i.e., pbp = |, = 0), then it merely asserts the validity of
both MSCQ and BEPP for the original constraint systeml (3tX under the pointbased SOSCMS
assumption imposed at this point, which is surely impliediyCQ.

Theorem 4.1(MSCQ and BEPP from SOSCMS). Let the gradients of the equality constraints
{Oqi(x)| i € E} be linearly independent, and the systeitxg= 0 for i € E; and q(x) <Ofori €I
fulfill both MSCQ and BEPP at € I'. Impose further the following SOSCMSxatfor every vector
0#£ue TrIin (x) from the linearized constraint tangent cof®4) we have the implication

(4.1) [A € No(q(x)), Dg(x)*A =0, (u,0%*A,q)(X)u) > 0] => |Ai] = 0.

icE1Uly
Then both MSCQ and BEPP are satisfied for the original comnstisystem(3.1) at x.
Proof. Observe first that the implication

SOSCMS=-MSCQat xe

in the general setting of Theordm 1.1 follows from the coration of Theorem 2.6 and Lemma 2.7
in [9]. It remains to verify the other implication

(4.2) SOSCMS= BEPP at xcT.

Assuming the contrary t¢_(4.2), find sequenxes@iand)\" € No(d(x)) so that the gradients
{Oqgi(x)| i € EUIT(AX)} are linearly independent iR" and that

10a(x)“AX|| < |AX||/k for all ke N.
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Passing to a subsequencekofs « gives ush € No(q(X)) with ||A || = 1 such tha*/||A¥|| — A and
Og(x)*A = 0, which yields the linear dependence of the gradiditg;(x)|i € EUIT(A)}. Since

1T (A) C 17(AX) for the index sets[(3.12) and the family of gradiefiSg; (x)| i € EUIT(AX)} is
linearly independent, it follows thai # x for all k sufficiently large. Passing to a subsequence again
allows us to findu € R" with |Ju|| = 1 for which (xx — X) /|| — X]| — u ask — . We obviously have

for any active constrairite EU .7 (X) that

<in ()23, > Ilm

4 (%) — Gi(X) if i €E,
e x—x | <0

if i €.7(X)

showing thatg(Xju € Te(q(X)) and consequently thatc T!"(x). Furthermore, we deduce from
I (A) C 17(AX) for largek that the conditionA,q(xc)) = O yields

_ iy 25004 —9() _ 1
U T A

(u,0%(A,q)(X)u).

Let us check now tha¥icg, i, |Ai| > 0, which clearly contradicts the SOSCMS assumptior inl (4.1)
Indeed, setting*) := (A)icg, u, andq) := (G)iegu; for j = 1,2, we get

1A%

oAt

IN

1002 (x0)*A*2]| — [| O (x0)*A |

IN

HDq(Z)(Xk)*)\k’Z—i—Dq(l) Xk)*)\k,l”

P

wherek, denotes a positive number such that the BEPP assumpiioB) (3olds for the “second”
constraint subsystemp(x) = 0 asi € E; andg;(x) < 0 asi € |,. Dividing the latter inequality by|A ||
and passing to the limit ds— o, we obtain

2 .
|09 (AW || > 1A H, where AW := (A)icg,u, for j=1,2.
Since||A[| = |(AM,A2))|| = 1 we easily conclude thatP # 0, and thusy g, i, |Ai| > 0. The
obtained contradictlon with_(4.1) justifids (4.2) and coetes the proof of the theorem. A

Next we show that the simultaneous validity of MSCQ and BEP®Pemsures that the indicator
function or of the constraint sef from (3.2) belongs to the basic in second-order analysissatd
prox-regular and subdifferentially continuous functioreeded for the second-order characterization
of tilt-stable minimizers in the abstract extended-realsed setting of Theorem 2.2.

Proposition 4.2(prox-regularity and subdifferential continuity of the con straint indicator func-
tion). Assume that both MSCQ and BEPP holdat I'. Then there is a neighborhood U »fsuch
that for all xe ' "U we have the equalities

(4.3) 95 (x) = 05 () = 0g(x)*No (q(x)).
Furthermore,dr is prox-regular and subdifferentially continuousator everyx* € dr (X).

Proof. The validity of the second equality ifi (4.3) for= x under MSCQ at this point fol-
lows from implication [3.10) and the fact that ACQ xaimmediately implies the dual condition
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Nr(X) = T (x)*(= Oq(x)*Ne(q(X))) known as theGuignard constraint qualificatioiGCQ). Hence
Propositio 3.4(i) ensures the second equality inl (4.3aflox € ' nearx. We now show that the first
equality in [4.3B) is also satisfied if in addition BEPP holtig and hence around this point.

Suppose by Definition_3.3 thdi (3]13) holds with somand that for allx € U the gradients
(Oagi(x))ice are linearly independent. Fixe ' NU andx* € dJr(x) and then find sequenca@gx
andx; — X" with x¢ € 56|—(xk) for all k. Sincexc € U whenk is large, we gef\(xq,x;) # 0 for the
set of multipliers and consequent(xc,x;) # 0 for the collection of its extreme points. Picking
AKe &(x, %) for eachk gives us||AK|| < k||x¢|. Thus the sequendg\y} is bounded and converges
therefore to somad € R' along a subsequence. We obviously have No(g(x)) and0g(x)*A = x*
showing thaix* € 56|—(x). Since the opposite incIusiaA?ld—(x) C d0r(x) always holds, it tells us that
2or(x) = 56|—(x) for everyx € ' NU proving in this way the first equality i (4.3).

Considering the last statement of the proposition, obseagdly from the definitions thad- is
subdifferentially continuous atfor xX* € d4dr (x) and that the epigraph @ is closed, i.e.dr is |.s.c.
on R". Taking nowu,x € ' NU andx* € dJr(x), pick A € &(x,x*) and get by BEPH(3.13) that
IA] < k|Ix*[]. Since(A,q(x)) =0, 0q(x)*A =x*, andA;jqg;(u) < 0 fori € EUI, we conclude that

(=& =0 =(A.au)-a() > (4,060 (u—x)) — LA | - Ju—x]?
> (¢ u—x) = 2RI Ju=x)?

wherey = sup{||0%q(y)|| { y € U}. This verifies the prox-regularity (3.3) & atx for every sub-
gradientx™ € ddr (x) and thus completes the proof of the proposition. A

As indicated by one of the referees, the prox-regularitgrofinder MSCQ in Propositidn 4.2 can
be derived from[[4, Theorem 31(b)], although the notion of®Bwas not defined therein.

To proceed further, recall the definition of tbetical coneto I at (x,X*) € gph56r given by
(4.4) K(xx) == Tr(x) n{x*}*
via the tangent con€ (2.4) and define theltiplier set in a direction \& R" by
(4.5) A(x,x*;v) == argmax{ (v, 0%(A,q) (x)V) | A € A(x,x")}.

Note that [4.5) consists afptimal solutionsto alinear programover the feasible set of multipliers
(3.13). This “critical multiplier set” plays a crucial role our subsequent study of tilt stability.

The next proposition collects some properties of $et$ @hd)(4.5) needed in what follows.

Proposition 4.3 (critical cone and multipliers in critical directions under MSCQ). Let MSCQ
hold atx € I', and let(x,x*) € gphddr be any pair such that % I" is sufficiently close ta. Then the
following assertions are satisfied:

(i) For every multiplierA € A(x,x*) we have

K(ij*):{veRn =0 if i eEUIT(A) }

(Dai (), v) {SO ifies(x)\I(A)

(i) There exist a multiplied € A(X,X") with I+(X) =17 = Ujrenpx)! 7(A) and some vector
v € K(x,x*) satisfying the conditions

=0 ifieEUIT(A),

(06 ().) {< 0 ific. s\
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(iii) For every vector & K(x,x*) we have\(x,X";v) # 0.

Proof. To verify the first assertion, we use the robustness of MSC@iopositior 3.4(j) and
implication [3.10), which ensure th@" (x) = Tr(x) for all x € I aroundx. This yieldsA(x,x*) # 0
and thus (i) follows from the observation that K(x,x*) if and only if

veTr"”(X) and 0= (xX",v) = ZI)\i(in(x),w = z( ))\i<in(x),v>,
icEU icEUIT (A

where the multiplied € A(x,x*) is chosen arbitrarily. Assertion (i) follows from [11, Lena 2].

To justify finally assertion (iii), we employ thdual second-order necessary condition for metric
subregularity from[[B, Theorem 6.1] and obtain in this wagttfor everyv ¢ Tr“”(x) D K(x,x*) and
every A € No(q(x)) with Og(x)*A = 0 it follows that (v, 0%(A,q)(x)v) < 0. The latter inequality
implies that the linear optimization problem

(4.6) maximize (v,0%(A,q)(x)v) subject toA € A(x,X")

admits an optimal solution, which exactly means thét, x*;v) # 0. A

5 Calculations of Second-Order Generalized Derivatives foNLPs

In this section we preseptecise calculation®f some generalized second-order derivative construc-
tions for the indicator functiod- of the feasible solution sef(3.2) given by equality and iradity
constraints via the second-order derivatives of the cammdtfunctionsg; as well as the critical cone
(@.4) and the set of multipliers in critical directions (#.Bhe theorem below extends the recent results
by Gfrerer and Outrata [11] regarding the following majauiss:

e It concerns not only inequality but also equality constisin (3.1).
e It replaces a certain relaxed uniform metric regularitypany in the vicinity of the reference
point employed in[[111] by the weaker BEPP qualification ctindiimposed at this point.

Theorem 5.1(generalized second-order derivatives of the constraint idicator function under
MSCQ and BEPP). Givenx € I', assume that both MSCQ and BEPP holckat hen for any x I
sufficiently close ta and any regular subgradient x 55r(x) the following assertions hold:

(i) The tangent coné.4)to the graph oﬁér is calculated by

1) T

gonas (6 X) = {(WV) € R* 34 € A(x.X";v) with v € OX(A,6) ()V+Ni e ) (V)

(i) Assume thaf\(x,x*; -) is constant on Kx,x*) \ {0} and take an arbitrary multiplier

A(x,x*;v) for ve K(x,x*)\ {0} if K(x,x*) # {0},
(5-2) A { A(X,X*;0) otherwise

Then we have the simplified tangent cone formula

(5.3) T (xx) = {(vV") € R?"| v* € T%(A, 0} (X)V+ Ny xxe) (V) }.

gphadr
Furthermore, the regular normal cor@.5) to the graph oéd— is calculated by

(5.4) N (x,X) = { (W, w) € R*| we K(x,x), w* € —0%(A,q) (x)w+K(x,x")*}

gphadr

with an arbitrary multiplierA taken from(5.2).
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Proof. Consider the equivalent representatior” ajbtained by replacing the equality constraints
with two inequalities, i.e., the following one:

(5.5) G(x)<0 fori=1,....1, wherel:=2l;+ls,
qi (X) if1<i<ly,
q(X) = —qi,|1(X) ifli+1<i<2;y,

G-,(x) if2lh+1<i<2+l,.
It is easy to conclude from the metric subregularity desionip (3.8) that the modified constraint
mappingMg(x) := q(x) —R' for (5.8) is metrically subregular X, 0) if and only the original ond/y
from (3.8) has the same property at this point. Proceedimgasiy to the proof of [11, Theorem 1]
while using the BEPP condition at{and hence at points nearby), we arrive at the representatio

(5:6) T g (XX) = {(wv") e R?"| 3A € A(x, V) with v € DA, Q) (X)v+ Nk xx) (V) }

where the sets of multiplier&(x,x*) andA(x,x*;v) are defined as ii{3.11) and (4.5), respectively,
but for the extended inequality systelm (5.5), i.e.,

A(X,X —{)\EN X)) | 0A)*A =x*}, A(x x5 v) := argmax{ (v, D2(A, & (V)| A € A(x,x*)}.

The only essential difference from the proof bf[[11, Theorgnis that now we need to justify the
following fact under the MSCQ and BEPP assumptions madeariprsequences(Lx andx; — x*

with x € Nr(x) there exists doundedsequence of multiplierak € A(x,x;) ask € N. To verify
this, observe that BEPP together with MSCQ guarantees tisteege of a sequence ¢ & (X, %)
satisfying the estimatgA k|| < k||x; || with some constart > 0 independent ok € N. Defining

)\I'jrl =AKfori=l1+1,...1,
M= AK MK =0 fori=1,...,l; with AK>0,
Ai=0, Ak, == —AK for i=1,...,11 with A <0,

we getAk € A(x. %) and||AK|| = [|AX|.. It shows that the sequent@g"} is bounded, and so formula
(5.8) holds by[[1lL, Theorem 1]. Itis easy to see that the sét@mnight-hand side of (5.1) is the same
as the one on the right-hand side[of (5.6), which thus vetifieslaimed representation (b.1).

To justify (5.3) and its dual versiofi(5.4), note that for gvpair 0 vi,v, € K(x,x*) we have
A, X5 v1) = A(X, X5 \0) if and only if A(x,x*;v1) = A(x,X*;v2). Checking carefully the proof of
[11], Theorem 3] allows us to observe that the aforementioakecked metric regularity assumption on
Mg therein can be replaced by the validity of formula15.6) feedi above. Hence we can apply [11,
Theorem 3] to derive the tangent cone and regular normal @presentations

Topraa 06X) = {uV)] V' € T2(A,@) 09V -+ Nipoe) (V)

Nyphas 06X) = {(W',w)[ we K(x,x"), w' € — (A, @) )W+ K (% X)*},

whereA is an arbitrarily fixed multiplier from\(x,x*;v) for some 0+ v e K(x,x*) if K(x,x*) # {0}
and fromA(x, x*) = A(x,x*; 0) otherwise. The obtained formulas easily yield the claimetesenta-
tions [5.3) and(5]4) and thus complete the proof of the #ror A

It is worth mentioning that the trivial replacement of an alify by two inequalities as if_(5.5)
usually does not provide valuable results. However, theosed MSCQ and BEPP qualification
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conditions are so powerful, while being fairly nonrestviet that they allow us to do it as shown
above in the proof of Theorem 5.1.

The next result is a consequence of Theokem 5.1(i), whichsgils an explicit estimate of the
combined second-order subdifferent{@l14) of the constraint indicator function, which is veny i
strumental in deriving efficient conditions for tilt-staliinimizers in NLPs; see Sections 6 and 7.

Corollary 5.2 (combined second-order subdifferential of the constraintmdicator function). As-
sume that both MSCQ and BEPP are satisfied.afhen there is a neighborhood U »fsuch that
for every (x,x*) € gphddr with x € U the following assertion holds: Given any pdiv, w*) with

W* € 920r (x,x*)(w), we have-w € K(x,x*) and

(5.7) (W', w) > (w,0%(A,q)(x)w) wheneverA € A(x,X"; —w).

Proof. LetU be neighborhood af such that both MSCQ and BEPP hold for everg ' NU.
Fixxe F'NU, x* € dor(x) and(w,w*) with w* € D*9Jr (x,x*)(w). By definition [Z.8) of the regular
coderivative and representatidn (2.6) of the regular nbomae we have

(W, —w) € nghaar(X, X) = (Tgphag (X, X*))*'
It follows from Theoreni 5J1 and Propositibn #.2 that

{0} x K(x,X)" C T a5 (%X) = Tgphas: (%,X7).-
This implies consequently the relationships

(w*,0) + (—w,v*) <0 for all v € K(x,x*)*

and hence-w € K(x,x*). Fixing now any vectod € A(x,x*; —w) and using[(5.11) give us the inclusion
(—w, —O%(A, ) ()W) € Tgpnas- (X,X*), and sol(5I7) is implied by

0 > <V\fk7 _W> + <_W7 —|:|2<A,q>(X)W> = —<V\fk7W> + <\N7 D2<A7q>(X)W>7

which completes the proof of the corollary. A

The next proposition shows that the stronger CRCQ propeéetdsy the additional assumption in
Theoren 5.11(ii) and thus justifies the fulfillment of the slifigd formulas [5.B) and (514) therein.

Proposition 5.3(calculating tangent and regular normal cones under CRCQ).Let CRCQ hold at
x € I'. Then there is a neighborhood U x&uch that for every ® ' NU and x,v € R" satisfying

(5.8) (Oqi(x),v) =0 whenever E EUIT with IT:= | ] 17(})
AEN(XX")

the form (v, 0%(-,q)(x)v) is constant om\(x,x*). In particular, we have\(x,x*;v) = A(x,x*), and
therefore representationfs.3) and (5.4) are satisfied.

Proof. The robustness of CRCQ allows us to proceed in what followsifiy x € I' from some
neighborhoodJ of x. Consider the case @f(x,x*) # 0 (otherwise the assertion is trivial), fix any
v e R" with (Og(x),v) =0, i € EUIT, and choose the maximal subskebf E UI* such that the
gradients{Og;(x)| i € J} are linearly independent. Consider the equations

(5.9) i (X+tv+A'Z(t)) =0, i€,
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where the rows of th&J| x n matrix A are given by the gradientsg;(x), i € J, and where the vectors
z(t) € RN for any fixedt € R are unknown. At =0 we have the trivial solutiog(0) = 0 to (5.9) while
the Jacobian matrix of this system with respect it = O is the|J| x |J| matrix AA*, which isin-
vertible since the rows oA are linearly independent. Applying the classicaplicit function theorem
ensures the existencetof 0 and aC'-smooth functiore: (—t,t) — R" satisfying the conditions

2(0) =0, gi(x+tv+A*z(t)) =0 forall i€ J, t € (—t,1).
By settingX(t) := x+tv+ A*z(t) and differentiating the syster (5.9) with respect e obtain

0= Ja(x)

showing thatAA*%z(O) =0and therefor%z(o) = 0. Thus we arrive at the conditions

‘t:O = (O (x), v+A*%z(0)> = <in(x),A*%z(0)>, ied,

X(0) = x, %X(O) =v, and g (X(t)) =0 forall i € J, t € (—t,t).

It follows from CRCQ that whert € (—t,t) is sufficiently small, the index set is the maximal

subset off U1 such that the gradients]g;(X(t))| i € J} are linearly independent. Hence for every
indexi € (EU1T)\ J and smalt € (—t,t) the gradientg;(X(t)) can be represented as some linear
combinationy ;5 nij (t)0q; (X(t)) of Uq;(X(t)), j € J. Employing the standard chain rule tells us that

L a(0) = (Do (x0). <x0) = Zm,<D% (1), <XO) =0, i€ EUI\J

and consequently thaf(X(t)) = 0 for alli € EUIT and smalt € (—t,t). Since we also havAg =
AP =0asiel\ el foranyA@® 2@ e A(x x*), itfollowsthat()\( ) -2 q(X(t))) =0ift e (—t,1)
2@ —x we get

is small enough. Thus by taking into account thagx)*A Y = Og(x)*

0 tlgg) <,\(1) _;\(2)7?2(%[)) —q(x))
_ im (AW =A@, Oq(x) (X(t)) —X) )+ F{(X(t) —x, O2AD — 22 g)(x) (X(t) —x) ) +o([|X(t) — X||?)
=0 t2
= ZMIPAY A g (xv),

which shows that the forniv, 02(-,q)(x)v) is constant om\(x,x*) and hence\(x,x*;V) = A(x,x*).
Since every critical direction € K(x,x*) fulfills (58] by Propositiod 413, the validity of the claimie
representation$ (5.3) arid (b.4) follows. A

6 Pointbased Second-Order Sufficient Conditions for Tilt Sability

Consider aNLP problemof minimizing aC?-smooth functionp : R" — R subject to the constraint
system[(3.11), where the equality and inequality constsaingé described b@2-smooth functions:

6.1) minimize ¢ (x) subject to
' gi(x) =0 for i€ E and gi(x) <0 for iel.
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Using the notation of the previous section, rewlite](6. thiemunconstrained format
(6.2) minimize f(x) on R", where f(x) := ¢ (x) + or(X)

is an extended-real-valued objective. Applying Definifiadi to the unconstrained problem (6.2), we
arrive at the notions of &lt-stable minimizerx for (€.1), itsmodulusk, and theexact bound of tilt
stability tilt (¢, g, x) of the nonlinear prograni (8.1) at its tilt-stable minimizer

It immediately follows from the subdifferential and codettive sum rules given in[22, Proposi-
tion 1.107 and Theorem 1.62], respectively, that

Af(x)=0¢(X)+ 95 (x), af(x) =09 (x)+3dd(x), and

92F(x,X")(v) = 02 (x)v+ (D*05 ) (x, X" — D¢ (x)) (v) wheneverxe T, X" € df(x), ve R

for the first-order and second-order subdifferential awsions in [(2.1),[(Z12), and (2.114). Further-
more, we deduce from the definitions of prox-regularity amolsfferential continuity due to Proposi-
tion[4.2 thatf in (6.2) possesses these properties abany close tox for x* € d f(x) if both MSCQ
and BEPP qualification conditions are satisfied.at

By the elementary Fermat rule and sum ruleadrgiven above we obviously have that any local
minimizerx for (6.1) fulfills the first-order necessary optimality catiwh

0€df(X) =0 (X) + 5 (X,

which can be equivalently written (provided that the G@Q@ = TrIin (X)* holds, which is surely
the case by[(3.10) when MSCQ is satisfiekjagither as\(x,—¢ (X)) # 0 for the set of Lagrange
multipliers [3.11), or—more explicitly—in terms of the&KT system

(6.3) 0=0xZ(XA) for someA € No(q(X))
via the classicalagrange functiordefined by
(6.4) LXA):=0(X)+ (A,q)(x) for xeR" A e R".
To formulate our results on tilt stability, define the seegfreme multipliers in critical directions
(6.5) As (%, X5V) := A(XX5V) N E(x,x) forall (x,x*) € gphNr, v e K(x,X),

which is the collection of extreme points of the multipliest é\(x,x*) solving thelinear program
(4.8); see the above constructions&fx, x*) andA(x,x*;v)). It is well known in linear programming
that/As (X, X*;v) # 0 if and only if both setg\(x,x*;v) and&’(x,x*) are nonempty; in this case the set
Ag(x,x*;v) precisely reduces to all the extreme points of the convexhalron/A(x,x*;v) in (4.5).

Now we are ready to establish the major second-csdéicientcondition for tilt stability in [6.1),
with a prescribed modulus > 0 and a constructive lower estimate for the exact boundtadtibility
tilt (¢, q,x), formulatedat the reference point € I'. As the reader can see, this pointbased condition
is expressed via thetrong positive-definiteness the Hessian of the Lagrange functign {6.4) on the
subspace orthogonal to the gradiehlg (X) for the equality and strict complementarity constraint
indexes[(3.1R) generated bytreme multipliersn all the critical directions[{&]5) atx, — ¢ (X)).
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Theorem 6.1(pointbased sufficient condition for tilt-stable minimizers in NLPs with prescribed
moduli). Given a feasible poink € ' and a numbe > 0, suppose that MSCQ, BEPP, and the
first-order necessary optimality conditidf.3) are satisfied ak and that the second-order condition

(6.6) (w,TZZ(x,A)w) > %HWHZ whenever w0 with (0g(X),w) =0, i € EUIT(A)
holds for all the(finitely many extreme Lagrange multipliers in critical directions

(6.7) AENs = U Ae(x—-0¢(x;v).
0veK (X~ 09 (X))
Thenx is a tilt-stable local minimizer fo@.1) with modulusk. Furthermore, we have the estimate
[Iwi?
(w, 022 (X, A

(6.8) tilt(¢,q,x) > sup{ ) ‘ A €Ng, (Ogi(X),w) =0, i € EUI+()\)} >0

of the exact tilt stability bound of6.7) at x with the convention thd/0 := 0in (6.8).

Proof. Employing Theoreni 212 and Propositibn]4.2, it suffices toasktwat the second-order
condition [6.6) withA from (6.7) implies the validity of[(2.17) for the functioh defined in [6.R).
Then the exact bound lower estimdie [6.8) follows direatiyrf (2.18) and(6]6).

Suppose on the contrary that (2.17) fails while {6.7) holad then find sequenceg — x and
X; — 0 ask — o as well agwi, w;) € gphd?f (%, X;) such that

(6.9) (Wi W) < %HWKHZ for all large k € .

Since(w;, —w) € ngh,;(;f(xk,x;i) andwy # 0 by (6.9), we may assume thiaty|| = 1 for all k and
select a subsequene® — w with somew from the unit sphere oR". It follows from Corol-
lary 5.2 that—wi € K(x, Vi) with yi = x: — O¢(X). Further, we have by Propositidn_#.3(iii)
that A(xq,yx; —Wk) # 0, and thus the seb s (X, Y; —Wk) is also nonempty for eack € N. Since

Wi, — 020 (X)W € ([A)*dd—)(xk,y;;)(wk) by the above constructions and definitién (2.14) of the com-
bined second-order subdifferential, we get from the ctumaclusion [5.77) of Corollary 512 that there
is a sequence of¥ ¢ Ne (X, Y, —Wi) satisfying the inequality

(Wi — D02 (%) Wie, W) > (Whe, T2(A K, 0) (x4 Wi )
which can be rewritten in terms of the Lagrange function](&st
(6.10) (W, W) > (Wi, 122 (%, A¥)wie) with some A% € Ag (X, yi; —Wk), k€ N.

The imposed BEPP atensures that the sequenge} from (6.10) is bounded, and hence we find
so thatAX — A for all k — o without loss of generality. It is easy to see that No(q(X)) and that

0g(9)°A = lim Oi(x)"A% = lim v = 06 (3

telling us thatA € A(X,—O¢(x)). Let us show next that € co& (X, —0@ (x)).
Assuming the contrary gives ds= A€+ A" with A€ € co&’ (x,—0¢ (X)) andA" # 0 belonging to
therecession conef A(x,—0¢ (X)), i.e.,A” >0 for alli € | andOq(x)*A" = 0. Since

IT(A) cI1H(A) c17(AK) € 7 (%)
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for the index setd (313) and (3112) whiers large and since the gradient familyid (X) )iceui + (ax) iS
linearly independent, we haw € & (X, q(X«)*A") for suchk. This clearly contradicts BEPP by

* I
190" ATIE_

AT

and hence the claimed inclusidne co&’ (x,—0¢ (x)) is verified.
Furthermore, due to the inclusions (A) C 17(A¥) and —wy € K(x,y;) for large k, we get
(Oqi (%), —wWk) = 0 whenevel € EU1*(AX) and thus conclude thdflg; (X),w) = O for all indexes

i € EUIT(A) by passing to the limit ak— c. Combining [6.9) and{6.10) gives us
(6.11) (w TRZEN W) < o [w?

by the limiting procedure with the limit paiw, A ) constructed above.

Consider now the following two cases, which completely cabe situation. In thdirst case
suppose thaty # x for infinitely manyk and get(x — X)/||x — X]| — v by passing to a subsequence
if necessary. Taking into account that(A) c 17(AX) ¢ .#(x) for largek, we get the relationships

| L g()—G(X) [=0 if ieEUIT(),
(Oai(X),v) = dmw {

<0 ifieg(X\IT(A),

which show thatlg(x)*v € To(q(X)), 0= ()T, Og(x)v) = —(0¢(x),v), and sov € K(x,—O¢ (X)) by
(4.4). Moreover,(A,q(x)) = 0 whenk is sufficiently large, and the conditioqd — A, 0q(x)) = 0,
(A,d(xc)) < 0 hold wheneveh € A(x,—0¢(x)). Hence we have

o A-Aak)) L (A =A,906)) — (A = A,q(X))
0 = AP T TN [xc— X2
By X=X A =A%) oo

showing that € A(X, =@ (X);V). SinceA € co& (x,—0¢ (x)) by the above, it has the representation
(6.12) )\:ZBJUJ with u! € &(x,—0¢(x)), B! >0, Zﬁlzl
=1 =1

for someN € N. Taking into account thafv, 02(uu1, q) (X)v) < (v, 12(A,q) (X)v) due to the definition
of A(X,—¢(X);v) in (4.5) and that

N , _
0= RO, a)(v) — (v O*A,q) (X)),
=1

we conclude that the following relationships are satisfied:

(v, 0% (ud ) (X)v) = (v O*(A,q) (X)v), and sop’ € As (X —¢(X);v) for j=1,....N.
The latter allows us to use the assumed second-order aamd@i6) for u!, which implies that

(W, 022 (X, A)w) > L[| w|[2 by I*(u?) C 1*(A) and hence contradicts (6]11). This justifies the state-
ment of the theorem in the first case under consideration.
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In the second cas&ve havexy # X only for finitely manyk and so can suppose that= x for
all ke N. Since—wK € K(x,y;) as shown above, we easily get thatv € K(x, —0¢ (X)) for the
limit point w. It follows now from [2, Theorem 5.3.2(2)] that € A(x,—O¢ (X); —w). Representing
A € co&(x,—0¢(x)) as in [6.1R) and using the same arguments as in the first case,ake arrive
at a contradiction witH{6.11) and thus complete the prodhebrem. A

Theorem 6,11 provides a pointbased second-order sufficamdition for tilt-stable local mini-
mizers of NLPs with gorescribed modulug > 0 via thestrong (involving the given modulux)
positive-definiteness of the HessiaR.Z (X, A) in (6.8) over the subspace therein witfrom (6.7).
A natural question arises about the sufficiency of plsitive-definitenessounterpart of[(6]6) and
(&) for tilt stability of x with no modulus specified, i.e., in the sense of Definifio(i.IThe va-
lidity of this statement can be justified by using the devioeilar to the proof of Theorem 8.1 while
applying instead of Theorem 2.2 above (taken from [25, Téw@oB.5]) the characterization of tilt
stability in the sense of Definitidn 2.1(i) in the unconstiead format of optimization obtained in [32,
Theorem 1.3] via the positive-definiteness of the basicreg@oder subdifferentia[(2.13). However,
the desired result can be also deduced directly from Thelét@ras in the following corollary.

Corollary 6.2 (pointbased sufficient condition for tilt-stable minimizers in NLPs with no modu-
lus specified). Assume hat MSCQ, BEPP, and the first-order necessary ojitifraahdition (&.3) are
satisfied ak and that the positive-definiteness condition

(6.13) (w,2Z(xA)w) >0 forall A € Ag, (Ogi(X),w) =0, i € EUIT(A), w#0
holds. Then there ig > 0 such thatx is a tilt-stable local minimizer with modulusfor (€.7).

Proof. Since the set of extreme multipliefs: is finite as a subset of extreme points of a convex
polyhedron, it is possible to conclude that the positiveriteness conditiod(6.13) implies its strong
counterpart[(6]7) with the same vectars Indeed, the suitable modulis> 0 can be constructed
so thatk ! is the minimum of the minimal eigenvalues of the matrié¢g12.2 (X, A")A;, where the
columns ofA; form an orthonormal basis of the subspace

{weR" (Ogi(x),w) =0, i € EUIT(A)} with AT € As.

The reader may proceed with more details if necessary. A

Note that the second-order sufficient conditions in bothofée[6.1 and Corollary_8.2 trivially
hold and ensure tilt stability ofif Az =0, i.e., wherK(x,—0¢ (X)) = {0}. However, in this case we
can make a more precise statement, which corresponds(#p tjlix) = 0 in (6.8).

Proposition 6.3 (tilt stability with zero exact bound). Let MSCQ, BEPP, and the first-order neces-
sary optimality conditior(&3) hold atx € I'. Suppose further that (&, —O¢ (x)) = {0}. Then for all
y > 0 sufficiently small there is a neighborhood V of the origifRihsuch that

My (V") = {x} forall v* €V,
where the argminimum mapping,¥ defined inf2.18)with f given in(€.2).

Proof. The negation of this statement gives us a sequengg o such that for every neighbor-
hoodV of 0 € R" there exists a vectar € V with M, (V") # {X}. Using Theorerfi 6]1 and passing to
a subsequence if necessary, we can assume that for everk fixBidthere is a neighborhodd;, of 0
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on whichM,, is single-valued and Lipschitz continuous with modukas. Hence for eack we find
Vi € Vikn 4B andx # xwith My, (Vi) = {x}. Then

1 1
%=1 < IV~ 0 < 5, KEN,

which shows by definitior (211) of the regular subdifferahthat Oc 5(f —(V,))(%). By passing to
a subsequence again if needed, we get(that X)/||xx —X]| — v for some unit vectov € R" and that

MSCQ and BEPP hold ak. This justifies the KKT form[(613) of the stationary conditi® € 5(f -
(V§,)) (%) and also the existence of a convergent sequépee A with Ay € & (X, —0¢ (X«) + V§.).
Using the same arguments as in the proof of Thedrein 6.1 yAetdé\(x, —[¢ (x)) and

o G0~ 6% {:0 it i €EUIT(A),

a0 = T <0 it i@\ (D)

which imply thatv € TI" (x) and—(0¢ (X),v) = (A,0q(X)v) = 0. This brings us to the contradiction
0+# v e K(x,—O¢(x) and thus completes the proof of the proposition. A

7 Necessary Conditions and Characterizations of Tilt Stalbity in NLPs

We start with establishing the necessity of the major seaoddr sufficient condition of Theorem 6.1
under additional assumptions involving eitmendegeneragyor the notion of 2egularity. The latter
notion was initiated (and named) by Tret'yakov|[35] in theeaf zero Jacobian and then was strongly
developed by Avakov]1] whom we mainly follow in the next défitn. The symbol[0?g(X)v,w]
stands therein for thevector column with the quadratic form entriés?g;(X)v,w), i = 1,...,s, gen-
erated by the Hessians of all the compongrif the mappingy: R™ — RS,

Definition 7.1 (2-regularity). Let g: R™ — RS be twice Féchet differentiable at € R™. We say that
g is 2-REGULAR at the pointx in the direction v« R™ if for any pe RS the system

(7.1) Og(xX)u+ [TPg(Xv,w] = p, Og(Xw=0
admits a solutior{u,w) € R™ x R™.

Note that Avakov([l] used this notion only for directionsatisfying the condition§lg(x)v =0
and|[0g(x)v,v] € rge(]g(x) for therangeof the derivative/Jacobian operatdg(X).

Givenx e I, fix a tangent direction € T (x) from the linearized constraint corfe(3.4) and define
the subset of thactive inequalityconstraint indexe$ (3.3) the direction by

(7.2) 7(%v) = {i € # ()| (TG (R).v) =0}

Introduce further the collection @&-regularity vectors in the direction eszTr"” (X) by

(7.3) Z(xv) = {ze R"

(0ai(%),2) + (v, D%qi (X)v) {:0 for i € E, }

<0 forie.Z(X)

and consider the corresponding collectioracfive inequality constrairindexes[(Z.R) in thiglirection

C(XV) = {(5 c f(f;v)( 3ze Z(Xv) with € = {i € .7 (V)| (06i(%),2) + (v, D% (V) = o}.
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The next result shows that 2-regularity of the constrainppiag at the reference point in the given
tangent direction built upon equality and “maximal” activequality constraints implies a certain
parametric LICQalong a feasible curve with the same active constraint ieslebn what follows we
understand anaximal elemerf a subseSin a partially ordered set in the usual sense of order theory,
i.e., as an element @that is not smaller than any other elemengint is clear that forS= %¢(x;v)
below a maximal element (by inclusior”) always exists if&’(x; V) # 0, but it may not be unique.

Lemma 7.2(parametric LICQ from 2-regularity). Fix X< I', a tangent direction & T/" (x) and a
maximal elemen of the index subset collectici(X;v) defined above. Then the 2-regularity of the

constraint mappingd); ¢~ atx in the direction v implies that for every subsgtC % there exists
a numberr > 0and a mappin: [0, 7] — I such that
o — o _ X(1)—X%
= = I =
X0)=x, Z(X(1)) =%, im == v,

and LICQ is satisfied at(t) for everyt € (0,T).

Proof. It is done in [12, Proposition 4] for the case of inequalitynswaints, but the given proof
goes through by replacing each equality by two inequaléd®s the proof of Theorefmn 5.1. A

Now we are ready to establish tim®-gap necessitpf the second-order sufficient condition in
Theoren{ 6.1 for tilt-stable minimizers with modulks> 0, where the strict inequality sign>" in
(6.8) is replaced by *” under the extra alternative assumptions: eithendegeneracy in critical
directions or 2-regularity of the underlyingnarrow part of active constraints in critical directions.

Since the latter notion has been formulated in Definitioh if Yfemains to introduce the former one.

Definition 7.3 (nondegeneracy in critical direction). We say that a feasible solutionto problem
(6.1) NONDEGENERATES IN THE CRITICAL DIRECTIONvV if the set of multipliers\(x, —¢ (x); V)
from (@3)at (x,—0¢ (X)) in the direction v is a singleton.

It is clear that this notion is a significant relaxation of #tandard notion of nondegeneracity in
NLP, which means that the whole set of Lagrange multipleps —¢ (X)) from (3.11) is a singleton.

Theorem 7.4(no-gap necessary condition for tilt stability with prescribed moduli under either
nondegeneracy or 2-regularity). Letx be a tilt-stable local minimizer with modulws> 0 for pro-
gram (6.1)), and let both MSCQ and BEPP hold at Suppose further that for any nonzero critical
direction0 # v € K(x,—0¢ (x)) from (@.4) one of the following assumptions is satisfied:

(a) eitherx nondegenerates in the critical directions v,

(b) or for every extreme multipliex € Az (x, —0¢ (X); V) from (€.5)there exists a maximal element
A= % (x;v) such that I (A) C % for the strict complementarity index SBE12)and that the narrow

active constraint mapping ); g 7 IS 2-REGULAR atx in the direction v.

Then we have the pointbased second-order necessary aomnfiititilt stability
(7.4)  (WOZZ(XA)w) > %HWZH wheneverA € Ag, (0gi(X),w) =0, i € EUI*(A)

with modulusk and with the upper estimate of the exact bound of tilt stighdf (6.1) at x given by

Wl
(w, OgZ (X, A )w)

under the convention th&/0 := 0in (Z.3).

(7.5) tilt(¢,0,x) < sup{ A €Ng, (Ogi(X),W) =0, i € EUI+()\)} <
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Proof. Suppose on the contrary thais a tilt-stable local minimizer with modulus while
(w022 (X A )w) < %HWZH for someA € As and w e R" with (Og(X),w) =0, i € EUIT(A),
which obviously yieldsv # 0. We now show that there exist a numiver 0 and a mapping: [0, T] —
I such thak(0) = X, .7 (X(1)) =17 (A), LICQ is fulfilled atX(1) for everyt € (0, 7), and

X(T) — X

lim 2%y,
0 T

where the nonzero critical direction0v € K(x,—0¢ (X)) is chosen such that € Az (X, —0¢ (X); V).
Observe that under the assumption made in (b) this folloors itemmd 7R witt¥’ =1 (A ). Hence
it remains to consider only the case when

A%~ (R)iv) = As (X -09 (i) = {A}.

Recall that by the definitiorl, it is a solution to the linear optimization problein (4.6)thvk =
x andx* = —¢(x). Then duality theory in linear optimization ensures thesexice of astrictly
complementary dual solutico (4.8), i.e., some € R" satisfying

=0 forieEUIT(A),

(7.6) <|:|qi()2372>—|—<\/,|:|2(1i()z)v>{<0 for i Gj()z)\|+(A)'

Taking into account thaflg; (x),v) = 0 fori € EUIT(A) gives us

6 (x+ v+ %Zz) =609+ (04 (),v) + %2 ({069, 2) + (w 0?6 (x)v) ) +o(12) = o(7?)

wheneveri € EUIT(A). SinceA is an extreme point of\(X,—J¢ (X)), the constraint gradients
{0qi(X)|i € EUIT(A)} are linearly independent. Applying the Lyusternik-Grathiesorem on metric
regularity for smooth mappings, we find positive constgnend t such that for every € [—1,T]
there is is curv&(T) satisfying the conditiong; (X(7)) =0 fori e EUI(A) and

- — T2 — T° 2
— — < f — = .
Jxm = (erve G <y (@t 39) o | =0
Suppose without loss of generality that the gradidntg;(X(1))|i € EUIT(A)} are linearly indepen-
dent for everyr € [—1,1]. Then it follows from{[g; (x),v) <0 withi € .#(x)\17(A) that
_ T2 T2
6 (X(1) = 0 (x+ v+ 5 2) +0(?) < = ((0a(3),2) + (v 026 () ) +0(1?) < 0

forallie .7 (x)\17(A) andt > O sufficiently small. Since we also haggX(1)) < Owheni €1\ .7 (X)
andr is small enough, it gives us the property

S (X(1)) =1*(A) whenevert € (0,T),

this verifies the existence of the curxe) with the claimed properties.
Now we pick an arbitrary sequencg] 0 ask — o with 1 < T for all k and consider the vectors
X := X(1¢) andx; = Oq(xc)*A. Denote bywy the unique optimal solution to the quadratic program:

(7.7) minimize |Ju—wij|? subject to(Og;(x),u) =0 forall i € EUIT(A).
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Employing standard arguments in such settings (see, B.theiproof of [16, Theorem 8.2]) shows
thatwy — w ask — . Moreover, it follows from Proposition 4.3(i) on the degtion of the critical
cone [4.#) and from the constraint structure[Inl(7.7) thak € K(x,X;) and also that

nghﬁd— (Xk,Xii) = N\gphga_ (kaxlt) = {(U*,U)| uec K(Xk,X;:), ut e —D2<)\,q>(xk)u+ K(Xk,Xii)*}
by further applying Theorein 3.1 and Proposition 4.2. Theeefve get
(0%, 0) (%)W, —Wk) € Ngphaar (%, %), and 50 2.2 (xie, A )Wic € 02 F (X, 0 (%) + %) (W)

SinceO¢ () + X = Ox-Z (X, A) — 0 ask — oo, it follows from Theoreni 2J2 that

1
(Wi, IZ.2 (X, A )W) > EHWKHZ for all large k € N.

By passing to the limit ak — oo, this clearly contradicts the assumption made at the begjrof the
proof of this theorem, and hence we arrive at the necessawitamn (7.4) for tilt stability. The exact
bound estimatd (7].5) easily follows from_(I7.4), and thus veedmne. A

The next result is a consequence of Thedrerh 7.4 ensuringtiessity of the pointbasgubsitive-
definitenessondition [6.18) from Corollarf 612 for tilt-stable minizeérs of [6&.1)with no modulus
specifiedunder the mild assumptions of Theorem| 7.4.

Corollary 7.5 (pointbased necessary condition for tilt-stable minimizes in NLPs with no mod-
ulus specified). Letx be a tilt-stable local minimizer of6.d) under the assumptions of Theor@m.
Then the second-order positive-definiteness cond{fialB)is satisfied.

Proof. If Xis a tilt-stable minimizers of{6l1), then by Definitibn )14pplied to the functionf
from (6.2) there isx > 0 such thaixis tilt stable for [6.1) with modulug as formulated in Defini-
tion[21(ii). Thus we get condition (4.4) by Theorém]7.4, ethobviously implies[(6.13). A

Now we are ready to preseabmplete characterizationsf tilt-stable minimizers for[(6]1) with
and without prescribed moduli, which are combinations efrésults obtained above while definitely
deserve to be formulated as a theorem. Moreover, the fallpwheorem contains theecise point-
based formuldor calculating the exact bound of tilt stability.

Theorem 7.6(second-order characterizations of tilt stability for NLPs under either nondegen-
eracy or 2-regularity). Letx e I be a feasible solution t¢6.1) satisfying MSCQ, BEPP, and the
first-order optimality condition[6.3). Suppose further that for evefy=£ v € K(x,—0¢(x)) either
assumptions itfa) or in (b) of Theorenfi/.4are also satisfied. Then the following assertions hold:

(i) Givenk > 0, the pointx is a tilt-stable minimizer of&.Q) with any moduluxk’ > « if and only
if the second-order conditio©.13)is fulfilled.

(i) The pointx is tilt-stable minimizer of{6&.1) with some modulug > 0 if and only if we have
the positive-definiteness condition over the extreme phielts formulated in(6.13)

Furthermore, the exact bound of tilt stability @.1)at x is finite and calculated by

I
(w, 022 (3, A )w)

tilt (¢, q, X) :sup{ A €Ng, (OGi(X),W) =0, i e EUI+()\)},

where we use the convention tigg0 := 0 as above.
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Proof. It follows from the combination of the results obtained inebhenT 6.l and Theorelm 7.4
for assertion (i) and in Corollafy 8.2 and Corollaryl7.5 fesertion (ii). A

Note that the second-order necessary conditions for &ty obtained above (and hence the
characterizations of Theordm I7.6) involves a certmindegeneracin critical directions—either ex-
plicitly assumed in Theorefn_7.4(a), or via 2-regularity inebreni_Z}W(b) that reduces to nondegen-
eracy by Lemm&7]2. The next result shows that these nondeggnassumptions can be avoided if
our basic qualification conditions MSCQ and BEPP are repldgethe stronger CRCQ at the refer-
ence point. Observe that the pointbased second-orderatbdrations of tilt stability obtained in the
new setting are somewhat different from those in Thedrehacddare expressed via the seabifthe
Lagrange multiplier¢3.11), while still being pointbased and constructives klso worth mentioning
that, in the absence of LICQ, the assumptions of Thedrehb)akd Theorerh 717 are stricttom-
plementaryto each other. Indeed, the assumptions of Thedrein 7.4(by itgt the gradients of the
active inequality constraints alieearly independentwhile CRCQ imposed in Theorem 7.7 requires
its linear dependencaround the reference point.

In the new theorem presented below we exclude the casé&nf-¢ (x)) = {0}, which has been
already considered in Propositibn6.3.

Theorem 7.7(second-order characterizations of tilt stability for NLPs under CRCQ). Letxe I’
be a feasible solution t{6.7) satisfying CRCQ and the first-order optimality conditi@3). Assume
further that the gradients of the equality constraifitsg (X)| i € E} are linearly independent and that
K(x,—0¢ (x)) # {0} for the critical cone{d.4). Then the following assertions hold:

(i) Givenk > 0, X'is a tilt-stable minimizer of6.1) with any modulux’ > k if and only if

(7.8) (W 2L (A ) > %HWHZ forall A € A(X -0 (X)), (Og(X).w) =0, i EUI",

where It is defined inG.8)with x=Xand X = —0¢ (X) while I (A) is taken from(3.12) Moreover,
the latter is equivalent to the condition:

For every we R" with (0g;(x),w) =0asic EUIT there isA € A(x,—0¢ (X)) such that
_ 1
(7.9) (w OEZ (XA )w) > - [|w].
(i) The pointxis a tilt-stable minimizer of6.7) without modulus specified if and only if
(7.10) (W OZZ(xA)w) >0 forall A € A(X,—0¢ (X)), w0, (Ogi(X),w) =0, i e EUIT,

which is equivalent to positive-definiteness conditiorr. deery 0 = w € R" with (Og;(X),w) = 0
whenever £ EUIT there is a multiplierA € A(X,—0¢ (X)) such that(w, 022 (X, A )w) > 0.
In any of these cases the exact bound of tilt stabilityod]) at x is finite and calculated by

2
tilt (¢, 0, X) :sup{ W D?(!?\Z‘(‘K)\)M ‘ A e AN(X,—0¢(x)), (Oagi(X),w) =0, i € EUI+}

with the convention tha/0 := 0 as above.

Proof. First we justify thesufficiencyof (Z.8) for the tilt stability ofx with any modulus’ > k.
Pick anyA € A(x,—¢ (X)) with I 7(A) =1 by Propositiod_413(ii) and proceed similarly to the proof
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of Theorem[6.Jl. Suppose on the contrary that there are seegren— x and x; — 0 and pairs
(Wi, W) € gpha?f (xc, ;) (wi) satisfying

1
(7.11) (Wi, Wi ) < ?HWKHZ for somek’ > k and all k € N.

Lety:, Ak, A, andw be chosen as in the proof of TheorEml 6.1. Sing@\ ) I (AK) .7 (x) for all
k sufficiently large and since we have the equality

(7.12) S A-AM0a@+ S A0g(R) =0

icEUIT(A) il \I+(A)

by the definition ofl *(A) in (312), it follows from the result of Lu[20, Propositiorj hvolving
CRCQthat * C .#(x), i.e., all the constraints farc | * are active akc. Hence the critical directions
—wWi € K(x, Yyx) satisfy the relationships

(0ai (%), —Wi) = 0 if i € EUIT(A¥) and (Ogi (%), —wi) <0 if i€ .7 (x)\1T(A%)
for all largek, which readily ensure their limiting counterparts
(Ogi(X),—w) =0 if i e EUIT(A) and (Ogi(X),—w) <0 if i € 1T\ 1*(A).
By scalar multiplication ofl(7.12) ana with taking into account tha}i >0ifiel™\lI +()T) we get
(Ogi(X),w) =0 for i e I*\1*(2), and so(Ogi(x),w) =0 for i € EUIT.

Proceeding then as in the proof of Theorfen 6.1 gives us aamtiation with [Z.11) and thus verifies
the sufficiency part of this theorem with the lower estimate In the exact bound formula.

To prove next theecessityf (Z.8) for tilt stability in (i) and hence the upper estimaf tilt(¢, g, X),
suppose on the contrary thats a tilt-stable local minimizer with modulus’ for everyk’ > K, but
there are vectord € A(x,—0¢(x)) andw € R"\ {0} satisfying

(7.13) (W, 022 (XA )w) < %HWZH with (0o (x),w) =0 forall i e EUIT.

We can clearly ghoosxe’ > K so close ta that inequality [(7.113) holds and can suppose by Proposi-
tion[5.3 thatA = A without loss of generality. Proposition 4.3(ii) allows osselect a critical direction
v e K(x,—0¢(x)) satisfying the conditions

(06i(X),v) =0 for i e EUIT and (Og;(x),v) <0 for i€ .7(X)\I".

Following the proof of Proposition 5.3 under CRCQ, we finﬁlasmooth mapping : ( t,t) —
with X(0) = X, 4%(0) = v, andg;(X(t)) = 0 wheni € EUI™ andt € (—t,t). This yields %o (X( )) =
Ogi(x)v < 0 whenevei € .7 (X) \ I", and thux(t) € I and.# (X(t)) = I+ for all smallt > 0.

To complete the proof of this part, we proceed similarly te ttase of Theorefn 1.4 selecting
an arbitrary sequencg, | 0O, settingx, := X(T) andx; := 0g(x)*A, and denoting byv, the unique
optimal solution to the quadratic optimization program:

minimize [Ju—w||? subject to(Ogi(x),u) =0 forall i € J,

whereJ is a maximal subset dE U|" such that the gradient vectof§lqi(X)| i € J} is linearly in-
dependent. Themwy — w as in the proof of Theorein 7.4, while the assumed CRCQ tellthats
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(Ogi(%),wx) = 0 for all i € EUI™ andk sufficiently large. Following again the arguments of the
latter theorem and taking into account tidk, — ¢ (x);v) = A(x,—0¢ (X)) by Proposition 513 valid
under CRCQ, we employ the regular normal cone representfid) withA from (5.2) and thus ar-
rive at a contradiction with (7.13), which establishes tifiafid if” statement in (i). The equivalence of
(7.8) for the validity of [Z.9) witrsomeA € A(x,—[¢ (X)) follows immediately from Propositidn3.3.

Verifying finally assertion (ii), it remains to observe byoPosition[4.B(ii) that the positive-
definiteness conditiol (7.1L0) with the selecfed A(x,—0¢ (x)) from that proposition yields

(w,02.2 (%A )w) > p|[wP| whenever ([gi(X),w) =0 asie EUI*
for this fixedA, where the numben is positive and is defined by
p = inf{(w, 02.2(% A )w)] [w|| = 1, (Ogi (X),w) =0, i e EUI*}.

This completes the proof of the theorem by taking into acttumdiscussions above. AN

The final result of this section shows that, as far as secoter@nalysis is concerned, the point-
based sufficient conditiod (6.113) of Corolldry 6.2 is atscessaryfor tilt stability in the sense of
Definition[2.1 without either nondegeneracy or CRCQ requirements of Theotemhsnd&d. The
only assumption needed for this statement is the pointb@SEBCMSDroperty [4.1) by the first au-
thor [8] that has already been discussed in Section 4. Thet @xa@aning of the theorem below is
that violating [6.1B) ak € I" for the given NLP[(€.11) yields the violation of tilt stabjliin a modified
NLP with the same cost function and the same values of thetraimisfunctions and their first and
second derivatives atas in [6.1). Thud(6.13) is in fact amimprovable pointbased characterization
of tilt-stable minimizers for NLPs witiE2-smooth data under the mild SOSCMS assumption.

Theorem 7.8(pointbased second-order characterization of tilt stabiliy under SOSCMS). Let
x € I satisfy the first-order optimality conditiof®.3)in NLP (6.1) as well as SOSCMS in the form

(7.14) [A € No(q(x)), Dg(x)*A =0, (u,0%(A,q)(X)u) > 0] => A =0.
Suppose further that the negation @2I13)holds, i.e.,
(w,02.2(%A)w) <0 for someA € As and w# 0 with (Ogi(X),w) =0, i € EUIT(A).
Then there exist &smooth functiong;: R" — R as i=1,...,| satisfying
G (X) = gi(X), 06 (X) = Ogi(x), and 0%G(X) = D%qi(x) forall i=1,...,I
and such thak is not a tilt-stable local minimizer of the modified nonang@rogram
(7.15) minimize ¢ (X) subject toGi(x) =0 for ic E and Gi(x) <0 for i€l.

Proof. Take a critical direction & v € K(x, —¢ (X)) for whichA € Az (x,—O¢ (X);v) and suppose
without loss of generality thdtv|| = 1. Recall by the definition of\s(X; —0¢ (X);Vv) in (€3) thatA
solves the linear prograrh (4.6) with= x andx* = —J¢ (x). Consider now the problem

=0, i€E,

minimize (D¢ (X),z) subject to{0q;(X),z) + (v, 0%q; (X)v) {< 0 ics®
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which isdual to (4.8) withx = x andx* = —¢(X). SinceA solves[(4.B), classical duality in linear
programming ensures the existenc& afR" that solves the dual program and satisfies

=0, i€EUIT(A),

<in (@’2} + <V, DZQi ()Z)V> {S 0, ie Z(X)\IT(A).

Denoting nowz = Z+ av for somea > 0 sufficiently large, we have

=0, i€eEUIT(A),

(v,z) >0 and (0g;(X),2) + (v, 0%G (X)v) {g 0, ie Z(X)\IT(A).

Furthermore, the reader can directly check the followiregjiralities:

1+ 2(z,V)(x—X,V) > 1—2(z,v)|[x—X]| > 0 whenever|x—X]| < 2r with r:=

4zv)’

1+2<z,v><x—>?,v>+64<z,v>3(Hx—>?H—r)3 > 1—2<z,v>Hx—ﬂ]+64<z,v>3r2(Hx—>?H—r)
= 2(zVv)|x—X]| > 0 whenever|x—x]| > 2r.

These relationships allow us to define the real-valued fonet : R" — R by

— 3 5
(7.16) 9(x) = -1+ \/1+2<Z,V><X—X,V>+64<Z,V> max{||x—X]| —r,0} |

(zv)

which is clearly twice continuously differentiable Rf' satisfying the condition

—1+ \/l+2t<z,v> +t2<z,v>2
(zv)

together withdJ9 (X) = v and 1238 (X) = (z,v)w*), wherew!*) indicated the matrix multiplication of
the vector colummv € R" by the vector row*). Consider next the index set

= {ie 7(xv)| (0a(X),2) + (v O?q(X)v) = 0} D17 (A)
and by using[(7.16) define the new constraint functions dewsl

_ 1 1
3 (x+tv+ Etzz) = =t WheneverHtv+ EtzzH <r

ai (X) — Gi (X+ 3 (X)V+ 39 (x)%2) for i c EUIT(A),
Gi(X) = A (X) — G (X+ I (X)V+ 33(X)%2) — [[x—X]|* for icT\IT(A),
qi (X) for iel\I.

This gives us the following relationships with the origiainstraint functions:

0G(x) = Dai(x) — (Ogi(x),v)v = Ogi(x),
D%Gi(0) = D%Gi(%) — ((» DG (3v) + (06i(X), 2) — (V) (06 (X),v))w*) = 0%G5(X]
wheneveii € EUT. Furthermore, for G< t with 0 < |[tv+ $t?7|| <r it holds
(= 1, 0 forie EUIT(A),
i (X+tv+=toz) = N
q.( 2 > {—||tv+tzz||4<0 foricl\17(A).
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Sincel \ I can be partitioned into the sdt§.7 (X}, .7 (X) \ .# (X;v), and.# (X;v) \ I with
gi(x) <Ofor I\.7(X), o (X)=0, (Og(X),v) <0 forie.Z(X)\.#(xv), and
qi(X) = 0, (0gi(X),v) =0, (0gi(X),2) + (v 0?qi(X)v) <0 for i € .7 (V) \I
and by the validity of the representation
. 1, _ 1, t2
6 (x+tv+5t20) =g () tv 2t2) = (9 + (G (9),v) + 5 ((0a(9,2)
+{v, 02q (X)v) ) +0(t?),
we conclude thaffj (X +tv+ 1t?z) < 0 for alli € | \ T and allt > 0 sufficiently small. It follows from
(Z13) that SOSCMI(4.1) is satisfied fgwith E; = I, = 0, and so Theorein 4.1 shows that both
MSCQ and BEPP holds atfor the modified constraint systegix) € © with © from (3.2).
To complete the proof, pick an arbitrary sequeticg0 ask — o, denote
X i= X+ tev+ %t,fz and x; := 0G(x)*A,

and then consider the unique solutiapto the quadratic programi (7.7) withreplaced byg. Using
the same arguments as in the proof of Thedrerh 7.4 gives utivergenceny — w ask — o and
the following relationships held for ad € N: —wi € K (X, %),

nghd&r (Xkﬂ@ - ngh/g\&r(xhxlt) - {(U*,U)| ue K\(ka)(i% u' e _D2<A7q> (Xk)u+ R\(Xk,Xi)*},
and02.Z (%, A )W € 02F (%, 0 (%) + X)) (W), where
Ti={xeR"d(x) €0}, Fr=¢+&, Z(-A)=¢+(A,0),

andK denotes the critical con@A) generated by the aforeoredi hat-constructions. Since we
obviously haved¢ (x¢) + X = Ox-Z (%, A) — 0 ask — o as well as

I|m (Wk, 02.2(x,A) W) = (W, D22(XA) w) <0,

it follows from Theoreni ZJ2 that is not a tilt-stable minimizer of (Z.15), and we are done. A

8 Discussions and Examples

In this section we discuss some remarkable features of tiaénelol second-order sufficient conditions
and characterizations of tilt-stable minimizers in NLPsvadl as the imposed MSCQ and BEPP qual-
ification conditions, which ensure their validity. The prated examples reveal striking differences
between the new results and those known in the literatureabsudillustrate new phenomena on tilt
stability that have not been observed earlier.

Recall that the firstharacterizationof tilt-stable minimizers in NLPs is obtained in_[29, Theo-
rem 5.2Junder LICQin the pointbased form of the classi@BOSJ33]:

(8.1) (w, 022 (x;A)w) > 0 wheneverw # 0 with (Og;(x),w) =0 forall i € EUIT(A),

whereA € R! is theuniqueLagrange multiplier satisfying the KKT systefn (6.3). It Hamen well
recognized that the simultaneous fulfillment of LICQ and $S80s acharacterizationof Robinson’s

30



strong regularity[33] for the variational inequality associated with KT, and thus tilt stability of
the local minimizexin (&.1) isequivalento strong regularity ok in (6.3) under the validity of LICQ,
which is a necessary condition for strong regularity; $§é& {Rorollary 5.3] with the references and
discussions therein. All the examples presented below dstrage that in the results obtained in this
paper in the absence of LICQ, which is surely not mandataryiltestable minimizers, the property
of tilt stability is far removedrom strong regularity while postulating neverthelessaeriehavior of
local minimizers from both qualitative and quantitativafmerical viewpoints.

It is shown in[27, Theorem 3.5] that SSOSC (8.1), assumedltbfor all the Lagrange multipli-
ers in [6.3B), is still asufficientcondition for tilt-stable minimizers in NLPs with inequgliconstraints
when LICQ is relaxed to the simultaneous fulfillment of MFCRHIaCRCQ at the reference point.
The subsequent result 6f [25, Theorem 4.3] provides a cteaization of tilt-stable minimizers in the
same setting as in [27] while being expressed vianhe-pointbased) SOSC discussed above in Sec-
tion 1. Furthermore[[25, Example 4.5] demonstrates ttapthintbased SSOS@ils in this setting,
i.e., it cannot recognize a tilt-stable minimizer under MF&nd CRCQ. It is worth mentioning to this
end that the major difference of SSO$C[8.1) from the sityillmoking condition [Z.ID) is that the
positive-definiteness of the Hessiall.# (x;A) in the latter one is required for tHarger index set
I from (5.8)independentf A. Thus condition[(7.110) is weaker thdn (8.1) providingaintbased
characterizationof tilt stability under the validity of CRCQ by Theordm V.7 iehSSOSC fails to do
it even under assuming in addition that MFCQ holds at thisifpoi

We now show that the usage of the new sufficient condition3)6ffiom Corollary[6.2, which
involves not all the Lagrange multiplies but only t@remeones incritical directionsA € As from
(6.1), allows us to recognize a tilt-stable minimizer thaesl exist in[[25, Example 4.5].

Example 8.1(pointbased recognizing tilt stability via extreme multipliers in critical directions
under MFCQ and CRCQ). Consider the following nonlinear programR¥:

C 1
minimize ¢ (x) := 21x1+x3+x§—x1x2 for x= (X1,X2,X3)
subjectto q1(X) :=x1—X3<0, @2(X):=—X1—X3<0,
03(X) ' =% —X%3 <0, g4(X):=—x—x3<0.

It is easy to check that MFCQ and CRCQ holdkat (0,0,0), and thus both MSCQ and BEPP are
satisfied ak by Propositio 3J4(ii). We can directly calculate that

A% -0 (%) = {A eRfH)\l—)\z:—%, Aa=2Az, Ai+ A2+ A3+ A =1},
_ 133\ /35
o090 ={(755) (58

Hence the second-order sufficient conditibn (6.13) is atiyifulfilled due toAs = 0, and thus it
recognizes tilt stability of the local minimizerin this example.

0,0)}, and K (X, —0¢ (X)) = (0,0,0).

Remark 8.2 (other consequences of Example_8.1Besides the main purpose of Examjle] 8.1, it
allows us to illustrate some other remarkable phenomenit atability.

(i) The tilt-stable minimizex in Exampld_8.1L cannot be recognized not only by SSQSC (8ut), b
also by itsrelaxed versionnvolving extreme multipliers:

(w, 022 (x,A)w) > 0 wheneverA € A(X,—0¢ (X)) N & (X, —0¢ (X)),

(8.2) 0#weR", and (Og(x),w) =0 forall i e EUIT(A),
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which differs from our new conditioi (6.13) by omitting thetical directionsin the construction of
Ags. Indeed, taking\ = (g, 2,0,0) e A(x,—0¢ (X)) N & (x, —O¢ (X)) andw = (0,1,0) in the setting of
Exampld8.1L, we arrive at the relationships

(Ogi(X),w) =0 for i € {1,2} =17(A) while (w022 (x,A)w) =0,

which show that the “non-critical” counterpalt (B.2) bf18) fails at the tilt-stable minimizet.

(i) Exampld8.L cannot be directly used to illustrate Thedréfinsince the critical cone is trivial
in this example while the opposite is assumed in the theordmwever, increasing the dimension
of the problem by adding the terr%»(f1 to the cost function in Example_8.1 gives us an NLP with
K(x,—O¢(x)) = (0,0,0) x R # {0} at the tilt-stable minimizex = 0 and such that the new condition
(7Z.10) holds while SSOSC(8.1) fails therein. Indeed, is ttase we haveét = {1,2,3,4}, and
therefore[(Clg; (X),w) =0 for all i € I} implies thatw = (0,0,0,w,) and({w, 072 (X, A )w) = w3 for
allA e A(x,—0¢(x)), i.e., condition[(Z.10) is satisfied. On the other hand, vié 8/8,5/8,0,0) =
{1,2}, which shows the violation of(8.1) fav = (0,1,0,0).

The next example reveals the situation when both MFCQ and@R( at a local minimizex
while SOSCMS[(4.1), and hence MSCQ and BEPP by Thebreim 4 $atisfied at this point together
with the other assumptions of Theorém]7.6 ensuring thezdfwat the second-order conditidn (6.13)
provides a completpointbased characterizatioof tilt stability for x.

Example 8.3(pointbased characterization of tilt stability under 2-regularity but without MFCQ
and CRCQ). Given a parameter pafa,b) € R?, consider the following NLP ifR3:

minimize ¢ (X) := —x1+ gx§+ gx§ for x= (x1,X%2,%3)
. 1 1
(8.3) subject to gy (x) := Xy — EX% <0, Qo(X)i=x3— EX% <0,
1 1
B(X) = —xg — éxg — Exg <0.

Lettingx= (0,0,0), itis easy to observe that both MFCQ and CRCQ are violatedvaile SOSCMS
(4.1) holds withE, = I, = 0 therein. To check the latter, pick any vectorst@ = (ug,up,u3) and
0 # (A1,A2,A3) € No(q(x)) satisfying Og(x)u € Te(q(x)) and (Oq(x),A) = 0 and then get; = O,

A+2A2—2A3=0,A1>0,A,>0,A3 >0, and soA\3 = A; + A, > 0. This gives us

(U, (A, ) (X)u) = — (A1 +A3) U3 — (A2 +A3)u§ < O

and thus verifies the validity of SOSCMS in this setting.
The corresponding set of multipliefs (3111) and its extr@miats are calculated by, respectively,

ANX—0p(X) ={A eR¥| A +A—A3=1}, &(x—0¢(X)) = {(1,0,0),(0,1,0)}.

The critical cone amounts ®(x, —0¢ (x)) = {0} x R x R, and for 0 v € K(x,—O¢ (X)) we have

(1,0,0) if V3 < V2,
/\()?,—DQS()Z);V) = {()\1,)\2,0)6]1%1{)\1—%)\2:1} if V%ZV%,
(0,1,0) if V3 > V3.

This tells us that\(x,—O¢ (X);V) is a singleton when3 # v2, and thus we meet the assumptions
of Theoren_Z#(b) used also in Theorem| 7.6 by showing thagvery 0+~ v € K(x,—0¢ (X)) with
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v =V2and eveni € As(X, —0¢ (X);v) = {(1,0,0),(0,1,0)} there is a maximal subs@t of %' (X;v)
such thal *(A) C ¢ and(q); g, is 2-regular ak’in the directionv. To proceed, observe from the
above that; = 0 andv3 = V4 = 0 in our case and that the sefrom (7.3) is

={(21,22.23)| 1 —V5 <0, 1 —V5< 0, —2z1 — V5 — V5 < O},

which gives us‘ﬁ ) = {0,{3},{1,2}}. Then we have that’ = {1,2} is a maximal element of
F(xv),1T(A) C €, A €{(1,0,0),(0,1,0)}, and for everyxr € R? the system

< _) > <V D2q1 )Z)W> = U —VoWe = Q1, <Dq1(>2) W> w; =0,
(00 (X), u) + (v, D20 ()W) = Uy — Vaws = at2, {Odp(X), W) = wy = 0

has a solutionu,w), e.g.,u = (01,0,0) andw = (0,0, (01 — a2)/v3). This verifies the required
2-regularity in Theoreni 716, and so we can apply the tilbiitg characterizations therein. The
straightforward second-order calculation in the positiediniteness conditiod (6.113) shows thds —
a tilt-stable local minimizer inf((8]13f and only if a> 1 andb > 1. Furthermore, we can compute the
exact bound of tilt stability ok in this program by tilf¢,q,x) = 1/ min{a— 1,b—1}.

Note finally that in this example SSOSC(8.1) failx#dta=b=2,A =(0,2,1) € A(x,—0¢ (X)),
andw = (0,0,1). Indeed, we have thefilg,(X),w) = ((gg(X), w) = 0 while (w, 02.2(X; A )w) = —1.

The next example demonstrates that the additional assomspdf Theorerh 716 (taken from The-
orem[Z.4) ensuring theecessityof the second-order sufficient conditidn (g.13) for tilasie mini-
mizers,cannot be droppedven under the validity of MFCQ.

Example 8.4(nondegeneracy and 2-regularity are essential for pointbasd characterizing tilt-stable
minimizers). Consider the the following NLP i3

. 1
(8.4) minimize ¢ (X) (= —x1+ —x%, X = (X1,X2,X3),
subjectto qi(X) ;==X +x5 <0, 2(X) :=x1 <O0.

We obviously have tha¥!lFCQ holdsat x = (0,0,0), and hence both MSCQ and BEPP assumed in
Theoreni 611 are satisfied at this point. Since the secondraartsn (8.4) is clearly redundant, we can
consider the equivalent version of this probl@rithoutthe latter constraint and easily deduce from
Theoreni 611 that is a tilt-stable minimizer in it with modulus = 1. However, applying Theorem 6.1
to the original (“full”) version of [8#) shows that the sexborder sufficient conditio (6.13) fails,
and so we cannot make a conclusion about tilt stabilitx of (8.4) by using this theorem. Indeed,
takingv = (0,1,0), A = (0,1), andw = (0,0,1) gives us

veK(x —0¢(x)) = {ve R3| vy =0}, A € Ag (X, —0¢(X);v) = {(1,0),(0,1)},
() ={2}, (Og(X),w) =0, and (w, 022 (X, A)w) =0,

which shows that the sufficient condition (6.13) for tilt lsitdy is not fulfilled at x. The reason
is that the additional assumption of Theoreml| 7.4 ensurimegneecessity of[ (6.13) for tilt stability
are not satisfied here. To see this, observe that the set oahgg multipliers[(4]5) in the critical
directionv is not a singleton(i.e., x degenerates in this direction), which violates the assiam
Theoren{_Z}l(a). Furthermore, the set of active inequabitystraint indexed(71.2) in this direction is
% (x;v) ={0,{1,2}}, which shows that the-regularityassumption of Theorefn7.4(b) is also violated.
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The last example in this section is a modification of Exanip® iBustrating the phenomenon
on tilt stability revealed in Theorefn 7.8, which shows thare are two NLPs with the same cost
function and the same values of the constraints functiodgstair derivatives up to the second order
at the reference point such that this point satisfies SOSChMiSgaves a tilt-stable local minimum
for one program but not for the other one. The example preddmglow illustrates this phenomenon
under MFCQ (which is stronger than SOSCMS) in the case winerednstraint functions and their
derivatives up the third order are the same in at the poinugstion. Actually this example can be
further modified to exhibit the aforementioned phenomenaaeu the validity of MFCQ in the case
where the constraint functions and their derivativewy orderare the same at the reference point.

Example 8.5(pointbased characterizations of tilt stability are not posible under MFCQ alone).
Consider the following NLP ifR3, which differs from [8:%) by the term-x3 in the functiongy (x):

. 1
minimize @ (X) := —x1 +=X5, X = (X1,X2,X3),

(8.5)
subjectto gu(X) :=x — X5+ x5 <0, go(X) 1=, <O0.

We obviously have that MFCQ holdsat (0,0,0) in (8.8) and the values of the constraint functions
and their derivatives up to the third ordenadre same il (8]4) an@(8.5). As shown in Exaniplé 8.4, —
is a tilt stable minimizer of(814) while the second-ordeffisient condition [6.1B) fails fox in (8.4).

To verify thatxis nota tilt-stable minimizer for NLP in(8]5), pick the same elartsr = (0, 1,0),
A =(0,1), andw = (0,0,1) as in Exampl€ 8l4 and then, according to Definifiod 2.1 oftdibility
and its adjustment for NLPs in Section 6, consider the prable

o 1 .
minimize — x; + EX% — ux, subject tox; —x4+x3<0, x; <0

with only one tilt parameteu € R in this case. For eacth # 0 the latter parametric optimization

problem has two distinct solutior(, u, +-u?), which excludes the validity of tilt stability ofin (8.3).
Note that we can also construct an NLP equivalent (in therskooder) to[(8.4) but without tilt

stability atx by using the proof of Theorem 7.8. Indeed,Zet v= (0,1,0) and thus get the functions

G(x) =x1+8— (& +x8+x8)° and Go(x) =X
in the proof therein, wherg, is surely more complicated in comparison with {8.5).

Remark 8.6 (tilt stability and critical multipliers). Finally in this section, we discuss somea-
merical consequences the obtained results on tilt stability. This concernsatieinships between tilt
stability of local minimizers in NLPs and the so-calledtical minimizersthat have been recently
discovered and then strongly investigated in the excebeok by Izmailov and Solodov [14]. Itis
shown in [14] that critical multipliers, which may appeaeavn the case of unique multipliers under
LICQ, are largely responsible fgtow convergencef major primal-dual numerical algorithms includ-
ing Newton and Newton-type methods, the augmented Lagaangiethod, the sequential quadratic
programming method, etc. Therefore it is highly desirednftbe numerical viewpoint taule outthe
existence of critical multipliers and so to be able makinghsa conclusion based on thrétial data

of the NLP in question. These and related issues have beemsdexd in the recent comments of the
second author [23] on the survey by Izmailov and Solodov @&l/¢to critical multipliers, which is
based on their book [14]. It isonjecturedn [23] that under appropriate qualification conditions til
stability excludes the existence of critical multipliers.
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The results obtained in this paper shed light on this conjecind its consequences for primal-
dual algorithms of numerical optimization. Indeed, it canderived from|[[25, Theorem 4.3] that
the simultaneous validity of MFCQ and CRCQ (and surely in ¢hse of LICQ) at the given tilt
minimizer x ensures that critical multiplierdo not appearat x, i.e., the above conjecture is valid
in this setting. Thus the pointbasegcessaryconditions for (as well as the characterizations of)
tilt-stable minimizers established in Section 7 allow ugxalude, under the validity of MFCQ and
CRCQ atx, undesired behavior of the aforementioned numerical #lgos. Observe, in particular,
that our major pointbased second-order condition {6.18B)chvcharacterizes the tilt stability afby
Theoreni Zb(ii) via the positive-definiteness of the Hassidthe Lagrange function only faxtreme
multipliers incritical directions(6.7), tells us now thaill the Lagrange multipliers amoncritical at
xin the sense of [14] in this rather general setting.

On the other handVIFCQ alonedoes not allow us to exclude the existence of critical mligtip
at tilt stable minimizers. It happens, in particular, in gegting of Examplé_8]4 under MFCQ and also
in Example[8.B under the weaker SOSCMS. Alexey Izmailow§tei communication) informed us
about a two-dimensional example admitting threquecritical Lagrange multiplier under the validity
of MFCQ (but not LICQ) at a tilt-stable minimizer. Thus theegtion remains on what (weaker than
CRCQ) should be added to MFCQ, or even what can replace MFAE&TCQ together, to ensure
that tilt stability excludes critical multipliers at thefezence local minimizer.

9 Open Questions and Further Research

It seems to us that this paper basically clarifies the stnatiith second-order necessary and sufficient
conditions for tilt-stable local minimizers in finite-dimgional NLPs, and not much is expected to be
added to this theory. However, principal questions rembduausing the obtained results and the very
notion of tilt stability in numerical optimizatiorincluding, in particular, more work on relationships
between tilt stability and critical multipliers discussatithe end of Section 8. Challenging issues
arise on infinite-dimensional (mainly Hilbert space) esiens of the obtained pointbased characteri-
zations and also on establishing appropriate counterpfitte NLP tilt stability theory above in other
remarkable classes of constrained optimization, pagrgufor problems otonic programming

Among the most natural topics of the future research we merdeveloping a comprehensive
theory offull stability for local minimizers in NLPs as well as in other classes ofst@ined opti-
mization and variational problems. The notion of full stiypiwas introduced by Levy, Poliquin and
Rockafellar [17] in the extended-real-valued frameworkio€onstrained optimization as a far-going
generalization of tilt stability. Recently it has been kElggextended to various classes of constrained
optimization problems in[24, 26, 28,130,/31]. However, mafsthe results obtained in these papers
imposenondegeneracassumptions (analogs of LICQ) on the corresponding canstraThe only
exception is[[24], where neighborhood characterizatidrfsilbstability in NLPs are obtained under
the simultaneous validity of partial versions of MFCQ and@IR A major goal of the future research
is to extend the theory of tilt stability developed in thigopato the case of fully stable local min-
imizers in NLPs. Note that full stable minimizers seem to barenappropriate to rule out critical
multipliers according to the second conjecture_in [23].
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