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Abstract. This paper introduces and studies the optimal control problem with equilib-

rium constraints (OCPEC). The OCPEC is an optimal control problem with a mixed state

and control equilibrium constraint formulated as a complementarity constraint and it can be

seen as a dynamic mathematical program with equilibrium constraints. It provides a powerful

modeling paradigm for many practical problems such as bilevel optimal control problems and

dynamic principal-agent problems. In this paper, we propose weak, Clarke, Mordukhovich

and strong stationarities for the OCPEC. Moreover, we give some sufficient conditions to

ensure that the local minimizers of the OCPEC are Fritz John type weakly stationary, Mor-

dukhovich stationary and strongly stationary, respectively. Unlike Pontryagain’s maximum

principle for the classical optimal control problem with equality and inequality constraints,

a counter example shows that for general OCPECs, there may exist two sets of multipliers

for the complementarity constraints. A condition under which these two sets of multipliers

coincide is given.
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1 Introduction

We are given a time interval [t0, t1] ⊆ IR, a multifunction U mapping [t0, t1] to nonempty

subsets of IRm, and a dynamic function φ : [t0, t1] × IRn × IRm → IRn. A control or control

function u(·) is a measurable function on [t0, t1] such that u(t) ∈ U(t) for almost every

t ∈ [t0, t1]. The state or state trajectory, corresponding to a given control u(·), refers to a

solution x(·) of the following controlled differential equation:

ẋ(t) = φ(t, x(t), u(t)) almost everywhere (a.e.) t ∈ [t0, t1], (1.1)

(x(t0), x(t1)) ∈ E, (1.2)

where E is a given closed subset in IRn × IRn and ẋ(t) is the first-order derivative of the

state x(·) at time t. The differential equation (1.1) linking the state x(·) and the control

u(·) is referred to as the state equation. In optimal control, one looks for a state and control

pair (x(·), u(·)) satisfying the state equation (1.1) and the boundary condition (1.2) so as to

minimize an objective function J(x(·), u(·)). In practice, there are generally extra constraints

to be satisfied by the state and control pair. Such constraints are called mixed state and

control constraints (mixed constraints for short).

Pang and Stewart [29] recently introduced a class of controlled differential variational

inequality (DVI) problem as follows:

ẋ(t) = φ(t, x(t), u(t)) a.e. t ∈ [t0, t1],

(x(t0), x(t1)) ∈ E,

u(t) ∈ K, 〈u′ − u(t),Υ(t, x(t), u(t))〉 ≥ 0 ∀u′ ∈ K a.e. t ∈ [t0, t1],

where Υ : [t0, t1]×IRn×IRm → IRm is a vector-valued function andK is a closed convex subset

in IRm. The DVI provides a powerful modeling paradigm for many practical problems such

as differential Nash equilibrium games ( [4, 29]), multi-rigid-body dynamics with frictional

contacts ( [37]), and hybrid engineering systems ( [18]). In the case where K = IRm+ , the DVI

becomes the controlled differential complementarity problem (DCP)

ẋ(t) = φ(t, x(t), u(t)) a.e. t ∈ [t0, t1],

(x(t0), x(t1)) ∈ E, (1.3)

0 ≤ u(t) ⊥ Υ(t, x(t), u(t)) ≥ 0 a.e. t ∈ [t0, t1],

where a ⊥ b means that vector a is perpendicular to vector b. In the case where K can be

expressed as a set of solutions satisfying some inequality constraints such as

K = {u ∈ IRm : g(u) ≤ 0}

where g(·) is a convex vector-valued function, when g(·) is affine or Slater’s condition holds,
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the DVI can also be represented as the following DCP:

ẋ(t) = φ(t, x(t), u(t)) a.e. t ∈ [t0, t1],

(x(t0), x(t1)) ∈ E,

−Υ(t, x(t), u(t)) +∇g(u(t))λ(t) = 0 a.e. t ∈ [t0, t1],

0 ≤ λ(t) ⊥ −g(u(t)) ≥ 0 a.e. t ∈ [t0, t1],

(1.4)

where ∇g denotes the transposed Jacobian of g and λ(t) is a Lagrange multiplier correspond-

ing to the inequality constraint g(u(t)) ≤ 0.

Motivated by the studies for the DVI, we consider a class of controlled differential comple-

mentarity system where in addition to the state equation (1.1) and the boundary condition

(1.2), the state and control pair (x(·), u(·)) satisfies some mixed equality and inequality con-

straints, as well as a mixed equilibrium system formulated as a complementarity system:

0 ≤ G(t, x(t), u(t)) ⊥ H(t, x(t), u(t)) ≥ 0 a.e. t ∈ [t0, t1], (1.5)

whereG,H : [t0, t1]×IRn×IRm → IRl. We say that an index i is degenerate ifGi(t, x(t), u(t)) =

Hi(t, x(t), u(t)) = 0. It is obvious that such a system includes DCPs (1.3) and (1.4) as special

cases. Correspondingly, it is natural to determine what is the “best” control (or the “best”

state and control pair) satisfying such a system to achieve some given objective. A simple

example is to find the best control from such a system so that the final state x(t1) will reach

some prescribed target from a given initial state x(t0). In this paper, we introduce a class

of optimal control problems with equilibrium constraints (OCPEC) in which one looks for a

state and control pair (x(·), u(·)) from such a system so as to minimize an objective function

J(x(·), u(·)). Mathematically, the OCPEC considered in this paper is of the form

(OCPEC) min J(x(·), u(·))

s.t. ẋ(t) = φ(t, x(t), u(t)) a.e. t ∈ [t0, t1],

g(t, x(t), u(t)) ≤ 0, h(t, x(t), u(t)) = 0 a.e. t ∈ [t0, t1], (1.6)

0 ≤ G(t, x(t), u(t)) ⊥ H(t, x(t), u(t)) ≥ 0 a.e. t ∈ [t0, t1],

u(t) ∈ U(t) a.e. t ∈ [t0, t1], (1.7)

(x(t0), x(t1)) ∈ E,

where g : [t0, t1]× IRn × IRm → IRl1 and h : [t0, t1]× IRn × IRm → IRl2 .

The OCPEC can be considered as a dynamic version of the mathematical program with

equilibrium constraints (MPEC) that has been an active area of research in recent years (see,

e.g., the monographs [26,28]). The OCPEC provides a powerful modeling paradigm for many

practical problems such as the dynamic optimization of chemical processes with changes in

the number of equilibrium phases [31]. A large part of source problems of the OCPEC comes

from bilevel optimal control problems (see, e.g., [1, 15, 16, 46, 47]), Stackelberg differential

games (see, e.g., [17, 43]), and dynamic principal-agent problems (see, e.g., [25, 34]) when
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there exist inequality constraints in the lower-level problem. For those problems, if the lower-

level problem, which is a parametric optimal control problem, is replaced by Pontryagain’s

maximum principle (see [30, 38]) which is the well-known first-order necessary optimality

condition for optimal control problems, then an OCPEC results; see, e.g., [15, Section 6.1].

It is desirable to know whether there exists an optimal control before solving the OCPEC.

The Filippov’s existence theorem for Mayer’s problem that is due to Filippov [11] (see also [3,

Theorem 9.2.i]) requires the convexity of the velocity set φ(t, x,U(t, x)) where

U(t, x) := {u ∈ U(t) : g(t, x, u) ≤ 0, h(t, x, u) = 0, 0 ≤ G(t, x, u) ⊥ H(t, x, u) ≥ 0}.

The velocity set is in general nonconvex due to the existence of the complementarity con-

straints. Thus, the classical existence theorem may not be applicable and one may need

to look for new ways to prove the existence of optimal controls for the OCPEC or use the

existence theorem in a relaxed control setting ( [39,50]). We leave these challenging questions

for future research.

In this paper, we assume that an optimal control exists for the OCPEC and focus on

deriving its necessary optimality conditions. To the best of our knowledge, there is no such

result in the literature so far. Although deriving necessary optimality conditions for optimal

control problems with mixed constraints is a highly challenging problem, some progresses have

been made; see, e.g., [5, 7–10, 20, 21, 24]. Unfortunately, none of these results are applicable

to the OCPEC and its reformulations. The constraint (1.5) is obviously equivalent to that

for almost every t ∈ [t0, t1],

G(t, x(t), u(t)) ≥ 0, H(t, x(t), u(t)) ≥ 0, G(t, x(t), u(t))⊤H(t, x(t), u(t)) ≤ 0, (1.8)

where ⊤ denotes the transpose, which is clearly a system of inequalities. However, all the

inequalities in (1.8) never hold strictly at the same time. This means that the Mangasarian-

Fromovitz constraint qualification (MFCQ) is violated at any point satisfying (1.8). The

classical necessary optimality conditions for optimal control problems with mixed equality

and inequality constraints generally require the linear independence constraint qualification

(LICQ) (see, e.g., [21]) or the Mangasarian-Fromovitz condition (MFC) (see, e.g., [7]) over

some neighborhood of the local minimizer. But both LICQ and MFC are stronger than

MFCQ. Thus, the classical necessary optimality conditions for optimal control problems with

equality and inequality constraints cannot be applied to the OCPEC with the complementar-

ity constraint (1.5) reformulated as inequality constraints (1.8). In the MPEC literature, by

using the so-called “piecewise programming” approach (see, e.g., [26,48]), the feasible region

of an MPEC is locally reformulated as a union of finitely many pieces where each piece is

expressed as a system of equality and inequality constraints, and then it can be shown that

the strong (S-) stationarity holds under the so-called MPEC LICQ. It is obvious that such

an approach fails for the dynamic complementarity system (1.5). A well-known technique to

derive a necessary optimality condition for an MPEC called the Clarke (C-) stationarity is to
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use the equivalent nonsmooth reformulation min{G,H} = 0 (“min ” denotes the componen-

twise minimum) to replace the complementarity system 0 ≤ G ⊥ H ≥ 0 (see, e.g., [35, 45]).

This technique, however, is also not applicable to the OCPEC since such an approach leads to

an optimal control problem with a nonsmooth mixed equality constraint for which there does

not exist any applicable necessary optimality conditions in the control literature. Another

equivalent reformulation of the complementarity constraint is
(

G,H
)

∈ Cl where

Cl := {(a, b) ∈ IRl × IRl : 0 ≤ a ⊥ b ≥ 0} (1.9)

is called the complementarity cone. It is known that this reformulation is useful to obtain a

necessary optimality condition in the form of Mordukhovich (M-) stationarity in the MPEC

literature; see, e.g., [45]. Using this reformulation, the OCPEC can be equivalently reformu-

lated as

(Ps) min J(x(·), u(·))

s.t. ẋ(t) = φ(t, x(t), u(t)) a.e. t ∈ [t0, t1], (1.10)

(x(t), u(t)) ∈ S(t) a.e. t ∈ [t0, t1],

(x(t0), x(t1)) ∈ E,

with

S(t) :=

{

(x, u) ∈ IRn × U(t) :
g(t, x, u) ≤ 0, h(t, x, u) = 0
(

G(t, x, u),H(t, x, u)
)

∈ Cl

}

. (1.11)

An optimal control problem in the form of (Ps) with an abstract mixed constraint S(t) was

recently studied by Clarke and De Pinho [7]. In this paper, we first derive a slightly sharper

necessary optimality condition for (Ps) than [7, Theorem 2.1] and then apply it to the problem

with S(t) defined as in (1.11). We hope that we would get the M-stationarity as in the MPEC

literature. Unfortunately, for the OCPEC, no sign information on the multipliers associated

with the degenerate indices can be derived and, consequently, we can only obtain a weak

stationarity. In order to get more sign information on the multipliers associated with the

degenerate indices, we further utilize the Weierstrass condition to obtain the second set of

multipliers. A counter example shows that in general these two sets of multipliers may be

different in measure. However, under the MPEC LICQ, since the multipliers corresponding

to the weak stationarity are unique, these two sets of multipliers coincide almost everywhere

and then we can obtain the S-stationarity with one set of multipliers.

The rest of this paper is organized as follows. In Section 2, we give some preliminaries

and preliminary results. In Section 3, we develop the necessary optimality conditions for the

OCPEC. Section 4 illustrates our derived results with a simple example.
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2 Preliminary and preliminary results

Throughout this paper, ‖ · ‖ denotes the Euclidean norm and Bδ(x) := {y : ‖y − x‖ < δ}

the open ball centered at x with positive radius δ. The boundary, closure, convex hull, and

closed convex hull of a subset Ω ⊆ IRn are denoted by bdΩ, cl Ω, coΩ, and clco Ω, respectively.

Moreover, distΩ(x) denotes the Euclidean distance from x to Ω. For any a, b ∈ IRn, a+ :=

max{a, 0} denotes the nonnegative part of vector a and 〈a, b〉 the inner product of vector a

and vector b. Given a mapping ψ : IRn → IRm and a point x ∈ IRn, ∇ψ(x) stands for the

transposed Jacobian of ψ(·) at x and Iψ(x) := {i : ψi(x) = 0} the active index set of ψ(·) at

x. The Minkowski sum of a singleton {a} and an arbitrary set A is denoted by a + A.

2.1 Background in variational analysis

In this subsection, we review some basic concepts and results in variational analysis that will

be used later on; see, e.g., [6, 27, 33] for more details. Given a subset Ω ⊆ IRn and x ∈ cl Ω,

the proximal normal cone to Ω at x is defined as

N P
Ω (x) := {v ∈ IRn : ∃ σ ≥ 0 s.t. 〈v, y − x〉 ≤ σ‖y − x‖2 ∀y ∈ Ω},

the limiting normal cone to Ω at x is defined as

NL
Ω (x) := {v ∈ IRn : ∃(xk, vk) → (x, v) with vk ∈ N P

Ω (xk) ∀k},

and the Clarke normal cone to Ω at x is defined as NC
Ω (x) := clcoNL

Ω (x), which also holds

true even if the space is not finite dimensional but a more general Asplund space [27]. We

can easily obtain the following inclusions:

N P
Ω (x) ⊆ NL

Ω (x) ⊆ NC
Ω (x) ∀x ∈ cl Ω.

For a multifunction Ξ : IRn ⇒ IRm, its graph and domain are defined, respectively, as

gphΞ := {(x, u) : u ∈ Ξ(x)} and domΞ := {x : Ξ(x) 6= ∅}.

Both the limiting normal cone mapping NL
Ω (·) and Clarke normal cone mapping NC

Ω (·) are

closed in the sense that their graphs are closed.

The following expression for the limiting normal cone of the complementarity cone Cl is

well-known (see, e.g., [44, Proposition 3.7]) and will be used in Section 3.

Proposition 2.1 For any (a, b) ∈ Cl where Cl is defined in (1.9),

NL
Cl(a, b) =

{

(α, β) ∈ IRl × IRl :
αi = 0 if ai > 0, βi = 0 if bi > 0

αi < 0, βi < 0 or αiβi = 0 if ai = bi = 0

}

.
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Given a lower semicontinuous function ϕ : IRn → IR ∪ {+∞} and a point x with ϕ(x)

finite, the limiting subdifferential of ϕ at x is defined as

∂Lϕ(x) :=

{

v ∈ IRn : ∃(xk, vk) → (x, v) with lim
y→xk

f(y)− f(xk)− 〈vk, y − xk〉

‖y − xk‖
≥ 0 ∀k

}

.

If ϕ(·) is Lipschitz continuous near x, then the Clarke subdifferential of ϕ(·) at x can be defined

as ∂Cϕ(x) := clco ∂Lϕ(x), which also holds true even if the space is not finite dimensional

but a more general Asplund space [27]. Both the limiting subdifferential mapping ∂Lϕ(·) and

Clarke subdifferential mapping ∂Cϕ(·) are closed in the sense that their graphs are closed.

Given a point (x, u) ∈ cl gphΞ for a multifunction Ξ : IRn ⇒ IRm, the coderivative

D∗Ξ(x, u) : IRm ⇒ IRn of Ξ(·) at (x, u) is defined as

D∗Ξ(x, u)(y) := {v ∈ IRn : (v,−y) ∈ NL
gphΞ(x, u)}.

The symbol D∗Ξ(x) is used when Ξ(·) is single-valued at x and u = Ξ(x). Moreover, if Ξ(·)

is single-valued and Lipschitz continuous near x, then, by [27, Theorem 1.90],

D∗Ξ(x)(y) = ∂L〈y,Ξ(x)〉 ∀y ∈ IRm.

2.2 Local error bound condition and constraint qualifications

In this subsection, we consider the following constrained system:

Ω := {z ∈ D : g(z) ≤ 0, h(z) = 0, (G(z),H(z)) ∈ Cl}, (2.1)

where D is a closed subset in IRd, and g : IRd → IRl1 , h : IRd → IRl2 , G,H : IRd → IRl are all

strictly differentiable. We say that the local error bound condition holds (for the constrained

system representing the set Ω as in (2.1)) at z̄ ∈ Ω if there exist τ > 0 and δ > 0 such that

distΩ(z) ≤ τ
(

‖g(z)+‖+ ‖h(z)‖ + distCl(G(z),H(z))
)

∀z ∈ Bδ(z̄) ∩ D.

It is well-known that the local error bound condition at z̄ is equivalent to the calmness of the

perturbed constrained system

Ω(yg, yh, yG, yH) := {z ∈ D : g(z) + yg ≤ 0, h(z) + yh = 0, 0 ≤ G(z) + yG ⊥ H(z) + yH ≥ 0}

(2.2)

at (0, 0, 0, 0, z̄) (see, e.g., [19]). The local error bound condition is very weak and there exist

many sufficient conditions for it to hold; see, e.g., [14,19,40–42,49]. The following constraint

qualifications are such sufficient conditions.

Definition 2.1 (MPEC constraint qualifications) Let z̄ ∈ Ω where Ω is defined in (2.1).

When D = IRd, we say that the MPEC LICQ holds at z̄ if the family of gradients

{∇gi(z̄) : i ∈ Ig(z̄)} ∪ {∇hi(z̄) : i = 1, . . . , l2} ∪ {∇Gi(z̄) : i ∈ IG(z̄)} ∪ {∇Hi(z̄) : i ∈ IH(z̄)}
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is linearly independent.

We say that the MPEC linear condition holds if all the functions g(·), h(·), G(·),H(·) are

affine and D is a union of finitely many polyhedral sets.

We say that the MPEC quasi-normality holds at z̄ if there is no nonzero vector (λ, υ, µ, ν)

such that

• 0 ∈ ∇g(z̄)λ+∇h(z̄)υ −∇G(z̄)µ−∇H(z̄)ν +NL
D(z̄),

• λ ≥ 0, λi = 0 ∀i /∈ Ig(z̄), µi = 0 ∀i /∈ IG(z̄), νi = 0 ∀i /∈ IH(z̄), µi > 0, νi > 0 or µiνi =

0 ∀i ∈ IG(z̄) ∩ IH(z̄),

• there exists a sequence {zk} ⊆ D converging to z̄ such that for each k,

λi > 0 =⇒ gi(z
k) > 0, υi 6= 0 =⇒ υihi(z

k) > 0,

µi 6= 0 =⇒ µiGi(z
k) < 0, νi 6= 0 =⇒ νiHi(z

k) < 0.

It should be noted that the MPEC quasi-normality is a weak condition which holds

automatically when the MPEC linear condition holds with D = IRd and is also implied by

the MPEC LICQ.

Proposition 2.2 The local error bound condition holds at z̄ ∈ Ω if the MPEC linear condi-

tion or the MPEC quasi-normality holds at z̄.

Proof. If the MPEC linear condition holds, then it is easy to see that the perturbed

constrained system Ω(yg, yh, yG, yH) defined in (2.2) is a polyhedral multifunction and hence

the local error bound condition holds [32]. Moreover, by [14, Theorem 5.2], the local error

bound condition follows from the MPEC quasi-normality immediately.

2.3 Optimal control problem with an abstract set constraint

In this subsection, we consider the optimal control problem (Ps) where

J(x(·), u(·)) :=

∫ t1

t0

F (t, x(t), u(t))dt + f(x(t0), x(t1)).

Here F : [t0, t1]×IRn×IRm → IR and f : IRn×IRn → IR. The basic hypotheses on the problem

data, in force throughout this subsection, are the following: F (·), φ(·) are L×B measurable,

S(·) is L measurable, and f(·) is locally Lipschitz continuous, where L × B denotes the σ-

algebra of subsets of appropriate spaces generated by product sets M × N where M is a

Lebesgue (L) measurable subset in IR and N is a Borel (B) measurable subset in IRn × IRm.

We refer to any absolutely continuous function as an arc. An admissible pair for (Ps) is

a pair of functions (x(·), u(·)) on [t0, t1] for which u(·) is a control and x(·) is an arc that
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satisfies all the constraints in (Ps). Given a measurable radius function R : [t0, t1] → (0,+∞],

as in [7], we say that an admissible pair (x∗(·), u∗(·)) is a local minimizer of radius R(·) for

(Ps) if there exists ǫ > 0 such that for every pair (x(·), u(·)) admissible for (Ps) which also

satisfies

‖x(t)− x∗(t)‖ ≤ ǫ, ‖u(t) − u∗(t)‖ ≤ R(t) a.e. t ∈ [t0, t1],

∫ t1

t0

‖ẋ(t)− ẋ∗(t)‖ dt ≤ ǫ,

we have J(x∗(·), u∗(·)) ≤ J(x(·), u(·)). Note that the so-called W 1,1 local minimizer in the

control literature is actually the case where the radius function R(·) is identically +∞.

Let (x∗(·), u∗(·)) be a local minimizer of radius R(·) for (Ps). For every given t ∈ [t0, t1],

a radius function R(·), and a positive constant ǫ, we define a neighborhood of the point

(x∗(t), u∗(t)) as follows:

Sǫ,R∗ (t) :=
{

(x, u) ∈ S(t) : ‖x− x∗(t)‖ ≤ ǫ, ‖u− u∗(t)‖ ≤ R(t)
}

. (2.3)

Other than the basic hypotheses on the problem data, we also assume that the following

assumptions hold for (Ps).

Assumption 2.1 (i) There exist measurable functions kφx(·), kFx (·), k
φ
u(·), kFu (·) such that for

almost every t ∈ [t0, t1] and for every (x1, u1), (x2, u2) ∈ Sǫ,R∗ (t), we have

‖φ(t, x1, u1)− φ(t, x2, u2)‖ ≤ kφx(t)‖x
1 − x2‖+ kφu(t)‖u

1 − u2‖,

|F (t, x1, u1)− F (t, x2, u2)| ≤ kFx (t)‖x
1 − x2‖+ kFu (t)‖u

1 − u2‖.

(ii) There exists a positive measurable function kS(·) such that for almost every t ∈ [t0, t1],

the bounded slope condition holds:

(x, u) ∈ Sǫ,R∗ (t), (α, β) ∈ N P
S(t)(x, u) =⇒ ‖α‖ ≤ kS(t)‖β‖. (2.4)

(iii) The functions kφx(·), kFx (·), kS(·)[k
φ
u(·)+kFu (·)] are integrable and there exists a positive

number η such that R(t) ≥ ηkS(t) a.e. t ∈ [t0, t1].

Assumption 2.1(i) can be seen as a local Lipschitz condition in variable (x, u) with mea-

surable Lipschitz constants. This condition is automatically satisfied with time independent

Lipschitz constants when u∗(·) is bounded over [t0, t1], the radius function R(·) is a positive

constant function, and the functions F (·), φ(·) are locally Lipschitz continuous in variable

(t, x, u). Assumption 2.1(ii) is a key condition proposed in [7] to derive the necessary opti-

mality conditions. We will investigate some sufficient conditions for such an assumption to

hold in our problem setting in Section 3.

For a general optimal differential inclusion problem

min f(x(t0), x(t1))

s.t. ẋ(t) ∈ Ft(x(t)) a.e. [t0, t1],

(x(a), x(b)) ∈ E,

9



where Ft : IRn ⇒ IRn is a multifunction, Clarke [5] has derived a new state of the art

necessary optimality conditions in the optimal control literature. These conditions are strat-

ified in that both the hypotheses and the conclusions are formulated relative to a given

radius function. However, it should be noted that for a point v lying on the boundary

of Ft(x
∗(t)) ∩ clBR(t)(u

∗(t)), one may not find a sequence {vk} in Ft(x
∗(t)) ∩ BR(t)(u

∗(t))

such that vk → v if Ft(x
∗(t)) is disconnected. Thus, the derived Weierstrass condition

in [5, Theorems 2.3.3 and 3.1.1, and Corollary 3.5.3] should hold only relative to the open

ball BR(t)(u
∗(t)) instead of the closed ball clBR(t)(u

∗(t)). In a recent paper [2], Bettiol et al.

also proved the stratified necessary optimality conditions for an optimal differential inclusion

problem involving additional pathwise state constraints in [2, Theorem 2.1] and pointed out

that the Weierstrass condition may not hold with full radius by a counter example [2, Example

2]. Recently, Clarke and De Pinho [7, Theorem 2.1] derived the stratified necessary optimal-

ity conditions for (Ps) by recasting the problem as an equivalent optimal different inclusion

problem and applying the corresponding necessary optimality conditions from [5, Corollary

3.5.3]. In the following, using the same proof technique as in [7, Theorem 2.1], we give a

stratified necessary optimality condition for (Ps) which will be used in obtaining our main

results. Our results differ from [7, Theorem 2.1] in two aspects. Firstly, our Euler inclusion

(c) is slightly sharper than that in [7, Theorem 2.1]. Secondly, the Weierstrass condition (d)

holds only on the open ball BR(t)(u
∗(t)) instead of the closed ball clBR(t)(u

∗(t)).

Theorem 2.1 Let (x∗(·), u∗(·)) be a local minimizer of radius R(·) for (Ps) and Assumption

2.1 hold. Then there exist a number λ0 ∈ {0, 1} and an arc p(·) such that

(a) the nontriviality condition holds: (λ0, p(t)) 6= 0 ∀t ∈ [t0, t1];

(b) the transversality condition holds:

(p(t0),−p(t1)) ∈ λ0∂
Lf(x∗(t0), x

∗(t1)) +NL
E (x

∗(t0), x
∗(t1));

(c) the Euler inclusion holds: For almost every t ∈ [t0, t1],

(ṗ(t), 0) ∈ co
{

(w, 0) : (w, 0) ∈ ∂L
{

〈−p(t), φ(t, ·, ·)〉 + λ0F (t, ·, ·)
}

(x∗(t), u∗(t))

+NL
S(t)(x

∗(t), u∗(t))
}

; (2.5)

(d) the Weierstrass condition holds: For almost every t ∈ [t0, t1],

(x∗(t), u) ∈ S(t), ‖u− u∗(t)‖ < R(t) =⇒

〈p(t), φ(t, x∗(t), u)〉 − λ0F (t, x
∗(t), u) ≤ 〈p(t), φ(t, x∗(t), u∗(t))〉 − λ0F (t, x

∗(t), u∗(t)).

Proof. First we consider the case where F (·) ≡ 0. Similarly as in the proof of [7, Theorem

2.1], for anyM > 1, by applying [5, Corollary 3.5.3] with the Weirestrass condition on a open

10



ball BR(t)(u
∗(t)) or [2, Theorem 2.1], we can obtain a number λ0,M ∈ {0, 1} and an arc pM(·)

such that the nontriviality condition holds:

λ0,M + ‖pM (·)‖∞ = 1;

the transversality condition holds:

(pM (t0),−pM (t1)) ∈ λ0,M∂
Lf(x∗(t0), x

∗(t1)) +NL
E (x

∗(t0), x
∗(t1));

the Euler inclusion holds: For almost every t ∈ [t0, t1],

(ṗM (t), 0) ∈ co
{

(w, 0) : (w, pM (t), 0) ∈ NL
G(t)(x

∗(t), φ(t, x∗(t), u∗(t)), 0)
}

,

where

G(t) :=
{

(x, φ(t, x, u), c(t)(u − u∗(t))) : (x, u) ∈ S(t)
}

with c(t) := M(kφx(t) + kS(t)k
φ
u(t))/kS(t); and the Weierstrass condition holds with radius

R(·)M/(M + 1): For almost every t ∈ [t0, t1],

(x∗(t), u) ∈ S(t), ‖u− u∗(t)‖ < R(t)M/(M + 1)

=⇒ 〈pM (t), φ(t, x∗(t), u)〉 ≤ 〈pM (t), φ(t, x∗(t), u∗(t))〉. (2.6)

As shown in [7, Theorem 2.1], we can extract a convergent subsequence of the sequence

{(λ0,M , pM (·))}M with limit (λ0, p(·)) as M → ∞. Taking limits as M → ∞ in the above

nontriviality condition, transversality condition, Weierstrass condition, and Euler inclusion,

we can obtain the results (a), (b), and (d) of this theorem for the case where F (·) ≡ 0 and

(ṗ(t), 0) ∈ co
{

(w, 0) : (w, p(t), 0) ∈ NL
G(t)(x

∗(t), φ(t, x∗(t), u∗(t)), 0)
}

.

The Euler inclusion (c) of this theorem for the case where F (·) ≡ 0 can be obtained by

estimating the limiting normal cone of the above formula as in the last paragraph of Page

4521 in [7].

The general case in which a nonzero F is present is reducible to the already treated one

by augmentation as explained at the end of the proof of [7, Theorem 2.1].

Note that in the proof of Theorem 2.1, we are unable to prove that the Weierstrass

condition holds with full radius R(·) as claimed in the proof of [7, Theorem 2.1]. The reason

is that for a given u lying on the boundary of the set

Ω := {u : (x∗(t), u) ∈ S(t), ‖u− u∗(t)‖ ≤ R(t)},

to show that

〈p(t), φ(t, x∗(t), u)〉 ≤ 〈p(t), φ(t, x∗(t), u∗(t))〉 (2.7)

in the case where F (·) ≡ 0, we would need to find uM ∈ {u : (x∗(t), u) ∈ S(t), ‖u− u∗(t)‖ <

R(t)M/(M +1)} such that uM → u as M → ∞ and take limits in (2.6) to derive the desired

inequality (2.7). But this may not be always possible if Ω is disconnected.

11



Remark 2.1 Theorem 2.1 is a Fritz John (FJ) type necessary optimality condition. In the

case where λ0 = 0, no information on the objective functions can be derived from the necessary

optimality condition and it becomes useless. Thus, the case where λ0 = 1 is desirable. It

follows from Theorem 2.1 that if there is no nonzero abnormal multiplier, i.e., the following

implication holds:































(p(t0),−p(t1)) ∈ NL
E (x

∗(t0), x
∗(t1)),

(ṗ(t), 0) ∈ co
{

(w, 0) : (w, 0) ∈ ∂L〈−p(t), φ(t, ·, ·)〉(x∗(t), u∗(t))

+NL
S(t)(x

∗(t), u∗(t))
}

a.e. t ∈ [t0, t1],

(x∗(t), u) ∈ S(t), ‖u− u∗(t))‖ < R(t)

=⇒ 〈p(t), φ(t, x∗(t), u)〉 ≤ 〈p(t), φ(t, x∗(t), u∗(t))〉 a.e. t ∈ [t0, t1],

=⇒ p(t) = 0 for some t ∈ [t0, t1],

then the conclusions of Theorem 2.1 hold with λ0 = 1. Such a condition is automatically

satisfied in the case of free initial or final point, that is, E = E0 × IRn or E = IRn × E1

with closed subsets E0, E1 in IRn. Supposing λ0 = 0, the result (b) in Theorem 2.1 yields

that p(t1) = 0 or p(t0) = 0, respectively, which contradicts the result (a) of this theorem.

Throughout the paper, all the derived necessary optimality conditions are FJ type conditions.

The desired case where λ0 = 1 can be obtained provided that there is no nonzero abnormal

multiplier, which is always true if the initial or final point is free.

3 Necessary optimality conditions for OCPEC

In this section, we develop necessary optimality conditions for the OCPEC under the following

basic hypothesises.

Assumption 3.1 (Basic assumption) F : [t0, t1]× IRn × IRm → IR and φ : [t0, t1]× IRn ×

IRm → IRn are L×B measurable, g : [t0, t1]× IRn× IRm → IRl1 , h : [t0, t1]× IRn× IRm → IRl2 ,

and G,H : [t0, t1] × IRn × IRm → IRl are L measurable in variable t and strict differentiable

in variable (x, u), U : [t0, t1] ⇒ IRm is a L measurable multifunction, f : IRn × IRn → IR is

locally Lipschitz continuous, and E is a closed subset in IRn × IRn.

In fact, we can easily extend our results to the case where the mappings g(·), h(·), G(·),H(·)

are only Lipschitz continuous in variable (x, u) and strictly differentiable at (x∗(t), u∗(t)). But

for simplicity of exposition, we assume that they are strictly differentiable in variable (x, u)

as in Assumption 3.1.
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Given an admissible pair (x(·), u(·)) and a point t ∈ [t0, t1], we define the index sets:

I−t (x, u) := {i : gi(t, x(t), u(t)) < 0},

I0t (x, u) := {i : gi(t, x(t), u(t)) = 0},

I+0
t (x, u) := {i : Gi(t, x(t), u(t)) > 0 = Hi(t, x(t), u(t))},

I00
t (x, u) := {i : Gi(t, x(t), u(t)) = 0 = Hi(t, x(t), u(t))},

I0+
t (x, u) := {i : Gi(t, x(t), u(t)) = 0 < Hi(t, x(t), u(t))}.

Moreover, for any (λ, υ, µ, ν) ∈ IRl1 × IRl2 × IRl × IRl, we denote

Ψ(t, x, u;λ, υ, µ, ν) := g(t, x, u)⊤λ+ h(t, x, u)⊤υ −G(t, x, u)⊤µ−H(t, x, u)⊤ν.

Theorem 3.1 Let (x∗(·), u∗(·)) be a local minimizer of radius R(·) for the OCPEC and

Assumption 3.1 hold. Suppose that Assumption 2.1 with S(t) defined in (1.11) is also satisfied.

If for almost every t ∈ [t0, t1], the local error bound condition for the system representing S(t)

as in (1.11) holds at (x∗(t), u∗(t)), then there exist a number λ0 ∈ {0, 1}, an arc p(·), and

measurable functions λg : IR → IRl1 , λh : IR → IRl2 , λG : IR → IRl, λH : IR → IRl such that the

following conditions hold:

(i) the nontriviality condition (λ0, p(t)) 6= 0 ∀t ∈ [t0, t1];

(ii) the transversality condition

(p(t0),−p(t1)) ∈ λ0∂
Lf(x∗(t0), x

∗(t1)) +NL
E (x

∗(t0), x
∗(t1));

(iii) the Euler adjoint inclusion: For almost every t ∈ [t0, t1],

(ṗ(t), 0) ∈ ∂C
{

〈−p(t), φ(t, ·, ·)〉 + λ0F (t, ·, ·)
}

(x∗(t), u∗(t)) + {0} × NC
U(t)(u

∗(t))

+∇x,uΨ(t, x∗(t), u∗(t);λg(t), λh(t), λG(t), λH(t)),

λg(t) ≥ 0, λgi (t) = 0 ∀i ∈ I−t (x
∗, u∗),

λGi (t) = 0 ∀i ∈ I+0
t (x∗, u∗), λHi (t) = 0 ∀i ∈ I0+

t (x∗, u∗);

(iv) the Weierstrass condition for radius R(·): For almost every t ∈ [t0, t1],

(x∗(t), u) ∈ S(t), ‖u− u∗(t)‖ < R(t) =⇒

〈p(t), φ(t, x∗(t), u)〉 − λ0F (t, x
∗(t), u) ≤ 〈p(t), φ(t, x∗(t), u∗(t))〉 − λ0F (t, x

∗(t), u∗(t)).

Proof. For simplicity in the proof, we omit the equality and inequality constraints (1.6),

and the control constraint (1.7) since we have checked that all the formulas of the proof

have the corresponding counterparts when using S(t) defined in (1.11) instead of (3.1). Then

(x∗(·), u∗(·)) is a local minimizer of radius R(·) for (Ps) with S(t) defined as follows:

S(t) =
{

(x, u) :
(

G(t, x, u),H(t, x, u)
)

∈ Cl
}

. (3.1)

13



By virtue of Theorem 2.1, we can easily get the results (i), (ii), and (iv) in this theorem. It

now suffices to show the result (iii) by Theorem 2.1(c). Since the local error bound condition

holds at (x∗(t), u∗(t)) and the functions G(t, ·, ·),H(t, ·, ·) are strictly differentiable, it follows

from Proposition 2.1 and [22, Proposition 3.4] that

NL
S(t)(x

∗(t), u∗(t))

⊆
{

−∇x,uG(t, x
∗(t), u∗(t))β −∇x,uH(t, x∗(t), u∗(t))γ : (β, γ) ∈ M∗(t)

}

, (3.2)

where

M∗(t) :=











(β, γ) :

βi = 0 if i ∈ I+0
t (x∗, u∗)

γi = 0 if i ∈ I0+
t (x∗, u∗)

βi > 0, γi > 0 or βiγi = 0 if i ∈ I00
t (x∗, u∗)











. (3.3)

It then follows from (2.5) and (3.2) that for almost every t ∈ [t0, t1],

(ṗ(t), 0) ∈ ∂C
{

〈−p(t), φ(t, ·, ·)〉 + λ0F (t, ·, ·)
}

(x∗(t), u∗(t))

+co {−∇x,uG(t, x
∗(t), u∗(t))β −∇x,uH(t, x∗(t), u∗(t))γ : (β, γ) ∈ M∗(t)} .

(3.4)

By Carathéodory’s theorem for the convex hull, it then follows from (3.4) that for almost

every t ∈ [t0, t1], there exist α ∈ ∆ := {α ∈ IRn+m+1
+ :

∑n+m+1
j=1 αj = 1} and (βj , γj) ∈

M∗(t) (∀j = 1, . . . , n+m+ 1) such that

ψ(t, α, β, γ) ∈ −(ṗ(t), 0) + ∂C
{

〈−p(t), φ(t, ·, ·)〉 + λ0F (t, ·, ·)
}

(x∗(t), u∗(t)), (3.5)

where

ψ(t, α, β, γ) :=

n+m+1
∑

j=1

αj
[

∇x,uG(t, x
∗(t), u∗(t))βj +∇x,uH(t, x∗(t), u∗(t))γj

]

is a Carathéodory mapping since it is continuous in (α, β, γ) and measurable in t by virtue

of [33, Theorem 14.13]. By [33, Theorem 14.56 and Exercise 14.12], the multifunction

∂C
{

〈−p(t), φ(t, ·, ·)〉 + λ0F (t, ·, ·)
}

(x∗(t), u∗(t))

is measurable in t. Hence,

−(ṗ(t), 0) + ∂C
{

〈−p(t), φ(t, ·, ·)〉 + λ0F (t, ·, ·)
}

(x∗(t), u∗(t))

is measurable in t. Moreover, by [33, Theorem 14.26], the multifunction M∗(t) is measurable

in t. Thus, it follows from the implicit measurable function theorem [33, Theorem 14.16] that

there exist measurable functions α(·) ∈ ∆ and (βj(·), γj(·)) ∈ M∗(·) (∀j = 1, . . . , n+m+ 1)

such that for almost every t ∈ [t0, t1],

(ṗ(t), 0) ∈ ∂C
{

〈−p(t), φ(t, ·, ·)〉 + λ0F (t, ·, ·)
}

(x∗(t), u∗(t))

−
n+m+1
∑

j=1

αj(t)∇x,uG(t, x
∗(t), u∗(t))βj(t)−

n+m+1
∑

j=1

αj(t)∇x,uH(t, x∗(t), u∗(t))γj(t).
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Let

λG(·) :=
n+m+1
∑

j=1

αj(·)β
j(·), λH(·) :=

n+m+1
∑

j=1

αj(·)γ
j(·),

which are both clearly measurable in t. Moreover, since (βj(t), γj(t)) ∈ M∗(t) (∀j =

1, . . . , n+m+ 1), it is not hard to see that

λGi (t) = 0 ∀i ∈ I+0
t (x∗, u∗), λHi (t) = 0 ∀i ∈ I0+

t (x∗, u∗).

Thus, the desired result follows immediately. The proof is complete.

By virtue of the Weierstrass condition for radius R(·) (Theorem 3.1(iv)), we have that for

almost every t ∈ [t0, t1], u
∗(t) is a local minimizer of the following MPEC:

min
u∈U(t)

−〈p(t), φ(t, x∗(t), u)〉 + λ0F (t, x
∗(t), u)

s.t. g(t, x∗(t), u) ≤ 0, h(t, x∗(t), u) = 0, (3.6)

0 ≤ G(t, x∗(t), u) ⊥ H(t, x∗(t), u) ≥ 0.

Hence, under some constraint qualifications for MPEC (3.6), the popular necessary conditions

such as the C-, M-, and S-stationarities may hold at u∗(t); see, e.g., [23,35,45,49]. This and

Theorem 3.1 motivate us to define the following stationarity conditions.

Definition 3.1 Let (x∗(·), u∗(·)) be an admissible pair of the OCPEC. We say that the

FJ type weak stationarity (W-stationarity) holds at (x∗(·), u∗(·)) if there exist a number

λ0 ∈ {0, 1}, an arc p(·), and measurable functions λg(·), λh(·), λG(·), λH(·) such that The-

orem 3.1(i)-(iv) hold.

We say that the FJ type C-stationarity holds at (x∗(·), u∗(·)) if (x∗(·), u∗(·)) is W-stationary

with arc p(·) and there exist measurable functions ηg(·), ηh(·), ηG(·), ηH (·) such that for almost

every t ∈ [t0, t1],

0 ∈ ∂Lu
{

− 〈p(t), φ(t, x∗(t), ·)〉 + λ0F (t, x
∗(t), ·)

}

(u∗(t))

+∇uΨ(t, x∗(t), u∗(t); ηg(t), ηh(t), ηG(t), ηH(t)) +NL
U(t)(u

∗(t)), (3.7)

ηg(t) ≥ 0, ηgi (t) = 0 ∀i ∈ I−t (x
∗, u∗), (3.8)

ηGi (t) = 0 ∀i ∈ I+0
t (x∗, u∗), ηHi (t) = 0 ∀i ∈ I0+

t (x∗, u∗), (3.9)

and

ηGi (t)η
H
i (t) ≥ 0 ∀i ∈ I00

t (x∗, u∗).

We say that the FJ type M-stationarity holds at (x∗(·), u∗(·)) if (x∗(·), u∗(·)) is W-stationary

with arc p(·) and there exist measurable functions ηg(·), ηh(·), ηG(·), ηH (·) such that for almost

every t ∈ [t0, t1], (3.7)–(3.9) hold and

ηGi (t) > 0, ηHi (t) > 0 or ηGi (t)η
H
i (t) = 0 ∀i ∈ I00

t (x∗, u∗). (3.10)
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We say that the FJ type S-stationarity holds at (x∗(·), u∗(·)) if (x∗(·), u∗(·)) is W-stationary

with arc p(·) and there exist measurable functions ηg(·), ηh(·), ηG(·), ηH (·) such that for almost

every t ∈ [t0, t1], (3.7)–(3.9) hold and

ηGi (t) ≥ 0, ηHi (t) ≥ 0 ∀i ∈ I00
t (x∗, u∗).

We will refer to them as the W-, C-, M-, and S-stationarities, respectively, if λ0 = 1.

In Definition 3.1, there are two sets of multipliers. The ideal situation is when these two

sets of multipliers are identical almost everywhere. In the case where the multipliers λg(·),

λh(·), λG(·), λH(·) and ηg(·), ηh(·), ηG(·), ηH (·) can be chosen as the same almost everywhere,

(x∗(·), u∗(·)) being C-, M-, S-stationarities becomes that (x∗(·), u∗(·)) is W-stationary with

multipliers satisfying the following extra sign conditions:

λGi (t)λ
H
i (t) ≥ 0 ∀i ∈ I00

t (x∗, u∗) a.e. t ∈ [t0, t1];

λGi (t) > 0, λHi (t) > 0 or λGi (t)λ
H
i (t) = 0 ∀i ∈ I00

t (x∗, u∗) a.e. t ∈ [t0, t1];

λGi (t) ≥ 0, λHi (t) ≥ 0 ∀i ∈ I00
t (x∗, u∗) a.e. t ∈ [t0, t1],

respectively. Although we hope that these two sets of multipliers can be chosen as the same

almost everywhere, the following example shows that it is not always possible.

Example 3.1 Consider the problem

min x(t1)

s.t. ẋ(t) = u(t) a.e. t ∈ [t0, t1],

0 ≤ −u(t) ⊥ x(t)− u2(t) ≥ 0 a.e. t ∈ [t0, t1],

x(t0) ≤ 0,

where x, u : IR → IR. Since x(·) is absolutely continuous and x(t) ≥ 0 for almost every t ∈

[t0, t1], we must have x(t) ≥ 0 for every t ∈ [t0, t1]. Then it is easy to see that (x∗(·), u∗(·)) ≡

(0, 0) is a minimizer of the above problem. Moreover, it is not hard to verify that for the

system Ω := {u : F (u) ∈ C1} with F (u) := (−u, x∗(t)− u2)T and C1 defined as in (1.9),

IR = TΩ(u
∗(t))o ⊆ ∇F (u∗(t))NC1(F (u∗(t))) = IR,

where TΩ(u
∗(t))o stands for the polar of the tangent cone to Ω at u∗(t). It has been shown

in [13, Theorem 3.2] that this condition TΩ(u
∗(t))o ⊆ ∇F (u∗(t))NC1(F (u∗(t))) is a constraint

qualification for M-stationarity at u∗(t). Thus, for almost every t ∈ [t0, t1], u
∗(t) = 0 is

M-stationary to the problem

min
u

−p(t)u s.t. 0 ≤ −u ⊥ x∗(t)− u2 ≥ 0.
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By solving the M-stationarity condition at (x∗(·), u∗(·)), we have

p(t0) ≥ 0, p(t1) = −1, (3.11)

ṗ(t) = −λH(t), p(t) = λG(t) a.e. t ∈ [t0, t1], (3.12)

p(t) = ηG(t), ηG(t) > 0, ηH(t) > 0 or ηG(t)ηH(t) = 0 a.e. t ∈ [t0, t1]. (3.13)

Since p(·) is absolutely continuous, by virtue of (3.11), there must exist an interval [t′, t′′] ⊆

[t0, t1] with t
′ < t′′ such that

p(t) < 0, ṗ(t) < 0 ∀t ∈ [t′, t′′].

This together with (3.12)–(3.13) implies

λG(t) < 0, λH(t) > 0 a.e. t ∈ [t′, t′′],

ηG(t) < 0, ηH (t) = 0 a.e. t ∈ [t′, t′′],

which shows that λH(t) 6= ηH(t) for almost every t ∈ [t′, t′′].

We now show that the FJ type M-stationarity for the OCPEC in Definition 3.1 is necessary

for optimality under certain constraint qualifications. Note that problem (3.6) is an MPEC

with respect to variable u. In the following theorem, we will assume that some MPEC

constraint qualifications for M-stationarity, which are qualifications to derive M-stationarity

for optimality, are satisfied. The reader is referred to [13,23,45,49] and the references within

for MPEC constraint qualifications for M-stationarity.

Theorem 3.2 Let (x∗(·), u∗(·)) be a local minimizer of radius R(·) for the OCPEC and

Assumption 3.1 hold. Suppose that Assumption 2.1 with S(t) defined in (1.11) is also satisfied.

Then the FJ type M-stationarity holds at (x∗(·), u∗(·)) if for almost every t ∈ [t0, t1], one of

the following conditions holds:

(a) The local error bound condition for the system representing S(t) as in (1.11) holds at

(x∗(t), u∗(t)) and an MPEC constraint qualification for M-stationarity holds at u∗(t)

for problem (3.6);

(b) The MPEC linear condition holds for S(t) defined in (1.11), i.e., functions g(t, ·, ·),

h(t, ·, ·), G(t, ·, ·), H(t, ·, ·) are affine in (x, u) and U(t) is a union of finitely many

polyhedral sets;

(c) The MPEC quasi-normality holds at u∗(t) for problem (3.6), i.e., there is no nonzero

multiplier (λ, υ, µ, ν) such that

– 0 ∈ ∇uΨ(t, x∗(t), u∗(t);λ, υ, µ, ν) +NL
U(t)(u

∗(t)),
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– λ ≥ 0, λi = 0 ∀i ∈ I−t (x
∗, u∗), µi = 0 ∀i ∈ I+0

t (x∗, u∗), νi = 0 ∀i ∈ I0+
t (x∗, u∗),

µi > 0, νi > 0 or µiνi = 0 ∀i ∈ I00
t (x∗, u∗),

– there exists a sequence {uk} ⊆ U(t) converging to u∗(t) such that for each k,

λi > 0 =⇒ gi(t, x
∗(t), uk) > 0, υi 6= 0 =⇒ υihi(t, x

∗(t), uk) > 0,

µi 6= 0 =⇒ µiGi(t, x
∗(t), uk) < 0, νi 6= 0 =⇒ νiHi(t, x

∗(t), uk) < 0.

Proof. First we observe that for almost every t ∈ [t0, t1], the local error bound condition

for the system representing S(t) as in (1.11) holds at (x∗(t), u∗(t)) under either the MPEC

linear condition in condition (b) or the MPEC quasi-normality in condition (c). Thus, it

follows from Theorem 3.1 that (x∗(·), u∗(·)) is W-stationary under any one condition. More-

over, conditions (a), (b), and (c) can all imply that for almost every t ∈ [t0, t1], there exist

ηg(t), ηh(t), ηG(t), ηH (t) such that (3.7)–(3.10) hold ( [45, Theorem 2.2] and [23, Theorem

3.3]). By the implicit measurable function theorem (see, e.g., [33, Theorem 14.16]), the

functions ηg(·), ηh(·), ηG(·), ηH (·) can be chosen measurably. The proof is complete.

We next derive the FJ type S-stationarity under the MPEC LICQ. It should be noted

that the MPEC LICQ is generic and hence not a stringent assumption by [36].

Theorem 3.3 Let (x∗(·), u∗(·)) be a local minimizer of radius R(·) for the OCPEC and

Assumption 3.1 hold. Suppose that Assumption 2.1 with S(t) defined in (1.11) is also satisfied.

Assume further that for almost every t ∈ [t0, t1], U(t) = IRm and the functions F (t, ·, ·),

φ(t, ·, ·) are strictly differentiable at (x∗(t), u∗(t)). If for almost every t ∈ [t0, t1], the MPEC

LICQ holds at u∗(t) for problem (3.6), i.e., the family of gradients

{

∇ugi(t, x
∗(t), u∗(t)) : i ∈ I0t (x

∗, u∗)
}

∪ {∇uhi(t, x
∗(t), u∗(t)) : i = 1, . . . , l2}

∪
{

∇uGi(t, x
∗(t), u∗(t)) : i ∈ I0•

t (x∗, u∗)
}

∪
{

∇uHi(t, x
∗(t), u∗(t)) : i ∈ I•0

t (x∗, u∗)
}

where I0•
t (x∗, u∗) := I0+

t (x∗, u∗) ∪ I00
t (x∗, u∗) and I•0

t (x∗, u∗) := I+0
t (x∗, u∗) ∪ I00

t (x∗, u∗),

is linearly independent, then the FJ type S-stationarity holds at (x∗(·), u∗(·)). Moreover, the

multipliers ηg(·), ηh(·), ηG(·), ηH (·) can be taken as equal to λg(·), λh(·), λG(·), λH(·) almost

everywhere. That is, there exist a number λ0 ∈ {0, 1}, an arc p(·), and measurable func-

tions λg(·), λh(·), λG(·), λH (·) such that (x∗(·), u∗(·)) is W-stationary and for almost every

t ∈ [t0, t1], the following extra sign condition holds:

λGi (t) ≥ 0, λHi (t) ≥ 0 ∀i ∈ I00
t (x∗, u∗).

Proof. Under the MPEC LICQ assumption, by Proposition 2.2, it follows that for almost

every t ∈ [t0, t1], the local error bound condition for the system representing S(t) as in (1.11)

holds at (x∗(t), u∗(t)). Thus, it follows from Theorem 3.1 that (x∗(·), u∗(·)) is W-stationary.
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Moreover, for almost every t ∈ [t0, t1], since the MPEC LICQ holds at u∗(t), it then follows

from [35, Theorem 2] that there exist ηg(t), ηh(t), ηG(t), ηH(t) such that (3.7)–(3.9) hold and

ηGi (t) ≥ 0, ηHi (t) ≥ 0 i ∈ I00
t (x∗, u∗).

By the implicit measurable function theorem (see, e.g., [33, Theorem 14.16]), the functions

ηg(·), ηh(·), ηG(·), ηH (·) can be chosen measurably. Thus, the first part of the theorem is

derived. Moreover, by the MPEC-LICQ assumption, it is not hard to see that λg(t) =

ηg(t), λg(t) = ηg(t), λG(t) = ηG(t), λH(t) = ηH(t) for almost every t ∈ [t0, t1]. Therefore, the

second part of the theorem follows immediately. The proof is complete.

For problem (Ps), if S(t) = IRn × U(t) for almost every t ∈ [t0, t1] (which corresponds to

the case of standard optimal control problem without mixed constraints), then the bounded

slope condition (2.4) holds automatically for almost every t ∈ [t0, t1] since in this case, (2.4)

becomes

(x, u) ∈ Sǫ,R∗ (t), β ∈ N P
U(t)(u) =⇒ kS(t)‖β‖ ≥ 0,

which holds trivially if kS(t) ≥ 0. If there exists a closed subset X(t′) ⊆ IRn and x̄∗(t′) ∈

bdX(t′) satisfying S(t′) = X(t′)× IRm and

distbdX(t′)(x
∗(t′)) = ‖x∗(t′)− x̄∗(t′)‖ ≤ ǫ,

then (2.4) at time t′ never hold since there exists 0 6= α ∈ N P
X(t′)(x̄

∗(t′)) by [33, Exercise 6.19].

If the set of such a point t′ ∈ [t0, t1] is not of measure zero, then the bounded slope condition

in Assumption 2.1 does not hold. As a consequence, the bounded slope condition can hardly

hold for the case of the pure state constraint S(t) = X(t) × IRm. Generally speaking, the

bounded slope condition is a strong condition and is also hard to verify. In the rest of this

section, we will investigate sufficient conditions for the bounded slope condition to hold in

our problem setting.

Proposition 3.1 Assume that the local error bound condition for the system representing

S(t) as in (1.11) holds at every (x, u) ∈ Sǫ,R∗ (t) and


















(x, u) ∈ Sǫ,R∗ (t), ζ ∈ NL
U(t)(u),

λ ≥ 0, λi = 0 ∀i ∈ I−t (x, u),

µi = 0 ∀i ∈ I+0
t (x, u), νi = 0 ∀i ∈ I0+

t (x, u),

µi > 0, νi > 0 or µiνi = 0 ∀i ∈ I00
t (x, u),

=⇒ ‖∇xΨ(t, x, u;λ, υ, µ, ν)‖ ≤ kS(t)‖∇uΨ(t, x, u;λ, υ, µ, ν) + ζ‖. (3.14)

Then the bounded slope condition (2.4) holds.

Proof. Let (x, u) ∈ Sǫ,R∗ (t) and (α, β) ∈ NL
S(t)(x, u). Since the local error bound condition

holds at (x, u), it then follows from [22, Proposition 3.4] that

(α, β) ∈

{

∇x,uΨ(t, x, u;λ, υ, µ, ν) :
λ ∈ NL

IR
l1
−

(g(t, x, u)), υ ∈ IRl2

(µ, ν) ∈ NL
Cl(G(t, x, u),H(t, x, u))

}

+ {0} × NL
U(t)(u).
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Then, by Proposition 2.1, there exist λ, υ, µ, ν such that

(α, β) ∈ ∇x,uΨ(t, x, u;λ, υ, µ, ν) + {0} × NL
U(t)(u), λ ≥ 0, λi = 0 ∀i ∈ I−t (x, u),

µi = 0 ∀i ∈ I+0
t (x, u), νi = 0 ∀i ∈ I0+

t (x, u), µi > 0, νi > 0 or µiνi = 0 ∀i ∈ I00
t (x, u).

It then follows that there exists ζ ∈ NL
U(t)(u) such that

α = ∇xΨ(t, x, u;λ, υ, µ, ν), β = ∇uΨ(t, x, u;λ, υ, µ, ν) + ζ.

Thus, by condition (3.14), we have ‖α‖ ≤ kS(t)‖β‖. The proof is complete.

A sufficient condition for condition (3.14) to hold is the following stronger condition that

is similar to the M ǫ,R
∗ condition given in [7]: There exists a measurable function κ(·) such

that for almost every t ∈ [t0, t1],



















(x, u) ∈ Sǫ,R∗ (t), ζ ∈ NL
U(t)(u),

λ ≥ 0, λi = 0 ∀i ∈ I−t (x, u),

µi = 0 ∀i ∈ I+0
t (x, u), νi = 0 ∀i ∈ I0+

t (x, u),

µi > 0, νi > 0 or µiνi = 0 ∀i ∈ I00
t (x, u),

=⇒ ‖(λ, υ, µ, ν)‖ ≤ κ(t)‖∇uΨ(t, x, u;λ, υ, µ, ν) + ζ‖. (3.15)

Assumption 3.2 There exist measurable functions kgx(·), khx(·), k
G
x (·), k

H
x (·) such that for al-

most every t ∈ [t0, t1],

‖g(t, x1, u)− g(t, x2, u)‖ ≤ kgx(t)‖x1 − x2‖ ∀(x1, u), (x2, u) ∈ Sǫ,R∗ (t),

‖h(t, x1, u)− h(t, x2, u)‖ ≤ khx(t)‖x1 − x2‖ ∀(x1, u), (x2, u) ∈ Sǫ,R∗ (t),

‖G(t, x1, u)−G(t, x2, u)‖ ≤ kGx (t)‖x1 − x2‖ ∀(x1, u), (x2, u) ∈ Sǫ,R∗ (t),

‖H(t, x1, u)−H(t, x2, u)‖ ≤ kHx (t)‖x1 − x2‖ ∀(x1, u), (x2, u) ∈ Sǫ,R∗ (t).

Proposition 3.2 Let Assumption 3.2 and condition (3.15) hold. Then the local error bound

condition for the system representing S(t) as in (1.11) holds at every (x, u) ∈ Sǫ,R∗ (t) and the

bounded slope condition (2.4) holds with kS(t) = κ(t)(kgx(t) + khx(t) + kGx (t) + kHx (t)).

Proof. Let (x, u) ∈ Sǫ,R∗ (t). It is not hard to verify that condition (3.15) implies that



















0 ∈ ∇uΨ(t, x, u;λ, υ, µ, ν) +NL
U(t)(u),

λ ≥ 0, λi = 0 ∀i ∈ I−t (x, u),

µi = 0 ∀i ∈ I+0
t (x, u), νi = 0 ∀i ∈ I0+

t (x, u),

µi > 0, νi > 0 or µiνi = 0 ∀i ∈ I00
t (x, u),

=⇒ (λ, υ, µ, ν) = 0.

This indicates that the MPEC quasi-normality holds at (x, u) and then by Proposition 2.2,

the local error bound condition for the system representing S(t) as in (1.11) holds at (x, u).
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In the same way as in [7, Proposition 4.2], we can have that condition (3.14) holds with

kS(t) := κ(t)(kgx(t) + khx(t) + kGx (t) + kHx (t)). Consequently, the bounded slope condition

follows from Proposition 3.1 immediately. The proof is complete.

In general, it is not easy to guarantee the integrability of the measurable function kS(·)

in the bounded slope condition (2.4). We next consider a special case where the mappings

g(·), h(·), G(·),H(·), U(·) are all autonomous (i.e., independent of t). In this case, we will give

some sufficient conditions to ensure that the function kS(·) is a positive constant function

which is clearly integrable. We denote U(t) ≡ U , S(t) ≡ S, S(x) := {u : (x, u) ∈ S}, and

Cǫ,R∗ := cl {(t, x, u) ∈ [t0, t1]× IRn × IRm : (x, u) ∈ Sǫ,R∗ (t)}.

Note that Cǫ,R∗ may be unbounded since u∗(·) may be unbounded on [t0, t1].

Proposition 3.3 Let all the mappings g(·), h(·), G(·),H(·), U(·) be autonomous. Assume

that Cǫ,R∗ is compact for some ǫ > 0 and D∗
S(x, u)(0) = {0} for every (x, u) such that

(t, x, u) ∈ Cǫ,R∗ . Then there exists certain positive constant π such that for every t ∈

[t0, t1], the bounded slope condition (2.4) holds with kS(t) = π. A sufficient condition for

D∗
S(x, u)(0) = {0} to hold is the local error bound condition for the system representing S(t)

as in (1.11) at (x, u) and the implication



















0 ∈ ∇uΨ(t, x, u;λ, υ, µ, ν) +NL
U (u),

λ ≥ 0, λi = 0 ∀i ∈ I−t (x, u),

µi = 0 ∀i ∈ I+0
t (x, u), νi = 0 ∀i ∈ I0+

t (x, u),

µi > 0, νi > 0 or µiνi = 0 ∀i ∈ I00
t (x, u),

=⇒ ∇xΨ(t, x, u;λ, υ, µ, ν) = 0. (3.16)

Proof. We prove the first part of this result by contradiction. Assume to the contrary

that for every k, there exist tk ∈ [t0, t1], (x
k, uk) ∈ Sǫ,R∗ (tk), and (αk, βk) ∈ NL

S (x
k, uk) such

that ‖αk‖ > k‖βk‖. Without loss of generality, we assume that ‖αk‖ = 1 and αk → α with

‖α‖ = 1. Since ‖αk‖ > k‖βk‖ ∀k, it follows that βk → 0. Since Cǫ,R∗ is compact, we may

assume that (tk, x
k, uk) → (t, x, u) ∈ Cǫ,R∗ . Since the limiting normal cone mapping NL

S (·)

is closed, we can have (α, 0) ∈ NL
S (x, u) that means α ∈ D∗

S(x, u)(0) by the definition of

coderivative. The assumption D∗
S(x, u)(0) = {0} gives a contradiction with the relation

‖α‖ = 1. The proof for the first part of this theorem is complete.

Next we show the second part of this theorem. For any α ∈ D∗
S(x, u)(0), by the definition

of coderivative, we have (α, 0) ∈ NL
S (x, u). Then, as in the proof of Proposition 3.1, there

exist λ, υ, µ, ν such that

(α, 0) ∈ ∇x,uΨ(t, x, u;λ, υ, µ, ν) + {0} ×NL
U (u), λ ≥ 0, λi = 0 ∀i ∈ I−t (x, u),

µi = 0 ∀i ∈ I+0
t (x, u), νi = 0 ∀i ∈ I0+

t (x, u), µi > 0, νi > 0 or µiνi = 0 ∀i ∈ I00
t (x, u).
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It then follows that

α = ∇xΨ(t, x, u;λ, υ, µ, ν), 0 ∈ ∇uΨ(t, x, u;λ, υ, µ, ν) +NL
U (u),

which together with condition (3.16) implies that α = 0. The proof for the second part of

the theorem is complete.

The following condition that is stronger than condition (3.16) is similar to the so-called

MFC proposed in [7]:



















0 ∈ ∇uΨ(t, x, u;λ, υ, µ, ν) +NL
U (u),

λ ≥ 0, λi = 0 ∀i ∈ I−t (x, u),

µi = 0 ∀i ∈ I+0
t (x, u), νi = 0 ∀i ∈ I0+

t (x, u),

µi > 0, νi > 0 or µiνi = 0 ∀i ∈ I00
t (x, u),

=⇒ (λ, υ, µ, ν) = 0, (3.17)

which clearly implies the MPEC quasi-normality defined in Theorem (3.2)(c) and hence the

local error bound condition for the system representing S(t) as in (1.11) holds at (x, u) by

Proposition 2.2. Thus, by Proposition 3.3, we can have the following result immediately.

Corollary 3.1 Let all the mappings g(·), h(·), G(·),H(·), U (·) be autonomous. Assume that

Cǫ,R∗ is compact for some ǫ > 0 and condition (3.17) holds for every (x, u) such that (t, x, u) ∈

Cǫ,R∗ . Then there exists certain positive constant π such that for every t ∈ [t0, t1], the bounded

slope condition (2.4) holds with kS(t) = π.

In Proposition 3.3 and Corollary 3.1, conditions (3.16) and (3.17) are both required to

hold over some neighborhood of the optimal process (x∗(·), u∗(·)). In order to weaken this

requirement, Clarke and De Pinho [7, Definition 4.7] introduced the following concept.

Definition 3.2 We say that (t, x∗(t), u) is an admissible cluster point of (x∗(·), u∗(·)) if there

exist a sequence {tk} ⊆ [t0, t1] converging to t and corresponding points (xk, uk) ∈ S(tk) such

that lim
k→∞

xk → x∗(t) and lim
k→∞

uk = lim
k→∞

u∗(tk) = u.

Based on Definition 3.2, we have the following sufficient condition for the bounded slope

condition to hold with certain positive constant.

Proposition 3.4 Let R(·) ≡ r > 0 be a positive constant function and all the mappings g(·),

h(·), G(·), H(·), U(·) autonomous. Assume that for all admissible cluster points (t, x∗(t), u) of

(x∗(·), u∗(·)), condition (3.16) and the local error bound condition for the system representing

S(t) as in (1.11) hold at (x∗(t), u) or the stronger condition (3.17) holds at (x∗(t), u). Then

for every t ∈ [t0, t1], the bounded slope condition (2.4) holds with some radius η ∈ (0, r) and

kS(t) = π for some constant π > 0.
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Proof. Mimicking the proof of Proposition 3.3, we can show that there exist ǫ1 ∈ (0, ǫ),

η ∈ (0, r), and π > 0 such that for every t ∈ [t0, t1], the following bounded slope condition

holds:

(x, u) ∈ Sǫ1,η∗ (t), (α, β) ∈ N P
S (x, u) =⇒ ‖α‖ ≤ π‖β‖.

The proof is complete.

Although all the mappings g(·), h(·), G(·),H(·), U(·) are assumed to be autonomous in

Propositions 3.3–3.4 and Corollary 3.1, their results can be applied to the non-autonomous

case if U(t) ≡ U is autonomous and we treat the time variable t as a state variable. We now

illustrate how this can be done. Since

σ(t) = t ∀t ∈ [t0, t1] ⇐⇒ σ̇(t) = 1 ∀t ∈ [t0, t1], σ(t0) = t0, (3.18)

it is clear that the OCPEC is equivalent to the following optimal control problem:

min J(x(·), u(·)) :=

∫ t1

t0

F (σ(t), x(t), u(t))dt + f(x(t0), x(t1)),

s.t. ẋ(t) = φ(σ(t), x(t), u(t)), σ̇(t) = 1 a.e. t ∈ [t0, t1],

g(σ(t), x(t), u(t)) ≤ 0, h(σ(t), x(t), u(t)) = 0 a.e. t ∈ [t0, t1],

0 ≤ G(σ(t), x(t), u(t)) ⊥ H(σ(t), x(t), u(t)) ≥ 0 a.e. t ∈ [t0, t1],

u(t) ∈ U a.e. t ∈ [t0, t1],

σ(t0) = t0, (x(t0), x(t1)) ∈ E.

It is easy to see that (σ(·), x∗(·), u∗(·)) is a local minimizer of radius R(·) for the above

problem if (x∗(·), u∗(·)) is a local minimizer of radius R(·) for the OCPEC and σ(·) is defined

in (3.18). Thus, the results in Propositions 3.3–3.4 and Corollary 3.1 can be applied to the

above problem to get the desired result.

We close this section by noting the equivalence of the S-stationarity for the OCPEC and

the classical necessary optimality condition for the OCPEC treated as an optimal control

problem with mixed inequality constraints (1.8). The proof for the following result is similar

to [12, Proposition 4.1] and we omit the proof here.

Proposition 3.5 (x∗(·), u∗(·)) is an FJ type stationary solution of the OCPEC treated as an

optimal control problem with mixed inequality constraints (1.8) if and only if (x∗(·), u∗(·)) is

an FJ type S-stationary solution of the OCPEC for which those two sets of multipliers can

be chosen as the same.

4 A simple example

In this section, we consider a simple class of the OCPEC in which the “best” control needs to

be chosen from the DCP (1.3) so as to make the final state x(t1) reach some prescribed target
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T from a given initial state x(t0). Mathematically, the problem considered in this section is

min 1
2‖x(t1)− T ‖2

ẋ(t) = φ(t, x(t), u(t)) a.e. t ∈ [t0, t1],

0 ≤ u(t) ⊥ Υ(t, x(t), u(t)) ≥ 0 a.e. t ∈ [t0, t1],

x(t0) ∈ E0,

(4.1)

where E0 ⊆ IRn is a closed subset. In this case, S(t) := {(x, u) : (u,Υ(t, x, u)) ∈ Cm} and

Sǫ,R∗ (t) is defined as in (2.3). For simplicity, we assume that the functions φ(·),Υ(·) are L

measurable in variable t and strictly differentiable in (x, u). Moreover, there exist measurable

functions kφx(·), k
φ
u(·), kΥx (·) such that for almost every t ∈ [t0, t1],

‖Υ(t, x1, u)−Υ(t, x2, u)‖ ≤ kΥx (t)‖x
1 − x2‖ ∀(x1, u), (x2, u) ∈ Sǫ,R∗ (t),

‖φ(t, x1, u1)− φ(t, x2, u2)‖ ≤ kφx(t)‖x1 − x2‖+ kφu(t)‖u1 − u2‖ ∀(x1, u1), (x2, u2) ∈ Sǫ,R∗ (t).

In the following, we apply the derived results in Section 3 to problem (4.1). The following

result follows immediately from Proposition 3.2 and Theorems 3.1–3.3. Note that since the

final point x(t1) in problem (4.1) is free, λ0 can be chosen as 1 by Remark 2.1. Moreover,

kS(t) = κ(t)kΥx (t) a.e. t ∈ [t0, t1] in this case, and since (x∗(·), u∗(·)) is feasible to problem

(4.1), we have

u∗(t) ∈ {u : (u,Υ(t, x∗(t), u)) ∈ Cm} a.e. t ∈ [t0, t1].

Theorem 4.1 Let (x∗(·), u∗(·)) be a local minimizer of radius R(·) for problem (4.1). Assume

that there exists a measurable function κ(·) such that for almost every t ∈ [t0, t1],











(x, u) ∈ Sǫ,R∗ (t),

µi = 0 ∀i ∈ I+0
t (x, u), νi = 0 ∀i ∈ I0+

t (x, u),

µi > 0, νi > 0 or µiνi = 0 ∀i ∈ I00
t (x, u),

=⇒ ‖(µ, ν)‖ ≤ κ(t)‖µ +∇uΥ(t, x, u)ν‖.

Assume also that the functions kφx(·), κ(·)kΥx (·)k
φ
u(·) are integrable and there exists a positive

number η > 0 such that R(t) ≥ ηkS(t) a.e. t ∈ [t0, t1]. Then (x∗(·), u∗(·)) is a W-stationary

point, i.e., there exist an arc p(·) and measurable functions λG(·), λH(·) such that for almost

every t ∈ [t0, t1],

1) p(t0) ∈ NL
E0
(x∗(t0)), −p(t1) = x∗(t1)− T ,

2) (ṗ(t), 0) = −∇x,uφ(t, x
∗(t), u∗(t))p(t)− (0, λG(t))−∇x,uΥ(t, x∗(t), u∗(t))λH(t),

λGi (t) = 0 ∀i ∈ I+0
t (x∗, u∗), λHi (t) = 0 ∀i ∈ I0+

t (x∗, u∗),

3) (x∗(t), u) ∈ S(t), ‖u − u∗(t))‖ < R(t) ⇒ 〈p(t), φ(t, x∗(t), u)〉 ≤ 〈p(t), φ(t, x∗(t), u∗(t))〉.

If, in addition, the MPEC quasi-normality holds at u∗(t) ∈ {u : (u,Υ(t, x∗(t), u)) ∈ Cm}

for almost every t ∈ [t0, t1], then (x∗(·), u∗(·)) is an M-stationary point, i.e., all the above
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results 1), 2) and 3) hold and there exist measurable functions ηG(·), ηH (·) such that

∇uφ(t, x
∗(t), u∗(t))p(t) + ηG(t) +∇uΥ(t, x∗(t), u∗(t))ηH (t) = 0,

ηGi (t) = 0 ∀i ∈ I+0
t (x∗, u∗), ηHi (t) = 0 ∀i ∈ I0+

t (x∗, u∗),

ηGi (t) > 0, ηHi (t) > 0 or ηGi (t)η
H
i (t) = 0 ∀i ∈ I00

t (x∗, u∗).

If, in addition, the MPEC-LICQ holds at u∗(t) ∈ {u : (u,Υ(t, x∗(t), u)) ∈ Cm} for almost

every t ∈ [t0, t1], then (x∗(·), u∗(·)) is an S-stationary point, that is, for almost every t ∈

[t0, t1], all the above results 1), 2) and 3) hold and

λGi (t) ≥ 0, λHi (t) ≥ 0 ∀i ∈ I00
t (x∗, u∗).

In the rest of this section, we focus on a proper specialization of the DCP (1.3) where

φ(t, x, u) := Ax+Bu+ c, Υ(t, x, u) := Cx+Du+ q

for some matrices A,B,C,D and vectors c, q of appropriate sizes. Note that in this case, the

functions φ(·),Υ(·) are both autonomous. Then problem (4.1) reduces to

min 1
2‖x(t1)− T ‖2

ẋ(t) = Ax(t) +Bu(t) + c a.e. t ∈ [t0, t1],

0 ≤ u(t) ⊥ Cx(t) +Du(t) + q ≥ 0 a.e. t ∈ [t0, t1],

x(t0) ∈ E0.

(4.2)

In this case, let R(·) ≡ r > 0 be a positive constant function and set

S(t) ≡ S := {(x, u) : (u,Cx+Du+ q) ∈ Cm}, (4.3)

Sǫ,r∗ (t) :=
{

(x, u) ∈ S : ‖x− x∗(t)‖ ≤ ǫ, ‖u− u∗(t)‖ ≤ r
}

,

Cǫ,r∗ := cl {(t, x, u) ∈ [t0, t1]× IRn × IRm : (x, u) ∈ Sǫ,r∗ (t)}. (4.4)

The following result follows from Proposition 3.3 and Theorems 3.2–3.3 immediately. Note

that the local error bound condition for the system representing S(t) as in (4.3) holds since

the functions φ(t, ·, ·),Υ(t, ·, ·) are affine in (x, u), and when u∗(·) is bounded over [t0, t1], the

compactness of Cǫ,r∗ is superfluous. Moreover, since (x∗(·), u∗(·)) is feasible to problem (4.2),

we have

u∗(t) ∈ {u : (u,Cx∗(t) +Du+ q) ∈ Cm} a.e. t ∈ [t0, t1].

Theorem 4.2 Let (x∗(·), u∗(·)) be a local minimizer of positive constant radius R(·) ≡ r > 0

for problem (4.2) and Cǫ,r∗ defined in (4.4) be compact. Assume that for all (t, x, u) ∈ Cǫ,r∗ ,










µ+DT ν = 0,

µi = 0 ∀i ∈ I+0
t (x, u), νi = 0 ∀i ∈ I0+

t (x, u),

µi > 0, νi > 0 or µiνi = 0 ∀i ∈ I00
t (x, u),

=⇒ C⊤µ = 0.

Then (x∗(·), u∗(·)) is an M-stationary point, i.e., there exist an arc p(·) and measurable

functions λG(·), λH(·) and ηG(·), ηH(·) such that for almost every t ∈ [t0, t1],
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1) p(t0) ∈ NL
E0
(x∗(t0)), −p(t1) = x∗(t1)− T ,

2) −A⊤p(t)− C⊤λH(t) = ṗ(t), B⊤p(t) + λG(t) +D⊤λH(t) = 0,

λGi (t) = 0 ∀i ∈ I+0
t (x∗, u∗), λHi (t) = 0 ∀i ∈ I0+

t (x∗, u∗),

3) 〈B⊤p(t), u− u∗(t)〉 ≤ 0 ∀u : (x∗(t), u) ∈ S, ‖u − u∗(t))‖ < r,

4) B⊤p(t) + ηG(t) +D⊤ηH(t) = 0,

ηGi (t) = 0 ∀i ∈ I+0
t (x∗, u∗), ηHi (t) = 0 ∀i ∈ I0+

t (x∗, u∗),

ηGi (t) > 0, ηHi (t) > 0 or ηGi (t)η
H
i (t) = 0 ∀i ∈ I00

t (x∗, u∗).

If, in addition, the MPEC-LICQ holds at u∗(t) ∈ {u : (u,Cx∗(t) + Du + q) ∈ Cm} for

almost every t ∈ [t0, t1], then (x∗(·), u∗(·)) is an S-stationary point, that is, for almost every

t ∈ [t0, t1], all the above results 1), 2) and 3) hold and

λGi (t) ≥ 0, λHi (t) ≥ 0 ∀i ∈ I00
t (x∗, u∗).
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