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GLOBAL WEAK SOLUTIONS TO COMPRESSIBLE QUANTUM
NAVIER-STOKES EQUATIONS WITH DAMPING

ALEXIS F. VASSEUR AND CHENG YU

ABSTRACT. The global-in-time existence of weak solutions to the barotropic compress-
ible quantum Navier-Stokes equations with damping is proved for large data in three
dimensional space. The model consists of the compressible Navier-Stokes equations with
degenerate viscosity, and a nonlinear third-order differential operator, with the quantum
Bohm potential, and the damping terms. The global weak solutions to such system is
shown by using the Faedo-Galerkin method and the compactness argument. This system
is also a very important approximation to the compressible Navier-Stokes equations. It
will help us to prove the existence of global weak solutions to the compressible Navier-
Stokes equations with degenerate viscosity in three dimensional space.

1. INTRODUCTION

In this paper, we are interested in the existence of global weak solutions to the barotropic
compressible quantum Navier-Stokes equations with damping terms

pt + div(pu) =0,

A 1.1
pu); + div(pu @ u) + Vp? — div(pDu) = —rgu — r1plul?u + kpV —\/ﬁ , (1)
N

with initial data as follows

p(07x) = ,00($), (,011)(0,11)) = mo(l‘) in €2, (12)
where p is density, v > 1, u®u is the matrix with components u;u;, Du = % (Vu + VuT)
is the sysmetic part of the velocity gradient, and Q = T is the d—dimensional torus, here
d =2 or 3. The expression % is called as Bohm potential which can be interpreted as

a quantum potential. The quantum Navier-Stokes equations have a lot of applications, in
particular, quantum semiconductors [5], weakly interacting Bose gases [9] and quantum
trajectories of Bohmian mechanics [I5]. Recently some dissipative quantum fluid models
have been derived by Jiingel, see [10]. The damping terms

—rou — 7“1,0|u|2u

is motivated by the work of [I]. It allows us to recover the weak solutions to (LIl by
passing to the limits from the suitable approximation. The most importance is that the
existence of solutions for the system (I.I]) studied in the current paper is crucial to show
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the existence of weak solutions for the Navier Stokes equations with degenerate viscosity,
see [14]. Models with these drag terms are also common in the literature, see [1I 2], 4].

When rg = r; = £ = 0 in (L.IJ), the system reduces to the compressible Navier-Stokes
equations with degenerate viscosity u(p) = vp. The existence of global weak solutions
of such system has been a long standing open problem. In the case v = 2 in 2D, this
corresponds to the shallow water equations, where p(t,x) stands for the height of the
water at position z, and time ¢, and u(¢, z) is the 2D velocity at the same position, and
same time. For the constant viscosity case, Lions in [I2] established the global existence
of renormalized solutions for v > 2, and Feireisl-Novotny-Petzeltova [6] and Feireisl [7]
extended the existence results to v > %, and even to Navier-Stokes-Fourier system. The
first tool of handling the degenerate viscosity is due to Bresch, Desjardins and Lin, see
[3], where the authors deduced a new mathematical entropy to show the structure of the
diffusion terms providing some regularity for the density. It was later extended for the case
with an additional quadratic friction term 7p|u|u, see Bresch-Desjardins [I], 2]. Meanwhile,
Mellet-Vasseur [13] deduced an estimate for proving the stability of smooth solutions for
the compressible Navier-Stokes equations.

When ro = r; = 0 in (LI)), the system reduces to the so-called quantum Navier-Stokes
equations. Up to our knowledge, there are no existence theorem of weak solutions for large
data in any dimensional space. Compared to the degenerate compressible Navier-Stokes
equations, we need to overcome the additional mathematical difficulty from the strongly
nonlinear third- order differential operator. We have to mention that the Mellet-Vasseur
type inequality does not hold for the quantum Navier-Stokes equations due to the quantum
potential. Thus, there are short of the suitable a priori estimates for proving the weak
stability. Jiingel [I1] used the test function of the form pp to handle the convection term,
thus he proved the existence of such a particular weak solution. In a very recent preprint,
Gisclon-Violet [8] proved the existence of weak solutions to the quantum Navier-Stokes
equations with singular pressure, where the authors adopt some arguments in [16] to make
use of the cold pressure for compactness. Our methodology turns out to be very close to
their paper. Actually, the authors of [8] mention that the existence can be obtained
replacing the cold pressure by a drag force.

The existence of weak solutions to (III), with the uniform bounds of Theorem [L1] is
crucial for the existence of weak solutions to the compressible Navier-Stokes equations
with degenerate viscosity in 3D, see [14]. In that work, we started from the weak solutions
to (L), that is, the main result of this current paper. Unfortunately, the version with
the cold pressure proved in [§], is not suitable for the result in [I4]. On the approximation

in [14], we need the terms 71p|u/?u and Hp(%) for proving a key lemma. In particular,
inequality (L.G) is crucial to prove the existence of weak solutions to the compressible
Navier-Stokes equations in 3D. This estimate is from the term ﬁpV(AT‘f).

We can deduce the following energy inequality for smooth solutions of (I.1I)

T T T
E(t)—l—/ /,0|Du|2d:17dt+ro/ /|u|2d$dt—|—7‘1/ /p|u|4dxdt < Ey, (1.3)
0 Q 0 Q 0 Q
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where
1 9 I, K 9
B(t) = Blp,w)(t) = | (elul+ —p" + 519yl ) da,
0 y—1 2
and
1 1 9
Ey = E(p,u)(0) = . Po\ uo|* + ,Y—Po —\V\/ ol | da.

However, we should point out that the above a priori estimate are not enough to show
the stability of the solutions of (II), in particular, for the compactness of p?. we have
the following Bresch-Desjardins entropy (see [Il, B]) for providing more regularity of the
density

/( p|u+Vlnp|2+ﬁ+—|V\/_| —rologp> dm+/ /|v,o 2| da dt
/ /,0|Vu VTu|2d:17dt+/{/ /p|V210gp|2dxdt (1.4)
/Q<p0|u0| + |V/pol? + 7— |V\/—|2—Tolog ,00> dx + C,

where C' is bounded by the initial energy, log_ g = log min(g, 1).
Thus, the initial data should be given in such a way

po € L(Q), po >0, Vipge L*(Q), —log_pye L'(),

\mo! (1.5)

my € L'(Q), mg=0 if py=0, e LY(Q).

We define the weak solution (p,u) to the initial value problem (L)) in the following
sense: for any t € [0, 7],

e (L2) holds in D'(92),
e (L3) and (T4) hold for almost every t € [0,T],
e (ILI) holds in D'((0,T) x 2)) and the following is satisfied

p € L=(0,T; L7(Q)), vpu € L¥(0,T; L*(92)),
Vp € L®(0,T; L2(),  Vpz € L*(0,T; L*(Q)),
VpDu € L*(0,T; L)),  /pVu e L*(0,T; L*(Q)),
piu € L0, T; L*(Q)), uc L*(0,T; L*(Q)),
VoIV log p| € L*(0,T; L*(Q2)).

The following is our main result.

Theorem 1.1. If the initial data satisfy (L5), there exists a weak solution (p,u) to (LI])-
C2) for any v > 1, any T > 0, in particular, the weak solution (p,u) satisfies energy
inequality (L3]), BD-entropy (L)) and the following inequality:

1 1 1
w2 |lVpll 20,1 m20)) + K41V e Lao,rn0 ) < Cs (1.6)
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where C' only depends on the initial data. Moreover, the weak solution (p,u) has the
following properties

3
pu € C([0, T L2, (),  (Vp)r € L*((0,T) x Q); (1.7)
If we use (pw,ux) to denote the weak solution for k > 0, then
VPrUs — y/pu strongly in L*((0,T) x Q), as k — 0, (1.8)

where (p,u) in (L8) is a weak solution to (LI)-(L2) with k = 0. We remark the metric
3
space C([0,T); L2 .. () of function f:[0,T] — L7(2) which are continuous with respect

weak

to the weak topology.

Remark 1.1. We will use (LO)- (L7) in [14] to prove the weak solutions to (LIl with
ro =11 = k = 0. In fact, inequality (I.6)) is very crucial to prove a key lemma in [14].

Remark 1.2. The existence result contains the case with x = 0, which can be obtained as
the limit when x > 0 goes to 0 in (1), by standard compactness analysis.

Remark 1.3. The weak formulation reads as

T T
/pu-¢dxy§§0T—/ /pm/ztdxdt—/ /pu®u:v¢da;dt
Q 0 Q 0 Q
T T
—/ /p’ydivﬂ)da:dt—/ /pDu:V?[)dxdt
0 Q 0 Q

T T T
:—ro/ /ui/)d:ndt—rl/ /p|u|2u1[)dxdt—2/£/ /A\/ﬁv\/ﬁﬁ dx dt
0 Q 0 Q 0 Q
T
—H/ /A\//_)\//_)diw/}dxdt.
0 Q

for any test function 2.

(1.9)

2. FAEDO-GALERKIN APPROXIMATION

In this section, we construct the solutions to the approximation scheme by Faedo-
Galerkin method. Motivated by the work of Feireisl-Novotny-Petzeltova [6] and Feireisl
[7], we proceed similarly as in Jiingel [11]. We introduce a finite dimensional space Xy =
span{ey, e, ....,en }, where N € N, each e; be an orthonormal basic of L?(£2) which is also
an orthogonal basis of H?(£2). We notice that u € C°([0,T]; Xy) is given by

N
u(t7$) = Z)‘Z(t)ez($)7 (t7$) € [07T] X Qa
i=1

for some functions \;(t), and the norm of u in C°([0,7]; Xn) can be written as
N
lallcoqo,ryx,) = sup_ Y [Ai(t)]-
([0,7]:X) refoT] ;
And hence, u can be bounded in C°([0,T]; C¥(2)) for any k > 0, thus

[ull oo, mscr@)) < CR)ullcogo,r);z2@))-
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For any given u € C%([0,T]; Xn), by the classical theory of parabolic equation, there exists
a classical solution p(t,z) € C1([0,T]; C3(Q)) to the following approximated system

pr +div(pu) = eAp, p(0,z) = po(x) in (0,7) x (2.1)
with the initial data
p(0.2) = po(x) > v >0, and po(z) € C=(), (2.2)
where v > 0 is a constant.

We should remark that this solution p(t, ) satisfies the following inequality

inf po(a) exp™ o IR < () < sup poe) explt el (0.
for all (¢t,z) in (0,7) x Q. By (22 and (23]), there exists a constant 6y > 0 such that
0< 6y <p(tzx)< 9% for (t,x) € (0,T) x Q. (2.4)
Thus, we can introduce a linear continuous operator S :  C%([0, T]; Xn) — C°([0, T]; C*¥(2))
by S(u) = p, and
[S(a1) — S(u2)llcoqo,r;cr)) < CNV, K)|[ur — vzllcoqo,r;22(0) (2.5)

for any k > 1.
The Faedo-Galerkin approximation for the weak formulation of the momentum balance
is as follows

/pu( gpda:—/mocpdx+u/ /Au Agpda:dt—/ /pu®u) Vedzdt
/ /2pDu wd:cdt—/ / “Ywd:cdwrn/ / OV dzdt
+€/ /Vp'Vugpd:Edt:—rg/ /ugodxdt—rl/ /p|u|2ug0d:17dt
o Ja 0o Jo o Ja

T T T
— 25/ / A/pV/py da dt — H/ / Ay/py/pdivey d dt + 5/ / pV A ppdx dt,
0 Q 0 Q 0 Q
(2.6)
for any test function ¢ € Xy. The extra terms nVp~10 and §pVA?p are necessary to keep
the density bounded, and bounded away from zero for all time. This enables us to take
Ve as a test function to derive the Bresch-Desjardins entropy.

To solve (2.6]), we follow the same arguments as in [6] [7, [11] and introduce the following
operators, given the density function p(t,z) € L'(Q) with p > p > 0, here we choose
p = 0. We define

Mp(t), ] : Xy — Xy, <Mplu,w >= / pu-wdz, foru,we Xy.
Q

We can show that 9[p] is invertible

19 ()l ixs, ) < 277
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where L(X3;, Xn) is the set of all bounded linear mappings from X3 to Xy. It is Lipschitz
continuous in the following sense

19 (p1) — Em_1(%’2)||L(X,*V,XN) < C(N,p)llpr = pallLr(q) (2.7)
for any p; and p2 from the following set
N, ={pc L' (Q)] inf p > v >0}
jAS]
For more details, we refer the readers to [0 [7, [11].

We are looking for u,, € C(]0,T]; X,,) solution of the following nonlinear integral equa-
tion

T
v (t) = M (S(un)) (1) (m[po]<uo>+ / m<s<uN>,uN><s>ds), 2.8)
where

N(S(uy),un) = —div(puy @ uy) + div(pDuy) + pA?uy —eVp - Vuy +nVp 10 — vp?

A
—rouy — rlp\uN]2uN + kpV (%) + 8pVA?)p,

p = S (U_ N)-

Thanks to ([2.5]) and (2.7)), we can apply a fixed point argument to solve the nonlinear
equation ([2.8)) on a short time interval [0,7*] for T* < T, in the space C°([0,T*]; Xn).
Thus, there exists a local-in-time solution (py,uy) to @I), 238). Observe that L*—
norm and C?—norm are equivalent on Xy.

Differentiating (2.6) with respect to time ¢ and taking ¢ = upy, we have the following
energy balance

d
BN, un) +M/ |AuN|2dJE+/pN|DuN| d$+55/ |A°pN [ da

+E/ \fovlzda:—kan/ IVpr'|? dx—i—ro/ luy|? da:—i—rl/pN\uN]‘lda: (2.9)
Q Q Q Q
+/€a/pN\V210gpN]2dx:O,
Q
on [0, T*], where
1 _
E(px,uy) = / <§pN|uN|2+,Y”—N+ 5N+ SIV VNI + |VA4pN|2> da
Q
and
_ 1 2 Pg n —10 2 4 A4 pl2
EO(ION’uN) = /00|u0| + + Po |V\/_| |v ,0(]| dx
Here we used the identity
A PN 2
20NV (——) =div (pnyV~(log pn
(J5m) = div (pxV*(log )

to yield

A\/pN / <A\//0N> 1/ 2 2
Apydr = — Vo -V dr = = V<lo dx.
/Q N PN PV log o NS 5 QpN| g PN |
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Energy equality (2.9) yields

T*
/ |Aupy |32 dt < Eg(pn,un) < . (2.10)
0
Due to dimXy < oo and (2.3]), there exists a constant 6y > 0 such that

1
0< 90 < pN(t,a:) < 9_ (2.11)
0

for all t € (0,7*). However, this 6y depends on N and it is the same to 6y in (2.4]). Energy
equality (2.9]) gives us
T*
sup / pn|un|? dz < Eo(pn,un) < oo,
te(0,7+) J0

and

T*
/ pN\]D)uN\2 dx dt < Eo(pn,un) < 00,
0

which, together with (2.I0)), (2.11), implies

sup )(IluNHLw +[Vay|ze + [Auy|[z=) < C(Eo(pn, un), N), (2.12)
0e(0,T*

where we used a fact that the equivalence of L? and L on Xy. By (Z3), 7)), (ZII)
and (2.I2), repeating our above arguments many times, we can extend 7™ to 7. Thus

there exists a solution (pn,uy) to (1)), [2.8) for any T' > 0.
Here we need to state the following lemma due to Jiingel [11]:

Lemma 2.1. For any smooth positive function p(x), we have

1
[ oivtiogpP do= 2 [ 92 y5P do
Q 7 Ja
and

/p[VQIng]2dx> 1/ \Vp4]4da;

Proof. The above inequality of Lemma is firstly proved by Jiingel [I1]. Here, we give a
quick proof.

We notice vy -
p p
VB VRlog b = Vb V(L) = V2 fp - —EVE (2.13)
Vi NG
thus
\% \%
l/rﬂV2bgv$Pdw=:/\V2¢5de+i/\2Vpiﬁdx-2/“v2¢5._1@E1_y@7
Q Q Q Q VP

= A+B-1,

For I, we control it as follows

1_g/v2 ( ®v¢j

(YR o [ VYRRV
= %L ﬂiAl&ﬁd 2AVV@ ¢
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Hence:
\V4 2
I= —2/ MAlog Vpdr < 2V3BD,
o VP
where D = [, p|V?log \/p|* dz, and hence

1
A+B:D+I§ﬂ+®D+§R

and thus,
1A + 1B <D
7 8 —
So we proved this lemma. O

By (29]), we have
E(pn,un) < Eo(pn, un),
this gives us
pN | Los 0,759 (02)) < C(Eo(pn,un),d),
this, together with (2.IT]), gives us that the density p(t,z) is a positive smooth function
for all (t,z). We also notice that

T
/15/ / pn|V21og py|? dz dt < Eo(py,un) < oo
0 JQ

By Lemma 2.1] we have the following uniform estimate:

1 1 1
(ke)2[lvVen L2082 @) + (k) TV oyl Laco,rsze0)) < C, (2.14)

where the constant C' > 0 is independent of N.
To conclude this part, we have the following lemma on the approximate solutions

(pn,un):

Proposition 2.1. Let (py,uy) be the solution of ([2.1)), 28) on (0,T) x Q constructed
above, then we have the following energy inequality

sup E(pn,un) —|—,u/ /|AuN|2d$dt+/ /pN|DuN|2d$dt—|—s5/ /|A5pN|2d:Edt
t€(0,T)

—I-s/ /|V,0%V|2d:17dt—|—677/ /|VpN |2d$dt—|—7‘0/ /|uN|2d:17dt
0

T
+7‘1/ /PN’UN’A‘dl’dtJrHE/ /PN’V210gPN’2dxdt§EO(PN711N)7
o Jo o Jo
(2.15)
where
1 _
Blowoux) = [ (Gowhan?+ L5 4 2Ly 4 29l + SV A ) do
Q

Moreover, we have the following uniform estimate:

1 1 1
(ke)2 VPNl 20,1 m2(0)) + (Ke) IV pxc a0, 20(0)) < C, (2.16)
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where the constant C > 0 is independent of N.
In particular, we have the following estimates

VoNuy € L=(0,T; L*(Q)), /pyDuy € L2((0,T) x Q), /pAuy € L*((0,T) x Q), (2.17)
VedAPpy € L*((0,T) x Q),Vopx € L2(0,T; H(Q)), Vky/px € L0, T; H' (),

(2.18)

Vp]%\, € L*((0,T) x Q), px' € L=(0,T; L'°(Q)), vVenVpy® € L*((0,T) x Q),  (2.19)

uy € L2((0,T) x Q), phuy € L*(0,T) x Q). (2.20)

Based on above estimates, we have the following estimates uniform on N:

Lemma 2.2. The following estimates hold for any fized positive constants €, u, n and §:
I(VpN)tll L2 (o,m)x0) + VPN L2 0,7;12(0)) < K,

[ (on)ell2(0,myx) + Nl L2050 @) < K, (221)
[(pnvun)ill20.7;m-2@) + levun|zz0r)x0) < K, (2.22)

V(pyuy) is uniformly bounded in L*(0,T; L%(Q)) + L*(0,T; L%(Q)) (2.23)
o3 0wy < K (2.24)

11,5 0zyxen < K (2.25)

where K is independent of N, depends on e, u, n and 9.

Proof. By (2Z1G]), we have
Ivenllz201;m52@) < C.
We notice that

(o)t = —pndivuy — Vpy - uy

101 1
= —(4Vpy)(pxyun)(pX) — Venypndivany,
which gives us

1 1 1
[(on)ell 20,y <) < 4V oN s,y <o) lenunlago,r) <o) oAl L= (0,1)x )
+ IVonll L 0.1y lVeNVun | 22 0.1y <)

thanks to (2.I7)-(2.20) and Sobelov inequality.
Meanwhile, we have

2(y/pN)e = —v/pndivuy — 2V /pN - uy

11
= —y/pndivuy — 8Vpypyuy,
which yields (,/pn)¢ is bounded in L2((0,T) x ).
Here we claim that (pyuy); is bounded in L?(0,T; H=%(Q)). By

(pyupn)e = —div(pyuy @ uy) — Vp}y\, + an]_VlO + ,uAZuN + div(pyDuy) — rouy

ApN
VPN

— ripy[unPuy +eVpy - Vuy + kpyV < > +pn VA py,

we can show the claim by the above estimates.
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And , .
lonunlz2(0.mx) < lon o1 L@ lexunlLao,rxa) < K,
where we used Sobelov inequality and (2.16). Thus we have ([2.22)).
We calculate

: 1
V(pnun) = Vi/pnpaunpt + /pNv/pnVun,
it allows us to have (2.23]). For any given £ > 0, we have

N

IVoR 20 x0) < K,
which gives us

Ionlzrons) < K.
Notice

pi € L=(0,T; L1 (),
we apply Holder inequality to have

2 3
vy 75 v |5
|’PN”Lg((07T)XQ) < ”PN”Loo(o,T;Ll(Q))HPNHL1(0,T;L3(Q)) < K.

Similarly, we can show (2.25]). O
Applying Aubin-Lions Lemma and Lemma 2.2, we conclude
pn — p strongly in L?(0,T; H(Q)), weakly in L?(0,T; H'(Q)), (2.26)
VPN — \/p strongly in L?(0,T; H'(Q)), weakly in L(0,T; H*(Q2))
and
pyuy — pu  strongly in L*((0,T) x Q). (2.27)
We notice that uy € L?((0,T) x ), thus,
uy — u weakly in L?((0,T) x Q).
Thus, we can pass into the limits for term pyuy ® uy as follows
pPNUN ®UN — pu®u

in the distribution sense.
Here we state the following lemma on the convergence of py|uy|?uxy.

Lemma 2.3. When N — oo, we have
pn|unPuy — plul®u  strongly in L'(0,T; L' (Q)).
Proof. Fatou’s lemma yields
/ plul* dz < / liminf py|uy|* de < liminf/ pn|uy|? dz,
Q Q Q
and hence plul? is in L1(0,7T; L*(9)).
By (226) and ([2:27]), we have, up to a subsequence, such that

pn — p(t,z) ae.
and
PNUN — pu  a.e.
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Thus, for almost every (t,x) such that when py(t,x) # 0, we have
PNUN S u

PN
For almost every (t,x) such that py(¢,2) = 0, then

uy =

PN AN PN X juy < < MPpy = 0 = plul*ux|uj<r-

Hence, pN|uN|2uNX|uN\§M converges to p|u|2ux|u‘§M almost everywhere for (¢, z). Mean-
while, pn |un [*Un Xjuy|<n is uniformly bounded in L>(0,T; L*(£2)) thanks to (ZI8).
The dominated convergence theorem gives us

p|unPun Xjuyj<ar = plul*uxpg<y  strongly in L'(0,T; L' (). (2.28)
For any M > 0, we have

T
/ / |onun|*un — plul*ul dz dt
0o Jo
T ) 2
S/O /Q‘PN|11N| UN Xjuy|<m — P[ul uX|u‘§M| dx dt
g T
+2/ /pN‘uN‘3X|“N|>dedt+2/ /P‘u’3Xu|>dedt (2.29)
o Ja v o

T
S/ /Q\pN!uN\2uNXuNSM—P!u\2UX|uSM| dx dt
0

+2/T/ | |4ddt+2/T/||4ddt
— PN|UN| AT — plu|” ax at.
M Jo Jo M Jo Ja

Thanks to ([2.28]), we have

lim sup ||pn|un*uy — P|U|2u||L1(07T;L1(Q)) <
g,u—0

for fixed C' > 0 and all M > 0. Letting M — oo, we have

=lQ

pn|uyPuy — plul*u  strongly in L*(0,T; L' ().

By (224)) and p}; converges almost everywhere to p?, we have
px — p7 strongly in L'((0,T) x Q).
Meanwhile, we have to mention the following Sobolev inequality, see [2] 16],
o™ o) < CA+ [l grre)* A + 0 s )?,

for k > 3. Thus the estimates on density from (ZI7)-(@2I9) enable us to use the above
Sobolev inequality to have

HpHLoo((QT)XQ) >C(0,m) >0, a. e in(0,7)x Q. (2.30)
This enables us to have ,0]_\,10 converges almost everywhere to p~1°. Thanks to (Z25]), we

have
o’ — p0 strongly in L'((0,T) x Q).



12 ALEXIS F. VASSEUR AND CHENG YU

By the above compactness, we are ready to pass into the limits as N — oo in the
approximation system (2.]), (2.8). Thus, we have shown that (p,u) solves

pt +div(pu) = eAp  pointwise in (0,7) x €,

and for any test function ¢ such that the following integral hold

/pu( gpda:—/mocpdx+u/ /Au Agpda:dt—/ /pu®u) Vedzdt
/ /2p1Du wdg;dt—/ / “’Vgpda:dt—kn/ / 1OV da dt
+€/ /Vp'Vugpd:Edt:—ro/ /ugoda:dt—rl/ /p|u|2ug0d:ndt
o Ja 0 Jo 0 Jo

T T T
—2/4/ /Aﬁv\/,w dx dt—m/ /A\/ﬁ\/ﬁdivzbdxdtJré/ /pVAg,ogodmdt.
0 Q 0 Q 0 Q
(2.31)

Thanks to the weak lower semicontinuity of convex functions, we can pass into the limits
in the energy inequality (2.13]), by the strong convergence of the density and velocity, we
have the following energy inequality in the sense of distributions on (0,7)

sup E(p,u —I—,u/ /|Au|2d$dt—|—/ /p|]D)u|2d:Edt+€5/ /|A5p|2d$dt
t€(0,T)
+€/ /\vpz\2dxdt+an/ /yvp y2dg;dt+r0/ /\u[2dxdt
—H’l/ /p[u\‘ldxdt—l—m/ /p[V%ogdemdtﬁEm
0o Jo 0o Jo

where

(2.32)

Blpow = [ (GolaP + 25+ S0 S9VER + VAR do
Q Y

Thus, we have the following Lemma on the existence of weak solutions at this level
approximation system.

Proposition 2.2. There exists a weak solution (p,u) to the following system
pt + div(pu) = eAp,
(pu); + div(pu @ u) + Vp? —nVp~ 1% — div(pDu) — pA?u+eVp - Vu

A
= —rou — riplul’u + kpV <—\/ﬁ> +6pV A%,
VP

with suitable initial data, for any T > 0. In particular, the weak solutions (p,u) satisfies

the energy inequality [232]) and (2.30]).
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3. BRESCH-DESJARDINS ENTROPY AND VANISHING LIMITS

The goal of this section is to deduce the Bresch-Desjardins Entropy for the approxima-
tion system in Proposition 2.2] and to rely on it to pass into the limits as &, u, 1, 0 go to

zero. By (218) and (230), we have

p(t,x) > C(5,n) >0 and p € L*(0,T; H'(Q)) N L>(0,T; H*(Q)). (3.1)
3.1. BD entropy. Thanks to ([B.1)), we can use ¢ = V(logp) to test the momentum
equation to derive the Bresch-Desjardins entropy. Thus, we have

Lemma 3.1.

d 1 Voo 09 2 K o P Y / —52
— - — ]+ |V ~|V ——+ = d \Y d
dtQ<2p\u+p!+2\ p!+2y \/’_”+fy_1+ 10 T+ Qy p |7 dx

—I—/ |Vp%|dx—|—5€/ |A5p|2dx—|—25/ |A5p|2d$+1/p|Vu—VTu|2d:E
Q Q 0 2 Ja

2 2 2 |Ap|?
+p | |Aulfde+k [ p|Vlogp|dr +¢e dx
Q Q Q P

2

—,u/Au-VAlogpd:E—rl/ |u|2qudx—r0/
Q Q Q
=Ri+ Ro+ R3+ R4+ Rs + Rs.

2
zs/Vp-Vu'Vlogpd:E+€/Apmdx—s/div(pu)%Apd:E
Q Q Q

u-Vp
P

dx

We can follow the same way as in [16] to deduce the above equality, and control terms
R; for i = 1,2,3,4, and they approach to zero as € — 0 or u — 0. We estimate Rjs as
follows

1
R < C [ phuValar < ¢ [ puftdot g [ v
Q Q 8 Ja

and for Rg we have

divu — eA A
R6=7“0/ pet pdiva — € pd:z::ro/(logp)tdx—ero/—pd:E.
Q p Q QP

since p is uniformly bounded in L>°(0,T; L7(£2)), we have
7’0/ log, pdx < C, where log, g =logmax(g,1).
Q

Thus, we need to assume that —rg [, log_ po dz is uniformly bounded in LY (). Also we

can control
A
Erg / —pdzzz
Q P

and it goes to zero as ¢ — 0.
Thus, we have the following inequality

< ellpllaz@lle @),
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—10 T
/( plu-+ 2P 21V + |vm2+—1+”1—0—rologp) ot [ /Q|w—5|2dxdt

/ /]Vp?]da:dt+5€/ /\A5py2dxdt+25/ /]A5p]2dxdt
+—/ /p\Vu—VTulzda;dt—F,u/ /]Au\2dx+ﬂ/plvzlogp\2dxdt
2Jo Ja 0o Ja 0

4 T T
_ 1
< Rt elplmalo oy +C [ [ plultdedr 5 [ [ oivupdear
=1

1 Voo  0g9, 12 2, P, P
- YRRy 0 d
/ (2po\uo+ PO 4 LIl + VAP + S 2 _m) da,
(3.2)

where fOT Jq plul* dz dt is bounded by the initial energy, and %fOT Jo pIVU|? dz dt can be

controlled by
T T
/ / p|Vu — VTu|? dz dt, and / / p/Dul|? dz dt.
0 Q 0 Q

In-deed, it can be controlled by

T o
/ / p|Vul?dz dt < / <po\u0]2 + % + |V/pol? — 7o log_ p0> dx + 2FEy.
0o Jo Q -
Thus, 2] gives us
1 Vpa , 9 oo 2, 2, p_ 10 ~52
—plu+ —*+ =|V°p|* + ]V\/_] +—— —rglogp dm—H] \Vp | dw dt
0\ 2 p T2 v—1 " 10

T
+/ /yvp%yda;dt+5s/ /\A5py2da;dt+25/ /]A5p]2dxdt
0 Q 0 Q 0 Q

1 (T T
—|——/ /p|Vu—VTu|2d:Edt—|—,u/ /|Au|2 dl‘—l—li/ p|V?log p|?* da dt
2Jo Ja 0o Ja 0

1 v02 0 V92 4 F 2 Po po
<2/ (= L v A (R | d
S /Q<2,00|110 ,o| 2| ,00|+2| po|+7_1+ 10 Tolos—po ) ax
4

+ZR +ellpll a2l L) + 2Eo.

i=1
(3.3)

Thus, we infer the following estimate from the Bresch-Desjardins entropy

T
/1/ /p\V2 log p|? dzdt < C,
o Ja

where C' is independent on €, 1, u, 9.
Applying Lemma 2.1] we have the following uniform estimate:

: 1 1
k2 Vol 20,r;m2(0)) + KAV | a0, 0) < €
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where the constant C' > 0 is independent on ¢, n, u, 6.

3.2. Passing to the limits as ¢, — 0. We use (p.,u,u: ) to denote the solutions at
this level of approximation. It is easy to find that (pe ,,u. ,) has the following uniform
estimates

VPepUey € L¥(0,T; L*(Q)), \/pepDuc , € L*((0,T) x ), \/pAu. , € L*((0,T) x iz),
3.

4)
VEA p. 4 € L*((0,T) x Q),Vépe i € L(0,T; HY(Q)), Ve /ey € L7(0, T; H'(R)),
(3.5)
pop € L2(0,T: L°(Q)), yEnVpz, € L*((0,T) x Q) (3.6)
1
ey € L2((0,T) x @), plyu. € LH(0,T) x Q). (3.7)
By the Bresch-Desjardins entropy, we also have the following additional estimates
VP € L®(0,T; L*(Q)), VoA p., € L*(0,T; L*(R)), (3.8)
and
X
Vp2u € L((0,T) x Q),  /nVpz, € L*((0,T) x Q)). (3.9)
Also we have the following uniform estimate
1 1 1
K2 |l\/Pepll 20,1 m2 () + KXV P pll a0, mize0)) < C, (3.10)
where the constant C' > 0 is independent of €, 7, u, 9.
By Lemma [B] one deduces
T
T 2
/ / peplVue , — Viug " dedt < C,
0o Jo
which together with ([B.4]), yields
T
/ / Pepu| Ve > dzdt < C, (3.11)
0 Q

where the constant C' > 0 is independent of ¢, 0, u, J. Based on above estimates, we have
the following estimates uniform in e:

Lemma 3.2. The following estimates holds:

|(V/Pe el z20,m50200) + IVPepll2 01 m200)) < K,

1es)el oo 0y T NPemllie o) + o pllzz ooy < K, (3.12)
[(pepwew)ell 207, m-9(0)) + [lpeptienll 201 x0) < K, (3.13)

V(pe,ule,u) is uniformly bounded in L4(0,T;L§(Q)) + L2(0,T;L%(Q)), (3.14)
”pg’“”L%«omxm = K, (3.15)

=, <K, (3.16)

L3((0.1)xQ) =
where K 1is independent of €, .
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Proof. By (B.4)-B.11), following the same way as in the proof of Lemma 2.2, we can
prove the above estimates.
Applying Aubin-Lions Lemma and Lemma B.2, we conclude
ey — p strongly in C(0,T; H?(Q)), weakly in L*(0,T; H'(Q2)), (3.17)

VPep — \/p strongly in L%(0,T; H(Q)), weakly in L?(0,T; H*(£2))
and
PepUey — pu strongly in L2((0,T) x ). (3.18)
We notice that u., € L?((0,T) x ), thus,
u., — u weakly in L*((0,T) x Q).
Thus, we can pass into the limits for term p, ,u. , ® u. , as follows
Pe,puUe &® uc , — pu ®Xu

in the distribution sense.
We can show

PepulUe | mu — plul*u  strongly in L'(0,T; L' (Q))

as the same to Lemma 23]
Here we state the following lemma on the strong convergence of /p,u,, which will be
used later again. The proof is essential same to [13].

1
Lemma 3.3. Ifpiu, is bounded in L*(0,T; L*(Y)), pn almost everywhere converges to p,
Py, almost everywhere converges to pu, then

VP, — /pu  strongly in L*(0,T; L*(Q)).

Proof. Fatou’s lemma yields

/p!u\‘*d:cg/1iminfpn\un!4da:§1iminf/pn!un!“d%
Q Q “

and hence plu|? is in L1(0,T; L*()).
For almost every (t,z) such that when py(t,z) # 0, we have
u, = Prlln .
Pn

For almost every (¢, x) such that p,(t,x) = 0, then
VP X un|<m < My/pn =0 = \/pux|u<m-

Hence, \/pnWnX|u,|<m converges to /pux|yj<y almost everywhere for (¢,7). Meanwhile,
VP X|u, < 18 uniformly bounded in L*°(0, T} L3(%2)).
The dominated convergence theorem gives us

VPrUn X u, <M — V/PUX|ju<y Strongly in L*(0,T; L*(Q)). (3.19)
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For any M > 0, we have

T
//]‘/pnun—\//_)u]2 dx dt
0o Jo
T 2
S/O /Q‘\/pnunXunEM_\/ﬁuXuEM‘ dx di
T T
w2 [0 ] oo dedi+2 [ [ [ pugsuldede (320
0 0
T 2
§/0 /Q‘\/pnunXun|<M_\/ﬁuXu|<M‘ dz dt

2 [T 4 2 [T 4
+—/ /pnun dxdt+—/ /pu dx dt.
M? 0 Q ‘ ‘ M? 0 Q ’ ‘

Thanks to (3.19]), we have

lim sup [|v/pnun — /pullz207,02(0)) <

e,u—0

for fixed C' > 0 and all M > 0. Letting M — oo, we have
VPn, — /pu  strongly in L2(0,T; L*(Q)).

Sl

Applying Lemma B3] with (317), (BI8]) and

T
/ / Peplue |t drdt < C < o,
0 Q
we have
VPepUe, — /pu strongly in L?(0,T; L*(Q)).
By (3I5) and pl, converges almost everywhere to p7, we have
pl, — p’ strongly in LY((0,T) x Q).
Thanks to (31)), we have p_ .’ converges almost everywhere to p~'°. Thus, with (B.I6),
we obtain
p;io — p~ 10 strongly in L'((0,T) x Q).
By previous estimates we can extract subsequences, such that
eVpe, — 0 strongly in L2((0,T) x Q),

and
eVpe Vue, — 0 strongly in L*((0,T) x Q).
For the convergence of term pA%u,,, for any test function ¢ € L?(0,T; H%(Q2)), we have

T
/0 /QMAQUQMP dz dt' < VallVieAu ul g2 0,702 1A@l L2 0,7522(0)) — 0

as i — 0, thanks to (34).
Due to weak lower semicontinuity of convex functions we can pass into the limits in
energy inequality (2.32), we have the following Lemma.
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Lemma 3.4.

1 p7 n o _
/ <§P|u|2 + -1 T 10" 4 |V\/7|2 |VA4P|2>

/ / \]D)u]2dxdt+r0/ /\u[2da:dt+r1/ / plul* dx dt (3.21)
Po K o0y 2y 4,2
< o2 + 2 V«/ VA

Passing to the limits in (3.3]) as ¢ — 0 and p — 0, we have the following BD entropy.

Lemma 3.5.

V 2 9,2 4 2 p 10
golut S2P 4 SV + 519V + o+ O mlog ) dat

/ /|vp 5|2dxdt+/ /|Vp2|d:ndt+25/ /|A5p|2d:cdt
/ /p[Vu—VTu\zdxdt—i—ﬂa/ /p\VzlogpIQda:dt

\V4 5} ’Y —10
<2/< poluo + L2 12 19 f? + E (vl + +p0——7’olog_p0> da
o o 2 ~—1 710

+ 2FE).
(3.22)

Thus, letting ¢ — 0 and pu — 0, we have shown that the following existence on the
approximation system.

Proposition 3.1. There exists the weak solutions (p,u) to the following system
pr + div(pu) =0,
(pu); + div(pu ® u) + Vo7 —nVp~ 1% — div(pDu)

A
= —rou — riplul*u+ kpV <—\/ﬁ> +0pV A%,
VP

with suitable initial data, for any T > 0. In particular, the weak solutions (p,u) satisfies
the BD entropy [B.22) and the energy inequality ([B3.21)).

3.3. Pass to limits as 7,d — 0. At this level, the weak solutions (p, u) satisfies the BD
entropy (B8.22]) and the energy inequality ([B.21]), thus we have the following regularities:

Vpu € L=(0,T; L*(Q)), /pDu € L*((0,T) x Q), (3.23)
Vip € L=(0,T; H(Q)), Vryp € L0, T; H (Q)), (3.24)
/10~ e L0, T; L'°(Q)), /iVp~° € L*((0,T) x Q), (3.25)

u € L2(0,T; LA(Q)), pTu € L*((0,T) x Q),
Vp e L®(0,T; L3(Q)), V6A®p e L2(0,T; L4 (). (3.26)
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In particular, we have

T
H/ / p\V2 logp\2dazdt <C,
0 Q
which yields

K3 Vol 20,1 m52(0)) + KT||Vpi lz20,1;0(0)) < C, (3.27)
where the constant C' > 0 is independent of 7, 4. That is, this inequality is still true after
n— 0and 6 — 0.

Thus, we have the same estimates as in Lemma [3.2] at the levels with n and §. Thus, we
deduce the same compactness for (p,,u,) and (ps, us). Here, we focus on the convergence
of the terms nVp~10 and §pVA?p. Here we pass to the limits with respect to 7 first, and
then with respect to §. Here we state the following two lemmas.

Lemma 3.6. For any p, defined as in Proposition [31], we have

T
77/ /p;lodazdt—)O
0 Jo

asn — 0.
Proof. By (8.22]), we have

We notice that

is a convex continuous function. Moreover, Fatou’s Lemma yields

/Q(ln(l))Jr d:vS/Qliminf(ln(i))Jr dx

p Pn
1
< lim inf In(—))y dz,
<t int [ ().
and hence (ln(%))Jr is in L>°(0,T; L*(2)). Tt allows us to conclude that

{x : |p(t,x) =0} =0 for almost every t, (3.28)
where |A| denotes the measure of set A.
By (pn): = —Vpyu, — pydivu,, and thanks to [B.23)-(327), we have
(pn)e € L2(0, T L*(Q)) + L*((0, T5 L*(92)).
This, together with ([B.24]), up to a subsequence and the Aubin-Lions Lemma gives us that

pn converges to p in L%(0,T; L*(Q2)), and hence p, — p a.e..

Thanks to ([3.:28]), we deduce

np;w —0 ae. (3.29)

By ([B:25) and Poincaré’s inequality, we have a uniform bound, with respect to 7, of
npy ™0 € L0, T5 L)) 1 110,73 L3 (9)).
The LP — L9 interpolation inequality gives

10H < C,

2 3
- 1015 —10|5
”771077 L%(O,T;L%(Q)) S anr] HLoo(QT;Ll(Q))”npn HLl(O,T;LS(Q))
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and hence np;; 10is uniformly bounded in Lg(O, T, L%(Q)) This, with ([3.29), yields
77,0,;10 — 0 strongly in L'(0,T; L'(2)).
U

Lemma 3.7. For any ps defined as in Proposition [31], we have, for any test function o,

T
5/ / ps VA psodx dt — 0
0 Q
as 6 — 0.
Proof. By ([B8.24) and (3.26), We have uniform bounds with respect to § of
ps € L=(0,T; L3(Q)), Véps € L=(0,T; H(Q)), Véps € L*(0,T; HO(Q)).
This, with Gagliardo-Nirenberg interpolation inequality, yields
IV°psl s < CHVH)P&H HP5H

Thus, we have

9 13 7 dt < C ) 5 10,12 g d
\V ps|” dz t sap, (lpsll s () V" ps|” da dt,
te

which 1mphes

o

515 |V9ps| € L5 (0,3 L3(Q)). (3.30)
For the term

T T
5/ / ps VA® pso da dt = —5/ / Adiv(psp)A° ps dz dt,
0 Q 0 Q

we focus on the most difficulty term

/ /A4 Vps)A pggpda;dt‘ <C(y / /f]V10p5\519\V9p5]538 dx dt

< C(p)63 V6V psllL2(0,m;02(0) H519V9P6|| 1
—0

as 0 — 0, where we used (3.30).
We can apply the same arguments to handle the other terms from

T
(5/ /A4div(p5<p)A5p5da;dt.
0 Q

T
5/ / ngAgp(;(p dx dt — 0
0o Ja
as 0 — 0. O

(0,T;L3(Q))

Thus we have

Here we have to remark that (8:27)) is still true even after vanishing n and 6. Thus,
letting 7 — 0 and § — 0, we have shown that (p,u) solves (I.T).

Meanwhile, due to weak lower semicontinuity of convex functions, we have (L3]) by
vanishing 1 and ¢ in energy inequality (3.21I]) . Similarly, we can obtain BD-entropy (I.4))
by passing into the limits in [3.22]) as » — 0 and 6 — 0.
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3.4. Other Properties. The time evolution of the integral averages

te (0,T) —> /Q(pu)(t,:v) () da
is defined by

& Jr6a) vt = [ puousidas [ ravids + [ Duvyas cen

—|—ro/ uy dx +r1/p|u|2u1[)d:n+2/£/ APV N/ p dm—l—/{/ AL/py/pdivey) dx.
Q Q Q Q

All estimates from (L3]) and (I4) imply B3I) is continuous function with respect to
t € [0,7]. On the other hand, we have

pu € L(0,T; L2 () N L0, T; L*(Q)),

and hence ,
pu € C([0,TT; Ly g, (§2))-
We notice
(Vp)e = —%\/ﬁdivu - Vy{p-u,
thus

: 1 1
1(VP)ill 20,1y x0) < Cllv/pdivul|2(0.1yx) + CIVeE | Lao,m <o [Pl a0,y x ) -
This, with V/p, € L>(0,T; L*(€)), we have
VPr — \/p strongly in L?(0,T; L*(Q2)). (3.32)
Because
A
(pu); = —div(pu ® u) — Vp? + div(pDu) — rou — ripluf’u+ £pV (%) :
thus we have (pu); is bounded in L*(0,T; W~=5%(Q2)). Meanwhile, we have
1 1
V(pu) = (piu) - Vi/ppi + /p\/pVu,

which yields V(pu) € L*(0,T; Lg(Q)) + L2(0,T; L%(Q)) The Aubin-Lions Lemma gives
us
pr, — pu strongly in L2((0,T) x Q). (3.33)

Applying Lemma B3] with (3:32]), (8:33)), and

T
/ / prlugltdrdt < C < oo,
0 Q

VPR, — /pu strongly in L2(0,T; L*(2)).

we have
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