
LATTICE 3-POLYTOPES WITH FEW LATTICE POINTS
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Abstract. We extend White’s classification of empty tetrahedra to the com-

plete classification of lattice 3-polytopes with five lattice points, showing that,

apart from infinitely many of width one, there are exactly nine equivalence
classes of them with width two and none of larger width. We also prove that,

for each n ∈ N, there is only a finite number of (classes of) lattice 3-polytopes

with n lattice points and of width larger than one. This implies that extend-
ing the present classification to larger sizes makes sense, which is the topic of

subsequent papers of ours.
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1. Introduction

A lattice d-polytope is the convex hull of a finite set of points in Zd (or in a d-
dimensional lattice) containing d+1 affinely independent points. We call #(P ∩Zd)
the size of P . Two lattice polytopes P and Q are said Z-equivalent or unimodularly
equivalent if there is an affine map t : Rd → Rd with t(Zd) = Zd and t(P ) = Q.

Lattice 3-polytopes of the smallest possible size are empty tetrahedra, classified
by White some 50 years ago (see Theorem 2.4). Our main result is the next case:

Theorem 1.1. Every lattice 3-polytope of size 5 is Z-equivalent to one listed in
Table 1. The table is irredundant: polytopes in different rows, or polytopes obtained
for different choices of parameters within each row, are not Z-equivalent.

In particular, apart from infinitely many of width one, there are exactly nine
(classes of) 3-polytopes of size 5 and width two, and none of larger width.

Table 1 includes, apart from the lattice points in a representative for each class,
the following invariants of the class (more details about them are in Section 2.1):

2000 Mathematics Subject Classification. 52B10, 52B20.

Key words and phrases. Lattice polytopes, unimodular equivalence, lattice points, finiteness.
Supported by grants MTM2011-22792 (both authors); BES-2012-058920 of the Spanish Min-

istry of Science and the European Science Foundation within the ACAT Project (M. Blanco);
Alexander von Humboldt Foundation (F. Santos).

1

ar
X

iv
:1

40
9.

67
01

v3
  [

m
at

h.
C

O
] 

 1
2 

M
ay

 2
01

6
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• Let f : Rd → R be an affine functional such that f(Zd) ⊂ Z. The integer
maxx∈P f(x)−minx∈P f(x) is called the width of P with respect to f . The
minimum width among all possible (non-constant) choices of f is the width
of P . Hence, P has width one if its vertices lie in two consecutive parallel
hyperplanes of the lattice.
• Remember that a set A of d + 2 points affinely spanning Rd have a unique

(modulo a scalar factor) affine dependence. The signature of a d-polytope of
size d+2 is (i, j) if this dependence has i positive and j negative coefficients.
Signatures (i, j) and (j, i) are the same, and the five possible signatures of
five points in R3 are (4, 1), (3, 2), (2, 2), (3, 1) and (2, 1).
• The volume vector of a 3-polytope of size five is a vector in Z5 recording

the volumes of the (perhaps degenerate) tetrahedra spanned by each subset
of four of the five points. All volumes in this paper are “normalized to the
lattice”: the volume of the convex hull of an affine lattice basis equals one,
and the volume of every lattice polytope is an integer. We give volume vec-
tors a sign convention that makes them have as many positive and negative
entries as given by the signature.

Sign. Volume vector Width Representative

(2, 2) (−1, 1, 1,−1, 0) 1 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0),(0, 0, 1)

(2, 1)

(−2q, q, 0, q, 0)
0 ≤ p ≤ q

2
,

gcd(p, q) = 1

1 (0, 0, 0), (1, 0, 0), (0, 0, 1), (−1, 0, 0),(p, q, 1)

(3, 2)
(−a− b, a, b, 1,−1)

0 < a ≤ b,

gcd(a, b) = 1

1 (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1),(a, b, 1)

(3, 1)
(−3, 1, 1, 1, 0)

(−9, 3, 3, 3, 0)

1

2

(0, 0, 0), (1, 0, 0), (0, 1, 0), (−1,−1, 0),(0, 0, 1)

(0, 0, 0), (1, 0, 0), (0, 1, 0), (−1,−1, 0),(1, 2, 3)

(−4, 1, 1, 1, 1) 2 (0, 0, 0), (1, 0, 0), (0, 0, 1), (1, 1, 1),(−2,−1,−2)

(−5, 1, 1, 1, 2) 2 (0, 0, 0), (1, 0, 0), (0, 0, 1), (1, 2, 1),(−1,−1,−1)
(−7, 1, 1, 2, 3) 2 (0, 0, 0), (1, 0, 0), (0, 0, 1), (1, 3, 1),(−1,−2,−1)

(4, 1) (−11, 1, 3, 2, 5) 2 (0, 0, 0), (1, 0, 0), (0, 0, 1), (2, 5, 1),(−1,−2,−1)

(−13, 3, 4, 1, 5) 2 (0, 0, 0), (1, 0, 0), (0, 0, 1), (2, 5, 1),(−1,−1,−1)
(−17, 3, 5, 2, 7) 2 (0, 0, 0), (1, 0, 0), (0, 0, 1), (2, 7, 1),(−1,−2,−1)

(−19, 5, 4, 3, 7) 2 (0, 0, 0), (1, 0, 0), (0, 0, 1), (3, 7, 1),(−2,−3,−1)
(−20, 5, 5, 5, 5) 2 (0, 0, 0), (1, 0, 0), (0, 0, 1), (2, 5, 1),(−3,−5,−2)

Table 1. Complete classification of lattice 3-polytopes of size 5.

After some preliminaries on signatures, volume vectors, and empty tetrahedra
that we put together in Section 2, we devote Section 3 to proving the following
structural result for 3-polytopes of size five.

Theorem 1.2 (Theorems 3.3 and 3.4.). Let P be a lattice 3-polytope of size 5.

(1) If P has signature (2, 2), (2, 1) or (3, 2), then it has width one.
(2) If P has signature (3, 1) or (4, 1), then there exists an affine integer func-

tional with values (1, 1, 0, 0, h) in the lattice points of P , where h ∈ {−1,−2}.
Once we have this, the proof of Theorem 1.1 goes as follows: Polytopes of width

one consist of two subconfigurations of sizes n1 and n2 (n1 + n2 = 5) placed on
consecutive parallel lattice planes. The possibilities for the individual subconfigu-
rations are few and easy to find out, so the only complication lies in the possible
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“rotations” (by which we mean elements of SL(2,Z)) of one with respect to the
other. We work out the complete and irredundant list of possibilities in Section 4.1.
For the rest of polytopes of size five, Theorem 1.2 allows for a similar treatment
except the subconfigurations (of sizes two, two, and one) now lie in three, instead
of two, parallel hyperplanes. This complicates matters, but we still obtain their full
classification through a case by case study in Sections 4.2, 4.3 and 4.4.

Let us mention that other approaches to the classification of lattice 3-polytopes,
some overlapping with ours, have been undertaken:

• Polytopes of signatures (2, 2) and (3, 2) have width 1 by the following result
of Howe [16, Thm. 1.3]: Every lattice 3-polytope with no lattice points other
than its vertices has width 1. However, the classification of them included
in Table 1 is, as far as we know, new.
• Polytopes of signature (4, 1), which are the same as “terminal tetrahe-

dra” or “clean tetrahedra with a single interior point”, were classified by
Kasprzyk [10] and Reznick [14, Thm. 7], who obtained the same list as ours.
In this sense, Sections 4.3 and 4.4 are only reworking the known classifi-
cations. Still, we prefer to include them for completeness and because our
methods differ from the ones in those papers.
• After the first version of our paper was available, Averkov et al. [2] proved

that the complete list of maximal hollow 3-polytopes consists only of the
12 found previously in [1]. A priori, one could find all 3-polytopes of size
5 and of signature different from (4, 1) by an exhaustive search among the
subpolytopes of these twelve, together with those that project to the second
dilation of a unimodular triangle.

That there is an infinite number of Z-equivalence classes of lattice 3-polytopes
for every size n ≥ 4 has been previously observed (e.g. in [12]). This contrasts
with the situation in dimension two, where Pick’s Theorem easily implies finitely
many classes for each fixed size. Still, both our Theorem 1.1 and White’s classical
classification of 3-polytopes of size four (see Theorem 2.4) seem to indicate that
this infiniteness happens only in width one. In Section 5 we prove this for every n:

Theorem 1.3 (Corollary 5.1). For each n ≥ 4, there exist finitely many lattice
3-polytopes of width greater than one and size n.

This opens the possibility of a complete classification of lattice 3-polytopes of
each fixed size: those of width one admit the same description and classification
as the one we use for size five (two subconfigurations in consecutive parallel lattice
planes) and those of width larger than one are a finite list.

The next case after the one in this paper, the full classification of lattice 3-
polytopes with six points, is undertaken in [5]. The techniques used here and in [5]
could in principle carried over to larger sizes, but the case studies and complications
involved would make them unpractical. Instead, in Section 5 we sketch a general
recursive method to algorithmically classify 3-polytopes of a certain size n and
width larger than one if the classification is known for size n − 1. The detailed
description and proof of correctness of this method will appear in [6], together with
an implementation giving the full classification up to n = 11.

Let us finish by mentioning that our motivation comes partially from the notion
of distinct pair-sums lattice polytopes (or dps polytopes, for short), defined as
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lattice polytopes in which all the pairwise sums a+ b, a, b ∈ P ∩Zd, are distinct [7].
They are also the lattice polytopes of Minkowski length equal to one, in the sense
of [3]. For example, d-polytopes of size d+ 2 are dps if and only if their signature is
neither (2, 2) nor (2, 1). Since dps d-polytopes cannot have two lattice points in the
same class modulo (2Z)d, they have size at most 2d. In particular, [6] contains the
full classification of the (finitely many) dps 3-polytopes of width larger than one.

Acknowledgment: We thank Bruce Reznick for pointing us to useful references
on the topic of this work.

2. Preliminaries on lattice 3-polytopes

We here review some concepts needed in the classification of lattice 3-polytopes.
All the contents are either known or their proofs can be considered routine.

2.1. Volume vectors. Since Z-equivalence preserves volume, the following is a
useful invariant:

Definition 2.1. Let A = {p1, p2, . . . , pn}, with n ≥ d + 1, be a finite set of lattice
points in Zd. The volume vector of A is the vector

w = (wi1...id+1
)1≤i1<···<id+1≤n ∈ Z( n

d+1)

where

(1) wi1...id+1
:= det

(
1 . . . 1
pi1 . . . pid+1

)
.

The definition of volume vector implicitly assumes a specific ordering of the n
points in A. When we say that the volume vector is Z-equivalence invariant, this
ordering (and the fact that the sign of each volume entry depends on the ordering)
has to be taken into account.

We now look at the converse question: if two point sets of the same size have the
same volume vector, are they necessarily Z-equivalent? The answer is almost yes:
the volume vector is a complete invariant for Z-equivalence when its gcd equals 1:

Proposition 2.2. Let A = {p1, . . . , pn} and B = {q1, . . . , qn} be d-dimensional
subsets of Zd and suppose they have the same volume vector w = (wI)

I∈( [n]
d+1)

with

respect to a given ordering. Then:

(1) There is a unique unimodular affine map t : Rd → Rd with t(A) = B
(respecting the order of points).

(2) If gcd
I∈( [n]

d+1)
(wI) = 1, then t is a Z-equivalence between A and B.

Proof. Without loss of generality we may assume that w1,...,d+1 6= 0. This means
that {p1, . . . , pd+1} and {q1, . . . , qd+1} both span Rd. Then there exists a unique
affine map t : Rd → Rd with t(pi) = qi for i ∈ {1, . . . , d + 1}. On the other hand,
both conv{p1, . . . , pd+1} and conv{q1, . . . , qd+1} have the same volume w1,...,d+1,
which implies that det(t) = 1. We claim that t(pi) = qi also for i > d + 1.

To show this, simply observe that for each point pi with i > d + 1 the affine
dependence on {p1, . . . , pd+1, pi} (which is encoded in the volume vector of A)
allows to write pi as an affine combination of {p1, . . . , pd+1}. Since t preserves
affine combinations, t(pi) = qi. This finishes the proof of part (1).

For part (2), let Λ(A),Λ(B) ≤ Zd be the affine sublattices spanned respectively
by A and B. Since t maps A to B, it maps Λ(A) to Λ(B). The index [Zd : Λ(A)]
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is the minimal volume (with respect to Zd) of a basis of Λ(A). Thus the indices of

both A and B divide wI for all I ∈
(

[n]
d+1

)
, and therefore they divide gcd(wI)I . In

particular, if gcd(wI)I = 1, then Λ(A) = Zd = Λ(B). This implies t maps Zd to
itself, so it is a Z-equivalence. �

From the volume vector of a point configuration A with n ≥ d + 1 points, we
can recover the volume vector of any subconfiguration.

Let us look at configurations with d + 2 points. Remember that if d + 2 points
{p1, . . . , pd+2} affinely span Rd then they have a unique (modulo a scalar factor)
affine dependence. The volume vector of d + 2 points encodes its dependence as
follows: let Ik = {1, . . . , d + 2} \ {k}

(2)

d+2∑
k=1

(−1)k−1 · wIk · pk = 0,

d+2∑
k=1

(−1)k−1 · wIk = 0.

The points with non-zero coefficient in this dependence form a circuit. The signature
of the circuit is the pair (i, j) if this dependence has i positive and j negative
coefficients. (See more details in [8]). We call signature of the d + 2 points the
signature of its (unique) circuit; (i, j) and (j, i) are the same signature.

Remark 2.3. For five points A = {p1, . . . , p5} ⊂ Rd, the signature (i, j) of A can
be (2, 1), (2, 2), (3, 2), (3, 1) or (4, 1), depicted in Figure 1.

(2, 1) (2, 2) (3, 2) (3, 1) (4, 1)

Figure 1. The five possible signatures (oriented matroids) of five
different points in R3. Black and white dots represent the positive
and negative parts of the circuit, respectively; crossed dots mark
points that are not in the circuit.

In this situation we modify our sign and order conventions for writing the volume
vector, in order to make the signature (and its correspondence to subsets of A) more
explicit. More precisely, we take as volume vector for five points p1, . . . , p5 the vector
(v1, v2, v3, v4, v5) where ∑

vipi = 0,
∑

vi = 0

is the unique affine dependence on A, normalized so that |vi| = vol(conv(A \ {i})).
In particular, this way the signature of A equals the number of positive and negative
entries in the volume vector. Put differently (see Equation (2)):

(v1, v2, v3, v4, v5) = (w2345, −w1345, w1245, −w1235, w1234)

where wijkl is as in Equation (1).
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2.2. Empty tetrahedra. Polytopes of dimension three and of size four—the small-
est possible—are called empty tetrahedra since they are lattice tetrahedra without
lattice points apart from their vertices. The analogue of Theorem 1.1 for them is
classical. Observe that it implies all empty tetrahedra to have width one:

Theorem 2.4 (Classification of empty tetrahedra, White 1964 [17]). Every empty
tetrahedron of volume q is unimodularly equivalent to

T (p, q) := conv{(0, 0, 0), (1, 0, 0), (0, 0, 1), (p, q, 1)},
for some p ∈ Z with gcd(p, q) = 1. Moreover, T (p, q) is Z-equivalent to T (p′, q) if
and only if p′ = ±p±1 (mod q).

We often need to check whether a given tetrahedron T is empty. Theorem 2.4
allows us to proceed as follows: first check that one particular facet of T is empty
(equivalently, “unimodular in the lattice plane containing it”), so that we can uni-
modularly map this facet to conv{(0, 0, 0), (1, 0, 0), (0, 1, 0)} and the fourth vertex
of the tetrahedron to (a, b, q). Then use the following lemma:

Lemma 2.5. The lattice tetrahedron T = conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (a, b, q)}
is empty in Z3 if, and only if, one of the following conditions holds:

(i) a ≡ 1 (mod q) and gcd(b, q) = 1.
(ii) b ≡ 1 (mod q) and gcd(a, q) = 1.

(iii) a + b ≡ 0 (mod q) and gcd(a, q) = 1.

Proof. By Theorem 2.4, T is empty if, and only if, all its edges are primitive and
its width equals one with respect to some pair of opposite edges. The first equation
in parts (i), (ii) and (iii) of the statement expresses width one, respectively, with
respect to the three pairs of opposite edges. It is complemented with a condition
expressing primitivity of the edges in each pair. �

For future reference we include the following statement which can be read as “no
vertex of an empty tetrahedron is more special than the others”.

Lemma 2.6. Let u be a vertex of the empty tetrahedron T (p, q), for some 1 ≤ p ≤ q,
with gcd(p, q) = 1. Then, there exists a Z-equivalence sending u to (0, 0, 0) and
mapping T (p, q) either to itself or to T (p′, q), where p′ ≡ p−1 mod q.

Proof. Recall that the vertices of T (p, q) are p0 = (0, 0, 0), p1 = (1, 0, 0), p2 =
(0, 0, 1) and p3 = (p, q, 1). Consider the following transformations ti, i ∈ {1, 2, 3}:

t1(x, y, z) =

 −1 0 p− 1
0 −1 q
0 0 1

 x
y
z

+

 1
0
0

 ,

t2(x, y, z) =

 p′ −pp′+1
q

0

q −q 0
0 0 −1

 x
y
z

+

 0
0
1

 ,

t3(x, y, z) =

 −p′ pp′−1
q

1− p′

−q p −q
0 0 −1

 x
y
z

+

 p′

q
1

 .

Each ti sends pi to p0; t1 maps T (p, q) to itself, while t2 and t3 map it to T (p′, q). �
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Remark 2.7. The transformation t1 in the proof (exchanging (0, 0, 0) ↔ (1, 0, 0)
and (0, 0, 1)↔ (p, q, 1)) is the only unimodular transformation, other than the iden-
tity, sending T (p, q) to itself for every p and q. The other 22 affine automorphisms
of T (p, q) are automorphisms of Z3 only for particular values of (p, q).

This means that the sentence “no vertex of an empty tetrahedron is more special
than the others” is not true if we fix a particular class T (p, q) ⊂ Z3 of simplices.
If we want to stay within a particular class T (p, q), and in this class p 6≡ p−1

(mod q), then the vertices (0, 0, 0) and (1, 0, 0) are in one orbit of the unimodular
automorphism group of T (p, q) and (0, 0, 1) and (p, q, 1) in another.

3. A structure theorem for 3-polytopes of size five

In this section we prove Theorems 3.3 and 3.4, the two parts of Theorem 1.2.

3.1. A convenient change of coordinates. When dealing with empty tetrahe-
dra it is often useful to make a change of coordinates so that instead of having a
tetrahedron of volume q with respect to Z3 we have a tetrahedron whose vertices
span Z3 as an affine lattice, but considered as a lattice polytope with respect to a
finer lattice. A similar transformation is used, for example, in [15].

Proposition 3.1. Let p ∈ {1, . . . , q} be integers with gcd(p, q) = 1. The linear
map s(x, y, z) = (−y/q + z, y/q, x− py/q) maps T (p, q) to the standard tetrahedron

T0 := conv{o = (0, 0, 0), e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)},
and sends Z3 isomorphically to the lattice

Λ(p, q) := 〈(1/q,−1/q, p/q)〉+ Z3.

In particular, T0 is empty in Λ(p, q). �

Since T (p, q) has width one with respect to the functional z in the integer lattice,
T0 has width one with respect to the functional x + y in the lattice Λ(p, q). This
implies that all lattice points of Λ(p, q) lie in the family of integer lattice planes
{(x, y, z) : x + y ∈ Z}. This suggests we consider the following rectangle, which is
a fundamental rectangle of Λ(p, q) ∩ {x + y = 0}:

R(p, q) := conv{(0, 0, 0), (0, 0, 1), (1,−1, 0), (1,−1, 1)}.
Also, since the edges oe3 and e1e2 of T0 are primitive in Λ(p, q), the vertices of
R(p, q) are the only lattice points in its boundary. Hence all lattice points of Λ(p, q)\
Z3 lie in the relative interior of a unique integer translation of R(p, q), as illustrated
in Figure 2.

In the proof of Theorem 3.3 we need the following result about the rectangle
R(p, q), illustrated in Figure 3.

Lemma 3.2. Let q ≥ 2 and let p ∈ {1, . . . , q − 1} with gcd(p, q) = 1.

(1) The triangle ∆1 := conv{(0, 0, 0), (1,−1, 0), (1,−1, 1/2)} ⊂ R(p, q) con-
tains non-integer points of Λ(p, q) if and only if p ∈ {2, . . . , q − 2}.

(2) The triangle ∆2 := conv{(0, 0, 0), (1,−1, 0), (1/2,−1/2, 1/2)} ⊂ R(p, q)
contains non-integer points of Λ(p, q).

Proof. Let p′ := p−1 mod q ∈ {1, . . . , q−1}. The point (p′/q,−p′/q, 1/q) ∈ Λ(p, q),
and it lies in the interior of R(p, q).
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x

y

z

R(p, q)
T0

Figure 2. The lattice points of Λ(p, q) in the standard tetrahe-
dron T0, the plane {z = 0} and the rectangle R(p, q). Transparent
rectangles represent integer translations of R(p, q). (The picture is
for q = 7 and p = 4).

(1) A point of R(p, q) lies in ∆1 if and only if it belongs to the halfspace
x − y − 4z ≥ 0. Hence (p′/q,−p′/q, 1/q) ∈ ∆1 if and only if p′ ≥ 2. In
the case of p′ = 1 we have that p = 1 and then every non-integer point of
R(p, q) lies in the diagonal x− y − 2z = 0 (and hence not in ∆1).

(2) A point of R(p, q) lies in ∆2 if and only if it belongs to the halfspaces
x − y − 2z ≥ 0 and x − y + 2z − 2 ≤ 0. Hence (p′/q,−p′/q, 1/q) ∈ ∆1 for
every value of p′ ∈ {1, . . . , q − 1}.

�

(0, 0, 1) (1,−1, 1)

(0, 0, 0) (1,−1, 0)

∆1 ∆2

(0, 0, 0) (1,−1, 0)

(1,−1, 1)(0, 0, 1)

( 1
2
,− 1

2
, 1
2
)(1,−1, 1

2
)

R(p, q) R(p, q)

Figure 3. Triangles ∆1 and ∆2 (gray areas). Black dots represent
the integer points of R(p, q).

3.2. Proof of Theorem 1.2.

Theorem 3.3. If P is a lattice 3-polytope of size 5 and with signature (3, 2), (2, 2)
or (2, 1), then P has width one.

Proof. Let A = {p1, p2, p3, p4, p5} be the lattice points in P . We assume the points
ordered so that the volume vector v = (v1, v2, v3, v4, v5) of A verifies vi ≤ 0 < v4 ≤
v5, i = 1, 2, 3. That is, points p4 and p5 (corresponding to the “2” in the signature)
lie in opposite sides of the plane generated by the triangle conv{p1, p2, p3}.

Consider the empty tetrahedron T := conv{p1, p2, p3, p4}, of volume q = v5.
By Proposition 3.1, we can consider T to be the standard tetrahedron T0 in the
lattice Λ(p, q) for some p coprime with q. Moreover, by Lemma 2.6 we can assume
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p4 = (0, 0, 0) and, by symmetry of the conditions so far on the points p1, p2 and
p3, we can assume that p1 = (1, 0, 0), p2 = (0, 1, 0), p3 = (0, 0, 1).

The affine dependence
∑

vipi = 0 implies that p5 = −1
v5

(v1, v2, v3) and, since

v5 > 0 and vi ≤ 0 for i ∈ {1, 2, 3}, p5 lies in the closed positive orthant. Also, since∑
vi = 0 and v4 ≤ v5, we have 2v5 ≥ v4 + v5 = −(v1 + v2 + v3). Hence:

p5 ∈ {(x, y, z) : x + y + z ≤ 2, x ≥ 0, y ≥ 0, z ≥ 0} = 2T0.

Remember that all lattice points in Λ(p, q) lie in {(x, y, z) ∈ R3 : x + y ∈ Z}. In
particular, P ⊂ 2T0 has width at most two. Moreover, P can have width two only
if p5 is one of the points of Λ(p, q) ∩ 2T0 with x + y = 2, namely (2, 0, 0), (1, 1, 0)
and (0, 2, 0) (see Figure 4, left). Let us see that in these three cases either P has
width one with respect to another functional or P has additional lattice points in
the translation R′ := (0, 1, 0) + R(p, q) of R(p, q), which is a contradiction:

• If p5 = (2, 0, 0) then P∩R′ is the triangle conv{(1, 0, 0), (0, 1, 0), (1, 0, 1/2)}.
By (a translated version of) Lemma 3.2(1), for this triangle not to contain
additional lattice points of Λ(p, q) we need p = 1. But in this case P has
width one with respect to the functional y + z.
• The case p5 = (0, 2, 0) is analogous, exchanging the roles of x and y.
• If p5 = (1, 1, 0) then P ∩ R′ is conv{(1, 0, 0), (0, 1, 0), (1/2, 1/2, 1/2)}. By

(a translated version of) Lemma 3.2(2), this triangle has additional lattice
points, independently of the value of p, unless q = 1. But if q = 1 then P
has width one with respect to z.

�

x

y

z

p1

p3

(2, 0, 0)

(0, 0, 2)

p2

(1, 1, 0)

(0, 2, 0)

p4

T0

R′

Λ(p, q)

2T0

x

y

z

p1

p3

p2
p4

T0

R′′(−1,−1, 0)

(−1,−1,−1)

Λ(p, q)

[−1, 0]3

Signature (2, ∗) Signature (∗, 1)

Figure 4. The idea in the proofs of Theorems 3.3 and 3.4. In
case of signature (2, ∗) (left) the lattice points in P are the four
vertices of the standard tetrahedron T0 (in gray) plus a fifth point
guaranteed to lie in 2T0 (dotted lines). In case of signature (∗, 1)
(right) the lattice points in P are the four vertices of T0 plus a fifth
point guaranteed to lie in [−1, 0]3 (dotted lines). In both cases, all
non-integer lattice points lie in rectangles R′ and R′′, respectively.
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Theorem 3.4. Let P be a lattice 3-polytope of size 5 and signature (4, 1) or (3, 1).
Let T be the empty lattice tetrahedron of largest volume q ≥ 1 contained in P .
Then there exists an affine integer functional taking values 1, 1, 0, 0 in T , and h ∈
{−1,−2} in the fifth point. Moreover, in the case of signature (4, 1), having h = −2
is equivalent to having a volume vector of the form (−4q, q, q, q, q) (that is, the
interior point is the centroid of the other four).

Proof. Let A = {p1, p2, p3, p4, p5} be the lattice points in P and assume the points
are ordered so that the volume vector v = (v1, v2, v3, v4, v5) of A verifies v4 < 0 ≤
vi ≤ v5, i = 1, 2, 3. That is, point p4 (corresponding to the “1” in the signature)
lies in the tetrahedron conv{p1, p2, p3, p5} = P and the (empty) tetrahedron T :=
conv{p1, p2, p3, p4}, of volume q = v5, has the maximum volume among the empty
tetrahedra in A.

As in the previous proof, we can assume without loss of generality that T is
the standard tetrahedron T0 in the lattice Λ(p, q), for some p coprime with q, and
that its four lattice points are p4 = (0, 0, 0), p1 = (1, 0, 0), p2 = (0, 1, 0) and
p3 = (0, 0, 1). The fifth point is, again, p5 = −1

v5
(v1, v2, v3). In this case, since

0 ≤ vi ≤ v5 for i ∈ {1, 2, 3}, we get that p5 lies in [−1, 0]3. More specifically, p5 is
either one of the vertices of [−1, 0]3, or it is a non-integer point in the translation
R′′ := (−1, 0,−1) + R(p, q) of R(p, q) (see Figure 4, right).

This implies the statement for the functional f(x, y, z) = x + y. Indeed, f takes
only values {0,−1,−2} in [−1, 0]3, and f(p5) = 0 would imply signature (2, 1).

For the “moreover” part, observe that h = −2 means p5 to be either (−1,−1, 0)
or (−1,−1,−1). The first possibility gives signature (3, 1), and the second gives
signature (4, 1) and a symmetric volume vector (−4q, q, q, q, q). �

4. Classification of 3-polytopes with five lattice points

In Section 4.1 we completely classify 3-polytopes of size 5 and width one. By The-
orem 3.3 this covers signatures (2, 1), (2, 2) and (3, 2). In Sections 4.2, 4.3 and 4.4
we look at signatures (3, 1) and (4, 1), using the properties proved in Theorem 3.4.

4.1. Polytopes of width 1.

Theorem 4.1. Let P be a lattice polytope of size five and width one. Then P is
unimodularly equivalent to one of:

(1) conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1)}, of signature (2, 2).
(2) conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (−1,−1, 0), (0, 0, 1)}, of signature (3, 1).
(3) conv{(0, 0, 0), (1, 0, 0), (0, 0, 1), (−1, 0, 0), (p, q, 1)}, for some p, q ∈ Z with

0 ≤ p ≤ bq/2c and gcd(p, q) = 1. This is of signature (2, 1).
(4) conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (a, b, 1)}, with 0 < a ≤ b and gcd(a, b) =

1. This is of signature (3, 2).

Moreover, two such polytopes are never Z-equivalent to one another.

Proof. Width one means the 5 lattice points of P lie in two consecutive lattice
planes. Say n0 points are in {z = 0} and 5− n0 in {z = 1} with n0 ≥ 5− n0. This
implies n0 ∈ {3, 4}.
• If n0 = 3, then there are two possibilities:

– If the three points at z = 0 are collinear, without loss of generality we
can assume they are (−1, 0, 0), (0, 0, 0) and (1, 0, 0). One of the points at
z = 1 can be assumed to be (0, 0, 1) and the fifth point has coordinates
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(p, q, 1) with q 6= 0 (in order to be full-dimensional) and gcd(p, q) = 1 (in
order for the edge at z = 1 to be primitive). The map (x, y, z) 7→ (x −
ybp/q+1/2c, y, z) allows us to assume |p| ≤ |q|/2. Symmetry with respect
to the planes x = 0 and y = 0 allows us to assume that 0 ≤ p ≤ bq/2c.

– If the three points at z = 0 are not collinear then they form a unimodular
triangle, and without loss of generality we assume they are (0, 0, 0), (1, 0, 0)
and (0, 1, 0). One of the points at z = 1 can be assumed to be (0, 0, 1)
and the fifth point has coordinates (a, b, 1). By the same argument as
before, we need gcd(a, b) = 1. By symmetries with respect to the triangle
at z = 0 we can assume 0 ≤ a ≤ b (details are left to the reader). This
configuration has volume vector (−(a + b), a, b, 1,−1), so it has signature
(3, 2) unless a = 0 (and hence b = 1 since gcd(0, b) = b). In the case
(a, b) = (0, 1) we recover the configuration of part (1).

• If n0 = 4, then the position of the fifth point (within the plane z = 1) does not
affect the Z-equivalence class of P , and there are the following three possibilities
for the four points at z = 0. The first two are the configurations of parts (1)
and (2). The third one is Z-equivalent to that of part (3) with (p, q) = (0, 1):

This finishes the case study, but we still need to check that different configura-
tions in the list are not Z-equivalent. Within those of signature (3, 2), since the
volume vector is primitive, Proposition 2.2 says that different values of (a, b) pro-
duce inequivalent configurations. In signature (2, 1), however, the volume vector
is (q, q, 0, 0,−2q) so, a priori, configurations with different p and the same q could
still be Z-equivalent. Let us prove that they are not.

For this, let q be fixed and let p, p′ ∈ Z. Let P and P ′ be two of these con-
figurations having (p, q, 1) and (p′, q, 1) as their fifth point, respectively. All affine
transformations that map P to P ′ must preserve the collinearity of the three points
at z = 0, so they fix (0, 0, 0) and either fix or exchange (1, 0, 0) and (−1, 0, 0).
Similarly, they either fix (0, 0, 1) and send (p, q, 1) to (p′, q, 1), or they send (p, q, 1)
to (0, 0, 1) and (0, 0, 1) to (p′, q, 1). So we have four possibilities:

(x, y, z) 7→
(
x + p′−p

q y, y, z
)
, (x, y, z) 7→

(
x + −p′−p

q y + p′z,−y + qz, z
)
,

(x, y, z) 7→
(
−x + p′+p

q y, y, z
)
, (x, y, z) 7→

(
−x + p−p′

q y + p′z,−y + qz, z
)
.

For any of them to be integer we need p ≡ ±p′ (mod q). �

4.2. Configurations of signature (3, 1).

Theorem 4.2. Every polytope P of signature (3, 1) and size 5 has volume vector
equal to (−3q, q, q, q, 0) with q ∈ {1, 3} and is unimodularly equivalent to one of

(1) conv{(0, 0, 0), (1, 0, 0), (0, 0, 1), (−1, 0,−1), (0, 1, 0)} (of width one) or
(2) conv{(0, 0, 0), (1, 0, 0), (0, 0, 1), (−1, 0,−1), (2, 3, 1)} (of width two).

Proof. For P not to have extra lattice points in the plane containing the (3, 1)
circuit we need the interior point in this coplanarity to be the centroid of the other
three. That is, the volume vector must be of the form (−3q, q, q, q, 0) (modulo
reordering of the points), and all empty subtetrahedra have the same volume.
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By Theorem 3.4, P consists of an empty tetrahedron T containing two points at
each z = 0, 1, and a fifth point at height h ∈ {−1,−2}. Without loss of generality,
we take the following coordinates:

p1 = (0, 0, 0), p2 = (1, 0, 0), p3 = (0, 0, 1), p4 = (p, q, 1), p5 = (a, b, h).

for some p ∈ Z coprime with q, and h = −1,−2.
Let us first argue that we can assume h = −1. For this, suppose that h = −2

and let us find an affine integer functional f taking values {1, 1, 0, 0,−1} in the
five points, so that a change of coordinates gives h = −1. Of the five lattice
points in P , both the centroid of the (3, 1) circuit and the point that is not in the
circuit must lie in the plane {z = 0} (points p1 and p2). By Lemma 2.6 there
is no loss of generality in assuming that p1 is the centroid of p3, p4 and p5, so
p5 = 3p1 − p3 − p4 = (−p,−q,−2). If q = 1 = p, then the functional x takes
the desired values, so assume now that q > 1. Lemma 2.5 says that in order for
the tetrahedron conv{p1, p2, p3, p5} to be empty we must have one of the following
conditions:

• p = q − 1 and gcd(2, q) = 1. Then take f(x, y, z) = x− y.
• p = q − 2 and gcd(2, q) = 1. Same, with f(x, y, z) = x− y + z.
• −2 ≡ 1 (mod q) and gcd(p, q) = 1. That is, q = 3 and p ∈ {1, 2} (mod 3).

This is a particular case of one of the two above, depending on whether
p = 2 or 1.

So for the rest of the proof h = −1. This implies the centroid of the (3, 1) circuit
is one of p1 or p2 and the point not in the circuit is one of p3 and p4. Then, by
Lemma 2.6 there is no loss of generality in assuming that p1 is the centroid of the
circuit. Also, since the unimodular transformation f(x, y, z) = (x− pz,−y + qz, z)
fixes p1 and p2, and sends p4 7→ p3 and p4 7→ (−p, q, 1), there is no loss of generality
in assuming that p4 is the point not in the circuit. This implies p5 = 3p1−p2−p3 =
(−1, 0,−1).

The intersection of P with the plane z = 0 is the triangle with vertices

p2 = (1, 0, 0),
p3 + p5

2
=

(−1

2
, 0, 0

)
, v =

p4 + p5

2
=

(
p− 1

2
,
q

2
, 0

)
.

The condition for P to have size five is that the third vertex v make this triangle not
contain any lattice points other than (0, 0, 0) and (1, 0, 0). This implies q to be odd,
because if q is even then v itself is a lattice point. (Remember that gcd(p, q) = 1).

But other conditions are necessary. For example, in order for (0, 1, 0) not to be
in the triangle, v must be outside the wedge with apex at (0, 1, 0) and rays in the
directions of (1, 2, 0) and (−1, 1, 0). (This is the central dark wedge in Figure 5).
The same consideration for the other lattice points of the form (k, 1, 0) defines
analogous wedges so that at the end the only half-integer points not excluded by
the wedges are those with q = 1 or with q = 3 and p ≡ 2 (mod 3). If q = 1 then we
get width one, and the configuration is unimodularly equivalent to the first one in
the statement. If q = 3 then all possibilities for p are unimodularly equivalent to
one another. Taking p = 2 we get the second configuration in the statement. �

4.3. Non-symmetric configurations of signature (4, 1).

Theorem 4.3. Apart of those with volume vector of the form (−4q, q, q, q, q), every
polytope P of size five and signature (4, 1) is Z-equivalent to the one whose lattice
points are (0, 0, 0), (1, 0, 0), (0, 0, 1) together with one of the following six pairs:
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z = 0y

xp2p1p3p5

Figure 5. The case analysis in the proof of Theorem 4.2, in the
plane z = 0. White squares represent the points p1 and p2 of
P . The gray square is the intersection of p3p5 with the displayed
plane. Black dots are the lattice, and black crosses represent the
possible intersection points of the edge p4p5 with the plane z = 0.

• (1, 2, 1) and (−1,−1,−1), volume vector (−5, 1, 1, 1, 2).
• (1, 3, 1) and (−1,−2,−1), volume vector (−7, 1, 1, 2, 3).
• (2, 5, 1) and (−1,−2,−1), volume vector (−11, 1, 3, 2, 5).
• (2, 5, 1) and (−1,−1,−1), volume vector (−13, 3, 4, 1, 5).
• (2, 7, 1) and (−1,−2,−1), volume vector (−17, 3, 5, 2, 7).
• (3, 7, 1) and (−2,−3,−1), volume vector (−19, 5, 4, 3, 7).

Proof. As before, Theorem 3.4 allows us to take the following coordinates:

p1 = (0, 0, 0), p2 = (1, 0, 0), p3 = (0, 0, 1), p4 = (p, q, 1), p5 = (a,−b,−1),

for some p ∈ Z with gcd(p, q) = 1. (We prefer not to assume p ∈ {1, . . . , q} in this
proof, in order to get more symmetric conditions later. The second coordinate in
p5 is denoted −b because, as we will soon see, it must be negative). Without loss
of generality (by Lemma 2.6) let p1 be the interior point of P . Then the volume
vector of P := conv {p1, p2, p3, p4, p5} is

((a− 2)q + bp,−pb− qa, q − b, b, q).

To comply with our hypotheses the five entries must be non-zero, with sign
vector (−,+,+,+,+), and the last entry is the biggest among the positive ones
(see Theorem 3.4). This translates into:

(3) 0 < b < q, 0 < −pb− qa ≤ q.

We need to find out what values of a, b, p, q make the intersection of P with
{z = 0} not to have other lattice points than p1 and p2. This intersection must
contain p1 in its interior (see Figure 6) and it equals the triangle ∆ with vertices

p2 = (1, 0, 0),
p3 + p5

2
=

(
a

2
,
−b
2
, 0

)
,

p4 + p5

2
=

(
p + a

2
,
q − b

2
, 0

)
.

In order to get more symmetric parameters we set c = p + a and d = q − b > 0,
which turns equations (3) into

(4) b > 0, d > 0, 0 < −ad− bc ≤ d + b = q.
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z = 1

z = 0

z = −1

x

y

z
p4

p2

p3

p1

p5

∆

Figure 6. The setting for the proof of Theorem 4.3.

This translates our question into: what values of a, b, c, d ∈ Z satisfying equa-
tions (4) have (0, 0) and (1, 0) as the only lattice points in the triangle

∆ = conv {(1, 0), (a/2,−b/2), (c/2, d/2)}.

We first make the following two reductions:

• There is no loss of generality in assuming b ≥ d. For this, observe that the
Z-equivalence f(x, y, z) = (x− pz,−y + qz, z) sends p1, . . . , p5 to

p1 = f(p1) = (0, 0, 0), p2 = f(p2) = (1, 0, 0), p′3 := f(p4) = (0, 0, 1),

p′4 := f(p3) = (−p, q, 1), p′5 := f(p5) = (a + p,−(q − b),−1) = (c,−d,−1),

whose parameters (a′, b′, c′, d′) are (c, d, (a+p)−p, q− (q− b)) = (c, d, a, b).
• There is no loss of generality in assuming c = 1. Via the transformations

(x, y) 7→ (x± y, y), we are only interested in c modulo d. For d > 1, taking
into account that (c/2, d/2) must be outside the wedge symmetric to the
triangle (0, 1)p1p2 at point (0, 1) we conclude that c/2 6∈ [1− d/2, 0], which
is equivalent to c 6∈ [2−d, 0]. Thus, the only remaining value for c (mod d)
is c = 1.

Figure 7 shows the possibilities for point (a, b) for the first three cases of (c, d),
namely (c, d) = {(1, 1), (1, 2), (1, 3)}. The figures are read in the same way as
Figure 5. Each lattice point in the negative orthant creates an excluded wedge for
(a, b). The only novelty is that now we have also an excluded (open) half-plane, the
one defined by d > b, so that the allowed region (the white region in the pictures)
gets smaller and smaller and it becomes lattice-point-free (and eventually empty)
for d ≥ 4 (picture left to the reader).

The 9+5+2 crosses in the three pictures give a priori the following 16 possibilities
for the parameters (a, b, c, d):
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y

x
p2p1

p4p5

b = 1

y

x
p1 p2

p4p5

b = 2

b = 3

y

x
p1 p2

p4p5

(c, d) = (1, 1) (c, d) = (1, 2) (c, d) = (1, 3)

Figure 7. The case analysis in the proof of Theorem 4.3 for the
three possibilities of (c, d). White squares represent the points p1

and p2 of P in the displayed plane z = 0. The gray square is
the intersection of p4p5 with that same plane. Black dots are the
lattice points in the plane and black crosses represent the possible
intersection points of the edge p3p5 and the plane z = 0.

a b c d p q gcd(p, q) −pb− qa

-2 1 1 1 3 2 1 X 1 X

-3 1 1 1 4 2 2 X 2 X

-4 1 1 1 5 2 1 X 3 X

-3 2 1 1 4 3 1 X 1 X

-5 2 1 1 6 3 3 X 3 X
-7 2 1 1 8 3 1 X 5 X

-5 3 1 1 6 4 2 X 2 X
-8 3 1 1 9 4 1 X 5 X

a b c d p q gcd(p, q) −pb− qa

-7 4 1 1 8 5 1 X 3 X

-3 2 1 2 4 4 4 X 4 X

-2 3 1 2 3 5 1 X 1 X
-5 3 1 2 6 5 1 X 7 X

-3 4 1 2 4 6 2 X 2 X
-4 5 1 2 5 7 1 X 3 X

-2 3 1 3 3 6 3 X 3 X
-3 4 1 3 4 7 1 X 5 X

These 16 possibilities reduce to only six by excluding those with gcd(p, q) 6= 1
(which produce extra lattice points at z = 1) or −pb − qa 6∈ (0, q] (which violate
Equation (3)). These six are distinguished in boldface in the table above, and give
configurations with the following possible pairs for p4 and p5, and their correspond-
ing volume vectors:

p4 = (p, q, 1) p5 = (a,−b,−1) ((a− 2)q + bp, −pb− qa, q − b, b, q)
(3, 2, 1) (−2,−1,−1) (−5, 1, 1, 1, 2)
(4, 3, 1) (−3,−2,−1) (−7, 1, 1, 2, 3)
(8, 5, 1) (−7,−4,−1) (−13, 3, 1, 4, 5)
(3, 5, 1) (−2,−3,−1) (−11, 1, 2, 3, 5)
(5, 7, 1) (−4,−5,−1) (−17, 3, 2, 5, 7)
(4, 7, 1) (−3,−4,−1) (−19, 5, 3, 4, 7)

Since the volume vectors are all primitive, they completely characterize the con-
figurations (Proposition 2.2). The representatives in the statement have been cho-
sen to have smaller coordinates. �

4.4. Symmetric configurations of signature (4, 1). We finally need to deal
with configurations of volume vector (−4q, q, q, q, q).
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Theorem 4.4. Every polytope P of size five and signature (4, 1) with a symmetric
volume vector (−4q, q, q, q, q), is Z-equivalent to the one whose lattice points are
(0, 0, 0), (1, 0, 0), (0, 0, 1) together with one of the following two pairs:

• (1, 1, 1) and (−2,−1,−2), volume vector (−4, 1, 1, 1, 1).
• (2, 5, 1) and (−3,−5,−2), volume vector (−20, 5, 5, 5, 5).

Notice that both configurations have width two, with respect to f(x, y, z) = x−z.

Proof. Theorem 3.4, using that {p1, . . . , p4} form an empty tetrahedron and that
the volume vector is (−4q, q, q, q, q), allows us to take the following coordinates for
the lattice points of P :

p1 = (0, 0, 0), p2 = (1, 0, 0), p3 = (0, 0, 1), p4 = (p, q, 1), p5 = (−p− 1,−q,−2),

for some 1 ≤ p ≤ q with gcd(p, q) = 1.
The convex hull of P consists of four thetrahedra glued together, all of normalized

volume q; the one we started with and the following three:

• T1 = {(0, 0, 0), (1, 0, 0), (0, 0, 1), (−p− 1,−q,−2)},
• T2 = {(0, 0, 0), (1, 0, 0), (p, q, 1), (−p− 1,−q,−2)}, and
• T3 = {(0, 0, 0), (0, 0, 1), (p, q, 1), (−p− 1,−q,−2)}.

We need to check what values of p and q make these three tetrahedra empty. If q =
1 = p, then all tetrahedra are unimodular and therefore empty. This corresponds
to the first configuration in the statement. Assume q > 1 for the rest of the proof.

Lemma 2.5 says that in order for the tetrahedron T1 = conv{p1, p2, p3, p5} to be
empty we need one of the following conditions:

• p = q − 2 and gcd(2, q) = 1.
• −2 ≡ 1 (mod q) and gcd(p + 1, q) = 1. That is, q = 3 and p = 1. This is a

particular case of the one above.
• p = q − 3 and gcd(q − 2, q) = 1.

That is, q is odd and p ∈ {q − 2, q − 3}.
In order for the tetrahedron T2 = conv{p1, p2, p4, p5} to be empty, the same

Lemma 2.5 says that we need one of the following conditions:

• p = 2 and gcd(2, q) = 1.
• −2 ≡ 1 (mod q) and gcd(p− 1, q) = 1. That is, q = 3 and p = 2. This is a

particular case of the one above.
• p = 3 and gcd(q − 2, q) = 1.

That is, q is odd and p = 2 or p = 3.

This implies q = 5 and p ∈ {2, 3}, which makes T3 have width 1 as well:
{(0, 0, 0), (0, 0, 1), (2, 5, 1), (−3,−5,−2)} has width one with respect to y− 2x, and
{(0, 0, 0), (0, 0, 1), (3, 5, 1), (−4,−5,−2)} has width one with respect to y + z − 2x.

A priori, this could lead to two different configurations with q = 5. Not surpris-
ingly, the following matrix represents a Z-equivalence mapping the configuration
with p = 2 to the one with p = 3: 1 −1 3

0 −1 5
0 0 1


�
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5. Towards a classification of all lattice 3-polytopes

For every d ≥ 3 and for every n ≥ d + 1 it is easy to construct infinitely many
classes of lattice d-polytopes of size n [12, Theorem 4]. It is known, however, that
this cannot happen if we look only at polytopes with interior lattice points:

Theorem (Hensley [9, Thm. 3.6]). For each k ≥ 1 there is a number V (k, d) such
that no lattice d-polytope with k interior lattice points has volume above V (k, d).

Theorem (Lagarias-Ziegler [11, Thm. 2]). For each V ∈ N there is only a finite
number of Z-equivalence classes of d-polytopes with volume V or less.

Lattice polytopes with no lattice points in their interior are called hollow. For
hollow polytopes, although infinitely many for each size, we still have:

Theorem (Nill-Ziegler [13, Thm. 1.2]). There is only a finite number of hollow
d-polytopes that do not admit a lattice projection onto a hollow (d− 1)-polytope.

Combining these three statements with the fact that there is a unique hollow
2-polytope of width larger than one, we get:

Corollary 5.1. For each n ≥ 4, there are finitely many lattice 3-polytopes of width
greater than one and size n.

Proof. Once we fix n, every lattice 3-polytope P with n lattice points falls in one
of the following (not mutually exclusive) categories:

(1) It is not hollow. In this case Hensley’s Theorem gives a bound for its
volume. This, in turn, implies finiteness via the Lagarias-Ziegler Theorem.

(2) It is hollow, but does not project to a hollow 2-polytope. These are a finite
family, by the Nill-Ziegler Theorem.

(3) It is hollow, and it projects to a (hollow) 2-polytope of width 1. This implies
that P itself has width 1.

(4) It is hollow and it projects to a hollow 2-polytope of width larger than one.
The only such 2-polytope is the second dilation of a unimodular triangle.
It is easy to check that only finitely many (Z-equivalence classes of) 3-
polytopes of size n project to it: let P = conv{p1, ..., pn} be a 3-polytope
of size n that projects onto T = conv{(0, 0), (2, 0), (0, 2)}.

We must have at least one point projecting to each vertex of T . That
is: there are p1 = (0, 0, z1), p2 = (2, 0, z2) and p3 = (0, 2, z3) in P . The
unimodular transformation

(x, y, z) 7→
(
x, y, z − z1 − x

⌊
z2 − z1

2

⌋
− y

⌊
z3 − z1

2

⌋)
allows us to assume that z1, z2, z3 ∈ {0, 1}. This implies that P ⊂ T × [1−
n, n], so there is a finite number of possibilities for P .

�

Remark 5.2. One may ask how does the number of 3-polytopes of width ≥ 2 grows
with n. The bottleneck to this is the huge bound for the polytopes in case (1) of the
previous proof (those of type (2) are a constant number, independent of n, and those
of type (4) grow polynomially). For those of type (1), the bound is (asymptotically)
the same as the number of 3-polytopes with n interior lattice points.
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Remark 5.3. The following higher dimensional analogue of Corollary 5.1 is proven
in [4]: for each dimension d there is a constant w(d) ∈ N such that for every n there
are finitely many d-polytopes of size n and width greater than w(d). Corollary 5.1
says that w(3) = 1 and the main result in [4] is that w(4) = 2.

Still, it is not clear how to find all the (finitely many) 3-polytopes of width larger
than one for each given size n. We sketch here the method that we implement in [6].

Let P ⊂ Rd be a lattice d-polytope, which we assume to have width greater than
one. For each vertex v of P , we denote P v := conv(P ∩ Zd \ {v}). Let vert(P ) be
the set of all vertices and vert∗(P ) ⊆ vert(P ) be the set of vertices of P such that
P v is either (d− 1)-dimensional or has width one.

Definition 5.4. Let P a lattice d-polytope P of width > 1. We say that P is
minimal if vert∗(P ) = vert(P ) and quasi-minimal if # vert∗(P ) ≥ # vert(P )− 1.

For example, since all 3-polytopes of size 4 have width one, all 3-polytopes of
size 5 and width > 1 are minimal.

Our interest in quasi-minimal 3-polytopes comes from the following observation:
If we can classify all quasi-minimal 3-polytopes of a certain size n, then we can
easily construct the rest of lattice 3-polytopes of width > 1 as the (convex hull of
the) union of two smaller polytopes of width larger than one.

Let us be more specific: if a polytope P of width larger than one is not quasi-
minimal, then it contains two proper lattice subpolytopes P v1 and P v2 of width
larger than one (and size n− 1) with

P ∩ Z3 = (P v1 ∩ Z3) ∪ (P v2 ∩ Z3).

Then, one of two things happens:

• If P v1∩P v2∩Z3 is still 3-dimensional, we can think of P as being obtained by
gluing P v1 and P v2 , and there are finitely many possible ways of gluing two
given polytopes in this fashion: fixing an affine basis in P v1 and its (ordered)
image in P v2 fixes the gluing. That is, we can enumerate polytopes P of this
type by gluing smaller polytopes, which we assume recursively classified.

• If Q = conv(P1 ∩ P2 ∩ Z3) is not three-dimensional, then the number of
ways of gluing is more difficult to control, but the possibilities for Q are
easy to study. In fact, we show in [6] that this situation implies Q to have
size at most four and hence P to have size at most six.

Thus, the classification of all lattice 3-polytopes reduces to that of quasi-minimal
3-polytopes, plus an implementation of the gluing algorithm. One problem with
this approach is that there are infinitely many quasi-minimal 3-polytopes:

Proposition 5.5. There exist infinitely many minimal (and hence quasi-minimal)
3-polytopes.

Proof. For every k ≥ 2, the polytope

Pk := conv{(1, 0, 0), (−1, 0, 0), (0,−1, k), (0, 1, k)}
has k − 1 interior points, volume 4k, and is minimal: P

(1,0,0)
k and P

(−1,0,0)
k have

width 1 with respect to x; P
(0,1,k)
k and P

(0,−1,k)
k have width 1 with respect to y. �

In dimension one the only quasi-minimal polytope is a segment of length two
(which is in fact minimal). In dimension two, there are the following quasi-minimal
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polygons (see [6, Lemma 2.8]). The four in the top row are minimal, and in the
others a white dot indicates the vertex not in vert∗(P ).

In dimension 3, the infinite families of quasi-minimal 3-polytopes can easily be
understood, thanks to the following structure theorem. Its proof, together with the
complete classification of quasi-minimal 3-polytopes, can be found in [6].

Theorem 5.6 ([6, Theorem 1.3]). Let P be a quasi-minimal lattice 3-polytope with
more than 11 lattice points. Then P projects to one of the following 2-polytopes in
such a way that all of the vertices in the projection have a unique element in the
pre-image.
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