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Abstract

Computational experiments using spatial stochastic simulations have led to important new 

biological insights, but they require specialized tools and a complex software stack, as well as 

large and scalable compute and data analysis resources due to the large computational cost 

associated with Monte Carlo computational workflows. The complexity of setting up and 

managing a large-scale distributed computation environment to support productive and 

reproducible modeling can be prohibitive for practitioners in systems biology. This results in a 

barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of 

biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a 

new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing 

appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on 

IPython and provides an interactive programming platform for development of sharable and 

reproducible distributed parallel computational experiments.
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1. Introduction

In computational systems biology, one of the main goals is to understand how intracellular 

regulatory networks function reliably in a noisy molecular environment. To that end, discrete 

stochastic mathematical modeling has emerged as a prominent tool. Stochastic simulation of 

well-mixed systems is now routinely used [3, 37, 9, 31], and recently, spatial stochastic 

models have resulted in important scientific insights [10, 21, 36], clearly demonstrating the 

potential as an analytic tool in the study of cellular control systems. Compared to less 

detailed models such as ordinary differential equations (ODEs), well-mixed discrete 

stochastic models, or partial differential equations (PDEs), spatial stochastic models are both 

more costly to simulate and more difficult to formulate and set up. The large simulation cost 

of stochastic reaction-diffusion simulations has led to the development of more efficient 

algorithms; an overview of theory and methods for discrete stochastic simulations can be 

found in [15]. Several software packages are publicly available, both for mesoscopic, 

discrete stochastic simulation [16, 18, 5] and microscopic particle tracking based on 

Brownian dynamics [2, 38, 35, 32]. A recent overview of particle based simulators can be 

found in [33].

While efficient simulation methods are critical for well-resolved spatial models, practical 

modeling projects require the support provided by a software framework. In the early stages 

of the model development process, there is typically no need for large compute resources. In 

later stages, computational experiments generate large numbers of independent stochastic 

realizations. This is common to all applications that rely on Monte Carlo techniques. For 

spatial stochastic models, substantial computational and data handling facilities are required. 

A simulation framework that focuses on modeler productivity needs to accommodate both 

interactivity and visual feedback, as well as the possibility of large-scale simulation and data 

handling. To be cost and resource efficient, it should also support dynamic scaling of 

compute and storage resources to accommodate the needs in different stages of the modeling 

process.

Since most successful modeling projects involve a multidisciplinary team of researchers, it is 

important that models can be shared and understood by team members with different areas 

of expertise. Formats for model exchange based on static markup language descriptions such 

as the systems biology markup language (SBML) [19] or Open Modeling EXchange format 

(OMEX) [4] are useful to standardize descriptions of simple ODE and well-mixed stochastic 

models, but they fall short when it comes to complex spatial models. Recently, numerous 

developers of spatial simulation packages have taken another approach and provided 

application programming interfaces (APIs) for model specification in a scripting language 

[24, 18, 38], with Python being a popular choice. Our newly developed package PyURDME 

falls into this category. We will show how PyURDME, being designed with the IPython 

suite in mind, can be used to program spatial stochastic models as highly interactive and 

sharable notebooks. In addition, we note that by providing a virtual cloud appliance, not 

only the models but also the computational experimental workflow including the computing 

environment becomes easily reproducible.

Drawert et al. Page 2

SIAM J Sci Comput. Author manuscript; available in PMC 2017 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In previous work, we have developed the URDME (Unstructured mesh Reaction-Diffusion 

Master Equation) framework for discrete stochastic simulation of biochemical reaction-

diffusion systems [5]. URDME was designed primarily as a traditional, native toolkit that 

combines MATLAB and COMSOL Multiphysics to form an interactive modeling and 

simulation environment. The design of URDME has proven useful to support both methods’ 

development and modeling, but the framework has limitations when it comes to assisting 

large-scale Monte Carlo computational experiments. URDME can be executed on clusters or 

grid resources [27]. However, doing this typically requires computer science knowledge 

beyond that of the average practitioner and access to high-performance computing (HPC) 

environments. This distracts users from the science problems addressed, and it acts as a 

barrier to scale up the computational experiments as needed for a consistent statistical 

analysis. Further, the computational experiment becomes hard to reproduce since the 

provenance relies on specific resources not accessible to third parties.

Based on the above observations, we argue that the classical view of the scientific 

application (in our case PyURDME), as being separate from the compute, storage, and data 

analysis tools employed, is restrictive. Enhanced modeling productivity and reproducibility 

would result if the computational infrastructure and the software stack were combined into a 

unified appliance. Hence, the aim of this work has been to develop a platform that

1. allows interactive development of spatial stochastic models supported by basic 

visualization capabilities,

2. facilitates collaboration and reproducibility,

3. allows for convenient and efficient execution of common computational 

experiments, such as estimation of mean values, variances, and parameter 

sweeps,

4. is close-to-data and allows for flexible specification of custom postprocessing,

5. allows for flexibility in the choice of computational infrastructure provider and 

dynamic scaling of computing resources, and

6. requires no more than basic computer science knowledge to deploy and manage.

To meet all these requirements, we have developed MOLNs, a cloud computing appliance 

that configures, builds, and manages a virtual appliance for spatial stochastic modeling and 

simulation on public, private, and hybrid clouds. By relying on cloud computing and its 

resource delivery model, the responsibility for handling the complex setup of the software 

stack is shifted from the users to the developers since we can prepare virtual machines that 

are preconfigured and ready to use. With support for the most common public clouds such as 

Amazon Elastic Compute Cloud (EC2) and HP Helion, we ensure high availability and 

scalability of computational resources. By supporting OpenStack, an open source cloud 

environment commonly used for private (in-house) cloud installations, MOLNs brings the 

flexibility and tools of cloud computing to the user’s own servers. Taking it one step further, 

MOLNs provides support for hybrid deployments in which private and public cloud 

resources can be combined, allowing the use of in-house resources and bursting to public 

clouds during particularly compute-intensive phases of a modeling project. Interactivity is 

Drawert et al. Page 3

SIAM J Sci Comput. Author manuscript; available in PMC 2017 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



achieved by building on Interactive Python (IPython), in particular the web-based IPython 

Notebook project [28, 30]. See illustration in Figure 1.

We demonstrate the potential of MOLNs to greatly assist computational experimentation in 

a case study of yeast polarization and evaluate its performance in parallel, distributed 

performance benchmarks. While the current computational engine is our newly developed 

Python package PyURDME, we believe that users as well as developers of other spatial 

simulation tools could benefit greatly from the delivery model proposed in our virtual 

platform. All components of the software presented here, as well as all models (and many 

more), are publicly available under open source licenses that permit unlimited redistribution 

for noncommercial purposes under the GPLv3 license at https://github.com/MOLNs/

MOLNs.

2. Stochastic simulation of spatially inhomogeneous discrete biochemical 

systems

Recent advances in biology have shown that proteins and genes often interact 

probabilistically. The resulting effects that arise from these stochastic dynamics differ 

significantly from traditional deterministic formulations and have biologically significant 

ramifications. This has led to the development of discrete stochastic computational models 

of the biochemical pathways found in living organisms. These include spatial stochastic 

models, where the physical extent of the domain plays an important role. For mesoscopic 

models, similar to popular solution frameworks for partial differential equations (PDEs), the 

computational domain is discretized with a computational mesh, but unlike PDEs, the 

reaction-diffusion dynamics are modeled by a Markov process where diffusion and reactions 

are discrete stochastic events. The dynamics of a spatially inhomogeneous stochastic system 

modeled by such a Markov process formalism are governed by the reaction-diffusion master 

equation (RDME) [12].

The RDME extends the classical well-mixed Markov process model [14] to the spatial case 

by introducing a discretization of the domain into K nonoverlapping voxels. Molecules are 

point particles, and the state of the system is the discrete number of molecules of each of the 

species in each of the voxels on Cartesian grids or unstructured triangular and tetrahedral 

meshes. The RDME is the forward Kolmogorov equation governing the time evolution of 

the probability density of the system. For brevity of notation, we let p(x, t) = p(x, t|x0, t0) for 

the probability that the system can be found in state x at time t, conditioned on the initial 

condition x0 at time t0. For a general reaction-diffusion system, the RDME can be written as
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(1)

where xi· denotes the ith row and x·j denotes the jth column of the K × S state matrix x, 

where S is the number of chemical species. The functions air(xi) define the propensity 

functions of the M chemical reactions, and μir are stoichiometry vectors associated with the 

reactions. The propensity functions are defined such that air(x)Δt gives the probability that 

reaction r occurs in a small time interval of length Δt. The stoichiometry vector μir defines 

the rules for how the state changes when reaction r is executed. dijk(xi) are propensities for 

the diffusion jump events, and νijk are stoichiometry vectors for diffusion events. νijk has 

only two nonzero entries, corresponding to the removal of one molecule of species Xk in 

voxel i and the addition of a molecule in voxel j. The propensity functions for the diffusion 

jumps, dijk, are selected to provide a consistent and local discretization of the diffusion 

equation, or equivalently the Fokker–Planck equation for Brownian motion.

The RDME is too high-dimensional to permit a direct solution. Instead, realizations of the 

stochastic process are sampled, using kinetic Monte Carlo algorithms similar to the 

stochastic simulation algorithm (SSA) [14] but optimized for reaction-diffusion systems. 

State-of-the-art algorithms such as the next subvolume method (NSM) [7] rely on priority 

queues and scale as (log2(K)), where K is the number of voxels in the mesh. The 

computational cost of spatial stochastic simulation depends on the number of reaction and 

diffusion events that occur in a simulation, since exact kinetic Monte Carlo (KMC) methods 

sample every individual event. The number of diffusion events in the simulation scales as 

O(h−2), where h is a measure of the mesh resolution. This leads to stochastic stiffness, where 

diffusion events greatly outnumber reaction events for fine mesh resolutions. This has led to 

the development of hybrid and multiscale methods to improve the situation. For an overview 

see [15].

Despite the large computational cost, mesoscopic simulation with the RDME, when 

applicable, is typically orders of magnitude faster than alternatives such as reactive 

Brownian dynamics. Individual realizations can be feasibly sampled for fairly complex 

models in complicated geometries on commodity computational resources such as laptops 

and workstations. However, since the models are stochastic, single realizations are not 

sufficient. Rather, large ensembles of independent samples of the process need to be 

generated to form a basis for statistical analysis. Furthermore, key parameters of the 

biological process may be known only to an order of magnitude or two, thus necessitating an 

exploration of parameter space and/or parameter estimation. The need for an infrastructure 

to manage the computation and data has motivated the development of PyURDME and the 

MOLNs platform.
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3. Results

3.1. Construction of spatial stochastic models with PyURDME

PyURDME (www.pyurdme.org) is a native Python module for the development and 

simulation of spatial stochastic models of biochemical networks. It is loosely based on the 

URDME [5] framework, in that it replicates the functionality of URDME’s core and uses 

modified versions of the stochastic solvers. While URDME was designed as an interactive 

MATLAB package, using COMSOL Multiphysics for geometric modeling and meshing, 

PyURDME is a Python module providing an object-oriented API for model construction and 

execution of simulations. PyURDME relies only on open source software dependencies and 

uses FEniCS/Dolfin [22] as a replacement for the facilities that COMSOL provided for 

URDME.

Creating a model in PyURDME involves implementing a class that extends a base model, 

URDMEModel, where information about chemical species, reaction rates, reactions, and the 

geometry and mesh are specified in the constructor. There is a minimal amount of Python 

code that is easily readable and powerful enough to extend to more complex models quite 

intuitively. Then, spatial stochastic solvers, each based on a base-class URDMESolver, can 

be instantiated from a reference of the model. After executing simulations, results are 

encapsulated in an URDMEResult object. The excerpt of an IPython notebook [28] in 

Figure 2 illustrates specification and execution of a model of spontaneous polarization in 

yeast [1]. We will use the development and analysis of this model as a case study later in this 

paper. In the supplementary material, which is linked from the main article webpage, we 

provide in-depth explanations of the design and workings of the key classes URDMEModel, 
URDMESolver, and URDMEResult.

The URDMESolver class provides an interface to spatial stochastic solvers. The current core 

solver in PyURDME is a modified version of the NSM [7] core solver in the URDME 

framework [5]. It is implemented in C, and we follow the same execution mechanism as in 

[5]. Upon execution of the solver (e.g., the model.run() command in Figure 2), PyURDME 

uses the model specification encoded in YeastPolarization to assemble the data structures 

needed by the core solver. It also generates a C file specifying the reaction propensity 

functions and compiles a binary for execution of the specific model. The binary solver is 

then executed as a separate process. The core solver executes the NSM method and 

generates a spatio-temporal time series data set which is written to the compressed binary 

file in the HDF5 format [39]. For exact reproduction of a single run, PyURDME’s run() 
function takes as an argument seed=N, where N is the desired value of the random number 

initialization.

Though all of the functionality of PyURDME is available when using it as a native library 

on a local client (such as a user’s laptop), we provide additional functionality to enhance the 

usability when integrated in MOLNs. For example, simulation results can be visualized with 

a three-dimensional (3D) rendering of the mesh or domain inline in an IPython Notebook 

using the JavaScript library three.js [40] (as illustrated in Figure 2). Additionally, special 

attention has been paid to make the instances of URDMEModel, URDMESolver, and 

URDMEResult serializable. This enables PyURDME to integrate with the IPython.Parallel 
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library, the distributed computing facilities of IPython, and is an important property that 

prepares PyURDME for distributed computing. PyURDME models need not be developed 

in a tightly coupled manner on the MOLNs platform, but a benefit of doing so is that it 

enables seamless integration with the development and visualization facilities and allows the 

computational scientists to easily harness the computational power of the large-scale 

distributed computational cloud computing environment.

3.2. The MOLNs cloud platform

The MOLNs cloud computing platform has three major components, as shown in Figure 3. 

The first component is the IPython notebook web interface, which provides a widely used 

and familiar user interface for the MOLNs platform. The second component is the 

molnsclient, a command line interface (CLI) which is responsible for the setup, 

provisioning, creation, and termination of MOLNs clusters on private or public cloud 

computing infrastructure services. The final component is the molnsutil package, which 

provides a high-level API for distributed simulation and postprocessing of Monte Carlo 

workflows with PyURDME. Together, these components make up a powerful and easy to 

use tool for harnessing the computational power and high availability of cloud computing 

resources in an interactive, sharable, and reproducible manner.

3.2.1. IPython notebook server—The first component of the MOLNs platform is an 

IPython notebook server. The IPython notebook is a web-based interactive computational 

environment where code execution, text, mathematics, plots, and rich media can be 

combined into a single document. The main goal of the IPython project has been to provide 

interactive computing for scientists [28], and it has gained widespread use in the scientific 

community. IPython notebooks are “computable documents,” and this makes them ideal to 

present easily reproducible and shareable scientific results [30]. IPython Notebook was 

recently suggested in a Nature editorial to be a promising tool for addressing the lack of 

reproducibility of computational biology results [34]. An example of the usage of 

PyURDME in such a notebook is shown in Figure 2.

While the notebooks contain the information needed to share and reproduce the model and 

the structure of the computational experiment, other important parts of the provenance of a 

computational experiment are the compute infrastructure and the software stack. For 

computational experiments, the software stack is often quite complex, and a notebook does 

not provide a way to set up an environment in which it can be executed. For spatial 

stochastic simulations, this is complicated further by the need for complex HPC 

infrastructure. This is addressed by molnsclient.

3.2.2. Molnsclient—The second component of the MOLNs software is the molnsclient, 
which is responsible for the infrastructure management of cloud computing resources. It is a 

CLI for provisioning the MOLNs clusters, i.e., starting and terminating the virtual machine 

instances on the cloud computing service providers. This is represented by the gray lines in 

Figure 3. The configuration of molnsclient is organized into Providers, Controllers, and 

Workers. The CLI allows the user to configure and set up each of these objects.
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A Provider represents a cloud Infrastructure-as-a-Service (IaaS) provider, such as public 

cloud providers Amazon EC21 or HP Cloud,2 or a private installation of cloud IaaS software 

such as OpenStack3 or Eucalyptus [26]. To set up a Provider, the user simply provides 

access credentials. Next, molnsclient will automate the building of the virtual machine (VM) 

images. This is done by starting a clean Ubuntu 14.04 seed VM. Then, using package 

management and source control programs, the set of packages necessary for MOLNs are 

loaded onto the image. The image is then saved and used for all subsequent provisioning of 

VMs on this Provider.

A Controller represents the head node of a MOLNs cluster. It is associated with a specific 

Provider. It hosts the IPython notebook server interface, the parallel computing work queue 

(IPython parallel controller), and hosts the SharedStorage service. If a Controller VM has 

enough CPUs, one or more IPython parallel engines will be started on the node as well. A 

Worker represents one or more Worker nodes and is associated with a Provider and a 

Controller. It is not required that a Worker have the same Provider as its associated 

Controller. Indeed, starting Workers on a Provider different from the Controller enables 

MOLNs’s heterogeneous cloud computing capability; see Figure 3. Workers host IPython 

parallel engines for parallel processing, typically one per CPU. Controllers and Workers can 

be started independently, and additional workers can be added and removed from a running 

cluster dynamically, though a Worker can only be started if its associated Controller is 

already running.

Together, the infrastructure set up by molnsclient and the IPython framework provides an 

environment that allows interactive and efficient parallel computational experiments. 

However, the virtual cloud environment adds requirements for handling data not addressed 

by IPython. Also, directly using the IPython parallel APIs to script scalable Monte Carlo 

experiments requires some computer science expertise. Hence, there is a need to simplify for 

practitioners the set up and execution of typical experiments with the spatial stochastic 

solvers. These issue are addressed by the molnsutil package.

3.2.3. Automatic parallelization of systems biology workflows—Providing access 

to massive computational resources is not sufficient to enable the wider community to utilize 

them. Efficient use of parallel computing requires specialized training that is not common in 

the biological fields. Since we have designed MOLNs as a virtual platform, and thus control 

the whole chain from software stack to virtual compute infrastructure, building upon a 

parallel architecture (IPython.parallel), we are able to implement a high-level API that 

provides simple access to the parallel computational resources. From a modeler’s 

perspective, this ensures that computational experiments can be scaled up to conduct proper 

statistical analysis or large-scale parameter studies without having to deal with managing a 

distributed computing infrastructure. Instead, the modelers can spend their time on 

interactively developing and refining postprocessing functions as simple Python scripts.

1http://aws.amazon.com/ec2/
2https://horizon.hpcloud.com/
3http://www.openstack.org/
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The role of molnsutil is to bridge the gap between the underlying virtual infrastructure 

provisioned by molnsclient and the modeler, providing easy-to-use abstractions for scripting 

Monte Carlo experiments in the IPython notebook front-end. IPython.parallel provides an 

API for distributed parallel computing that is easy to use for computational scientists. 

Although IPython.parallel as deployed in typical cloud computing environments does not 

offer an environment for truly scalable and low-latency communication-intensive parallel 

computing, fairly general parallel computing workflows can be implemented and executed in 

the MOLNs environment, and good performance can be expected for typical Many-Task 

computing problems. In molnsutil, we have used this API to provide high-level access to two 

such applications and also the two most common computational workflows with 

PyURDME: the generation of large ensembles of realizations and global parameter sweeps. 

We also address the question of data management in the cloud, as this issue is out of the 

scope of the IPython environment. The molnsutil library provides an easy-to-use API to 

store and manage data in MOLNs.

3.2.4. Cluster and cloud storage API—The storage API mirrors the storage layers in 

the infrastructure; see Figure 3 and Table 1. We define three API-compatible storage classes: 

LocalStorage, SharedStorage, and PersistentStorage, where the first enables writing and 

reading of files to the local ephemeral disks of the individual compute nodes, the second 

uses the cluster-wide network storage, and the third uses the Object Store of the underlying 

cloud provider. They all fulfill separate needs; LocalStorage is used for caching files near 

compute engines and has the smallest I/O overhead but adds complexity for the developer in 

dealing with failures that lead to data loss. This storage mode is mainly used internally in 

molnsutil for optimization purposes. SharedStorage provides a nonpersistent global storage 

area that all compute engines can access, making the computations more robust to failing 

workers. Using SharedStorage does not incur any additional cost beyond the cost for the 

deployed cluster instances.4 PersistentStorage also provides global access to objects, but in 

addition it makes them persistently available outside the scope of the deployed cluster and 

visible to other applications (if they share credentials to access the storage buckets). 

PersistentStorage is hence ideal for simulation data that needs to be shared or stored for long 

periods of time. In public clouds, using PersistentStorage incurs extra cost both for storing 

the objects and for accessing them. As long as the cluster is deployed in a sensible manner, 

current cost models in the supported clouds permit free network transfer from the object 

store to the compute engines. In addition to storage abstractions, molnsutil contains parallel 

implementations of two important Monte Carlo computational workflows.

3.2.5. Ensemble statistics—A frequently occurring scenario in computational 

experiments with spatial stochastic solvers is the generation of very large ensembles of 

independent realizations from the same model, followed by a statistical analysis based on the 

ensemble data. Often, a postprocessing function is used to translate the detailed state 

information X into information directly related to the biological question being addressed. 

Hence, this function g(X) is provided by the user. The most common statistics are the mean 

and the variance. The mean of g(X), E[g(X)], can be computed as 

4This occurs if all VMs are within the same availability zone.
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, where K is the number of realizations in the ensemble, typically 

a large number. The variance is given by , and 

a 95% confidence interval for the mean is then given by .

In molnsutil, this fundamental computation is implemented as part of a DistributedEnsemble 
class. When generating a distributed ensemble, a URDMESolver instance is created from a 

URDMEModel class on each of the workers. The stochastic solver is then run (in parallel) 

independently to create the K realizations. Each realization is represented by an 

URDMEResult object. Hence, the K URDMEResult objects contain the Xk variables in the 

equations above. To compute the ensemble statistics we apply the postprocessing function to 

all the results and aggregate them by summation. It is important to note that to exactly 

reproduce stochastic ensembles requires that the same random seed be used in each of the 

simulated trajectories. MOLNs provides this facility by simply adding the argument seed=N, 

where N is the desired value of the random number initialization. molnsuitil distributes this 

initialized value to each simulation in the ensemble (or set of ensembles for a parameter 

sweep) and ensures that each trajectory has a unique random number seed by incrementing 

the base seed by one.

In Figure 4 we further distinguish two main variants of the execution of this fundamental 

workflow. The first is where we do not store the intermediary data and instead directly pass 

it to the next part of the computation, only storing the final postprocessed result (B). The 

second is where we in a first pass generate the ensemble data and store the intermediary 

result (the URDMEResult objects) (C) and then, in a second pass, apply the postprocessing 

routines and compute statistics (D). Both of these cases are common in practical modeling 

projects. In early stages of a project, where the postprocessing functions are being 

developed, one tends to favor storing the ensemble data and then interactively and 

dynamically analyzing it while developing the code for the postprocessing analysis. Thus, 

the lifetime of the data may be hours to days and typically follows the lifetime of the 

compute cluster (making the use of SharedStorage ideal). Later in the project when 

production runs are conducted, the generation of the ensemble data can require significant 

CPU time, and one may want to store the simulation data during the lifetime of the project 

(months to years) for reanalysis, reproducibility, or sharing with another modeler. In this 

case, the lifetime of the data can be much longer than the lifetime of the cluster resources 

(making the use of the PersistentStorage ideal). In other situations, the stochastic simulations 

may run fast while the size of the output data set is large. In those cases, it may be preferable 

to simply recompute the ensemble data in every pass of an analysis step since the cost of 

recomputation is smaller than the cost of storage.

Figure 5 shows an excerpt from a MOLNs notebook illustrating how the above workflows 

are executed using molnsutil. The user writes the postprocessing function shown in cell In 
[7], and then in cell In [8] creates an instance of DistributedEnsemble and generates 200 

realizations of the model, corresponding to the workflow in Figure 4(C). Then, cell In [10] 

executes the postprocessing workflow in Figure 4(D). Note that in order to change the 

analysis in a subsequent step, it is only necessary to modify the function g in cell In [7] and 
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re-executing cell In [10]. This gives the modeler the ability to interactively and efficiently 

develop the analysis functions. While it is not possible or desired to abstract away the user 

input for the analysis function, as this is where the biology question gets addressed, we have 

made efforts to abstract away the details of the numerics by encapsulating the data in the 

URDMEResult object and exposing it through simple API calls.

Table 1 summarizes how the storage classes in molnsutil maps to the different variants of the 

workflows. When creating a DistributedEnsemble, the default is to use SharedStorage, but 

the user can switch to PersistentStorage via a single argument to add realizations. 
LocalStorage is used internally to optimize repeated postprocessing runs by explicitly 

caching data close to compute nodes.

3.2.6. Parameter sweeps—In most biological models, there is considerable uncertainty 

in many of the involved parameters. Experimentally determined reaction rate constants, 

diffusion constants, and initial data are often known to low precision or not known at all. In 

some cases, phenomenological or macroscopic outputs of the system are available from 

experiments, frequently in terms of fluorescence image data or coarse-grained time series 

data for the total number (or total fluorescence intensity) of some of the species. Hence, 

parameter sweeps are prevalent in modeling projects. Early in a modeling project, they are 

typically used for parameter estimation, i.e., finding values of the experimentally 

undetermined parameters that give rise to the experimentally observed phenomenological 

data. Such brute force parameter estimation may seem like a crude approach, but more 

sophisticated techniques based on, e.g., parameter sensitivity have yet to be theoretically 

developed and made computationally feasible for mesoscopic spatial stochastic simulations. 

Later in a modeling project, when some hypothesis or observation has been made, it is 

typically necessary to conduct parameter sweeps to study the robustness of this observation 

to variations in the input data. We also note that studying the robustness of gene regulatory 

networks in a noisy environment has been a common theme in the systems biology literature 

[37, 36, 21].

From a computational point of view, a parameter sweep can be thought of as generating a 

collection of ensembles, one for each parameter point being explored. Since the number of 

parameter points in a multidimensional parameter space grows very quickly with the number 

of parameters included in the sweep, the amount of compute time and storage needed for a 

parameter sweep can be very large, even if relatively small ensembles are generated for each 

parameter point. The same tradeoffs with respect to storing the ensemble trajectory data as 

discussed above for a single ensemble applies also to parameter sweeps, but due to the 

massive amounts of data that is generated even for a moderately large parameter sweep, it 

will likely be more common to use the execution model where the time course simulation 

data for each (parameter, ensemble)-pair is not stored. In those cases, the evaluated output 

metrics for each parameter point will be stored for further analysis and visualization.

The last cell in Figure 5 shows how to execute a parameter sweep in MOLNs. The user 

simply provides a mapping between any named argument to the constructor in the 

URDMEModel class definition and a value range. The molnsutil package then executes the 

parallel workflow and returns the result.
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3.3. Case study: Interactive model development, simulation, and analysis of yeast 
polarization

To illustrate the capabilities of MOLNs we created, implemented, and analyzed a model of 

spontaneous yeast polarization. The cell signaling system in Saccharomyces cerevisiae is an 

ideal candidate to test MOLNs because it is a well-studied, yet not fully understood system 

in which polarization is critical to the cell cycle. In this case study we describe how we 

developed our model, parameter sweeps, and postprocessing analysis using MOLNs and 

reproduced conclusions from the literature.

Yeast cells exist in both haploid and diploid forms, both of which can reproduce through 

mitosis (i.e., budding). The haploid cells exist in two different types which can mate with 

each other to form a diploid cell. In both cases, polarization of proteins into a cap within the 

cell is crucial to establish the point of budding or the point of the mating projection. Cdc42 

is a critical protein to the establishment and regulation of polarity [29]. Though many 

models exist, varying in range of mathematical complexity and physical relevance, we focus 

on a relatively simple model presented in [1, 20] that makes use of a minimal positive 

feedback circuit.

3.3.1. Model specification—The yeast cell is modeled as a sphere with a membrane on 

the surface of the sphere. The model has three reactions between two species: cytosolic 

Cdc42 is allowed to spontaneously attach to the membrane with rate kon (2), membrane-

bound Cdc42 can likewise spontaneously detach with rate koff (3), and finally membrane-

bound Cdc42 can recruit cytosolic Cdc42 to the membrane at rate kfb to close the positive 

feedback loop (4):

(2)

(3)

(4)

The cytosolic and membrane bound species can diffuse at rates Dcyt and Dmem, respectively 

(the diffusion of the membrane-bound Cdc42 being restricted to the membrane). The 

geometry, model definition, postprocessing, and visualization are handled completely within 

the MOLNs environment.

The definition of the yeast polarization model is a Python class that extends the 

URDMEModel class. First, the model parameters and species were defined through add 
parameter and add species functions with the expressions and names for model parameters 

and species (these and all other commands referenced can be seen explicitly in the example 

code provided in Figure 2). Next, we defined the geometry of the cell using the built-in 
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functionality of the FEniCS/DOLFIN [22, 23] constructive solid geometry (CSG) sphere 

object. The membrane subdomain is defined by a custom class that marks all voxels on the 

surface of the sphere and is then added to the model object via the add subdomain function. 

Next the reactions are defined by specifying the reactants, products, rate parameters, and 

subdomains to which the reactions and species are restricted. In this example problem all 

reactions are mass action, but PyURDME also has the capability to take custom propensity 

functions for a reaction, such as Michaelis–Menten. The reactions are added to the 

PyURDME model object via the add reaction function. The last step in the model definition 

is to provide initial conditions and information about the simulation time span. Here, initial 

conditions were specified to be a random scattering of 10% of molecules on the membrane 

and the rest scattered through the cytosol. Although this example is intended to be simple, 

the design of PyURDME enables easy extension of these modeling definition techniques to 

much more complex systems. All code and parameter values for this model can be found in 

the attached example files in the supplementary material.

3.3.2. Model execution, parameter sweep, and postprocessing—Once we have 

completed the model definition, we execute the simulation within the same IPython 

notebook with one run() command. After model execution, the postprocessing capabilities of 

MOLNs can be utilized. Having all model parameters, species, geometry, subdomains, and 

reactions organized within one easily accessible PyURDME model object simplifies the 

development of postprocessing analysis scripts. All of the postprocessing and data 

visualization take place right in the same IPython notebook in which model definition and 

execution occurred. All computation is performed in the cloud, and the users interact via a 

web browser connected to the IPython notebook interface. In particular, interactive 3D plots 

of results are rendered in the web browser.

The IPython notebook contains the code that generates plots and the interactive plots 

themselves within one editable, easily transferable document, which provides the MOLNs 

user a unique modeling experience that significantly eases the development process. A result 

can be visualized right along with the code that generated it, and any errors or changes that 

need to be made will be readily apparent. For this particular example it was of interest to 

monitor the polarization activity on the membrane. The previous implementations of this 

positive feedback model [20] made explicit predictions of a density-dependent switch that 

drives stochastic clustering and polarization (although the physical relevance of this behavior 

has more recently come into question [11]).

To determine whether the density-dependent switch behavior was in fact observed, we varied 

the total number of Cdc42 signaling molecules while keeping the volume constant and 

investigated the polarization behavior. The interactivity of MOLNs allowed useful data to be 

easily stored and analyzed, which in turn led to the development of metrics quantifying 

polarization over time.

3.3.3. Result interpretation and case-study summary—One result that the design of 

MOLNs facilitated was to define a polarization metric that tracks the clustering behavior of 

the membrane molecules over time. The number of molecules at each voxel is stored for 

every time point in the PyURDME result object. This allowed the number of membrane 
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molecules to be plotted over time, and once some dynamic equilibrium state is reached, the 

clustering can be investigated. Here, polarization at any given time was defined by a region 

making up 10% of the membrane surface area containing more than 50% of the membrane 

molecules. This metric could be monitored and plotted for each number of signaling 

molecules to try to discern a qualitative density-dependent switch behavior for polarization.

A parameter sweep was run in parallel for a range of Cdc42 molecule counts. Each 

parameter point was analyzed using a custom postprocessing function to calculate 

polarization percent versus time. In this case it was not necessary to store the large amounts 

of data from the intermediary simulations, but rather return only the output of the post-

processing function for each parameter point; thus we used the No-Storage method in 

molnsutil. Plots of polarization percent versus time along with the total number of 

membrane bound Cdc42 molecules versus time for various numbers of total Cdc42 

molecules can be seen in Figure 6. Based on the predictions of [20], there should be a 

critical range for polarization. This range is from a lower critical number of molecules 

necessary to facilitate polarization to an upper number above which molecules essentially 

become homogeneous on the membrane (i.e., not polarized). In Figure 6 the time average of 

the maximum polarization percent is plotted for each Cdc42 molecule count, with error bars 

corresponding to the standard deviation. As can be seen in Figure 6, there is in fact a 

density-dependent switch behavior in the model. Below the theoretical critical value 

calculated from [20] (around 500 molecules for this model) the molecules are in a 

homogeneous off state, meaning all of the molecules stay in the cytosol. There is an abrupt 

switch to a high percent polarization above the critical value. As the number of molecules is 

increased further, they asymptotically approach a homogeneous distribution on the 

membrane, as predicted by [20].

This case study illustrates the power and ease with which MOLNs users can define and 

analyze biologically relevant models. Having a coding environment for model and 

postprocessing development and the interactive visualization of results side by side in one 

self-contained document with all computation taking place in the cloud makes for a smooth 

development experience. Also the ability to perform large-scale parameter sweeps efficiently 

in the cloud and to effectively organize the results is crucial for any modeling task.

3.4. Parallel computing performance

Since MOLNs builds on the IPython suite, it inherits a design focused on interactive parallel 

computing and dynamic code serialization (enabling the interactivity in the development of 

the postprocessing routines), and hence programmer productivity and flexibility are areas 

where MOLNs can be expected to excel. As we have seen, this is enforced by the design of 

PyURDME. However, parallel performance and scalability are also important factors to 

consider since they map directly to cost in public cloud environments. Here, we study the 

performance for our most fundamental computational workflow: generation of a distributed 

ensemble and subsequent postprocessing by computing the ensemble mean for a given 

function. We examine the performance in three different clouds: MIST, a privately managed 

OpenStack Havanna deployment, and the Amazon EC2 and HP Helion public clouds. 

Finally, we benchmark the system for a hybrid deployment using the HP and EC2 providers. 
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Details regarding the IaaS providers and instance types can be found in the supplementary 

material.

Figure 7 shows strong and weak scaling experiments when executing the workflows (B)–(D) 

detailed in Figure 4. Strong scaling shows the execution time for a fixed problem size, here 

computing an ensemble with 102 realizations, with an increasing number of computational 

engines. We start with a relatively small number of realizations to highlight the impacts of 

system latency on how much the simulation time can be reduced for a given problem by 

adding more workers to the MOLNs cluster. Weak scaling, on the other hand, shows the 

total execution time when both the number of engines and the problem size are increased 

proportionally so that the total work per engine stays constant. This benchmark shows how 

well the system lets you increase the problem size by scaling out the compute resources, and 

the ideal outcome is a constant execution time independent of problem size. In reality, the 

execution time will never be perfectly constant due to the possibility of exhausting common 

resources such as disk I/O throughput or network bandwidth (in the case of storing 

simulation data) or due to scheduling overheads as the number of tasks and workers become 

numerous. Since these particular workflows map well to the MapReduce programming 

model, as do many simple Monte Carlo experiments, we will also compare the performance 

of the MOLNs implementation to a reference implementation using Hadoop streaming on a 

virtual Hadoop cluster deployed over the same physical resources in our private cloud, 

MIST. Details of the Hadoop implementation can be found in the supplementary 

information.

It is not our objective to compare the performance of the different cloud providers in 

absolute numbers since the underlying hardware differs, although we chose instance types 

that are as closely corresponding to each other as possible (details can be found in the 

supplementary material). Rather, we are interested in the scaling properties which we find to 

be similar for all cloud providers, as can be seen in Figure 7. For strong scaling, irrespective 

of storage mode, we initially see a rapid reduction in simulation time and a saturation for 

larger numbers of engines. This is expected due to the total overhead of the system that sets 

a fundamental limit on the possible speedup. The total simulation time at saturation is less 

than 20 seconds. For weak scaling, the SharedStorage method is faster than using 

PersistentStorage for a smaller number of nodes; however, as the number of workers 

increases, the PersistentStorage is scaled better. We find the crossover point for the 

performance of these two modes to be approximately five nodes. We also note that for the 

public clouds (in particular for EC2), the PersistentStorage backend results in nearly perfect 

weak scaling, as the scaling curves parallel the No-Storage curves. This result is expected 

since the Amazon S3 object storage service used by the PersistentStorage backend is 

designed to handle large throughput. In the private cloud MIST, the OpenStack Swift object 

store uses a single proxy-server, which limits the load-balancing capabilities, and as a result 

we see a linear scaling of computational time with respect to the total number of requests. In 

contrast, the SharedStorage shows a limited capability to scale out (add nodes to) 

computations, as the computational time increases sharply as the problem size becomes 

large. This is a result of saturation of the I/O read and write throughput used by the 

SharedStorage backend on the controller node. In terms of absolute numbers, the EC2 

provider outperforms both the HP and the MIST cloud providers. One possible explanation 
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for this would be the fact that the EC2 instances are equipped with SSD-disks which allow 

for faster I/O throughput.

For comparison, we performed these benchmarks using the widely used Apache Hadoop5 

distributed computing software system. Hadoop MapReduce implements parallel processing 

of data sets that are typically stored in the Hadoop distributed file system (HDFS). We 

performed the benchmarks on our private cloud MIST and found that Hadoop with HDFS is 

slower than MOLNs for all cases. For weak scaling, Hadoop without storage is very close to 

MOLNs with No-Storage, which is expected since the task size is large and system latency 

has little impact on the computational time.

In addition to benchmarks on single cloud providers, we performed benchmarks on hybrid 

deployments where the controller node is on one cloud and all of the workers are on a 

separate cloud provider. Hybrid deployments become useful when users have exhausted their 

quota in one cloud and want to add more workers in a different cloud, or if they have access 

to a private cloud but want to burst out to a public cloud for meeting peak loads. For hybrid 

MOLNs deployments, the performance of computations using SharedStorage scales badly 

due to the network latency for workers writing to the shared disk on the controller in a 

different cloud provider, to the point that its use cannot be recommended in a hybrid 

deployment (lower two panels). As can be seen, with PersistentStorage or No-Storage, a user 

can benefit from adding workers in a different cloud. It should be noted, however, that the 

cost of using the PersistentStorage in this case will be much higher than in the pure cloud 

environments since data is moved between cloud providers.

In conclusion, these benchmarks show that MOLNs is not only capable of providing a 

flexible programming environment for computational experiments, but also a scalable and 

efficient execution environment, also in comparison with less easy-to-use and less flexible 

systems such as the industry-standard Apache Hadoop. We estimate the total cost to run this 

suite of benchmarks was $158 for the HP cloud provider and $50 for the EC2 cloud provider 

(December 2014 prices). This estimate is based on the monthly billing statement; details can 

be found in the supplementary material.

4. Discussion

The issue of reproducibility in scientific computation is both important and difficult to 

address. MOLNs constructs a templated software environment including virtualization of the 

computational infrastructure, and the IPython notebooks contain all the code necessary to 

construct the models and execute the analysis workflows; thus we believe that our system 

holds promise to allow for easy reproduction and verification of simulation results. In 

particular, there is no need for a modeler to manage multiple formats of the models, or to 

develop code or input files specific to a particular HPC environment, as all of the 

information is contained within the notebooks. This reduces the burden on the practitioner to 

learn specific computing systems and removes the error prone and technically involved 

process of scaling up a computational experiment in a way that allows for collaborative 

5http://hadoop.apache.org/
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analysis of the simulation results. All in all, we believe that MOLNs showcases a scientific 

software design that has the potential to greatly increase productivity for computational 

scientists.

The current version of MOLNs makes the spatial stochastic simulation package PyURDME 

available as a service. PyURDME was designed from the ground up as a cloud-ready 

package, but in such a way that it does not rely on MOLNs for its use. Naturally, a modeling 

process may want to rely on other simulation packages as well. MOLNs’s automatic and 

templated configuration of the environment can easily be extended to make other tools 

available in the IPython notebooks, provided that they can be accessed from the IPython 

environment (which is not restricted to Python code). We believe that PyURDME showcases 

a good design to follow for other simulation packages to benefit from this cloud delivery 

model. It is our hope that the MOLNs platform will grow to include a larger ecosystem of 

spatial and nonspatial simulation software to facilitate for practitioners to compare tools and 

to choose the best one for the task at hand.

We have chosen to focus our efforts in facilitating model development on constructing a 

programmatic interface; hence use of the service requires basic capabilities in Python 

programming knowledge. The principal target user group is computational biologists that 

have basic knowledge of programming in a scripting language. By specifying models as 

compact Python programs, MOLNs and PyURDME join a community of computational 

software packages, such as PySB [24], whose objective is to utilize high-level, descriptive 

programmatic concepts to create intuitive, extensible, and reusable models that integrate 

advanced software engineering tools and methods to distribute and manage the 

computational experimental process.

From a computer science perspective, the traditional tradeoffs between interactivity and 

large-scale computational experiments that motivated the development of MOLNs are not 

unique to this particular application. Looking at scientific computing in general, applications 

often follow a traditional black-box execution model in which the results of the computation 

can be procured after the complete execution process. Such workflows have proven to be 

successful both for simple and complex applications. Queuing based job schedulers such as 

Torque/PBS which are typical on university clusters have been the driving force behind this 

approach. However, lack of interactivity is one of the empirical drawbacks of the black-box 

execution approach. The cloud paradigm changes the way resources are offered, and 

therefore it is vital to change the traditional black-box execution model of scientific 

applications to support more interactivity, something that will enhance productivity, prevent 

wastage of computational resources, and allow inducing knowledge on-the-fly to further 

optimize the ongoing analysis process. The issues of traditional computational workflows 

have been addressed within specialized application domains. Galaxy [13] provides an 

interactive platform that combines the existing genome wide annotations database with 

online analysis tools that enables running complex scientific queries and visualization of 

results. A commercial service, PiCloud6 [8], provided a service for distributing computation 

on cloud computing resources. The Control Project [17] at Berkeley focuses on a general 

6PiCloud is now at http://www.multyvac.com.
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purpose interactive computing technique to enhance the human computer interaction for 

massive dataset analysis and thus provides an effective control over information. This 

project offers online aggregation, emulation and visualization, and rapid data-mining tools. 

The authors in [30] present a similar approach based on StarCluster [25] and IPython 

notebooks for a multitask computing model for reproducible biological insights. MOLNs 

brings the new style of IT model that the above projects represent to the domain of 

quantitative modeling in systems biology.

Finally, StochSS (www.stochss.org) is a cloud-computing application developed by the 

present authors that aims at integrating solvers for many different model levels ranging from 

ODEs to spatial stochastic simulations. In contrast to MOLNs, the present StochSS 

application emphasizes ease of use and targets biology practitioners with limited or no 

programming experience. This is reflected by a graphical web user interface (WebUI) to 

support modeling and a very high abstraction level for interacting with compute resources. 

In future work, the MOLNs platform will be consumed as a service within the StochSS 

application as an alternative to the UI-assisted modeling approach, when the user becomes 

more and more comfortable with quantitative modeling.

In conclusion, we present MOLNs: a cloud computing virtual appliance for computational 

biology experiments. It has the capability to create computational clusters from a 

heterogeneous set of public and private cloud computing infrastructure providers and is 

bundled with the molnsutil package to organize distributed parallel computational 

workflows. It uses an IPython notebook user interface designed to enable interactive, 

collaborative, and reproducible scientific computing. We also present PyURDME, a 

software package for modeling and simulation of spatial stochastic systems. It features an 

intuitive and powerful model description API based on Python objects, efficient handling of 

complex geometries with FEniCS/Dolfin [22], fast stochastic solvers, and an extensible 

framework for development of advanced algorithms [5, 6]. Additionally, we demonstrate the 

capabilities of MOLNs with a computational biology study of yeast polarization. Finally, we 

demonstrate shareability and reproducibility by including all the IPython notebooks used in 

the writing of this paper as supplemental material, and we also distribute them as examples 

in the MOLNs software.
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Fig. 1. 
MOLNs harnesses the power of cloud computing for biologists to use. Using MOLNs, 

biologists can take advantage of scalable cloud computing for compute-intensive 

computational experiments based on stochastic models of reaction-diffusion kinetics. 

Interactive modeling and scalable Monte Carlo experiments are provided through the use of 

the IPython Notebook and the newly developed libraries PyURDME and molnsutil. 
Reproducibility of computational experiments requires more than sharing the model, or even 

the computational workflow that is used for the analysis. By creating a templated 

computational environment, MOLNs makes the entire “virtual lab” sharable, offering the 

flexibility to reproduce it in the infrastructure provider of choice, be that public cloud 

providers or in-house private clouds. This ensures high availability and scalability. Illustrated 

above are the main components of MOLNs, the newly developed ones are depicted in blue. 

Grey boxes illustrate the possibility of building on the proposed infrastructure and adding 

additional data analysis tools to the virtual platform, such as Hadoop, Spark, or other 

simulation engines. Color is available online only.
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Fig. 2. 
Definition of the yeast polarization model, and examples of simulation and visualization that 

PyURDME and MOLNs provide within the IPython notebook interface. This simple 

workflow demonstrates the usage of PyURDME.
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Fig. 3. 
MOLNs cluster architecture and communication. Users interact with MOLNs in two ways: 

using the molnsclient and a web browser. The molnsclient is used to create, start, and stop a 

MOLNs cluster by provisioning Controllers and Workers on multiple clouds (gray arrows). 

Once a cluster is active, the web browser is used to connect to the IPython notebook web-

based interactive computational environment, which provides an interface to PyURDME for 

modeling and simulation, and to molnsutil for distributed computational workflows which 

utilize the Workers of the MOLNs cluster. Molnsutil distributes the computations via the 

IPython controller and IPython engines (blue arrows) and is able to store simulation data in 

either a transient shared storage (red arrows) or the persistent cloud object storage (i.e., 

Amazon S3 or OpenStack Swift, purple arrows). Color is available online only.
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Fig. 4. 
MOLNs workflows. (A) Basic workflow executed within the IPython notebook. The user 

develops a biological model, and the model is executed by the solver to produce a result 

object. The results are either visualized using functionality in PyURDME or passed to a 

user-defined postprocessing function g(x). This local simulation workflow does not require 

molnsutil and can hence be developed locally without cloud resources. (B) Distributed 

computational workflow. The user develops a biological model and a postprocessing 

function and passes them to molnsutil, which arranges the distributed execution into tasks 
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and enacts it using IPython parallel. Each task executes the model to produce one or more 

result objects which are processed by the user-supplied g(x). The resulting data is aggregated 

and returned to the user’s IPython notebook session. (C) In many cases it is advantageous to 

separate the generation of the result objects from the postprocessing. This shows the 

distributed workflow of generating the results and storing them in the integrated storage 

services so that subsequent runs of the postprocessing analysis scripts (D) can be done 

multiple times, allowing interactive development and refinement of these scripts.
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Fig. 5. 
Example usage of the DistributedEnsemble and ParameterSweep classes in molnsutil inside 

an IPython notebook. The bars are animated progress bars.
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Fig. 6. 
The results of a parameter sweep over the number of Cdc42 signaling molecules, N, with 

volume held constant, performed in parallel. Each model with a given parameter value of N 

was run to time 10, 000 seconds. Plotted (top) is the time average of the maximum percent 

of Cdc42 molecules found in any region corresponding to 10 percent surface area on the cell 

membrane for each N value, with error bars depicting the standard deviation. The dotted line 

represents the theoretical switch location calculated from [20]. The model captures both the 

theoretical density dependent switch behavior and the asymptotic decrease to a 
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homogeneous distribution, which corresponds on average to a maximum of 10 percent of 

molecules in any 10 percent region on the membrane. Plotted (bottom) is explicit 

polarization percentage and number of Cdc42 molecules versus time for various values of N 

along with a characteristic 3D visualization for each. It is important to note that at N = 250 

there is no membrane bound Cdc42, as it all remains in the cytoplasm throughout the 

simulation, which will always be the case below the switch value.
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Fig. 7. 
Benchmarks of MOLNs for a computation and analysis workflow of a PyURDME 

distributed ensemble. The left column shows strong scaling tests which demonstrate parallel 

efficiency: a constant number of jobs (100) executed on a varying number of engines. The 

right column shows weak scaling tests which demonstrate efficiency of scaling up the 

problem size: a constant number of jobs per worker (100 × ⧣ CPUs) executed on a varying 

number of engines. The tests were performed on five different compute configurations: the 

MIST OpenStack private cloud (top row), the Amazon EC2 cloud (2nd row), the HP public 
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cloud (3rd row), a hybrid cloud deployment with the MOLNs controller in the HP cloud and 

workers in the Amazon EC2 cloud (4th row), and a hybrid cloud deployment with the 

MOLNs controller in the Amazon EC2 cloud and workers in the HP cloud (5th row). We 

executed each test with the SharedStorage, PersistentStorage, and No-Storage methods of 

molnsutil. For the MIST cloud we also executed benchmarks of Hadoop MapReduce of the 

same workflow for comparison.

Drawert et al. Page 30

SIAM J Sci Comput. Author manuscript; available in PMC 2017 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Drawert et al. Page 31

Table 1

Comparison of storage types available to MOLNs distributed workflows.

Type Advantages Disadvantages

SharedStorage No additional cost for read/write
Fastest throughput for small clusters
No management of remote data

Total storage limited to Controller disk size
Nonredundant storage
Throughput limited on large clusters

PersistentStorage Persistent data
Designed for extreme scalability

Storage and access incur cost

LocalStorage Best data locality
High I/O throughput

Nonrobust to worker failure
Increased complexity for developer

No-Storage Best parallel scaling
No cost for data storage

Data must be recomputed for analysis
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