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GEOMETRY OF REFRACTIONS AND REFLECTIONS THROUGH A
BIPERIODIC MEDIUM∗

PAUL GLENDINNING†

Abstract. The behaviour of light rays obeying Snell’s Law in a medium made up of two materials
with different refractive indices and which are arranged in a periodic chessboard pattern is described.
The analysis is in some ways analogous to the study of rational billiards and uses a return map on
one surface to prove, amongst other things, that the number of angles with which any individual ray
intersects the lattice is bounded and that if the ratio of refractive indices is large enough then the
dynamics can be described by interval exchange maps.

Key words. composite billiards, refraction, reflection, ergodicity, geometric ray theory, interval
exchange maps

AMS subject classifications. 37E05, 78A05

1. Introduction. Geometric optics describes the passage of light through me-
dia along rays. This approximation ignores the wave-like properties of light such as
interference or diffraction, but it is used to describe phenomena such as focussing and
caustics. If a light ray passing through a medium with constant optical properties
strikes a boundary between this medium and another with different properties so that
the speed of propagation is different in each then it is either reflected or refracted.
In this paper a dynamical systems approach is used to describe the geometry of rays
in a medium made up of two materials arranged on an infinite chessboard. This is
a first step towards understanding the paths of rays in more complex configurations
which has two motivations. First, properties of the paths of light rays in complicated
media are poorly understood, and there is a hope – not realized on the chessboard –
of finding configurations that allow diffuse incident light to be focussed in particular
directions. Second, the mathematical description of the paths has close analogies with
the study of non-compact billiards and rational billiards, and it can also be seen as
an extension of the interest in dynamical systems with ‘holes’. The paths of light
rays modulo the symmetry of the chessboard are described by a return map which is
used to prove that the number of angles with which any individual ray intersects the
lattice is bounded and that if the ratio of the refractive indices is large enough then
the dynamics can be described by interval exchange maps. Results for these maps
can then be used to describe the ergodic properties of rays.

The mathematics of billiards describes the properties of paths formed by particles
reflecting off a closed boundary so that the angle of incidence (the angle between the
incoming particle path and the inward normal to the boundary at the point of contact)
equals the angle of reflection (the angle between the outgoing particle path and the
inward normal to the boundary), see e.g. [15]. In two dimensions the study of billiards
is often described by a pair (s, θ), or equivalently (s, sin θ), where s is some arclength
parametrization of the boundary and θ is the angle of incidence of the particle. Thus
successive impacts of the particle on the boundary generate a sequence (sn, θn) where
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the nth collision with the boundary is simply a function of the position and angle of the
previous collision. Viewed as a map this process has many nice properties depending
on the geometry of the boundary on which collisions take place, the most famous
being the stadium [5]. Boundaries with corners such as squares are also considered
and more recently the effect of holes has been considered, where some portion of
phase space (often an arc of the boundary) is removed, and any trajectory which
lands in this region is deemed to be lost from the system. This is sometimes called
open billiards. Typical questions asked in this context are: which orbits never fall in
the hole, how does this change with the width of the hole, how long do orbits take
to leave through a hole [7, 11] (because many billiard systems are ergodic, almost all
solutions do eventually leave), and how does this change with the shape of the billiard
table [3]?

More recently, and more relevant to the geometry described below, unbounded
planar billiards have been analyzed, with particular emphasis on the Ehrenfest wind-
tree model [6, 8, 9]. In these models polygonal obstacles are placed inside a lattice and
rays move through the gaps created by a periodic continuation of this structure in both
horizontal and vertical directions. Results such as the non-ergodicity of the motion
can be derived in some cases, together with constraints that imply (for example) that
every ray is periodic. More complicated rays, when they exist, have many similarities
(from the perspective of a naive visual comparison) with sample rays described here,
see Figures 1 and 6 below, and Figures 8 and 9 of [9] for example. It is clear that a
more detailed comparison of the cases would be worthwhile, and I am grateful to a
referee for pointing out this possible connection.

It is equally possible to think of billiards as giving the intersections of the path of
a ray of light with a partially mirrored surface [15]. The law of reflection has precisely
the same geometry but refraction is also possible. In this context a natural way of
introducing holes is to consider the boundary as the surface separating two media
with very different refractive indices. As the ratio of these indices (or equivalently
the ratio of the speed of light in each medium) tends to infinity the mirror becomes
perfectly reflecting, but at finite values of there is a cone of angles of incidence that
pass through the surface from one medium to the other in one direction, whilst all light
passes through in the other. If the two refractive indices are not equal then Snell’s
Law (Descartes’ Law) holds, see equation (2.1) and if the ray is refracted across the
surface then the ratio of the sines of the angle of incidence to the angle of refraction
is constant, the ratio of the refractive indices of the two media. In one direction
(from the black material with lower refractive index to the white material with higher
refractive index with the convention used below) the ray always passes through, whilst
in the other direction there is a critical angle θc such that if the angle of incidence is
greater than θc then the ray is reflected. As the ratio of refractive indices tends to
infinity almost all solutions are reflected. There has been some work on this version,
which is particularly interesting as it provides the possibility of further dynamics in
the second medium. In [1] the idea of a hole as being due to a non-reflective portion
of the boundary is used, and the light emitted from a billiard boundary is analyzed.
More interesting from the point of view of this article is the work of [4], where an
annular region with perfectly reflecting outer boundary surrounding a central region
with different refractive indices is considered; they call this composite billiards. The
diffusion of light out of the central region is described and there is a discussion of how
it can return after reflections on the outer boundary of the annular region.

The approach taken in this paper is similar to that of [4], except that the bounded
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Fig. 1. Rays showing 5000 refractions and reflections with µ defined above (2.1) and y0 =
0. Successive outwards intersections with the faces of ‘white’ (higher refractive index) squares are
connected by straight lines; the actual refractions, when they occur, are not represented. (a) x0 = 0.6;
θ0 = 0.1; µ = 1.9; (b) x0 = 0.6; θ0 = 0.01; µ = 7; and (c) x0 = 0.6; θ0 = 0.1; µ = 7.

property of their geometry is replaced by an infinite chessboard medium with alter-
nating squares of two different materials. This means that even though our problem
tends to billiards in a square as the ratio of the refractive indices tends to infinity,
the material becomes uniform as this ratio tends to one and so the light rays are
straight lines in this limit. In many ways the analogy with open billiards starts to be
misleading – there is no ‘hole’ – and the problem resembles one of light in complex
materials, with complicated sequences of refractions and reflections. Natural ques-
tions are what angles can light make with the boundary and how is the direction of
light distributed – can it go in any direction? Is there a notion of average refractive
index of the material? Note that the standard billiard in the square is not ergodic as
angles are always in the set {θ, π2 − θ} if reflections are on perpendicular surfaces.

The images in Figure 1 show a variety of rays illustrating the complexity (and
regularity) that can be observed.

In the next section we describe the rules which determine how light rays behave
in the material and derive a return map as with a billiard problem, though this
factors out several of the symmetries in the problem. Rays can be divided into two
separate classes (see Lemma 3.1): those which remain in one square, reflecting at every
intersection with the boundary (pure reflections), and those that contain at least one
refraction (refracting rays). These can have at most one reflection between sequences
of refractions. We describe some properties of refracting rays in later sections. In
particular we show that if the ratio of refractive indices is µ > 1:

• Each ray can intersect the lines of the integer lattice at a finite number of
angles.

• If µ >
√
2 the dynamics of refracting rays can be described by an induced

map which is an interval exchange map.
• If µ >

√
2 then a refracting ray (modulo rotations by mπ

2 about the mid-
point of a square and reflections in vertical and horizontal lines through those
centres) intersects the boundary at a dense set of points except for a countable
set of incidence angles.

Note that the restriction to µ >
√
2 is to make our analysis as simple as possible,

and we conjecture that the last two results hold if 1 < µ <
√
2. The third result is

analogous to the classic result for rigid rotations x → x + α (mod 1) that motion is
dense on the circle except at a countable number of values of α (the rational numbers),
where every point is periodic.
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Fig. 2. Coordinates on the boundary of a white square where W indicates the neighbouring
white squares and B the neighbouring black squares: each face is labelled by z ∈ {0, 1, 2, 3} and the
distance measured anticlockwise along each face is x ∈ [0, 1), so the arclength from the bottom left
hand corner is z + x.

2. Refractions and reflections on the chessboard. Suppose that the plane
is tiled by unit squares with vertices on the integer lattice, labelled white (W) and
black (B) alternately as on a chessboard. Suppose further that the refractive index,
nw of the material in tiles labelled by W is larger than the index nb in the material
labelled B; think of W as water and B as air (or bromine gas). Let µ = nw/nb > 1.
If a ray of light starts at some point in W and strikes a boundary at an angle of
incidence θ (measured from the normal to the surface) then Snell’s Law states that
the angle of refraction is ψ where

(2.1) µ sin θ = sinψ.

If θ > θc = sin−1(1/µ) there is no refracted solution and the ray is reflected back inter-
nally into W making an angle of reflection θ. Any ray from B striking the boundary
with angle ψ will be refracted using (2.1), so solutions are invertible. Solutions strik-
ing the boundary at corners will be ignored here (they form a set of measure zero in
the set of possible solutions).

To build up a mathematical description of the rays we will introduce coordinates
on the boundary of a white square and consider a ray that strikes the boundary from
inside the white square at a given point at an angle of incidence θ. Choose the white
(higher refractive index material) square to be

(2.2) Sn,m = {(x, y) | x = n+ u, y = m+ v, 0 < u, v < 1}, |n|+ |m| even,

so the black (lower refractive index material) squares have |n|+ |m| odd. The ray will
be continued geometrically until it is next incident on the boundary of a white square
from inside (i.e. the next time it strikes the boundary with a component of velocity
outside the white square). We will then use the symmetries of the system to reduce
the problem to a map on the set (0, 1)× (0, π2 ) denoting the successive impacts on the
surface of the square moving from W to B and the corresponding angle of incidence
modulo the symmetries.

The boundary of the white square (0, 1)2 is the union of four intervals as shown
in Figure 2. The arclength of the boundary measured anticlockwise from the bottom
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left hand corner is r ∈ [0, 4) and r = z + x where z ∈ {0, 1, 2, 3} labels the face,
anticlockwise from the bottom, and x ∈ [0, 1) is the distance along the edge measured
anticlockwise as shown in Figure 2. The angle of incidence of a ray about to pass
out of the square is in the interval (−π

2 ,
π
2 ) with positive angles if the ray exiting the

square has a component in the direction of decreasing x. This convention means that
positive angles correspond to cases in which the scalar product of the velocity with
the anticlockwise tangent is negative.

Now a ray incident on the boundary with z ≥ 1 with arclength r = z+x and angle
of incidence θ is equivalent by rotational symmetry through multiples of π

2 about the
centre of the square to a ray incident on the lower boundary at z = 0 with r = x.
Moreover, if the angle of incidence is negative then by the symmetry which reflects
rays about the vertical line x = 1

2 we may take

(x, θ) → (1− x,−θ)

and hence restrict, modulo the symmetry, to x ∈ (0, 1) and θ ∈ [0, π2 ).
Recall that µ > 1 in (2.1). Thus a ray striking the bottom face of the white

(higher refractive index) square at x with angle of incidence θ > 0 will be reflected if
θ > θc where

(2.3) θc = sin−1(1/µ)

and refracted if θ < θc., with angle of refraction ψ given by (2.1).

3. Reflections. Without loss of generality suppose that a ray strikes the bottom
of a white square at (x, θ) with θ > 0. If θ > θc then the ray is reflected and will
strike the boundary of the square outwards either at an angle θ again or (if it hits a
side wall) π

2 −θ. Ignoring the measure zero boundary cases there are two possibilities:

either
π

2
− θ > θc or

π

2
− θ < θc.

In the former case the ray will be reflected again, and since the only angles the ray can
make with the incident walls are θ and π

2 −θ it will continue to be reflected for all time.
This will be referred to as a pure reflection. By time reversal, a pure reflection cannot
come from a refracted ray. Note that for pure reflections the inequalities θ, π2 −θ > θc
imply that θc < θ and π

2 − θ < π
2 − θc, so pure reflections are only possible if θc <

π
4 ,

i.e. sin θc <
1√
2
or µ >

√
2.

If this ray is not a pure reflection then π
2 − θ < θc, and hence the ray will be

refracted at the first time it strikes a side wall. In this case θ > π
4 and hence this

always happens at the next intersection with the boundary, so every reflection that
is not part of a pure reflection is followed immediately by a refraction. The effect of
this reflection can be calculated by elementary geometry giving the following lemma.

Lemma 3.1. Suppose a ray is incident on the lower boundary of a white square
at (x, θ) with θ > θc. If µ >

√
2 and θc < θ < π

2 − θc then the ray is a pure reflection
and remains in the square for all time. Otherwise π

2 −θ < θc and the next intersection
is with the left hand wall with coordinates (x′, θ′) given by

(3.1) x′ = 1− (x/ tan θ), θ′ = π
2 − θ,

after which the ray is refracted out of the square.
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Fig. 3. Different cases of refraction showing the geometry of different rays. Each cell is labelled
W (white, higher refractive index) or B (black, lower refractive index). Both rays are incident on
the white squares (W) with on y = 0 with x-coordinate x an angle θ > 0. (a) Example of ray moving
down-down (DD) and striking the white square with angle θ and x′ = x − tan θ − tanψ measured
anticlockwise along the face. (b) Example of ray moving down-left (DL) striking the z = 3 face
with x′ = (x − tanψ)/ tan θ and unsigned angle π

2
− θ. Since the line of the incident ray is in the

clockwise direction at incidence the new incidence angle is negative: θ′ = −(π
2
− θ).

4. Refractions. The refractions divide into four subcases as shown in Figures 3
and 4. The effect of each can be deduced directly from the geometry shown in the
figures, and is summarized in the lemma below. Each individual case is described
briefly in the subsequent subsections.

Lemma 4.1. Suppose that a ray is incident on the bottom of a white square Sn.m

at (x, θ), 0 < θ < θc. Let ψ be the first angle of refraction

(4.1) ψ = sin−1(µ sin θ),

and define θ̃ by

(4.2) θ̃ = sin−1( 1µ cosψ).

Then it is next incident on the boundary of a white square at (x′, θ′) where
(DD) if tanψ + tan θ < x < 1 then

(4.3) x′ = x− tanψ − tan θ, θ′ = θ,

and the intersection is on the face with z = 0 in Sn,m−2;
(DL) if tanψ < x < tanψ + tan θ then

(4.4) x′ = (x− tanψ)/ tan θ, θ′ = −(π2 − θ),

and the intersection is on the face with z = 3 in Sn,m−2;

(LD) if tanψ(1− tan θ̃) < x < tanψ then

(4.5) x′ = 1−
(
1− x

tanψ

)
/ tan θ̃, θ′ =

π

2
− θ̃,

and the intersection is on the face with z = 0 in Sn−1,m−1;
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(LL) if 0 < x < tanψ(1− tan θ̃) then

(4.6) x′ = (x/ tanψ) + tan θ̃, θ′ = −θ̃,

and the intersection is on the face with z = 3 in Sn−1,m−1.
It is perfectly possible to calculate the domains and ranges of each of these cases

explicitly, but this adds to the complexity of the description without adding to the
information required to prove the main theorems for this paper, so we will not go
into this level of detail here. The next four subsections sketch the derivation of the
expressions given in Lemma 4.1.

4.1. Refractions: down-down. In the first case a ray incident at on the bot-
tom face with coordinates (x, θ), θ < θc, is refracted into the black region below it and
then strikes the boundary of the white region directly below it, is refracted through
this and is then incident on the bottom of this white square with coordinates (x′, θ′).
Thus it goes down through the black square and then down again through the whit,
and we label this down-down, or DD. After the first refraction, the angle of refraction
(in the black square) is ψ defined in (4.1) and provided tanψ < x then the intersection
with the bottom of this back square is at x − tanψ. The refraction into the white
square below returns the angle to θ and this will then be incident on the bottom face
of this white square if x > tanψ + tan θ with (x′, θ′) given by (4.3).

4.2. Refractions: down-left. In Figure 3b the refracted ray passes down
through the black square but after entering the white square below it, the ray is
incident on the left face of this square. This occurs if tanψ < x < tanψ + tan θ. In
this case the angle of incidence is −(π2 − θ), with the minus sign because the incident
ray is ‘behind’ the direction of increasing x on the left boundary, and an elementary
geometric calculation shows that the new coordinate on the left hand boundary is
(x′, θ′) where the arclength is r′ = 3 + x′ with (x′, θ′) given by (4.4).

4.3. Refractions: left-down. If x < tanψ then the refracted ray strikes the
left hand boundary of the black square at an angle π

2 −ψ and is refracted through into

the neighbouring white square making an angle θ̃ with the normal to the boundary
in the white square, where µ sin θ̃ = cosψ, i.e. θ̃ is defined by (4.2).

It strikes the boundary from black to white a distance y = x/ tanψ below the
upper left hand corner of the black square and so if (x/ tanψ)+tan θ̃ > 1 it is incident
on the bottom of the white square at x′ where tan θ̃ = (1 − y)/(1 − x′) at an angle
π
2 − θ̃, so (x′, θ′) are given by (4.5).

4.4. Refractions: left-left. If x < tanψ and (x/ tanψ) + tan θ̃ < 1 then the
ray is refracted through the white square to the left of the black square and is incident
on the left face with angle of incidence −θ̃ as shown in Figure 4b with (x′, θ′) given
by (4.5).

5. Finite θ orbits. Given an angle of incidence θ in a white square with angle
of refraction ψ, the ray may strike the side of a black square with angle π

2 − ψ and

then be refracted into a white square with angle θ̃. Thus we have associated an angle
of incidence θ with an angle of incidence θ̃. But on entry in the white square with
angle θ̃ the ray may be incident on a different side of the white square with angle of
incidence π

2 − θ̃. Can this generate new angles of incidence after further refractions?
It will turn out that for all µ > 1 rays have a finite number of possible angles that

can be generated in this way, and hence that the θ behaviour always involves just a
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Fig. 4. As Figure 3. (a) Example of ray moving left-down (LD) and striking the white square
with angle π

2
− θ̃ and x′ = 1 − (1 − x/ tanψ)/ tan θ̃) measured anticlockwise along the face. (b)

Example of ray moving left-left (LL) striking the z = 3 face with x′ = (x/ tanψ) + tan θ̃ and
unsigned angle θ̃. Since the line of the incident ray is in the clockwise direction at incidence the
new incidence angle is negative: θ′ = −θ̃.

finite number of θ values. This will make it possible to reduce the two-dimensional
map of the previous section to a one-dimensional piecewise linear map.

Theorem 5.1. If µ > µn,

(5.1) µn =

√
n+ 1

n

n = 1, 2, . . . , then given any initial value of θ the ray through (x, θ) takes at most
2n+ 2 different values of the angle variable.

Proof: Given an initial θ0 < θc then by Lemma 4.1 the image angle, i.e. the
next angle of incidence from inside a white square modulo the symmetry, has θ′0 ∈
{θ0, π2 − θ0, θ̃0,

π
2 − θ̃0} and each of these in turn can refract if they are less than θc.

Recall that by definition

(5.2) µ sin θ0 = sinψ0, µ sin θ̃0 = cosψ0 = sin(π2 − ψ0),

and θ0 < θc by assumption, θ̃0 < θc as sin θ̃0 = cosψ0/µ < 1/µ, and hence π
2 − θ0 and

π
2 − θ̃0 are both greater than π

2 − θc.

Consider θ′0 = π
2 − θ̃0 >

π
2 − θc. If θ′0 > θc then the ray will be reflected, and

the next outward intersection with the boundary of the square has angle θ̃0 again, so
there is no new refracting angle. Note that θ′0 > θc if π

2 − θc > θc, i.e. if θc <
π
4 or

µ >
√
2 = µ1.

Now suppose that θ′0 < θc. This can create a new angle of incidence if there exists
ψ1 and θ̃1 such that

(5.3) µ sin θ1 = sinψ1, µ sin θ̃1 = cosψ1.
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Thus the new angle θ̃1 exists provided (cosψ1)/µ < 1 which is automatically satisfied
if µ sin θ1 < 1.

It will actually be easier to consider the new refracted angle ψ1 rather than θ̃1.
Now (5.3) implies

(5.4)

sinψ1 = µ sin θ1 = µ sin(π2 − θ̃0) = µ cos θ̃0

=

√
µ2 − µ2 sin2 θ̃0 =

√
µ2 − cos2 ψ0

=
√
µ2 − 1 + sin2 ψ0

and so defining

(5.5) u0 = sinψ0, u1 = sinψ1

this implies that

(5.6) u1 =
√
µ2 − 1 + u20

provided u1 < 1.
Now consider the possibility of generating a new angle of incidence via the angle

θ̃−1 = π
2 − θ0 which is also greater than π

2 − θc. The equivalent of (5.2) for the new
angle θ−1 uses the angle ψ−1 defined by

(5.7) µ sin θ−1 = sinψ−1, µ sin θ̃−1 = cosψ−1.

Thus

(5.8)

sin ψ̃−1 =
√
1− cos2 ψ−1 =

√
1− µ2 sin2 θ̃−1 −

√
1− µ2 sin2(pi2 − θ0)

=
√
1− µ2 cos2 θ0 =

√
1− µ2 + µ2 sin2 θ0

=
√
1− µ2 + sin2 ψ0.

Thus setting

(5.9) u−1 = sinψ−1

with u0 as in (5.5),

(5.10) u−1 =
√
1− µ2 + u20

provided ũ−1 < 1.
On the face of it this suggests that for each pair (θ1, θ̃1), the pair (

π
2 − θ1,

π
2 − θ̃1)

can exist and a further two angles can be defined via (5.6) and (5.10). However, G is
defined by

(5.11) G(u) =
√
µ2 − 1 + u2

so that (5.6) is u1 = G(u0), then

(5.12) G−1(u) =
√
1− µ2 + u2

and so (5.10) is u−1 = G−1(u0). Thus given u0 we can generate new angles by
considering the forwards and backwards iterates of G, i.e.

(5.13) G = {uk ∈ [0, 1] | uk = Gk−1(u0), k ∈ Z}.
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Each element of G generates a pair of new angles, i.e. u0 generates (θ0, θ̃0), u1 (if
it exists) generates (π2 − θ0, θ1), u−1 generates (π2 − θ̃0, θ−1) and so on. Thus if the
cardinality of G is g < ∞ then the number of possible angles of a ray with incidence
angle θ1 is

(5.14) 2 + 2g

as the first determines two angles, whilst the subsequent iterations adds a couple more
until the last possible case, where the corresponding π

2 − θn and π
2 − θ−m need to be

included.

If µ > 1 then G is monotonic increasing and G(u) > u so it has no fixed points
and (uk) is a strictly increasing sequence. Moreover by direct calculation

(5.15) Gn(0) =
√
n(µ2 − 1)

and so Gn(0) ≤ 1 provided µ2 ≤ (n + 1)/n. Let µn =
√

n+1
n and note µ1 =

√
2. If

µ > µ1 then g = 1 and there are four angles possible. If µn < µ < µn−1, g ≤ n and
so the maximum number of angles that can be generated is 2n + 2. As µ → 1from
above more and more possible angles become possible, converging onto solutions with
more and more angles close to zero – in other words the limiting solution rays are
asymptotically straight (horizontal or vertical).

6. A factorized return map. Given a ray which is not a pure reflection incident
on the face of a white (higher refractive index) square from inside the square at
(x, θ), Lemmas 3.1 and 4.1 show how to determine the new coordinates (x′, θ′) of
the refracted or reflected ray at the next incidence on a face from within a white
square. The lemmas hold only for positive angles of incidence. The equivalent results
for negative angles can be obtained using symmetry: let S(x, θ) = (1− x,−θ) then if
(x, θ) ∈ [0, 1)× [0, π2 ) let U(x, θ) denote the pair (x′, θ′) of Lemmas 3.1 and 4.1. Then
the full return map from faces to faces of the square can be defined using symmetry:

(6.1) T (x, θ) =

{
U(x, θ) if θ ≥ 0

SUS(x, θ) if θ < 0.

To simplify further we can use the symmetry S to construct a map from positive
angles to positive angles: if U(x, θ) = (x′, θ′) for θ > 0 then define

(6.2) F (x, θ) =

{
U(x, θ) if θ′ ≥ 0

SU(x, θ) if θ′ < 0.

Then F : [0, 1)× [0, π2 ) → [0, 1]× [0, π2 ] (and we are ignoring rays that go through cor-
ners) and a tiresome exercise in induction shows that F k(x, θ) ∈ {T k(x, θ), ST k(xθ)}
for rays avoiding corners. In other words the map (6.2) encapsulates the dynamics of
successive outgoing intersections with the boundary of the square up to the symmetry
S.

The reflections (3.1) already map positive angles to positive angles and the new
map (6.2) changes the rules of two of the four refractions of Lemma 4.1 which become,
using the abbreviation DD for ‘down-down’, DL for ‘down-left’ etc and adding RR
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for the reflection of Lemma 3.1:

(6.3)

DD x′ = x− tanψ − tan θ θ′ = θ
DL x′ = 1− (x− tanψ)/ tan θ θ′ = π

2 − θ

LD x′ = 1− (1− (x/ tanψ))/ tan θ̃ θ′ = π
2 − θ̃

LL x′ = 1− tan θ̃ − (x/ tanψ) θ′ = θ̃
RR x′ = 1− (x/ tan θ) θ′ = π

2 − θ

with ψ and θ̃ defined in (4.1) and (4.2). These five maps have their domains in
different parts of the phase space. For DD the map is defined on

(6.4) DD = {(x, θ) | tanψ + tan θ < x < 1, 0 < θ < θ̂}

where if ψ̂ is defined in terms of θ̂ via (4.1), i.e. ψ̂ is the refracted ray in B if the

angle of incidence from W is θ̂, then

(6.5) tan ψ̂ + tan θ̂ = 1.

For DL

(6.6) DL = {(x, θ) | tanψ < x < min(1, tanψ + tan θ), 0 < θ < θcc},

where θcc is the value at which the corresponding refracted angle, ψcc, satisfies
tanψcc = 1, i.e.

(6.7) θcc = sin−1(1/(µ
√
2)), ψcc =

π

4
, θ̃cc = θcc.

The latter follows because if the refracted angle is π
4 an then this ray hits a side of

the square it does so with angle π
2 − π

4 = π
4 and hence θ̃ is equal to θ in this case. At

x = 1, the values of θ for DL lie between θ̂ and θcc and so if θ ∈ (θ̂, θcc) the minimum
in the definition of DL is 1, and below this range it is the other expression.

For LD

(6.8) LD = {(x, θ) | (1− tan θ̃) tanψ < x < min(1, tanψ), θ′◦ < θ < θ◦}

where θ′◦ = 0 if µ ≥
√
2 and µ sin θ′◦ =

√
1− µ2

2 if 1 < µ <
√
2, i.e. tan θ̃′◦ = 1; θ◦ is

defined by

(6.9) (1− tan θ̃◦) tanψ◦ = 1;

and ψ◦ and θ̃◦ are defined from θ◦ by (4.1) and (4.2). The minimum in (6.8) equals
1 in (θcc, θ◦) and tanψ below this interval.

For LL the domain is

(6.10) LL = {(x, θ) | 0 < x < min(1, (1− tan θ̃) tanψ), 0 < θ < θc}

and splits up into two regions naturally: if 0 < θ < θ◦ it is a triangular region with
x < (1− tan θ̃) tanψ whilst if θ◦ < θ < θc it is rectangular with 0 < x < 1.

Finally the reflected domain RR containing only those intersections that are not
pure reflections is defined by

(6.11) RR = {(x, θ) | 0 < x < 1, max(θc,
π

2
− θc) < θ <

π

2
}.
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The image of each of these regions is not hard to calculate, but the details are
not needed in the analysis below so we will not go further into this description.

Note that the return maps of (6.2) have been obtained by factorizing out the
symmetries of the chessboard generated by rotations through π

2 and reflections in half
integer horizontal and vertical lines and so the interpretation of solutions in terms
of directions travelled and their ‘true’ positions is not transparently obvious from
solutions of the factorized map, on the other hand the map is considerably easier to
analyze than the full map.

7. Induced maps for µ >
√
2. If µ >

√
2 then by Theorem 5.1 each orbit

generates at most four incidence angles, and so the induced map (6.3) for an initial
condition (·, θ) is described by a one-dimensional map with discontinuities obtained
by combining the maps for the four different possible angles together.

In this case the return map is (6.3) if those angles that give the classic billiards
of pure reflections are ignored. Moreover, without loss of generality the initial angle
θ may be chosen so that the four possible angles are

(7.1) θ < θ̃ ≤ θc <
π

2
− θ̃ ≤ π

2
− θ.

and we will only consider the general case where inequality does not hold here. To
convert the entire map to a map of the interval identify the interval (0, 1) with
{(x, ϕ) | ϕ = θ}, the interval (1, 2) with {(x, ϕ) | ϕ = θ̃}, the interval (2, 3) with
{(x, ϕ) | ϕ = π

2 − θ̃} and (3, 4) with {(x, ϕ) | ϕ = π
2 − θ}. Then (6.3) induces a

one dimensional map D with discontinuities on the interval [0, 4] where (choosing the
easier induced maps first):

(7.2)
D(x) = 1− (x− 3)/ tan(π2 − θ)

= 1− (x− 3) tan θ if x ∈ [3, 4]

since the initial angle is π
2 − θ by the identification above, and the image has angle

π
2 − (π2 − θ) = θ. Similarly

(7.3) D(x) = 2− (x− 2) tan θ̃ if x ∈ [2, 3]

On [0, 1] and [1, 2] the situation is more complicated as, at first glance, any one of four
maps might be applied, depending on the values of θ and θ̃ and how they intersect the
different regions DD, DL, LD and LL, and the appropriate shifts need to be made
to ensure that the images lie in the correct intervals. Thus,

(7.4) D(x) =


x− tanψ − tan θ if x ∈ (tanψ + tan θ, 1) (DD)
4− (x− tanψ) cot θ if x ∈ (tanψ, tanψ + tan θ) (DL)

3− (1− x cotψ) cot θ̃ if x ∈ ((1− tan θ̃) tanψ, tanψ) (LD)

2− tan θ̃ − x cotψ if x ∈ (0, (1− tan θ̃) tanψ) (LL)

where the shifts have been chosen to ensure that the images lie in the intervals with
the appropriate angle variable consistent with (6.3). In the case sin θ > 1

µ
√
2
the

region DD is empty and the right hand end-point of the range of DL is x = 1. This
latter case occurs if tan θ + tanψ > 1, i.e. if θ > θ̂ (cf. previous sections).

If x ∈ [1, 2], the situation is similar, with the roles of θ and θ̃ reversed and
the refracted angle corresponding to θ̃ is π

2 − ψ. However, tanψ < 1 as µ >
√
2,
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tan ψ̃ = cotψ > 1 and hence the conditions for DD and DL are never satisfied.
Moreover, the equivalent of the map LL in (1, 2) is

1− tan θ − (x− 1) tanψ

and the boundary of and LL and LD is the point at which this takes the value zero
(if this exists). But if 1− tan θ− tanψ > 0, i.e. θ < θ̂ defined in (6.5) there is no zero
in (1, 2) and the only branch of the map that can be applied is LL, so

(7.5) D(x) = 1− tan θ − (x− 1) tanψ if x ∈ (1, 2). (LL)

On the other hand, if θ > θ̂ then there is a zero at x′ where (x′−1) tanψ = 1−tan θ
and then

(7.6) D(x) =

{
1− tan θ − (x− 1) tanψ if x ∈ (1, x′) (LL)
4− (1− (x− 1) tanψ) cot θ if x ∈ (x′, 2). (LD)

This return map can, fortunately, be simplified further, but, unfortunately, there
are two cases that need to be considered separately.

7.1. Case A. If 0 < θ < θ̂ where tan θ̂ + tan ψ̂ = 1, see (6.5), the return map
has seven branches defined by (7.2), (7.3), all four branches of (7.4) and (7.5). We
will refer to this as case A.

For convenience define

x0 = 0, x1 = (1− tan θ̃) tanψ, x2 = tanψ, x3 = tanψ + tan θ, x4 = 1,

and

In = (xn−1, xn), n = 1, . . . , 4.

If the interval [0, 1) is divided into subintervals Ik then an interval exchange map [18]
is a bijection that permutes the intervals. These have some beautiful properties (see
below) and although the map D defined above is not an interval exchange map, it
is possible to use iterates of D to create interval exchange maps. Interval exchange
maps have been studied in many contexts since the mid-1970s [2, 10, 16] and this will
make the analysis of the induced map H relatively simple, though there remain some
problems in interpreting results for H in terms of the dynamics of the original map on
surfaces. The connection with interval exchange maps suggests that there are much
deeper ways of understanding the geometry of light rays through complicated media
involving Teichmüller spaces and foliations on surfaces [13, 17] that we return to in

the conclusion. Recall the definition of θ̂ from (6.5).

Proposition 7.1. Suppose that 0 < θ < θ̂ and let (In), n = 1, . . . , 4, and D be
as above. Then the induced map

(7.7) H(x) =


D2(x) if x ∈ I1
D3(x) if x ∈ I2
D2(x) if x ∈ I3
D(x) if x ∈ I4

extended to [0, 1) using continuity from the right is an interval exchange map.
Proof: Consider the map on each of the intervals Ik as shown in Fig 5. On I4,

the first equation of (7.4) holds and

(7.8) D(I4) = (0, 1− tanψ − tan θ).
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Fig. 5. Induced map H with µ = 1.5 and θ = 0.15.

Now note that using (7.2), D(3, 4) = (1− tan θ, 1), so if x ∈ I3, i.e. tanψ < x <
tanψ + tan θ then the map labelled DL in (7.4) is applied and the left hand limit
(x = tanψ) is 4 and the right hand limit is 3, hence the image of this region is the
whole of (3, 4) and so with a little more calculation the second iterate is

(7.9) D2(x) = x+ 1− tanψ − tan θ, x ∈ (tanψ, tanψ + tan θ).

and at the left end-point D2 takes the value 1 − tan θ and at the right end-point it
takes the value 1. Thus

(7.10) D2(I3) = (1− tan θ, 1).

Now consider x ∈ I2, with D defined by the third equation of (7.4) labelled LD.
Thus D(I2) = (2, 3) and D has slope cotψ cot θ̃. D2(I2) = D(2, 3) where D is defined
by (7.3) and has slope − tan θ̃, so D2 has slope − cotψ and D2(I2) ⊆ (1, 2), indeed,
a quick calculations shows D2(I2) = (2− tan θ̃, 2). In the interval (1, 2) D is defined
by the map (7.5) (with slope tanψ) and so the image lies in (0, 1) and D3 has slope
1. Moreover,

(7.11) D3(I2) = (1− tan θ − tanψ, 1− tan θ − tanψ + tan θ̃ tanψ)

and, putting three small calculations together, if x ∈ I2 then

(7.12) D3(x) = x+ 1− 2 tanψ − tan θ + tan θ̃ tanψ.

Finally consider x ∈ I1 which is the region labelled LL in (7.4), so the image of
the left end-point (x = 0) is 2− tan θ̃ and the image of the right end-point is 1, whilst
the slope of the map is cotψ. The image is therefore in (1, 2) where (7.5) applies and
so the second iterate of the right hand end point of LL in(0, 1) is the image of x = 1
under (7.5) which is 1− tan θ, whilst the second iterate of the left hand end point is
1 − tan θ − tanψ + tan θ̃ tanψ as in the previous paragraph. The slope of D2 is the
product of cotψ (from LL in (7.4)) and tanψ from (7.5), i.e. it is 1 again and

(7.13) D2(I1) = (1− tan θ − tanψ + tan θ̃ tanψ, 1− tan θ)

and if x ∈ I1 then

(7.14) D2(x) = x+ 1− tan θ − (1− tan θ̃) tanψ.
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Thus on each interval Ik H(x) is a translation, and since the images do not intersect
H is an interval exchange map.

We will return to the details of the dynamics of H in section 8.

7.2. Case B. If θ̂ < θ < θcc, where θ̂ and θcc are defined in (6.5) and (6.7), the
return map has seven branches defined by (7.2), (7.3), all four branches of (7.4) and
(7.5). We will refer to this as case B. In this case the return map is defined by (7.2),
(7.3), the latter three branches of (7.4) and the two branches of (7.6), separated by
x′ where (x′ − 1) tanψ = 1− tan θ. Define

(7.15) y0 = 0, y1 = (1− tan θ̃) tanψ, y2 = Y, y3 = tanψ, y4 = 1.

We aim to choose Y so that an appropriately defined induced map is an interval
exchange map on the four intervals Jn = [yn − 1, yn), n = 1, . . . , 4..

Proposition 7.2. Suppose that θ̂ < θ < θcc and let (Jn), n = 1, . . . , 4, and D be
as above. If

(7.16) Y = tanψ(1− tan θ̃) + tan θ + tanψ − 1

then the induced map

(7.17) K(x) =


D2(x) if x ∈ J1
D4(x) if x ∈ J2
D3(x) if x ∈ J3
D2(x) if x ∈ J4

extended to [0, 1) using continuity from the right is an interval exchange map.
Proof: First note that D(0) = 2 − tan θ̃ and we claim that D(0) < x′, or equiv-

alently (D(0)− 1) tanψ < (x′ − 1) tanψ. This is equivalent to tanψ < 1−tan θ
1−tan θ̃

(since

θ̃ < π
4 ). But by definition θ < θ̃ < π

4 the ratio on the right hand side is clearly
greater than one and hence this inequality is automatically satisfied and the condi-
tion D(0) < x′ is verified.

This condition implies that D(J1) = (1, 2− tan θ̃) ⊂ (1, x′). As before, D(2, 3) =
(2 − tan θ̃, 2) and so this contains x′, and by (7.3) the preimage of x′, y′ ∈ (2, 3),
satisfies

y′ − 2 = (2− x′) cot θ̃

and again as before, D(J2) = (2, 3) and the preimage of y′ is Y – the point to be
defined in (7.15) where

3− (1− Y cotψ) cot θ̃ = 2 + (2− x′) cot θ̃

or

tan θ̃ − (1− Y cotψ) = 1− (x′ − 1).

Multiplying through by tanψ and substitute for (x′ − 1):

tanψ tan θ̃ + Y = 2 tanψ − (1− tan θ)

so Y is as defined in the statement of the proposition, (7.16).
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With these preliminaries the calculations are almost identical to those in Case A,
except the induced map is (7.17): in all cases the slope of the induced map is one
(− cotψ×− tanψ in J1, cotψ tan θ̃×− tan θ̃×tanψ cot θ×− tan θ in J2, cotψ tan θ̃×
− tan θ̃×− tanψ in J3 and − cot θ×− tan θ in J4, and images do not overlap, hence
K is an interval exchange map. With a bit more work that we leave to the reader the
linages of J1 to J4 are rearranged into the order

(7.18) K(J3) K(J1) K(J4) K(J2)

which, as we shall see shortly, is enough together with the lengths of the intervals Jn
to specify the map completely.

8. The induced map H and interval exchange maps: case A. As described
in section 7.1, an interval exchange map does exactly what its name suggests. The
interval [0, 1) is partitioned into N > 1 subintervals In = [xn−1, xn), n = 1, . . . , N ,
with x0 = 0 and xN = 1. An interval exchange map is a bijection of [0, 1) which acts
on each interval In as a translation x + αn, for some translation vector αn ∈ RN .
This means that the map simply permutes the order of the intervals. In the case of H
(7.7), the intervals I1 to I4 are in ascending order (I1 is to the left of I2 etc.) whilst
their images lie in the order H(I4), H(I2), H(I1), H(I3), so the monodromy invariant
of H is the permutation

(8.1) πM = ( 4 2 1 3 )

describing the permutation of the order of the original partition to its image. A
monodromy invariant π is reducible if there exists k < N such that π(r) ≤ k for all
r ≤ k, otherwise it is irreducible. Clearly (8.1) is irreducible. Rather than use the
translation vector, it is standard to define the interval exchange map in terms of the
length vector λ ∈ RN , where λn = xn − xn−1 [18]. In the case of H, where N = 4,

(8.2) λ = ((1− tan θ̃) tanψ, tan θ̃ tanψ, tan θ, 1− tan θ − tanψ).

A length vector is rationally dependent if there exists b ∈ QN , b ̸= 0 such that

(8.3)
N∑
1

bkλk = 0.

Note that since the sum of the λk equals to one, one of the components, λr say, can be
eliminated and so (8.3) is equivalent to the existence of r ∈ {1, . . . , N} and c ∈ QN−1,
c ̸= 0, such that

(8.4)
∑
k ̸=r

ckλk = 1.

Recall that by definition, 0 < tan−1 θ < 1
µ
√
2
and µ2 > 2, so as θ varies we may expect

there to be many values at which λ is rationally dependent, though typical values of
θ will be rationally independent. Finally we say that an interval exchange map f
satisfies the Keane condition if for all n ∈ {0, . . . , N − 1} and r ≥ 1

(8.5) fr(xi) /∈ {x1, . . . xN−1}.

Note that if p = π−1
M (1) then f(xp−1) = x0 = 0 (in our case, H(x3) = 0), which

explains why x0 is not included in the right hand side of (8.5).
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A map f : I → I is minimal if every orbit is dense in I. If I is an interval this
implies that f has no periodic orbits. The following is one of the major results for
interval exchange maps, see [18] for example.

Theorem 8.1. Suppose f : [0, 1) → [0, 1) is an interval exchange map with
monodromy invariant πM and length vector λ.
(a) If πM is irreducible and λ is not rationally dependent then f satisfies the Keane
condition (8.5).
(b) f is minimal if and only if f satisfies the Keane condition.

This also implies that almost all interval exchange maps are minimal [18], although
of course our maps H are not generic so this is harder to apply directly. Indeed, from
(8.2) and (8.4) λ is rationally dependent if there exist rational q1, q2 and q3 at least
one of which is non-zero such that

(8.6) q1(1− tan θ̃) tanψ + q2 tan θ̃ tanψ + q3 tan θ = 1

or equivalently rationals c1, c2 and c3 at least one of which is non-zero such that
c1 tanψ + c2 tan θ̃ tanψ + c3 tan θ = 1. Using the parametrization α = tanψ this
becomes

(8.7) c1α+
c2α√

µ2 − 1 + µ2α2
+

c3α√
(µ2 − 1)α2 + µ2

= 1.

This will enable us to prove the following lemma.

Lemma 8.2. If µ >
√
2 then for all but a countable set of θ ∈ (0, θ̂) all orbits of

(7.7) are minimal.

Proof: By Theorem 8.1 we need only show that the values of α which satisfy (8.7)
for rational ck not all identically zero is countable.

Fix µ >
√
2 and let p1(α) = µ2 − 1 + µ2α2 and p2(α) = (µ2 − 1)α2 + µ2. Then

by basic manipulation, if α satisfies (8.7) then it also satisfies

(8.8) −4c22c
2
3α

4p1(α)p2(α) +
[
(1− c1α)

2p1p2 − c2α
2p2 − c3α

2p1
]2

= 0.

For each of the countable set of rationals (c1, c2, c3) ̸= (0, 0, 0), the right hand side
of (8.8) is a polynomial in α of degree twelve. Moreover, the term independent of
α is µ2(µ2 − 1) ̸= 0, and hence for each µ >

√
2 there are at most twelve solutions.

Thus the set of rationally dependent solutions is a countable union of finite sets, and
is hence countable (and measure zero).

9. The induced map K and interval exchange maps: case B. From (7.18)
the monodromy invariant ofK in (7.17) is πM = ( 3 1 4 2 ) which is again irreducible.
Using (7.15) and (7.16) the length vector λ has

(9.1) λ1 = tanψ(1− tan θ̃), λ2 = 1− tan θ − tanψ, λ4 = 1− tanψ,

and λ3 = 1−λ1−λ2−λ4. Hence, with suitable rescaling, the length vector is rationally
dependent if and only if there exist rationals d1, d2 and d3 not all zero such that

d1 tanψ + d2 tan θ + d3 tanψ tan θ̃ = 1.

This is precisely the same three fundamental quantities, tanψ, tan θ and tanψ tan θ̃,
that appeared in the previous section (8.6) and hence by the same argument for
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each µ >
√
2 these are rationally independent except on a countable set of θ. This

completes the minimality result:
Lemma 9.1. If µ >

√
2 then for all but a countable set of θ ∈ (θ̂, θcc) all orbits

of (7.7) are minimal.
Putting Lemmas 8.2 and 9.1 together yields the result stated in the introduction:

if µ >
√
2 then except for a countable set of incidence angles all rays that are refracted

at some stage have dense intersection with the boundary modulo the identification
by rotations and integer translations through multiples of 2 and rotations by π

2 . Of
course, this implies that almost all rays are neither periodic nor periodic modulo
integer translations and rotations by π

2 , making it the analogue of the dichotomy of
rigid rotations between irrational rotations (all orbits dense) and rational rotations
(all orbits periodic).

10. The behaviour of orbits. In this section we will show how the induced
map can be used to explain qualitative features of rays. With irrational rotations,
nearby rationals give clues about the dynamics: for example if x → x + α (mod 1)
with α = 1

2 + ϵ is irrational and |ϵ| ≪ 1 then although the motion is dense on the
circle it may be more helpful to know that the motion is close to periodic of period
two, with a slow drift around the circle.

To illustrate the equivalent phenomenon for the light rays studied here we start
by considering the special case

(10.1) tan θ + tanψ = 1
4 , µ >

√
2

which is not covered by the results of previous sections as it does not satisfy the Keane
condition. To see this note that since tan θ+tanψ < 1 and µ >

√
2 (10.1) corresponds

to case A of previous sections and the induced map is H defined in (7.7). Putting
(10.1) and (7.7) together shows that H(x) = x− 1

4 if x ∈ [ 14 , 1) = I4 and then (7.11),

(7.12), (7.7) and (10.1) with x1 = (1− tan θ̃) tanψ imply that H(x1) =
3
4 ∈ I4. Thus

two iterations of H(x) = x − 1
4 gives H3(x1) = 1

4 = x3, which violates the Keane
condition (8.5).

An elementary calculation shows that this occurs if tanψ = α is the root of the
quartic equation

(10.2) α4 − 2kα3 + (1 + k2)α2 − 2kµ2

µ2−1α+ k2 µ2

µ2−1 = 0

with k = 1
4 . Equations (7.7) and (10.1) imply that H(x) = x+ 3

4 if x ∈ [tanψ, 14 ) = I3.
We have already established that H(x) = x− 1

4 if x ∈ I4. Hence all points in [tanψ, 14 )
map to [ 34 , 1) and after three iterations in I4 arrive back in x < 1

4 at their starting
point, i.e. they are periodic with period four. A similar calculation shows that H4

maps (0, tanψ) into itself as a rigid rotation with rotation number tan θ̃. Since θ̃ varies
continuously with µ this implies that for almost all µ the motion is dense restricted to
appropriate intervals (irrational rotation number) and otherwise all orbits are periodic
(rational rotation number).

Figure 6 shows three light rays computed numerically with (10.1) and µ = 1.5.
For this value numerical solution of (10.2) gives

(10.3)
α = tanψ ≈ 0.1503743, ψ ≈ 0.1492560,

θ ≈ 0.0992981, tan θ̃ ≈ 0.8767620.

In Figure 6a the motion looks periodic (modulo the symmetry of the square lattice)
as we would expect from the initial value x0 ∈ I3. The dynamics of the induced map
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Fig. 6. Light rays with µ = 1.5 and y0 = 0, represented as in Figure 1. (a) x0 = 0.2;
θ0 = 0.0992981; 100 incidence events; (b) x0 = 0.1; θ0 = 0.0992981; 300 incidence events; x0 = 0.1;
θ0 = 0.1; 5000 incidence events.

is therefore periodic with one point in I3 and one in I4. In I4, θ does not change
and the motion corresponds to the behaviour labelled DD (Down-Down), i.e. the ray
simply moves to the next incident plane in the direction it is moving (and this is
repeated three times). In I3, H(x) = D2(x) with the first iteration DL (Down-Left,
or Down-Right if θ is negative) indicating a change of direction and |θ| → π

2 − |θ|,
and this is followed by a reflection which changes the direction again and restores
the angle to −θ. This explains the zig-zag motion observed, with net motion in one
of the four directions perpendicular to the incidence planes, depending on the initial
direction.

Figure 6b shows a ray with x0 = 0.1 ∈ (0, tanψ) – here every fourth iteration
of H involves either LL or LD, and so the dynamics is more complicated, but easy
enough to explain by interpreting the iteration (we do not do this for reasons of space).
Finally Figure 6c shows a ray with θ = 0.1 initially, showing long periods of motion
close to the periodic orbit of Figure 6a, followed by circulation similar to Figure 6b.

11. Conclusion. Although Snell’s Law (Descartes’ Law) has been discussed in
many contexts, we have been unable to find any description of the dynamics of rays in
complicated media. This paper makes a first attempt to show the variety of behaviour
that is possible in extended media. A chessboard configuration of materials was chosen
for convenience, though other configurations would be interesting to pursue. The
result is a description of the rays from a purely geometric point of view; a description
that has much in common with the study of billiards.

For the chessboard we have established that the set of angles of incidence is finite,
and in the simplest case we define an induced map that is an interval exchange map.
This seems a particularly natural description given the reversible nature of the light
rays and we conjecture that this is much more general than the particular context
described here. This enables us to show that for all but a finite angles of incidence
the ray is dense on the incident plane (modulo the symmetries of the chessboard).

For one of the special cases where the rays are not dense on the incident plane we
describe some features of solutions; for example the existence of well-defined directions
of motion. It would be interesting to determine whether this can be extended to other
solutions and more general directions.

The laws of refraction and reflection can also be seen as determining paths that
minimize the time of passage between two points. Thus the finite angles results show
an interesting feature of solutions to these problems. This is another area that could
be taken further.

This paper is a first step. We believe the refraction/reflection dynamics provides
an interesting generalization of billiards, whilst the use of more complicated arrange-
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ments of materials has potential application in the study of light in complex media –
a topic of growing interest in the physics community.
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