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Abstract

Here we solve the problem posed by Comte and Lachand-Robert
in [8]. Take a bounded domain Ω ⊂ R

2 and a piecewise smooth
nonpositive function u : Ω̄ → R vanishing on ∂Ω. Consider a flow of
point particles falling vertically down and reflected elastically from the
graph of u. It is assumed that each particle is reflected no more than
once (no multiple reflections are allowed); then the resistance of the
graph to the flow is expressed as R(u; Ω) = 1

|Ω|

∫

Ω(1 + |∇u(x)|2)−1dx.

We need to find infΩ,uR(u; Ω). One can easily see that |∇u(x)| < 1
for all regular x ∈ Ω, and therefore one always has R(u; Ω) > 1/2. We
prove that the infimum of R is exactly 1/2. This result is somewhat
paradoxical, and the proof is inspired by, and partly similar to, the
paradoxical solution given by Besicovitch to the Kakeya problem [1].

Mathematics subject classifications: 49Q10, 49K30
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1 Introduction

Consider the following simple mechanical model. A solid body translates
through a rarefied medium of point particles at rest. When colliding with
the body surface, the particles are reflected in the perfectly elastic way. The
medium is so rarefied that mutual interaction of particles can be neglected.

A spacecraft moving forward in an interstellar cloud can serve as a proto-
type for this model. The cloud is homogeneous and extremely rarefied, and
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has zero absolute temperature. As a result of collisions with the particles,
the drag force acting on the body is created. One is normally interested
in finding the body, from a prescribed class of bodies, that minimizes the
projection of this force on the direction of motion. This projection is usually
called the resistance.

It is natural to impose the condition on the body shape stating that no
particle collides with the body more than once. (It will hereafter be referred
to as single impact condition, or just SIC. Its analytical form will be derived
later; see formula (2).) With this condition, the resistance of the body can
be written in a comfortable analytic form. Namely, in a reference system
connected with the moving body one observes a parallel flow of particles
incident on the body at rest. Introduce orthogonal coordinates x1, x2, z so
as the flow falls vertically down with the velocity (0, 0,−1), and define the
function u : Ω → R, whose graph coincides with the upper part of the body.
(Here Ω ⊂ R

2 is the orthogonal projection of the body on the (x1, x2)-plane,
and the graph of u is formed by points of collision with the flow particles.)
Then the resistance of the body equals 2ρ|Ω|R(u; Ω), where ρ is the density
of the flow, |Ω| is the area of Ω, and

R(u; Ω) =
1

|Ω|

∫

Ω

dx

1 + |∇u(x)|2 , (1)

with x = (x1, x2) being a point of the plane.
A minimization problem in this setting was first studied by Newton in his

Principia [14]. He looked for the body of least resistance in the class of convex
axisymmetric bodies with fixed length and width. In terms of functions, the
problem (with the length l and width 2w) reduces to minimizing R(u; Ω) (1)
in the class of radial concave functions u : Ω → [0, l], where Ω is the circle
with radius w. The optimal body with the height equal to the width (l = 2w)
is displayed in Fig. 1.

This study gave rise to a series of interesting variational problems that
have been intensively studied in the last two decades (see, e.g., [2, 3, 4, 5, 6, 7,
8, 11, 12, 13]). Let us mention the important problem of minimal resistance
in the class of bodies with fixed length l and fixed maximal cross section Ω
and satisfying the single impact condition. (No conditions of convexity or
axial symmetry are imposed.) This problem reduces to minimizing R(u; Ω)
in the class of piecewise smooth functions u : Ω → [0, l] satisfying SIC. This
problem was first stated in 1995 in the paper [4] by Buttazzo, Ferone, and
Kawohl and further discussed in [6, 7, 11], and remained open since then.

A very interesting problem was proposed in 2002 by Comte and Lachand-
Robert [8]: minimize R(u; Ω) over all bounded domains Ω ⊂ R

2 and piecewise
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Figure 1: The solution of Newton’s problem in the case when the height is
equal to the width.

C1 functions u : Ω̄ → R satisfying SIC and such that uc∂Ω = 0 and u(x) < 0
for all x ∈ Ω.

This problem admits the following mechanical interpretation. A space-
craft moves through a rarefied cloud. One wants to make small dimples on
the front part of the spacecraft surface so as to diminish its resistance. The
problem amounts to optimization of the shape of dimples. Of course, the me-
chanical assumptions adopted here are oversimplified, especially as concerns
perfectly elastic reflections of particles of the cloud from the spacecraft.

Surprisingly, some problems of minimal resistance can be solved using
methods borrowed from the Kakeya problem. In this paper we provide the
solution of the problem by Comte and Lachand-Robert; the solution of the
Buttazzo-Ferone-Kawohl problem is technically more involved and is given
in [16].

The Kakeya needle problem (1917) is as follows: find a plane domain
of smallest area in which a line segment of unit length can be continuously
turned around through 360◦. A surprising answer was given by Besicovitch
in 1928: there exist domains of arbitrarily small area with this property. An
elementary proof of this fact can be found in [1].

Nowadays there is an extensive literature on Kakeya-type problems and
their applications in various areas of mathematics (see, e.g., expository ar-
ticles [17] and [18]). A striking example of such an application in harmonic
analysis is the disproof of the ball multiplier conjecture using a Besicovitch-
like construction in the paper of Fefferman [10]. Here we use a similar con-
struction to design a sequence of functions minimizing the resistance.

The single impact condition (SIC) was introduced in [4]. It can can be

3



stated analytically as follows: for any regular point x ∈ Ω and any t > 0
such that x− t∇u(x) ∈ Ω̄,

u(x− t∇u(x))− u(x)

t
≤ 1

2
(1− |∇u(x)|2). (2)

For the reader’s convenience, here we derive this formula.
SIC means that each particle of the vertical flow with the velocity (0, 0,−1),

after the perfectly elastic reflection from a regular point of the graph of u,
further moves freely above the graph (it may, however, touch the graph at
some points). Let a particle initially move according to

x(τ) = x ∈ Ω, z(τ) = −τ, τ ≤ −u(x).

The particle reflects from graph(u) at (x, u(x)), and its velocity after the
reflection is

v+(x) =
(−2∇u(x), 1− |∇u(x)|2)

1 + |∇u(x)|2 . (3)

Its motion after the reflection is described by

x(τ) = x− 2∇u(x)
1 + |∇u(x)|2 (τ + u(x)), (4)

z(τ) = u(x) +
1− |∇u(x)|2
1 + |∇u(x)|2 (τ + u(x)), τ ≥ −u(x). (5)

According to SIC, one has

u(x(τ)) ≤ z(τ) whenever τ ≥ −u(x) and x(τ) ∈ Ω̄.

Substituting x(τ) (4) and z(τ) (5) in this inequality and changing the variable
t = 2(τ + u(x))/(1 + |∇u(x)|2), one comes to formula (2).

In Figure 2 examples of functions satisfying and not satisfying the SIC
are given.

A piecewise C1 function u : Ω̄ → R satisfying SIC and such that uc∂Ω = 0
and u(x) < 0 for all x ∈ Ω will be called admissible.

Resistance (1) and SIC (2) are invariant under isometries and dilations
of the x-plane. Namely, consider a bounded domain Ω and an admissible
function u : Ω → R. Let k > 0 and f be an isometry of the plane. Take

Ω̃ = f(kΩ), and define the function ũ : ¯̃Ω → R by

ũ(f(kx)) = ku(x) for x ∈ Ω̄.

Proposition 1. The function ũ is admissible and R(ũ; Ω̃) = R(u; Ω).
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(a) (b)

Figure 2: Examples of a function that (a) satisfies and (b) does not satisfy
the single impact condition.

The proof is given in the appendix.
Reiterating, the problem of Comte and Lachand-Robert reads as follows.
Problem. Minimize the functional R(u; Ω) (1) over all bounded domains

Ω and admissible functions u : Ω̄ → R.

Remark 1. The original formulation in [8] concerns the (seemingly more
restricted) problem of minimization over bounded domains Ω tiling the plane.
However, as follows from Theorem 2 below, these problems are equivalent.

Two other interesting problems of minimal resistance for bodies satisfying
the single impact condition, with and without rotational symmetry, were
studied by Comte and Lachand-Robert in [6] and [7].

It is easy to see that for any domain Ω, supuR(u; Ω) = 1, and the supre-
mum is attained, as n→ ∞, at any sequence of functions of the form 1

n
u(x).

On the other hand, for any admissible function u and any regular point x ∈ Ω
we have

|∇u(x)| < 1. (6)

This can be derived from both geometric considerations and formula (2).
Indeed, if |∇u(x)| ≥ 1, the particle reflected from the point (x, u(x)) will
then move downward (the third component of its velocity will be nonpositive)
and therefore will inevitably hit the graph of u once again.

One can also use analytical reasoning: when x − t∇u(x) ∈ ∂Ω, the left-
hand side of (2) is positive, and therefore the right-hand side should also be
positive.

As a result, one always has R(u; Ω) > 1/2, and so, for any Ω

sup
u

R(u; Ω) = 1 and inf
u
R(u; Ω) ≥ 1/2.
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Figure 3: Graphs of ua and ub; a side view. The images are generated by
Maple. The trajectory of a single particle of the flow is shown in each case.

Until now it was not even known whether infΩ,uR(u; Ω) is equal to or
greater than 1/2. It was found in [8] that

R(ua; Ωa) ≈ 0.593

for the function ua(x1, x2) = max{ϕ(|x1|+1/2), ϕ(|x2|+1/2)}, with ϕ(r) =
(r2 − 1)/2 and Ωa = (−1/2, 1/2)× (−1/2, 1/2). Additionally, it was shown
in [15] that

R(ub; Ωb) ≈ 0.581,

where ub and Ωb are defined as follows. Take an equilateral triangle ABC
with unit sides and denote by rA(x), rB(x), rC(x) the distances from x to
A, B, C; then ub(x) = max{ϕ(rA(x)), ϕ(rB(x)), ϕ(rC(x))} and Ωb = {x :
rA(x) < 1, rB(x) < 1, rC(x) < 1} is a Reuleaux triangle. The images of ua

and ub generated by Maple are shown in Figure 3. (The indentation on the
boundary of the graph (b) is an artifact of the computer program used.)

Thus, it was first found that infuR(u; Ω) < 0.594, and this estimate was
then substituted with a better one, infuR(u; Ω) < 0.582. The function ua

and then the function ub were for some time considered as true minimizers
of the Comte–Lachand-Robert problem.

Here we state the main results of this paper.

Theorem 1. infu,ΩR(u; Ω) = 1/2.

As a simple corollary of Theorem 1, we get the next result as well.

Theorem 2. For any domain Ω one has infuR(u; Ω) = 1/2.

These results are quite paradoxical; they mean that most of the graph of
u should be formed by “mirrors” with the angle of inclination close to 45◦.

6



After reflection from these mirrors, the particles should move a very long way
along gently sloping “valleys” below the “zero level,” and the total area of
these valleys should be close to zero. In the next section we give a solution
which, in part, is close to another paradoxical solution given by Besicovitch
to the Kakeya problem [1].

2 Proof of the main results

The main element of the underlying construction is a triangle divided by a
segment into a trapezoid (which is associated with a mirror) and another
triangle (associated with a valley); see Fig. 4. One takes a large collection
of such elements, in which the mirrors are disjoint and the valleys strongly
intersect, so that the area of each mirror is small as compared with the area
of the corresponding valley, while the area of the union of valleys is small as
compared with the area of the union of mirrors (see Fig. 7).

The domain Ω̃ is the union of triangles in the collection, and an admissible
function ũ is defined on Ω̄ in such a way that its derivative is close to 1 on the
mirrors. A particle reflected by a mirror further moves almost horizontally
along the corresponding valley. This is the main idea of the proof of Theorem
1. To prove Theorem 2, one covers a most part of the corresponding domain
Ω by nonintersecting small copies of Ω̄.

The construction of the collection of triangles is close to the constructions
used by Cunningham in [9] to design a simply connected solution of the
Kakeya problem and by Fefferman in [10] to provide a counterexample to
the ball multiplier conjecture. For the reader’s convenience, it is described
below in detail.

Let us first introduce some notation. Take a triangle ABC on the x-plane
and draw a segment MN parallel to its base AC with endpoints on the two
lateral sides (see Figure 4). The triangle ABC and the segment MN will
be called the big triangle and the separating segment, respectively. The open
sets MBN and AMNC will be called the small triangle and the trapezoid
associated with the big triangle ABC, and denoted by the signs 4 and .
The ratio

κ =
dist(B, MN)

max{|AB|, |BC|}
will be called the ratio associated with the big triangleABC, and max{|AB|, |BC|}
will be denoted by r0. Here of course dist(B, MN) means the smallest dis-
tance from B to a point of the segment MN . In Figure 4, the ratio equals
κ = |BH|/|BC|, where BH is the height of the small triangle, and r0 = |BC|.
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Figure 4: A big triangle.

The values κ and r0 can also be characterized as follows: the smallest
ring centered at B that contains has outer radius r0 and inner radius κr0.

Introduce polar coordinates on the x-plane r = r(x), θ = θ(x) with the
pole at B, and define the function uABC in the closed domain ABC by

uABC(x) =







r2(x)−r2
0

2r0
if x ∈ ,

−c if x ∈ 4 ∪MN,
0 if x ∈ AB ∪BC ∪ CA.

(7)

The positive constant c is chosen so as

−c ≤ inf
x∈

uABC(x);

thereby the function uABC is not uniquely defined. The function is negative
in the interior of the triangle ABC and is zero on its sides.

The graph of the restriction of uABC on is a piece of a circular paraboloid
with vertical axis and with focus at (B, 0) ∈ R

3. This means that a parti-
cle of the flow reflected from this piece of paraboloid will then move along
a ray through the focus. Thus, the third coordinate of the reflected parti-
cle will gradually increase, and therefore no further reflections will happen
(the trajectory touches the graph of uABC only at the point(B, 0)). Further,
a particle hitting the graph at a point corresponding to the small triangle
MBN (where uABC is constant) is reflected back in the vertical direction
and does not make reflections anymore. Thus, the function uABC satisfies
the SIC.

This can also be checked in a purely analytical way. Indeed, if x ∈ , then

the vector ∇uABC(x) is proportional to
−→
Bx; further, |∇uABC(x)|2 = r2(x)/r20,
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Figure 5: A vertical section of the graph of uABC .

and the point x − t∇uABC(x) lies on the segment [B, x]. One can easily
see that u(x − t∇uABC(x)) < uABC(x) (here one should consider the two
cases where x ∈ and x ∈ 4), and therefore the left-hand side of (2) is
negative while the right-hand side is positive. If, otherwise, x ∈ 4, then
∇uABC(x) = 0, and therefore the left-hand side of (2) equals zero and the
right-hand side equals 1/2.

A section of the graph of uABC by the vertical plane through a horizontal
straight line containing B (the line PB in Figure 4) is shown in Figure
5. The section is formed by an arc of parabola and a horizontal segment.
Each particle of the flow that initially belongs to the plane of section, after
reflection from the arc or the segment will also belong to this plane. A particle
that hits the arc of the parabola will then pass through B (see Figure 5).
One can also see that |PB| < r0 and |QB| > κr0. In Figure 5 the smallest
possible value of the constant, c = − infx∈ uABC(x), has been chosen.

One can now estimate the resistance associated with the trapezoid,

R(uABCc ; ) =
1

| |

∫

dx

1 + r2(x)
r2
0

.

Taking into account that r(x)/r0 ≥ κ, one obtains that

R(uABCc ; ) ≤ 1

1 + κ2
.

On the other hand, the resistance of the small triangle equals 1.
Intuitively, if κ is close to 1, the slope of motion of reflected particles will

be small, and therefore the resistance will be close to 1/2. However, in this
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case the relative area of the small triangle (and therefore the resistance of the
big triangle ABC) will be close to 1. The idea of the proof is to take a large
collection of big triangles such that the associated small triangles effectively
overlap, and so the relative area of their union is small.

For each natural n we take a family of 2n big triangles enumerated by
k = 1, 2, 3, . . . , 2n. Let κnk be the associated ratios, let 4n

k and n
k be the

corresponding small triangles and trapezoids, and denote

4n =

2n
⋃

k=1

4n
k and n =

2n
⋃

k=1

n
k.

Proposition 2. There exist families of triangles 4n
k, n = 1, 2, . . . , k =

1, . . . , 2n, satisfying the following conditions:

(i) for each n, the sets n
1,

n
2, . . . ,

n
2n, 4n are mutually disjoint;

(ii) limn→∞ |4n|/| n| = 0;

(iii) there exists a sequence an > 0 converging to zero as n → ∞ such that
κnk ≥ 1− an.

This proposition is a key point of the proof. At the first glance it looks
paradoxical: according to (iii), the area of each trapezoid n

k is much smaller
than the area of 4n

k. On the other hand, (ii) implies that the small triangles
4n

k, k = 1, . . . , 2n, strongly overlap, so that the area of their union is much
smaller than the area of the union of trapezoids n

k.

Proof. First we define the procedure of δ-doubling. Take a big triangle ABC
with the separating segment MN , and let T be the midpoint of MN (see
Figure 6). Define |MN | = a, and let the height of the small triangle MBN
be h and the height of the trapezoid AMNC be d. Extend the sides MB
and NB beyond the point B to obtain the segments MM ′ and NN ′, with

|BM ′| = δ|BM | and |BN ′| = δ|BN |.

Let the straight linesM ′T and N ′T intersect the segment AC at the points C ′

and A′, respectively; N ′T intersects MB at the point R, and M ′T intersects
NB at the point S. The procedure of δ-doubling applied to ABC results in
the two new big triangles AM ′C ′ and A′N ′C; their separating lines MT and
TN have the length a/2 each. The new small triangles MM ′T and NN ′T
have the same height (1+ δ)h. The two obtained trapezoids do not intersect
and belong to the original trapezoid, and the area of their union is greater
than ad.
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C ′ A′

T

R S

P Q

Figure 6: The procedure of doubling: The triangle ABC is replaced with the
triangles AM ′C ′ and A′N ′C.

Draw the line through B parallel to MN , and denote by P and Q the
points of its intersection with N ′T andM ′T . The triangles TN ′N and PN ′B
are similar, with the ratio δ/(1 + δ); therefore

|PB| = δ

1 + δ
|TN | = δ

1 + δ
|MT |.

Thus, the triangles RPB and RMT are similar with the same ratio; in
particular, we have |RB| = δ|MR|/(1 + δ), and hence

|RB| = δ

1 + 2δ
|MB|. (8)

Consider the triangles MBN and RBN ′. Relation (8) gives the ratio of
their sides RB andMB, and the ratio of their heights dropped to these sides
equals δ. Therefore the area of the triangle RBN ′ equals

|RBN ′| = δ2

1 + 2δ
|MBN | = δ2

1 + 2δ
· ah
2
.

The area of the triangle SBM ′ is the same. Thus, the increase of the total
area as a result of doubling is less than δ2ah.

Let us now apply the procedure of doubling several times. Initially one
has the triangle ABC, and at themth step (m ≥ 1) one applies the procedure
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of δm-doubling to each of 2m−1 triangles obtained at the previous step. Thus,
the separating lines of the triangles at the mth step have the length 2−ma
each, and their union is the segment MN . The height of each such triangle
equals

hm = (1 + δm) · · · · · (1 + δ1)h,

and its area equals 2−m−1a · hm.
Let Sm be the area of the union of triangles at the mth step. The increase

of the area at the (m+ 1)th step is smaller than 2m · δ2m+12
−mahm; that is,

Sm+1 < Sm + δ2m+1 ahm. (9)

Take hm = m + 1 (and in particular, h = h0 = 1); then we have δm = 1/m
and S0 = a/2, and by (9),

Sm+1 < Sm +
a

m+ 1
.

One easily concludes that Sm < a(lnm+ 3/2) for m ≥ 1.
In Figure 7 the initial triangle and the triangles obtained in steps 1–3 of

the doubling procedure are shown.

(a) (b) (c) (d)

Figure 7: The original triangle (a), two triangles obtained at the first step (b),
four triangles obtained at the second step (c), and eight triangles obtained
at the third step (d).

For all m, the trapezoids of the mth step are disjoint. Indeed, let this
be true at the mth step. Two trapezoids obtained when doubling a triangle
of the mth step are disjoint and are contained in the trapezoid associated
with the original triangle; therefore they do not intersect any other trapezoid
obtained at the (m+1)th step. The trapezoids also do not intersect the small
triangles, since they lie on the opposite sides of the line MN . The total area
of the trapezoids is greater than ad.
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Fix n and take d =
√
n. Let 4n

k and n
k, k = 1, . . . , 2n, be the triangles

and trapezoids of the nth step. We have already verified that Proposition
2(i) is true. Further,

|4n| =
∣

∣

∣

∣

∣

2n
⋃

k=1

4n
k

∣

∣

∣

∣

∣

= Sn < a

(

lnn+
3

2

)

,

and the total area of the trapezoids is

| n| =
∣

∣

∣

∣

∣

2n
⋃

k=1

n
k

∣

∣

∣

∣

∣

> a
√
n;

therefore (ii) is also fulfilled.
Now let AkBCk be the kth big triangle (1 ≤ k ≤ 2n), and MkNk be

its separating line. Assume without loss of generality that |AkB| ≥ |CkB|.
Using that

|MkB|
|AkB| =

hn
hn + d

=
n+ 1

n+ 1 +
√
n
,

|MkNk| = 2−na, and |AkB| > n + 1 +
√
n, one obtains

κnk =
dist(B,MkNk)

|AkB| ≥ |MkB| − |MkNk|
|AkB| ≥ n + 1

n+ 1 +
√
n
− 2−na

n+ 1 +
√
n
,

so (iii) is also satisfied.

Now we use relation (7) to define the function unk in each big triangle,
choosing the constant c = cn to be the same for all k. Let Ωn = 4n ∪ n.
Using (i), we define the function un on Ω̄n so that its restriction on each big
triangle of the nth step coincides with the corresponding function unk . Using
(ii) and (iii), we now obtain the estimates for the resistance of un:

R(un; Ωn) ≤
| n|

| n|+ |4n|

(

1

1 + (1− an)2

)

+
|4n|

| n|+ |4n| →
1

2
as n→ ∞.

Thus, infu,ΩR(u; Ω) = 1/2, and Theorem 1 is proved.

Remark 2. The sequence of domains Ωn does not converge in any reasonable
sense. On the contrary, the domains become more and more complicated as
n grows. It may seem disturbing that the size of Ωn goes to infinity. However,
applying the scaling transformation Ω̃n = 1

n
Ωn, ũn(x) =

1
n
un(nx), one comes

to the sequence of domains Ω̃n with bounded diameter, and by Proposition
1 one has R(Ω̃n; ũn) = R(Ωn; un) → 1/2 as n→ ∞.
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Let us now prove Theorem 2.
We say that Ωi is a copy of Ω if there exist a real value ki > 0 and an

isometry fi of the plane such that fi(kiΩ) = Ωi.

Proposition 3. Let ε > 0. Then for any two bounded domains Ω and Ω̃
there exists a finite family {Ωi} of mutually nonintersecting copies of Ω, all
contained in Ω̃, such that |Ω̃ \ (∪iΩ

i)| < ε.

Proof. Take a square |x1| < M, |x2| < M containing Ω and fix δ = |Ω|/M2.
Obviously, 0 < δ < 1, and any squareQ on the plane contains a copy of Ω that
occupies the area δ|Q|. Further, take a square lattice x1 = am, x2 = an, a >
0, m, n ∈ Z, choosing a so small that the squares Qi of the lattice contained
in the domain Ω̃ occupy more than one half of its area, | ∪i Q

i| > 1
2
|Ω̃|.

For each square Qi take a copy Ω(i0) of Ω contained in Qi and such that
|Ω(i0)| = δ|Qi|. Thus, we have

| ∪i Ω
(i0)| > δ

2
|Ω̃|.

Next we inductively define the sequence of domains Ω̃j , j = 0, 1, . . . , j0,
and finite families Ω(ij), j = 1, . . . , j0 − 1, of copies of Ω such that for all j
the domains of the family {Ω(ij)}i are mutually disjoint,

| ∪i Ω
(ij)| > δ

2
|Ω̃j |, Ω̃0 = Ω̃, Ω̃j+1 = Ω̃j \ (∪iΩ

(ij)) for 0 ≤ j ≤ j0 − 1,

and (1− δ/2)j0 < ε. We have |Ω̃j | < (1− δ/2)j|Ω̃|, and therefore,

|Ω̃ \ (∪i,jΩ
(ij))| = |Ω̃j0 | < ε.

Proposition 4. Let ε > 0. Then for any pair of bounded domains Ω, Ω̃
and any admissible function u : Ω̄ → R there exists an admissible function

ũ : Ω̃ → R such that
R(Ω̃; ũ) < R(Ω; u) + ε.

Proof. Take a finite family Ωi = fi(kiΩ) of nonintersecting copies of Ω con-
tained in Ω̃ and such that |Ω̃ \ (∪iΩ

i)| < ε|Ω̃|. The transformations fiki
induce the functions ui on Ωi by

ui(fi(kix)) = kiu(x) for all x ∈ Ω̄.

By Proposition 1, these functions are admissible and R(ui; Ω
i) = R(u; Ω).
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Define the admissible function ũ on Ω̃ by

ũ(x) =







ui(x) if x ∈ Ωi,

−c if x ∈ Ω̃ \ (∪iΩ
i),

0 if x ∈ ∂Ω̃,

where c is an arbitrary positive constant. One has

R(Ω̃; ũ) =
∑

i

|Ωi|
|Ω̃|

R(ui; Ω
i) +

|Ω̃ \ (∪iΩ
i)|

|Ω̃|
< R(Ω; u) + ε.

By Theorem 1, there exists a sequence of admissible functions un : Ω̄n →
R such thatR(un; Ωn) → 1/2. Let Ω be a bounded domain. By Proposition 4,
for each natural n there exists an admissible function ũn : Ω̄ → R such that
R(ũn; Ω) < R(un; Ωn) + 1/n. This implies that infuR(u; Ω) = 1/2. Theorem
2 is proved.

Appendix

Here we prove Proposition 1.
Let δ > 0. Consider a finite number of particles (mass points) with

the x-coordinates at vertices of the square lattice δZ × δZ falling vertically
downward on the graph of u. Each particle initially moves according to

x(t) = x = (m1δ,m2δ) ∈ Ω (m1, m2 ∈ Z), z(t) = −t, t ≤ −u(x),

then elastically reflects at (x, u(x)), and then moves freely above the graph
of u with the velocity v+(x) given by (3). The vertical component of the
momentum imparted by the particle to the graph of u equals −2µ/(1 +
|∇u(x)|2), where µ is the mass of the particles. Taking µ = δ2/|Ω| and
summing over all imparted momenta, we find that the vertical component of
the total momentum imparted to the graph equals

− 1

|Ω|
∑

(m1δ,m2δ)∈Ω∩(δZ×δZ)

δ2

1 + |∇u(m1δ,m2δ)|2
.

This expression is the Riemann integral sum for the integral −R(u; Ω) and
converges to it as δ → 0.

Now successively apply two transformations ofR3, the dilation ϕ : (x, z) 7→
(kx, kz) and the isometry ψ : (x, z) 7→ (f(x), z). The composition g =

15



ψϕ : R3 → R
3 takes the plane domain Ω × {0} to Ω̃ × {0} and graph(u)

to graph(ũ). Moreover, g conjugates the billiard in the complement of
graph(u) and the billiard in the complement of graph(ũ). In particular, if
(x(t), z(t)) describes the motion of a particle above graph(u) with the initial
data x(t) = x ∈ Ω, z(t) = −t, then (x̃(t), z̃(t)) = g(x(t/k), z(t/k)) describes
the motion above graph(ũ) with the initial data x̃(t) = f(kx) ∈ Ω̃, z̃(t) = −t.
It follows that the motion (x̃(t), z̃(t)) has a single reflection from graph(ũ)
and then is free. Thus, ũ satisfies the SIC and is therefore admissible.

Now compare the finite flow of particles incident on graph(u) defined
above with the new flow incident on graph(ũ) with the initial x-coordinates
in the square lattice f(kδZ× kδZ). The particles of the new flow have mass
µ and initially move according to

x̃(t) = x̃ = f(km1δ, km2δ) ∈ Ω̃ (m1, m2 ∈ Z), z̃(t) = −t.

There is a natural one-to-one correspondence between particles in the flows,
their masses are equal, and their trajectories are similar. Therefore the mo-
menta imparted by the flows to graph(u) and graph(ũ) coincide. Denoting
δ̃ = kδ and taking into account that |Ω̃| = δ2|Ω|, one obtains that

1

|Ω|
∑

(m1δ,m2δ)∈Ω∩(δZ×δZ)

δ2

1 + |∇u(m1δ,m2δ)|2

=
1

|Ω̃|
∑

(m1 δ̃,m2δ̃)∈Ω̃∩f(δ̃Z×δ̃Z)

δ̃2

1 + |∇ũ(m1δ̃, m2δ̃)|2
,

and, passing to the limit δ → 0 on both sides, one gets R(u; Ω) = R(ũ; Ω̃).
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