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Abstract. A new mixed variational formulation for the Navier—Stokes equations with constant
density and variable viscosity depending nonlinearly on the gradient of velocity, is proposed and
analyzed here. Our approach employs a technique previously applied to the stationary Boussinesq
problem and to the Navier—Stokes equations with constant viscosity, which consists firstly of the
introduction of a modified pseudostress tensor involving the diffusive and convective terms, and the
pressure. Next, by using an equivalent statement suggested by the incompressibility condition, the
pressure is eliminated, and in order to handle the nonlinear viscosity, the gradient of velocity is
incorporated as an auxiliary unknown. Furthermore, since the convective term forces the velocity
to live in a smaller space than usual, we overcome this difficulty by augmenting the variational for-
mulation with suitable Galerkin-type terms arising from the constitutive and equilibrium equations,
the aforementioned relation defining the additional unknown, and the Dirichlet boundary condition.
The resulting augmented scheme is then written equivalently as a fixed point equation, and hence the
well-known Schauder and Banach theorems, combined with classical results on bijective monotone
operators, are applied to prove the unique solvability of the continuous and discrete systems. No
discrete inf-sup conditions are required for the well-posedness of the Galerkin scheme, and hence arbi-
trary finite element subspaces of the respective continuous spaces can be utilized. In particular, given
an integer k > 0, piecewise polynomials of degree < k for the gradient of velocity, Raviart—Thomas
spaces of order k for the pseudostress, and continuous piecewise polynomials of degree < k+1 for the
velocity, constitute feasible choices. Finally, optimal a priori error estimates are derived, and several
numerical results illustrating the good performance of the augmented mixed finite element method
and confirming the theoretical rates of convergence are reported.
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1. Introduction. The utilization of pseudostress-based approaches for Newto-
nian and non-Newtonian incompressible flows has gained considerable attention in re-
cent years due to their natural way of circumventing the usual symmetry requirement
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of the stress-based formulations. In this direction, and especially in the context of
least-squares and augmented methods, two new procedures have arisen: the velocity-
pressure-pseudostress and velocity-pseudostress formulations (see, e.g., [7], [8], [24]).
In particular, augmented mixed finite element methods for both pseudostress-based
formulations of the stationary Stokes equations, which extend analogue results for
linear elasticity problems (see [25], [26], [30]), were introduced and analyzed in [24].
In turn, the pure velocity-pseudostress formulation of the Stokes equations, that is
without augmenting or employing least-squares terms, was first studied in [9], whereas
the utilization of the stress variable, yielding the computation of the symmetric part
of the velocity gradient only, was considered in [36]. The corresponding augmented
mixed finite element scheme for the stress-based formulation of the Stokes problem,
in which the vorticity is introduced as the Lagrange multiplier taking care of the
weak symmetry of the stress, was studied in [23]. Now, going back to the pseu-
dostress formulations, we remark that the approach from [9] was reconsidered in [32]
where further results, including the eventual incorporation of the pressure unknown
and a posteriori error analysis, were provided. Furthermore, the velocity-pressure-
pseudostress formulation has also been applied to nonlinear Stokes problems. In
particular, a new mixed finite element method for a class of models arising in quasi-
Newtonian fluids, was introduced in [28]. The results in [28] were extended in [17]
to a setting in reflexive Banach spaces, thus allowing other nonlinear models such
as the Carreau law for viscoplastic flows. Moreover, the dual-mixed approach from
[28] and [17] was reformulated in [35] by restricting the space for the velocity gra-
dient to that of trace-free tensors. As a consequence, the pressure is eliminated
and a three-field formulation with the pseudostress, the velocity, and the velocity
gradient as unknowns, is obtained. In addition, the approach from [32] was ex-
tended in [33] to the class of nonlinear problems originally studied in [28] and [35].
For other contributions dealing with stress- or pseudostress-based formulations in in-
compressible flows, including nonlinear and transmission problems, and correspond-
ing a posteriori error analyses, we refer to [18], [19], [22], [31], and the references
therein.

On the other hand, in connection with the utilization of diverse dual-mixed ap-
proaches for the Navier—Stokes equations, we can mention [10], [11], [12], [20], [21],
and [37]. In particular, the velocity-pseudostress approach from [9], which employs the
usual pseudostress tensor depending linearly on the gradient of velocity and the pres-
sure, is extended in [10] to the aforementioned nonlinear problem. The well-posedness
of the continuous formulation is established through its equivalence with the classical
velocity-pressure setting, whereas the discrete scheme is analyzed by employing the
theory from [6] for the approximation of branches of nonsingular solutions. The corre-
sponding velocity-pressure-pseudostress formulation for the Navier—Stokes equations
was developed later on in [12]. In turn, a dual-mixed formulation of the Navier—Stokes
system with Dirichlet boundary conditions, in which the gradient of the velocity is in-
troduced as a new unknown, is proposed and analyzed in [21]. Quasi-optimal a priori
error estimates and an associated a posteriori error analysis are derived there. More
recently, a new dual-mixed method, in which the main unknowns are given by the
velocity, its gradient, and a modified nonlinear pseudostress tensor linking the usual
stress and the convective term, has been proposed in [37]. The Babuska—Brezzi theory
and a fixed point argument are employed there to prove the well-posedness of the con-
tinuous formulation. However, in order to satisfy the inf-sup conditions required by
the discrete analysis, new but more expensive finite element subspaces than usual had
to be introduced in [37]. Lately, the idea from [37] has been modified in [13] through
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the introduction of a nonlinear pseudostress tensor linking now the pseudostress (in-
stead of the stress) and the convective term, which, together with the velocity, consti-
tute the only unknowns. The resulting mixed formulation is then suitably augmented
with Galerkin-type terms arising from the constitutive and equilibrium equations, and
the Dirichlet boundary condition, so that the Banach fixed point and Lax—Milgram
theorems are applied to conclude the well-posedness of the continuous and discrete
formulations. The approach from [13] has been further extended in [16], where a new
augmented mixed-primal formulation for the stationary Boussinesq problem (cf. [39])
has been proposed and analyzed. In addition to the methods and tools employed in
[13], the analysis in [16] makes use of the Babuska—Brezzi theory and the Brouwer
fixed point theorem. Finally, within a slightly different perspective, we can also refer
to [14], where stabilized three-field (deviatoric stress, velocity, and pressure) finite
element formulations of the Navier—Stokes problem for quasi-Newtonian fluids, are
proposed and analyzed. Two stabilized schemes of sub-grid-scale-type are introduced
there, which allow the use of the same polynomial degree for the three unknowns,
even in cases where the convection component is dominant and the velocity gradients
are high.

According to the above bibliographic discussion, the purpose of the present pa-
per is to additionally contribute in the direction suggested by [37], [13], and [16],
by extending the analysis and results from [13] to the Navier—Stokes equations with
constant density and variable viscosity. Indeed, the viscosity of many fluids, includ-
ing on one hand biological ones such as blood, and on the other hand polymers
and molten metals, among others, may depend on the state variables. In particu-
lar, here we are interested in developing a mixed finite element approach for those
quasi-Newtonian fluids whose viscosity is a nonlinear function of the magnitude of
the gradient of velocity. For this purpose, we first introduce the same modified pseu-
dostress tensor from [13], and then, utilizing an equivalent statement arising from the
incompressibility condition, eliminate the pressure unknown. In addition, similarly
to [37] and [31], the gradient of velocity is incorporated as an auxiliary unknown,
which allows us to handle the nonlinear viscosity within the dual-mixed setting. In
turn, the eventual difficulty arising from the fact that the velocity actually lives in a
smaller space, is overcomed by adopting the same procedure from [13] (see also [33]
and several previous references therein), that is by incorporating suitable Galerkin-
type terms into the formulation. As a further consequence, and differently from [37],
no discrete inf-sup conditions are required for the well-posedness of the associated
Galerkin scheme. The rest of the paper is organized as follows. In section 2 we
first describe some standard notations and functional spaces, and then introduce the
model problem of interest and set the definite unknowns to be considered in the vari-
ational formulation. Next, in section 3 we derive the augmented mixed variational
formulation, introduce and analyze the equivalent fixed point setting, and conclude
the corresponding well-posedness result assuming sufficiently small data. The asso-
ciated Galerkin scheme is then studied in section 4 by employing a discrete version
of the fixed point strategy developed in section 3. We emphasize that no discrete
inf-sup conditions are required for the discrete analysis, and therefore arbitrary fi-
nite element subspaces can be employed. In addition, under a similar assumption
on the size of the data, the corresponding a priori error estimate is also deduced
there by applying a suitable Strang-type lemma for nonlinear problems. Finally, in
section b we present several numerical examples illustrating the good performance of
the augmented mixed finite element method and confirming the theoretical rates of
convergence.
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2. The model problem.

2.1. Preliminaries. Let us denote by Q@ C R™, n € {2,3}, a given bounded
domain with polyhedral boundary I', and denote by v the outward unit normal vector
onT'. Standard notation will be adopted for Lebesgue spaces L?(€2) and Sobolev spaces
H*(Q) with norm | - ||s.o and seminorm | - 5. In particular, H'/?(T) is the space
of traces of functions of H'(2) and H~'/2(T") denotes its dual. By M and M we will
denote the corresponding vectorial and tensorial counterparts of the generic scalar
functional space M, and || - ||, with no subscripts, will stand for the natural norm of
either an element or an operator in any product functional space. In turn, for any
vector fields v = (v;)i=1,n and w = (w;)i=1,n, we set the gradient, divergence, and
tensor product operators, as

( Gvi > . - (%j

Vo = , dive:= ——, and v®w := (v; Wj)ij=1,n-

Ox; ij=1,n =1 Ox;

In addition, for any tensor fields 7 = (7i;); j=1,n and ¢ = ()i j=1,n, we let div T be
the divergence operator div acting along the rows of 7, and define the transpose, the
trace, the tensor inner product, and the deviatoric tensor, respectively, as

n

n
1
T (Tidig=tn, B(T) =Y T TG Y Gy, and 1= m—otr(r) L
i=1 ij=1

Furthermore, we recall that
H(div; Q) := {‘l’ cL2(Q): divre LQ(Q)} ,

equipped with the usual norm

”THEIiv;Q = |7 (2J,Q + HdiVT”an

is a standard Hilbert space in the realm of mixed problems. Finally, in what follows
I stands for the identity tensor in R := R™*", and |- | denotes the Euclidean norm in
R :=R".

2.2. The Navier—Stokes equations with variable viscosity. We consider
the Navier—Stokes equations with constant density and variable viscosity, that is

—div(p(|Vu|) Vu) + (Vu)u + Vp = f in Q,

u=g on I,
where the unknowns are the velocity u and the pressure p of a fluid occupying the
region ). The given data are a function p : RT — R describing the nonlinear

viscosity, a volume force f € L?(Q), and the boundary velocity g € HY/?(T"). Note
that g must satisfy the compatibility condition

(2.2) /Fg.,,:(),
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which comes from the incompressibility condition of the fluid, and that uniqueness of
a pressure solution of (2.1) is ensured in the space

L3<Q>={qeL2<ﬂ>: /quo}.

Furthermore, we assume that p is of class C!, and that there exist constants pg, o >
0, such that

(2.3) pn < p(s) Spe o and pn <pls)+sp'(s) Spe Vs >0,

which, according to the result provided by [34, Theorem 3.8], imply Lipschitz continu-
ity and strong monotonicity of the nonlinear operator induced by p. We will go back
to this fact later on in section 3. In addition, it is easy to see that the forthcoming
analysis also applies to the slightly more general case of a viscosity function acting on
Q x RT, that is p: @ x RT — R. Some examples of nonlinear p are the following:

1
(2.4) uis) =2+ s and  p(s) == ag + o (1 4 s2)F=2/2

where ag, a3 > 0 and 8 € [1,2]. The first example is basically academic but the
second one corresponds to a particular case of the well-known Carreau law in fluid
mechanics. Tt is easy to see that they both satisfy (2.3) with (u1,u2) = (2,3) and

(1, p2) = (ao, ap + o), respectively.
Next, following [13] and [16], we observe that the first equation in (2.1) can be
rewritten as the equilibrium equation

(2.5) —dive=f in Q,
where o is the tensor unknown defined by
(2.6) o :=u(|Vu|)Vu— (u®@u) —pl in Q.

Moreover, it is straightforward to see that (2.6) together with the incompressibility
condition are equivalent to the pair of equations given by
w(|Vul) Vu — (u @ u)? = o in Q,
(2.7)
1 .
p=——tr(c+u®u) in Q.
n

In this way, eliminating the pressure unknown (which, anyway, can be approximated
later on by the postprocessed formula suggested by the second equation of (2.7)), we
arrive, at first instance, at the following system of equations with unknowns u and o,

p(|Vu)Vu — (u@u) =0?  in Q,
—dive = f in Q,

u=g on I

/tr(a—l—u@u):O.
Q

We remark here that the incompressibility of the fluid is implicitly present in the new
constitutive equation relating o and w (first equation of (2.8)). In turn, the fact that
the pressure p must belong to L3(€2) (as said before) is guaranteed by the equivalent
statement given by the last equation of (2.8).
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Finally, since we are interested in a mixed variational formulation of our nonlinear
problem, and in order to employ the integration by parts formula that is usually
required by this approach, we also introduce the auxiliary unknown ¢ := Vu in Q.
Consequently, instead of (2.8), we consider from now on the set of equations with
unknowns ¢, u, and o, given by

Vu=t in Q,
wtht —(u@u) =0t in Q,
(2.9) —dive = f in Q,

u=g on I,

/tr(a'+u®u):0.
Q

3. The continuous formulation.

3.1. The augmented mixed formulation. We now proceed to derive a weak
formulation of (2.9). We begin by recalling (see, e.g., [5], [27]) that there holds

(3.1) H(div; Q) = Hy(div; ) @ RT,
where

Ho(div; Q) := {c € H(div; Q) : /Qtr(C) = o} .

Equivalently, each ¢ € H(div; ) can be decomposed as ¢ = ¢, + d I, with

(32) Cyi=¢ ( |Q|/tr )HeHO(div;Q) and d:zﬁ/gtr(C)GR.

In particular, decomposing o in (2.9) as o = ¢ + ¢I, with o9 € Hy(div; ), we
deduce from (3.2) and the last equation in (2.9) that ¢ is given explicity in terms of
u as

1
(3.3) c:—m/ﬂtr(u@)u).

In this way, since 0¢ = o and dive = div oy, throughout the rest of the paper
we rename oo as o € Hy(div; Q) and realize that the second and third equations of
(2.9) remain unchanged. In addition, thanks to the incompressibility condition and
the first equation of (2.9), we can look for the unknown ¢ in the space

L2.(Q) = {s cL2(Q): trs= o}.

Thus, multiplying the first equation of (2.9) by a test function 7 € H(div; ), noting
under the above constraint for ¢ that fQT 1t = fQ 74 : t, and using the Dirichlet
condition for u, we get

(3.4) / Tt —|—/ u-divr = (tv,g) V7 € H(div; Q),
Q Q

where (-,-) stands for the duality pairing between H~/2(T") and H'/?(T"). Moreover,
it is easy to see that (3.4) is actually satisfied in advance for 7 = dI with d € R, since
in this case all the terms appearing there vanish. In particular, the compatibility
condition (2.2) explains this fact for the boundary term. According to this and the
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decomposition (3.1), we deduce that (3.4) can be stated, equivalently, as
/Td:t+/u-div7':<Tu,g> V7 € Ho(div; ).
Q Q

Similarly, since the traces of £, (u ® u)?, and ¢ all vanish, and since there also holds
the decomposition L3(2) = L2,(Q) @ R, we realize that the constitutive equation
given by the second equation of (2.9) needs to be tested only against s € L2_(Q),
which yields

/Qu(|t|)t:s—/ﬂad:s—/ﬂ(u®u)d:s:O Vs € L2,(9).

In turn, the equilibrium equation given by the third equation of (2.9) is rewritten as

_/Qrv.divcr:/gf-v Yo € L2(Q).

We have thus arrived, at first instance, at the following weak formulation of (2.9):
Find (¢,0) € L2,(Q) x Ho(div; ), and u in a suitable space, such that
(3.5)

/u(|t|)t:s—/a'd:s—/(u®u)d:s:0 Vs € L2,(Q),
Q Q Q
/Td:t+/u-div7':<7'l/,g> V7 € Ho(div; ),
Q Q
—/v-diva:/f-’v Vo € L2(Q).
Q Q

We continue our analysis by observing that the third term in the first row of the fore-
going system requires u to live in a smaller space than L?(Q2). In fact, by applying
Cauchy—Schwarz and Hoélder inequalities, and then employing the compact (and hence
continuous) injection i, of H'(2) into L*(Q) (see the Rellich-Kondrachov compact-
ness theorem in [1, Theorem 6.3] or [40, Theorem 1.3.5]), and denoting ¢1(2) := ||2.|?,
we find that there holds

/Q(u®w)d:s

for all u, w € HY(Q),s € L%(2), which suggests to look for the unknown w in
H!(Q) and to restrict the set of corresponding test functions v to the same space.
Consequently, and in order to be able to analyze the present variational formulation
of (2.9), we now augment (3.5) through the incorporation of the following redundant
Galerkin terms:

(3.6)

0,0 < c1(Q) [|u|

Lo llwlliellsllo.o

< lullua) [lwllLa) [ls]

(3.7) K1 /Q {a’d —u(ltht+ (u ®u)d} :14=0 V7 € Ho(div; Q)

(3.8) Hz/diVU'diVT:—KQ/f'diVT V1 € Ho(div; Q)
Q Q
(3.9) /ig/{Vu—t}:Vv:() Vo € HY(Q),
)
(3.10) /4:4/u~v:/¢4/g-v Yo e HY(Q),
r r
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where k1, ko, K3, and k4 are positive parameters to be specified later. We remark
that the identities required in (3.7)—(3.10) are nothing but the constitutive and the
equilibrium equations concerning o, along with the relation defining ¢t as Vu, and
the Dirichlet condition for the velocity, but all them tested differently from (3.5). We
have thus arrived at the following augmented mixed formulation: Find (¢,0,u) €
H =12, (Q) x Ho(div; Q) x H(Q) such that

(3.11) [(A + Bu)(t,a,u), (s,‘r,v)] = [F, (s,‘r,vﬂ VY(s,T,v) € H,

where [, -] stands for the duality pairing between H and H, A : H — H' is the
nonlinear operator

[A(t,a,u), (s,T,v)}
::/Qu(|t|)t:s—/ﬂad:s+/ﬂ7'd:t
+/Qu~div7-—/ﬂv-div0'+m/Q{Ud—u(|t|)t}:7-d

+/<ag/diva-div7'+/<a3/{Vu—t}:Vv—i—m/u-v,
Q Q r

F :H — R is the bounded linear functional

(3.13) [F, (s,7,v)] := (Tu,g>+/Qf-{v—f<:2div7'}+n4/Fg-v,

(3.12)

and for each z € H'(Q), B, : H — H’ is the bounded linear operator

(3.14) [B.(t,o,u), (s,7,v)] := /Q(z ®@u)?: {/il 74— s}

for all (¢,0,u),(s,7,v) € H. The aforementioned boundedness properties will be
confirmed below. Indeed, in the forthcoming sections we study the well-posedness of
(3.11) by applying some results on fixed point theory.

3.2. A fixed point approach. We begin the solvability analysis of (3.11) by
defining the operator T : H!(Q) — H!(Q) by

T(z):=u vz € HY(Q),

where w is the third component of the unique solution (to be confirmed below) of the
following nonlinear problem: Find (¢, 0, u) € H such that

(3.15) [(A+B;)(t,o,u), (s,7,v)] = [F, (s,7,0)] V(s,T,v) € H.

It follows that our augmented mixed formulation (3.11) can be rewritten, equivalently,
as the following fixed point problem: Find u € H!(Q) such that

(3.16) T(w) = u.

However, we remark in advance that the definition of T will make sense only in a
closed ball of H! ().

Now, in order to analyze the well-posedness of (3.15), we first collect a couple of
useful inequalities.
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LEMMA 3.1. There exists co(2) > 0 such that

() ol o < 1750 + Idiv Tl o V7 =70+l € H(div; Q).

Proof. For the proof see [5, Proposition 3.1, Chapter IV]. O
LEMMA 3.2. There exists c3(2) > 0 such that

o+ olir =@ lvlie  VoeHY(Q).

Proof. For the proof see [24, Lemma 3.3]. 0

In addition, we need to recall from [34] that, under the assumptions given by (2.3),
the nonlinear operator induced by p is Lipschitz continuous and strongly monotone.
More precisely, we have the following result.

LEMMA 3.3. Let L, := max{ps,2 o — p1 }, where pi and po are the bounds of p
given in (2.3). Then for each r, s € L2(Q) there holds

(3.17) lu(r))r = p(ls)) slloe < Ly lr = sllo.c
and
(318) [t =ntaly s} (=) = g = sl o
Proof. See [34, Theorem 3.8] for details. 0

Then, the following lemma provides sufficient conditions under which the operator
T is well-defined.

LEMMA 3.4. Assume that k1 € (0, 22’:1) and k3 € (0,26 (g — KlzéL“)), with & €
(0, %) and ¢ € (0,2), and that k2, kg > 0. Then, there exists py > 0 such that for

each p € (0,pg), the problem (3.15) has a unique solution for each z € H'(Q) such
that ||z||1,0 < p. Moreover, there exists a constant cr > 0, independent of z and the
data f and g, such that there holds

(3.19)  [T(z)]

va = lulie < |t o, w) < ex {|1£]

o0+ llglor +lighyzr -

Proof. Given z € H(Q), we first observe that A, B, and hence A + B, are
Lipschitz continuous. In fact, using the Cauchy—Schwarz inequality, the Lipschitz
continuity of the operator induced by p (cf. (3.17) in Lemma 3.3), and the trace
operator 7y, : H () — L?(T'), we deduce from (3.12) that there exists a positive
constant L a, depending on L,,, the parameters x;, ¢ € {1,...,4}, and ||7,]|, such that

(3.20) [A(t,o,u) —A(r,¢,w), (s,T,v)] < Lall(t,o,u) — (r, ¢, w)| ||(s, T,v)]

for all (t,o,u), (r,¢,w), (s,7,v) € H. In turn, it readily follows from (3.6) and
(3.14) that

1/2
‘ [B:(t,o,u), (s,7,v)] ‘ < (87 +1) 7 Izl lullLi@ s, 7)

1/2
(3.21) < (@) (K2 + 1) zlha lule (s, )]l

1/2
<a(Q) (5 +1) Tzl oWl lls 7, v)]
V(t,o,u), (s,7,v) € H,
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which, thanks to the linearity of B, and together with (3.20), confirms the announced
continuity properties. In particular, La + ¢1(Q) (k% + 1)!/2 | 2||1 o is the Lipschitz-
continuity constant of A 4+ B.. Next, it is also clear from (3.12) that

[A(T,C,w) —A(s,T,v), (r,{,w) — (s,‘r,v)}
= [ {utrhr —ullsh s} ()
Q
(- TR — / [urhr = nls s} (€)% + s div(C 7]
+ 1y [ — o[ — ks /Q<r—s>:v<w—v>+n4||w—v||ap,

which, using the Cauchy—Schwarz and Young inequalities, and the Lipschitz continuity
and strong monotonicity properties of the operator induced by u (cf. (3.17) and

(3.18)), yields for any 4, 5> 0, and for all (r,¢,w), (s,7,v) € H,

[A(r,(,w) —A(s,T,v),(r,(,w) — (s,r,v)]

K1 LH K3 2
> ——=E) = —
{(Nl 25 > 2(5} ||’l" 8”079

o2 esr (1220 e+ livic — R

5
+ K3 (1 — 5) jw —v|f g+ Kallw —vlg .

Then, assuming the stipulated hypotheses on §, 1, g, K3, Ko, and K4, and applying
Lemmas 3.1 and 3.2, we can define the positive constants

L . L,§
ap(2) := <,u1 - H125#> — %, a1 () := mln{ﬁ:l ( - %) ; %} ,

az(Q) = min{al(Q) c2(92), %} , and  a3() :=c3(0) min{/ﬁ (1 - g) , 54} ,

which allow us to deduce from (3.22) that
(3.23) [A(r,(,w) —A(s,T,v), (r,{,w) — (s,T,v)] >a(Q)||(r, ¢, w) — (s,7‘,v)||2

for all (r,{,w), (s,7,v) € H, where
a(Q) := min {aO(Q), as(9), ag(m}

is the strong monotonicity constant of A. Moreover, by combining (3.21) and (3.23),
we obtain

[(A + Bz)(r,C,w) — (A + Bz)(s,‘r,v), (r,¢,w) — (s,‘r,v)]

(3.24) > {a(@) — (@) (6 + DY2 1210} (r, ¢ w) — (5,7, 0)]

@”(T,C,w)—(s,T,'v)HQ Y(r,{,w), (s,7,v) e H,

v
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provided ¢; () (k7 + 1)/2||z]l1.0 < @ Consequently, the strong monotonicity of
the nonlinear operator A + B is ensured with the constant @

by requiring ||z||1,0 < po, with

, independent of z,

)
PO @) (R )

(3.25)

Now, concerning the linear functional F, we readily find from (3.13), by using the
Cauchy—Schwarz inequality and the trace theorems in H(div; ) and H!(£2), whose
boundedness constants are given by 1 and ||7,||, respectively, that F € H' with

1) < 2z {1 £ o2 + i gho.r + gl o}

where My := max{(1 + x32)"/2, k4 |7ol/}. In this way, having established that the
operator A + B, is Lipschitz continuous and strongly monotone, and knowing that
F € H', a classical result on the bijectivity of monotone operators (see, e.g., [38,
Theorem 3.3.23]) allows us to conclude that there exists a unique solution (¢, 0, u) €
H of (3.15). Finally, by applying (3.24) with (r,{,w) = (¢,0,u) and (s,7,v) =
(0,0,0), noting that (A + B.)(0,0,0) is the null functional, and performing simple
algebraic manipulations, we arrive at (3.19) with the positive constant ¢t := %,

which is clearly independent of z. ad

We end this section by remarking that the constant «(f2) yielding the strong
monotonicity of both A and A + B, can be maximized by taking the parameters ¢,
K1, 0, and k3 as the middle points of their feasible ranges, and by choosing ks and
K4 so that they maximize the minima defining oy (£2) and a3(£2), respectively. More
precisely, we simply take

(3.26)
1 opr ~ =~ k1L 1
5:— = — = — 5:1 :(5 — ol = —
L#7 R1 L# Lﬁa ) R3 M1 25 27
Lo 5
Ko = 2K (1—%)2/{125—%, and 54:53<1—§>:%:%,

which yields

(@ =5 @ =F5 ax@ =min{e@).1] 5, a@) =@
M M

and hence

() = min { min {C3(Q), 1} % , min {CQ(Q), 1} ;Tli} .

The explicit values of the stabilization parameters ;, i € {1,...,4}, given in (3.26),
will be employed in section 5 for the corresponding numerical experiments.

3.3. Solvability analysis of the fixed point equation. We now aim to es-
tablish the existence of a unique fixed point of the operator T. To this end, we show
next that it suffices to verify the hypotheses of the Schauder fixed point theorem since
the uniqueness will follow from the same estimates obtained through that analysis.
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For the sake of completeness, we recall that the aforementioned theorem is stated as
follows (see, e.g., [15, Theorem 9.12-1(b)]).

THEOREM 3.5. Let W be a closed and convezr subset of a Banach space X, and
let T : W — W be a continuous mapping such that T(W) is compact. Then T has at
least one fized point.

We begin the analysis with the following straightforward consequence of Lem-
ma 3.4.

LEMMA 3.6. Let p € (0, po), with po given by (3.25) (cf. proof of Lemma 3.4), let
W, be the closed ball defined by W, :={z € HY(Q): | z|1,0 < p}, and assume that
the data satisfy

(3.27) cr {IIfllo.c + lig|

or+llglljzr} <.

with ct given at the end of the proof of Lemma 3.4. Then there holds T(W,) C W,,.

In turn, the following lemma establishes a key estimate to derive next the required
continuity and compactness properties of the operator T.

LEMMA 3.7. Let p € (0, po), with po given by (3.25), and let

W, ={zeH(Q): |z

Lo < p}.
Then there exists a positive constant Ct, depending on k1, ||i.|, and a(QY), such that
(328) D)~ TE)lne < O ITE el - Zluaw Yz EeW,.

Proof. Given p as indicated, and z, z € W,, we let u = T(z) and u = T(Z) be
the third components of the corresponding solutions of (3.15), that is

(3.29) [(A+B;)(t,o,u), (s,7,v)] = [F, (s,7,v)] V(s,T,v) e H
and
(3.30) [((A+B3)(t6.u), (s,7,v)] = [F, (s,7,v)] V(s,7,v) € H.

Then, applying the strong monotonicity of A + B, (cf. (3.24)), we find that

() T o~ V2
T ||(t707u) - (tao’vu)H

<[(A+B.,)(t,o,u) - (A+B,)(t.5,%), (t,o,u) - (t,7,u)],

which, adding and substracting Bz(¢,0,u), and then employing (3.29) and (3.30),
yields

a()

5 It o,u) — (¢,0,0)|* < [Bz_.(t.7,a), (t,0,u) — (t,5,0)].

In this way, applying the first estimate in (3.21) to the right-hand side of the foregoing
inequality, and then bounding ||u||pq) by [lic] [[@]/1,0, we deduce, after a minor
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simplification, that

|(t, o,u) — (t,6,a)| < 2 (k2 _;(1()21)/2

llZell |~ e
lullallz = ZlLie)
. . . . . L 2(&24D)Y? i
which certainly implies (3.28) with Cp := —— and completes the proof. O
We are now in a position to establish the announced properties of the operator T.
LEMMA 3.8. Given p € (0, po), with py defined by (3.25), we let

W, :={zecH(Q):|z]|a < p},

and assume that the data satisfy (3.27) (c¢f. Lemma 3.6). Then, T : W, — W, is
continuous and T(W,) is compact.

Proof. 1t follows straightforwardly from (3.28) and the continuity of 4. : H*(Q) —
L*(Q) that

(831)  |T(z) - T@ e < Crlicl IT@lallz - Zha V2 ZeW,,

which proves the continuity of T. Now, given a sequence {zj}ren of W,, which is
clearly bounded, there exists a subsequence {z,(cl)}keN C {zk}ren and z € HY(Q) such
that z,(cl) 5 z in H(Q). In this way, thanks to the compactness of i., we deduce
that z,(gl) — z in L*(Q), which, combined with (3.28), implies that T(z,(gl)) — T(2)
in H'(Q2). This proves that T(W,) is compact and finishes the proof. O

The main result of this section is stated next.

THEOREM 3.9. Suppose that the parameters k;, i € {1,...,4}, satisfy the condi-
tions required by Lemma 3.4. In addition, given p € (0, po), with po defined by (3.25),
we let W, :={z € H(Q) : ||z|l1,0 < p}, and assume that the data satisfy (3.27) (cf.
Lemma 3.6). Then, the augmented mized formulation (3.11) has a unique solution
(t,o,u) € H with w € W,, and there holds

(3.32) It o w)] < ex { I Fllos + lg]

or+ lglly/zr } -

Proof. The equivalence between (3.11) and the fixed point equation (3.16), to-
gether with Lemmas 3.6 and 3.8, confirms the existence of a solution for (3.11) as a
direct application of the Schauder fixed point theorem (cf. Theorem 3.5). In addition,
it is clear that the estimate (3.32) follows straightforwardly from (3.19). On the other
hand, a second look at the inequality (3.31) and the definitions of the constants pg
(cf. (3.25)) and Ct (at the end of the proof of Lemma 3.7), give

2 (k2 + 1)1/2 c1(92)
a(€2)

IT(2)-T ()10 < IT(Z)[1,0llz=2]1,0= % IT(Z)l1.0llz=Zl1q,
which, thanks again to (3.19), and using our assumption (3.27), implies

IT(2) = T(Z) 1.0 < %cT {170+ lglo.r+lglh 2 } 12 = Zlhe < 212~ 2o
for all z, z € W,. The foregoing inequality proves that actually, under the hypothesis

(3.27), the operator T : W, — W, becomes a contraction, and hence it has a unique
fixed point. a
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Certainly, after seeing the way we proved the previous theorem, we realize that we
could have simply applied the Banach fixed point theorem instead of the Schauder’s
one. However, we prefer to keep the above analysis as it is since, being much more
general, it provides a quite useful logical sequence for studying similar and related
problems. Indeed, in most of the solvability analyses of more involved fixed point
equations, a second condition on the data, different from the one ensuring that the
corresponding operator maps a given closed and convex domain into itself, is required
for the uniqueness of solutions (see, e.g., [2] for a recent work in this direction con-
cerning a coupled flow-transport problem). The fact that the same condition on the
data guarantees both existence and uniqueness of the solution might very well be a
particular feature of the present problem and its associated fixed point operator T.

4. The Galerkin scheme. In this section we introduce the Galerkin scheme
of the augmented mixed formulation (3.11), analyze its solvability by employing a
discrete version of the fixed point strategy developed in section 3.2, and finally derive
the corresponding a priori error estimate by applying a suitable Strang-type lemma.

We begin by taking arbitrary finite dimensional subspaces Hf , HY, and H}* of the
continuous spaces L2 (Q), Ho(div; ), and H'(Q), respectively. Hereafter, h denotes
the size of a regular triangulation 7;, of Q made up of triangles K (when n = 2) or
tetrahedra K (when n = 3) of diameter hg, that is h := max{hx : K € Tp}.
Then, the Galerkin scheme associated with our problem (3.11) reads as follows: Find
(th, o, up) € Hy, :=HE x HZ x HY such that

(4.1) [(A—I—Buh)(th,ah,uh), (sh,‘rh,vh)] = [F, (Sh,Th,'vh)]
V(sh,Th,vh) S Hh.

Next, we let T, : HiY — H}' be the discrete operator defined by
Th(zh) = up VZh S H';;,

where uy, is the third component of the unique solution (to be confirmed below) of
the following discrete problem: Find (¢, 0, up) € Hy, such that
(4.2)

[(A + Bzh) (th, o, uh) s (Sh, Th, 'Uh)] = [F , (Sh, Th, ’Uh)} V(Sh, Th, ’Uh) c Hy.

Then, similarly as for the continuous case, it is easy to see that our Galerkin scheme
(4.1) can be rewritten, equivalently, as the following fixed point equation: Find uy €
H} such that

(4.3) Th(un) = up .

Now, it is not difficult to see that the arguments employed in the proof of Lemma
3.4 can also be applied to the present discrete setting. In particular, for each z;, € H}
the nonlinear operator A + B, : H, — Hj} becomes Lipschitz continuous as well
with constant La +c1(Q) (k34+1)'/2 | z4]|1,0. Moreover, under the same feasible ranges
stipulated in Lemma 3.4 for the stabilization parameters and the given 2z, € H}
(instead of z € H'(Q2)), one finds that A + B, : H, — H) becomes strongly
monotone with the same constant @ provided in (3.24). Consequently, the result
on monotone operators given by [38, Theorem 3.3.23] implies now the following lemma.
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) and k3 € (0,20 (u1 — LEe)) with § €
(0, %) and 6 € (0,2), and that ko, k4 > 0. Then, for each p € (0, po) with py given by
(3.25), and for each zj, € HY such that ||zn|1,0 < p, the problem (4.2) has a unique

solution (tp,on,up) € Hy. Moreover, with the same constant cx > 0 from Lemma
3.4, which is independent of z, and the data f and g, there holds

LEMMA 4.1. Assume that k1 € (0, 22“

(4.4) |Th(zn)l

va = llunllio < @ onun)ll < ex {[IFlo.c + lghor + lglyer -

Moreover, by utilizing the discrete analogue of the analysis developed in sec-
tion 3.3, we are able to derive the following main result concerning the Galerkin
scheme (4.1).

THEOREM 4.2. Suppose that the parameters k;, i € {1,...,4}, satisfy the condi-
tions required by Lemma 4.1. In addition, given p € (0, po) with po defined by (3.25),
we let W;I ={zn, € HY : |z1ll1,0 < p}, and assume that the data satisfy (3.27) (cf.
Lemma 3.6), that is

(4.5) er {1 £llo.c+ gllo.r + gl /2x } < o

Then, (4.1) has a unique solution (tp,on,wy) € Hy, with uy, € th, and there holds

(4.6) It ornun) | < ex {15

oo+ llglor +lighyzr -

Proof. We first observe, thanks to (4.4), that the assumption (4.5) guarantees
that Ty (W) € W/. Next, proceeding as in the proof of Lemma 3.7, that is applying
the strong monotonicity of A + B, : H, — Hj for each z; € Wf?, and using
again the boundedness of the compact injection . (as at the beginning of the proof
of Lemma 3.8), we find that

[Th(zn) — Th(zn)

1.0 < Cr [|ic] [|Tx(z5)]

Lo llze — Zulli0 Vzp, Zn € W,?,

where Ct > 0 is the constant introduced in the first aforementioned lemma. Then,
employing the same arguments of the proof of Theorem 3.9, in particular using again
(4.5), we deduce from the foregoing inequality that

Th(zn) — Ta(Zn)ll1,0 < pﬁ lzn — Znllie  Vzn, z2n € W),
0

which confirms that T, : th — th is also a contraction. In this way, the equiva-
lence between (4.1) and the fixed point equation (4.3) implies the existence of a unique
solution of (4.1) as a simple application of the Banach fixed point theorem. In turn,
the a priori estimate (4.6) follows directly from (4.4). O

Our next goal is to derive an a priori error estimate for our Galerkin scheme
(4.1). More precisely, given t:= (t,o,u) € H, with u € W,, and i, = (th,on,up) €
H;,, with uy, € Wﬁ, solutions of the problems (3.11) and (4.1), respectively, we are
interested in obtaining an upper bound for

”Z_ Eh” = H(tvo—a'u’) - (thvahvuh)|| :

To this end, we now recall from [29] (see also [2, Lemma 5.1]) a Strang-type lemma
that will be utilized in our subsequent analysis.
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LEMMA 4.3. Let H be a Hilbert space, F € H', and S : H — H’ a nonlinear
operator. In addition, let {H,},en be a sequence of finite dimensional subspaces of
H, and for each n € N consider a nonlinear operator S,, : H, — H!, and a functional
F, € H),. Assume that the family {S} U {S, }nen is uniformly Lipschitz continuous
and strongly monotone with constants Arc and Asy, respectively. In turn, let u € H
and u,, € H,, such that

[S(u),v] = [F,v] Vo eH and [Sp(upn),vn] = [Fn,vn] Yu, € H,,

where [+, -] denotes the duality pairings of both H' x H and H), x H,,. Then for each
n € N there holds

lu —unlla

[Ffwn]*[Fn;wn]
< Asr { SUpu,en,

Twnl
(4.7) wn 70 "
S(vn), wn] — [Sn(vn), wy
+ inf ||lu— v |lx + sup H( ), 0n] = [Sn(vn) ]|
V;LeHél wp €EHp ||wnHH
with Agy := Ag max{1, Agy + Arc}.
Proof. The proof is a particular case of [29, Theorem 6.4]. d

In what follows we apply Lemma 4.3 to the context given by (3.11) and (4.1),
which are rewritten as t € H and t;, € Hy,, such that

(4.8) [((A+B,)(),5]=[F,5 VseH
and
(49) [(A—FBuh)(Eh),gh] = [F,gh] V8, € Hy, .

We first notice, thanks to Theorems 3.9 and 4.2, that the Lipschitz continuity con-
stants of A + B,, and A + B,,,, which are given, respectively, by

La +c1(Q) (51 + 1) Jullo

(cf. proof of Lemma 3.4) and L +¢1(2) (k% +1)Y/? ||up||1.0 (cf. remarks right before

Lemma 4.1), can be bounded uniformly by the constant
1/2 a(f
Are = La + () (57 +1) / pOZLA-F%.

In turn, it is quite clear from (3.24) and, again, the remarks right before Lemma 4.1,
that the strong monotonicity constant of these same nonlinear operators is given by

Consequently, we can prove the following result.

THEOREM 4.4. Assume that the data f and g are such that

(410) e {|f] £

< .
~ 2max {1,La +a(Q)}

00+ lgllor + gl zr}
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Then there exists a positive constant C, depending only on La and «(), such that
(4.11) £ — 4| < Cdist(, Hy,) .
Proof. A straightforward application of (4.7) to (4.8)—(4.9) gives

(4.12) ||~ ]

[[(A +Bu)(7), 8n] — [(A+Bu,) (), 8] |

< AST inf HE— 'Fh” + sup pury )
FreHy 5, €Hy, ||ShH
§h7£0
where
_1 2
(4.13) Ast = A3 max {1,ASM + ALC} = oy {1, La+ a(Q)} .
a

Then, applying the estimate for B, given by (3.21), adding and substracting £, and
bounding both ||u|1,q and ||us|1,0 by po at the first term, we find that

(A +Bu) (7). 8] — [(A+Bu, ) (%), 5]

= | B (1), 5] | < 1) (6 + D2 u = wnllv {1 = 7l + 18]} 150
< {2c1(9) (53 + DY po £ = Fll + e1() (63 + V28]l = wnllva 15
= {a(@) I = Full + e1(@) (3 + 12 £ w— wnlra} 1301l

which, replaced back into (4.12), taking the infimum, and using that ||u — up|1,0 <
[ — Enll, yields

(4.14) [E—Eull < Ast {1+ (@)} dist(E, Hy) + Az ex(©) (57 + 1) €] £~ ]l

Finally, recalling from (3.32) that ||| < ex {[|fllo,2 + llgllo,r + |g]l1/2,r}, employing
our assumption (4.10), and replacing the expression of Asr given by (4.13), we obtain
that

Aster(Q) (w1 + 1)Y2|IE) <

N~

which, together with (4.14), implies (4.11) with C' = 2 Agr {1+ ()}, thus completing
the proof. 0

Having established the previous theorem, we now aim to estimate the error for
the postprocessed pressure. In fact, according to the second equation of (2.7), and
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(3.3), we define our discrete approximation of the pressure as
(4.15)

1 1
Ph = —— tr{o'h +epl + (up ®uh)} in Q, with ¢p:= ——/ tr(u, @ up),

n n|Qf Jo
which yields

1
P —pn= Etr{ (oh—o)+ (Uh®uh—u®U)}+(ch—c),

and thus, applying the Cauchy—Schwarz inequality, we first find that

lp = prlloo < C {HO' —onlloo+ lur @up —uuloo+ |c— ch|} ,

where C > 0 depends on n and |Q2]. Next, bearing in mind the expression for ¢ given
by (3.3), decomposing

Up QU —URQU = (uh—u)®uh—|—u®(uh—u),

and employing the triangle and Holder inequalities, the compact embedding . :
H'(Q) — L*(Q), and the a priori bounds for ||ul/1,o and ||us|1q (cf. (3.32) in
Theorem 3.9 and (4.6) in Theorem 4.2), we deduce from the foregoing equations that
there exists a constant C' > 0, depending on n, |Q|, ¢1(Q) = ||i.]|?, and the data f
and g, but independent of &, such that

(4.16) lp —prllo <C {HU —opllaivio + [Ju — uhHl,Q} -

We end this section by defining specific finite element subspaces Hf, HY, and
H}, and providing the corresponding rate of convergence of the associated Galerkin
scheme (4.1). In what follows, given an integer k > 0 and a set S C R", Px(S) denotes
the space of polynomial functions on S of degree < k. In addition, according to the
notation described in section 2.1, we set P (S) := [Pr(S)]™ and Py (S) := [Pr(S)]"*".
Similarly, C(Q2) = [C(Q)]™. Then, we introduce the finite element subspaces approxi-
mating the unknowns t and u as the piecewise polynomial tensors of degree < k, and

the continuous piecewise polynomial vectors of degree < k + 1, respectively, that is

(4.17) HY = { s € L2(9) ; sh‘K EPHK) VKET},
and
(4.18) HY = {vh cC@): vh‘K ePu 1 (K) YK €eT, } .

In turn, for each K € T}, we set the local Raviart—-Thomas space of order k as
RT(K) :=Pr(K) @ Pr(K) x,

where @ is a generic vector in R"™, and define the finite element subspace approximating
o as the global Raviart-Thomas space of order k, that is

(4.19) HY ::{TheHo(div;Q): c'r| €RT(K), VeeR" VKeTh}.

The approximation properties of the above finite element subspaces are as follows
(ct. [5, 27]):
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(AP?%) there exists C' > 0, independent of h, such that for each s € (0,k + 1],
and for each » € H*(2) N L2,(£2), there holds

dist(r, H}) < Ch® ||7||s.0;

(APY7) there exists C' > 0, independent of h, such that for each s € (0,k + 1],
and for each ¢ € H*(Q2) N Hy(div; Q) with div ¢ € H*(Q2), there holds

dist(¢, H7) < Ch { I¢lls0 + [div Clso b

(AP}) there exists C' > 0, independent of h, such that for each s € (0,k + 1],
and for each w € H*+1(Q), there holds

dist(w, Hy) < Ch° ||[w||s41,0 -

We are now in a position to establish the rate of convergence of the Galerkin
scheme (4.1) when the specific finite element subspaces given by (4.17), (4.18), and
(4.19), are utilized. We notice here that the main assumption on the data guaranteeing
the well-posedness of the continuous and discrete schemes, which is given by (3.27),
follows from (4.10), and hence it suffices to assume the latter only.

THEOREM 4.5. Besides the hypotheses of Lemma 4.1 (or Lemma 3.4) and The-
orem 4.4, assume that there exists s > 0 such that t € H*(Q), o € H*(Q), dive €
H*(Q), and u € H*1(Q), and that the finite element subspaces are defined by (4.17)
(4.19). Then, there exists C > 0, independent of h, such that for each h > 0 there
holds

£ =&l + Ip = pullo.e < CEPR R Lt o 4 ol + dive oo + ulio )

Proof. The proof follows from the Céa estimate (4.11), the upper bound given by
(4.16), and the approximation properties (AP?), (AP?), and (APY). 0

5. Numerical results. In this section we present two examples illustrating the
performance of our augmented mixed finite element scheme (4.1), and illustrating
the rates of convergence provided by Theorem 4.5. In agreement with (3.26), both
tests of this section use the stabilization parameters k1 = g /Li, with L, :=
max{pz, 2e — p1}, Ko = K1, k3 = H1/2, ke = p1/4. In addition, the null mean
value of tr o, over (2 is fixed via a penalization strategy. A Newton algorithm with a
tolerance of 1E-6 on the energy norm of the residual has been employed to linearize
(4.1).

In our first numerical test we take the unit square as computational domain
Q = (0, 1), set the nonlinear viscosity to

1
w(s) ::2—|—m for s > 0,

and construct a series of successively refined triangulations. The accuracy of the
method is assessed by choosing the following smooth manufactured exact solution to
(3.11):

D _(—cos(mz1) sin(mzs) _
D=1 — %3, u = ( sin(rz, ) cos(nzs) )’ t=Vu,

o = Hy(div; )-component of p(|Vu|)Vu — (u @ u) — pl,
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TABLE 1
Ezxzample 1: Convergence history and Newton iteration count for the mized—primal P, — RTy —
P41 approzimations of the coupled problem and convergence of the Py-approzimation of the post-
processed pressure field. Values for k =0, 1.

dof h e(t) r(t) e(o) r(o) e(u) r(u) e(p) r(p) iter

Augmented Py — RTg — P scheme

74 0.707107 1.507573 - 15.46291 - 2.138123 - 1.474362 - 4
152 0.471405 1.032025 0.934676 10.79214 0.886945 1.544828 0.801588 1.102846 0.716045 4
392 0.282843 0.627383 0.974346 6.642553 0.950075 0.966928 0.917227 0.713515 0.852435 5
1208  0.157135 0.349744 0.994165 3.738210 0.978058 0.545122 0.975038 0.407074 0.954784 5
4184  0.083189 0.185294 0.998851 1.992707 0.989188 0.289828 0.993290 0.216638 0.991792 4
15512  0.042855 0.095469 0.999769 1.030370 0.994395 0.149479 0.998252 0.111504 1.001313 4
59672 0.021757 0.048470 0.999951 0.524023 0.997430 0.075912 0.999553 0.056521 1.002313 4
234008 0.010963 0.024423 0.999989 0.264225 0.998993 0.038253 0.999887 0.028448 1.001622 3
Augmented P; — RT; — P2 scheme
173 0.707107 0.665329 - 5.998455 - 0.703040 - 0.346281 - 3
350 0.471405 0.280306 1.660753 2.447761 1.760695 0.357030 1.658535 0.151825 1.872231 4
890 0.282843 0.095558 2.106678 1.047274 1.661981 0.123718 2.074711 0.054464 2.006908 4
2714  0.157135 0.028280 2.071445 0.410290 1.794257 0.037631 2.024841 0.015867 2.098233 4
9338  0.083189 0.007798 2.025738 0.149803 1.984209 0.010526 2.003165 0.004333 2.040821 5
34490 0.042855 0.002059 2.007674 0.051099 1.921534 0.002797 1.997942 0.001143 2.009621 5
132410 0.021757 0.000530 2.002121 0.014300 1.985516 0.000722 1.997888 0.000294 2.001882 5
518714 0.010963 0.000121 2.001908 0.003643 1.993961 0.000163 1.999397 0.000078 1.999572 4

and the load function f along with the boundary data g are chosen according to these
solutions. In turn, errors and convergence rates are defined as usual:

e(t) = [t —tulloa, e(o)=o—onldava, eu)=u—unl|ia,

v, ()= 08/E0)
” log(h/h)

e(p) = llp — pal

where e and € denote errors computed on two consecutive meshes of sizes h and h.

From Table 1 we observe that as the mesh is refined, optimal convergences are
attained for the velocity gradient ¢, the pseudostress tensor o, and the velocity w,
that is, the proposed augmented method achieves O(h*+1) convergence (with k& = 0
and k = 1) for all fields in their relevant norms (as predicted by Theorem 4.5), and
around five Newton iterations are required to reach the desired tolerance. Of course,
for a fixed mesh, the augmented method corresponding to & = 1 delivers smaller
errors than those generated with £ = 0. All components of the numerical solutions
obtained at the finest level are portrayed in Figure 1. At each iteration the resulting
linear systems were solved with the multifrontal direct solver MUMPS.

Next, in order to assess the feasibility of the three dimensional implementation,
we carry out an extension of the flow over a backward-facing step test performed in
[3] (see also [4]). The domain consists of a channel of width 1, height 2, length 6,
and having a step located at the inlet, of height 1 and length 1 (in dimensionless
units). The external force is set to zero and the three dimensional flow patterns
are determined by the shape of the domain and by the boundary conditions: At
the outflow boundary (z7 = 5) we set the mean value of the (pseudo)stress to zero,
we consider a Poiseuille inflow profile (imposed as a Dirichlet velocity datum at the
inlet, 1 = —1), and the remainder of 92 are treated as rigid walls (putting no-slip
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Fic. 1. Test 1: Py — RT1 — P2 approzimation of velocity gradient components (top panels),
pseudostress components (center panels), and viscosity, velocity components with vector directions,
and postprocessed pressure field (bottom row).

velocities). We have

) (4002,(1 — z9)x3(1 — $3)3,0,0)T on the inlet z; = —1,
0 on the rigid walls.
The viscosity now follows a Carreau law (cf. (2.4)) with o = 3/200, a3 = 1/20, and
B =1, that is

1
w(s) == 220 + 20(1+82)_1/2 for s >0,

which yields a Reynolds number up to 200, and we construct an unstructured tetra-
hedral mesh of 24710 vertices and 114504 elements representing a total of 1709892
degrees of freedom for the lowest-order finite element family k¥ = 0. In combination
with the Newton solve, a homotopy method was applied on the viscosity parameter a;.
Here a BICGSTAB method with left Schur complement preconditionning was used to
solve the resulting linear systems, and six Newton steps were needed to achieve the
given tolerance. The approximate solutions are depicted in Figure 2. As expected, a
smooth flow behavior occurs away from the step, whereas a recirculation zone forms
right after the reentrant corner. In addition, here the nonlinear viscosity produces a
singular behavior on the pseudostress components.
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Fic. 2. Test 2: Numerical solutions (diagonal strain and stress components, velocity stream-
lines, and vector directions) for the flow over a step benchmark using Po —RTo —P1 approzimations
of velocity gradient, Cauchy stress, and velocity.
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