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Abstract. We show that the pipe dream complex associated to the permutation 1 n n− 1 · · · 2
can be geometrically realized as a triangulation of the vertex figure of a root polytope. Leading
up to this result we show that the Grothendieck polynomial specializes to the h-polynomial of the
corresponding pipe dream complex, which in certain cases equals the h-polynomial of canonical
triangulations of root (and flow) polytopes, which in turn equals a specialization of the reduced
form of a monomial in the subdivision algebra of root (and flow) polytopes. Thus, we connect
Grothendieck polynomials to reduced forms in subdivision algebras and root (and flow) polytopes.
We also show that root polytopes can be seen as projections of flow polytopes, explaining that these
families of polytopes possess the same subdivision algebra.
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1. Introduction

In this paper we journey from Grothendieck polynomials to geometric realizations of pipe dream
complexes via root polytopes. On this journey we meet reduced forms of monomials in the sub-
division algebra of root and flow polytopes, and root and flow polytopes themselves. While the
connection between Grothendieck polynomials and pipe dream complexes is a well known one, the
other objects in the above list are not universally thought of as tied to Grothendieck polynomials
and pipe dream complexes. As this work will illustrate, they might indeed belong together.

Grothendieck polynomials represent K-theory classes on the flag manifold; they generalize Schu-
bert polynomials, which in turn generalize Schur polynomials. We show that Grothedieck polyno-
mials specialize to h-polynomials of pipe dream complexes. Since pipe dream complexes are known
to be homeomorphic to balls (except in a trivial case), we get that their h-polynomials, and thus
shifted specialized Grothedieck polynomials have nonnegative coefficients. Such property was first
observed by Kirillov [Kir12], who indicated that he had an algebraic proof in mind.

The author was partially supported by a National Science Foundation Grant (DMS 1501059).
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Figure 1. All reduced pipe dreams for w = 1432 (that is pipe dreams with exactly
3 crosses). The weights wtx,y(P ) when y = 0 are written below the reduced pipe
dreams.

In [Kir12] Kirillov also observed that a certain specialization of the shifted Grothendieck polyno-
mial equals a specialization of a particular reduced form in the subdivision algebra of root and flow
polytopes. His observation was based on numerical evidence. We explain this equality in terms of
the geometry of the underlying pipe dream complex and root (and flow) polytopes. Indeed, we show
that the mentioned pipe dream complex can be realized as the canonical triangulation of the vertex
figure of the root polytope. No wonder then the specialized Grothendieck polynomial and reduced
form are equal: they are the h-polynomial of the pipe dream complex and the h-polynomial of the
canonical triangulation of the vertex figure of the root polytope, respectively. That the reduced
form can be seen as the h-polynomial of the canonical triangulation of the flow polytope, and thus
of the canonical triangulation of the vertex figure of the root polytope, was proved in [Mész14b].
The paper [Mész14a] also contains closely related results.

The outline of the paper is as follows. In Section 2 we show that the shifted β-Grothendieck
polynomial corresponding to the permutation w is the h-polynomial of pipe dream complex of w
denoted by PD(w). In Section 3 we define the subdivision algebra and reduced forms and recall
related results. We also allude to the connection of Grothendieck polynomials and reduced forms.
In Section 4 we explain why the subdivision algebras of root and flow polytopes are the same,
by showing that root polytopes are projections of flow polytopes. Finally, in Section 5 we tie all
the above together, by showing that the pipe dream complex PD(1 n n− 1 · · · 2) can be realized
as a canonical triangulation of a vertex figure of a root polytope. PD(1 n n− 1 · · · 2) has been
realized previously via the classical associahedron [PP12,Ceb12,CLS14].

2. Grothendieck polynomials

In this section we define Grothendieck polynomials and explain that they specialize to h-polynomials
of certain simplicial complexes called pipe dream complexes. Since the pipe dream complex is home-
omorphic to a ball, its h-polynomial has nonnegative coefficients. Therefore, we immediately obtain
nonnegativity properties of Grothendieck polynomials, which were observed by Kirillov in [Kir12].

There are several ways to express Grothendieck polynomials, and we will present the expression
in terms of pipe dreams here. Given a permutation w in the symmetric group Sn it can be
represented by a triangular table filled with ’s (crosses) and ’s (elbows) such that (1) the pipes
intertwine according to w and (2) two pipes cross at most once. Such representations of w are
called reduced pipe dreams, see Figure 1. Pipe dreams are also known as RC-graphs, and the
reduced pipe dreams of a permutation were shown to be connected by ladder and chute moves
by Bergeron and Billey in [BB93]. To each reduced pipe dream we can associate the weight
wtx,y(P ) :=

∏
(i,j)∈cross(P )(xi − yj), with cross(P ) being the set of positions where P has a cross.

Note that throughout the literature the definition of the weight varies; however, all results can be
phrased using any one convention.

A nonreduced pipe dream for w ∈ Sn is a triangular table filled with crosses and elbows so
that (1) the pipes intertwine according to w whereby if two pipes have already crossed previously
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Figure 2. All pipe dreams with exactly 4 crosses for w = 1432. The weights
wtx,y(P ) when y = 0 are written below the pipe dreams.
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Figure 3. The unique pipe dreams with exactly 5 crosses for w = 1432. The
weights wtx,y(P ) when y = 0 are written below the pipe dream.

then we simply ignore the extra crossings and (2) there are two pipes that cross at least twice. All
nonreduced pipe dreams for 1432 with a total of 4 crosses can be seen in Figure 2 and the unique
pipe dreams for 1432 with a total of 5 crosses can be seen in Figure 3. We associate a weight
wtx,y(P ) to each pipe dream as above.

The set Pipes(w), which is the set of all pipe dreams of w (both reduced and nonreduced),
naturally labels the interior simplices of the pipe dream complex PD(w) associated to a permu-
tation w ∈ Sn; see Figure 4 for PD(1432). The pipe dream complex PD(w) is a special case
of a subword complex and can be defined as follows. A word of size m is an ordered sequence
Q = (σ1, . . . , σm) of elements from the simple reflections {s1, . . . , sn−1} in Sn. An ordered sub-
sequence R of Q is called a subword of Q. A subword R of Q represents w ∈ Sn if the ordered
product of simple reflections in R is a reduced decomposition for w. The word R contains w ∈ Sn
if some subsequence of R represents w. The pipe dream complex PD(w) is the set of sub-
words (sn−1, sn−2, . . . , s1, sn−1, sn−2, . . . , s2, sn−1, sn−2, . . . , s3, . . . , sn−1, sn−2, sn−1)\R whose com-
plements R contain w. The word Q = (sn−1, sn−2, . . . , s1, sn−1, sn−2, . . . , s2, sn−1, sn−2, . . . , s3, . . . ,
sn−1, sn−2, sn−1) is called the triangular word.

The following theorem provides a combinatorial way of thinking about double Grothendieck
polynomials.

Theorem 2.1. [KM04, FK94] The double Grothendieck polynomial Gw(x,y) for w ∈ Sn,
where x = (x1, . . . , xn−1) and y = (y1, . . . , yn−1) can be written as

(2.1) Gw(x,y) =
∑

P∈Pipes(w)

(−1)codimPD(w)F (P )wtx,y(P ),

where Pipes(w) is the set of all pipe dreams of w (both reduced and nonreduced), F (P ) is the interior
face in PD(w) labeled by the pipe dream P , codimPD(w)F (P ) denotes the codimension of F (P ) in
PD(w) and wtx,y(P ) =

∏
(i,j)∈cross(P )(xi−yj), with cross(P ) being the set of positions where P has

a cross.

In the spirit of Theorem 2.1, we use the following definition for the double β-Grothendieck
polynomial:

3



Figure 4. The pipe dream complex PD(1432). Figure used with permission from [Knu04].

(2.2) Gβ
w(x,y) =

∑
P∈Pipes(w)

βcodimPD(w)F (P )wtx,y(P ).

Note that if we assume that β has degree −1, while all other variables are of degree 1, then

the powers of β’s simply make the polynomial Gβ
w(x,y) homogeneous. We chose this definition of

β-Grothendieck polynomials, as it will be the most convenient notationwise for our purposes.
Next we state a special case of (2.2), since it will play a special role in this section.

Lemma 2.2. Denoting Gβ
w(x,y) by Gβ

w(q, t) when we set all components of x to q and all compo-
nents of y to t, we have

(2.3) Gβ
w(q, t) = (q − t)l(w)

∑
P∈Pipes(w)

[β(q − t)]codimPD(w)F (P ),

where l(w) is the length of the permutation w, F (P ) is the interior face in PD(w) labeled by the
pipe dream P and codimPD(w)F (P ) denotes the codimension of F (P ) in PD(w).

Proof. By (2.2) we have that

(2.4) Gβ
w(q, t) =

∑
P∈Pipes(w)

βcodimPD(w)F (P )(q − t)|cross(P )|.

Since the number of crosses in a pipe dream P is l(w)+codimPD(w)F (P ), equation (2.3) follows. �
The next lemma follows from the well-known relation between f - and h-polynomials. We note

that we take h(C, x) =
∑d

i=0 hix
i to be the h-polynomial of a (d−1)-dimensional simplicial complex

C. For a direct proof of the lemma see [Mész14b].
4



Lemma 2.3. [Sta96] Let C be a (d − 1)-dimensional simplicial complex homeomorphic to a ball
and f◦i be the number of interior faces of C of dimension i. Then

(2.5) h(C, β + 1) =

d−1∑
i=0

f◦i β
d−1−i

Using that the interior simplices of PD(w) are in bijection with pipe dreams of w we obtain the
following corollary of Lemma 2.3.

Corollary 2.4. Given w ∈ Sn we have

(2.6) h(PD(w), β + 1) =
∑

P∈Pipes(w)

βcodimPD(w)F (P ),

where F (P ) is the interior face in PD(w) labeled by the pipe dream P and codimPD(w)F (P ) denotes
the codimension of F (P ) in PD(w).

Finally, we obtain the following as a corollary of the above.

Theorem 2.5. We have

(2.7) Gβ−1
w (q, q − 1) = h(PD(w), β),

where h(PD(w), β) is the h-polynomial of PD(w). In particular we have that Gβ−1
w (q, q − 1) ∈

Z≥0[β].

Proof. Corollary 2.4 yields h(PD(w), β + 1) =
∑

P∈Pipes(w) β
codimPD(w)F (P ). Together with Lemma

2.2 applied when t = q − 1 we get (2.7) in Theorem 2.5. The nonnegativity of the coefficients of

Gβ−1
w (q, q − 1) then follows because of the nonnegativity of the h-polynomial of a simplicial complex

which is homeomorphic to a ball. Recall that PD(w) is known to be homeomorhpic to a ball, except
in the trivial case when it is a (−1)-sphere, which case can be checked separately. �

The nonnegativity of the coefficients of Gβ−1
w (1, 0) was observed by Kirillov [Kir12]. Equation

(2.7) makes clear why this is the case: because it is the h-polynomial of a simplicial complex which
is homeomorphic to a ball, implying that its coefficients are nonnegative [Sta96].

3. Reduced forms in the subdivision algebra

In this section we point to a connection between reduced forms in the so called subdivision
algebra and Grothendieck polynomials. In Section 5 we provide a geometric realization of the pipe
dream complex PD(1n(n− 1) . . . 2) via a triangulation of a root (or flow) polytope, which implies
this connection. In Section 4 we explain the connection between root and flow polytopes via the
subdivision algebra also explaining the algebra’s name.

The subdivision algebra S(β) is a commutative algebra generated by the variables xij , 1 ≤
i < j ≤ n, over Q[β], subject to the relations xijxjk = xik(xij + xjk + β), for 1 ≤ i < j < k ≤ n.
This algebra is called the subdivision algebra, because its relations can be seen geometrically as
subdividing flow and root polytopes. This is explained in detail in Section 4. The subdivision
algebra has been used extensively for subdividing root and flow polytopes in [Mész15, MM15,
Mész14b,Mész14a,Mész11a,Mész11b].

A reduced form of the monomial in the algebra S(β) is a polynomial obtained by successively
substituting xik(xij+xjk+β) in place of an occurrence of xijxjk for some i < j < k until no further
reduction is possible. Note that the reduced forms are not necessarily unique.

5



A possible sequence of reductions in algebra S(β) yielding a reduced form of x12x23x34 is given
by

x12x23x34 → x12x24x23 + x12x34x24 + βx12x24

→ x24x13x12 + x24x23x13 + βx24x13 + x34x14x12 + x34x24x14

+βx34x14 + βx14x12 + βx24x14 + β2x14

→ x13x14x12 + x13x24x14 + βx13x14 + x24x23x13 + βx24x13

+x34x14x12 + x34x24x14 + βx34x14 + βx14x12 + βx24x14

+β2x14(3.1)

where the pair of variables on which the reductions are performed is in boldface. The reductions
are performed on each monomial separately.

Given a graph G, denote by QG(β) the reduced form of the monomial
∏

(i,j)∈E(G) xij specialized

at xij = 1 for all 1 ≤ i < j ≤ n. The polynomial QG(β) is unique, though the reduced form
with variables xij is not [Mész11a]. In recent work [Mész14b] the author connected QG(β) to the

h-polynomials of triangulations of flow polytopes of G̃ = (V (G) ∪ {s, t}, E(G) ∪ {(s, i), (i, t) | i ∈
V (G)}). Flow polytopes are defined in Section 4.2; in the next theorem we treat their triangulations,
which we denote by C, as a simplicial complex. Since C is a simplicial complex homeomorphic to a
ball, it follows that the h-polynomial of a triangulation of a polytope has nonnegative coefficients
[Sta96].

Theorem 3.1. [Mész14b] For any graph G we have

(3.2) QG(β) = h(C, β + 1),

where C is any unimodular triangulation of the flow polytope FG̃(1, 0, . . . , 0,−1) and h(C, x) is its
h-polynomial. In particular, the reduced form QG(β − 1) is a polynomial in β with nonnegative
coefficients.

For brevity, use the notation Gw(β) for Gβ
w(1, 0), the double β-Grothendieck polynomial evalu-

ated when all x’s are set to 1 and y’s are set to 0. In this notation Theorem 2.5 specialized at q = 1
states that Gw(β) = h(PD(w), β + 1).

Note the similarity of the statements of Theorems 3.1 and 2.5 as a certain polynomial equaling
the h-polynomial of a simplicial complex. Paired with Kirillov’s observation in [Kir12, Proposition
3.1] that

(3.3) QPn(β) = Gπ(β),

for the permutation π = 1 n n−1 · · · 2 and path graph Pn = ([n], {(i, i+1)|i ∈ [n−1]}), we obtain
that h(PD(π), β) = h(C, β), where C is any unimodular triangulation of the flow polytope FP̃n

.

The previous raises the natural question: can PD(π) be realized geometrically as a triangulation
C of the flow polytope FP̃n

? The answer is almost yes as we explain in the next sections.

4. On the relation of root and flow polytopes

This section explains the geometric reasons for root and flow polytopes to have the same
subdivision algebras and in turn to possess dissections with identical descriptions via reduced
forms [Mész15, MM15, Mész14b, Mész14a, Mész11a, Mész11b]. The simplest reason for the above
would be if root and flow polytopes were equivalent. While this is not the case, the truth does not
lie far from it, as we will see.
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4.1. Root polytopes. In the terminology of [Pos09], a root polytope of type An is the convex hull
of the origin and some of the points e−ij := ei − ej for 1 ≤ i < j ≤ n + 1, where ei denotes the ith

coordinate vector in Rn+1. A very special root polytope is the full root polytope

P(A+
n ) = ConvHull(0, e−ij | 1 ≤ i < j ≤ n+ 1),

where e−ij = ei − ej . In this paper we restrict ourself to a class of root polytopes including P(A+
n ),

which have subdivision algebras [Mész11a].
Let G be an acyclic graph on the vertex set [n+ 1]. Define

VG = {e−ij | (i, j) ∈ E(G), i < j}, a set of vectors associated to G;

C(G) = 〈VG〉 := {
∑

e−ij∈VG

cije
−
ij | cij ≥ 0}, the cone associated to G; and

VG = Φ+ ∩ C(G), all the positive roots of type An contained in C(G),

where Φ+ = {e−ij | 1 ≤ i < j ≤ n+ 1} is the set of positive roots of type An.

The root polytope P(G) associated to the acyclic graph G is

(4.1) P(G) = ConvHull(0, e−ij | e
−
ij ∈ VG)

The root polytope P(G) associated to graph G can also be defined as

(4.2) P(G) = P(A+
n ) ∩ C(G).

Note that P(A+
n ) = P(Pn+1) for the path graph Pn+1 on the vertex set [n+ 1].

We can view reduced forms in the subdivision algebra in terms of graphs, as hinted at in the
previous section.

The reduction rule for graphs: Given a graph G0 on the vertex set [n+ 1] and (i, j), (j, k) ∈
E(G0) for some i < j < k, let G1, G2, G3 be graphs on the vertex set [n+ 1] with edge sets

E(G1) = E(G0)\{(j, k)} ∪ {(i, k)},
E(G2) = E(G0)\{(i, j)} ∪ {(i, k)},
E(G3) = E(G0)\{(i, j), (j, k)} ∪ {(i, k)}.(4.3)

We say that G0 reduces to G1, G2, G3 under the reduction rules defined by equations (4.3).
The reason for the name subdivision algebra is the following key lemma appearing in [Mész11a]:

Lemma 4.1. [Mész11a] (Reduction Lemma for Root Polytopes) Given an acyclic graph G0

with d edges, let (i, j), (j, k) ∈ E(G0) for some i < j < k and G1, G2, G3 as described by equations
(4.3). Then

P(G0) = P(G1) ∪ P(G2)

where all polytopes P(G0),P(G1),P(G2) are d-dimensional and

P(G3) = P(G1) ∩ P(G2) is (d− 1)-dimensional.

What the Reduction Lemma really says is that performing a reduction on an acyclic graph G0 is
the same as dissecting the d-dimensional polytope P(G0) into two d-dimensional polytopes P(G1)
and P(G2), whose vertex sets are subsets of the vertex set of P(G0), whose interiors are disjoint,
whose union is P(G0), and whose intersection is a facet of both. It is clear then that the reduced
form can be seen as a dissection of the root polytope into simplices.

7



4.2. Flow polytopes. Now we define flow polytopes and explain the analogue of the Reduction
Lemma for them. Let G be a loopless graph on the vertex set [n + 1], and let in(e) denote the
smallest (initial) vertex of edge e and fin(e) the biggest (final) vertex of edge e. Think of fluid
flowing on the edges of G from the smaller to the bigger vertices, so that the total fluid volume
entering vertex 1 is one and leaving vertex n + 1 is one, and there is conservation of fluid at the
intermediate vertices. Formally, a flow f of size one on G is a function f : E → R≥0 from the edge
set E of G to the set of nonnegative real numbers such that

1 =
∑

e∈E,in(e)=1

f(e) =
∑

e∈E,fin(e)=n+1

f(e),

and for 2 ≤ i ≤ n ∑
e∈E,fin(e)=i

f(e) =
∑

e∈E,in(e)=i

f(e).

The flow polytope FG associated to the graph G is the set of all flows f : E → R≥0 of size one.

In this paper we restrict our attention to flow polytopes of certain augmented graphs G̃ =
(V (G) ∪ {s, t}, E(G) ∪ {(s, i), (i, t) | i ∈ V (G)}):

Lemma 4.2. [Mész15,MM15] (Reduction Lemma for Flow Polytopes) Given a graph G0 on
the vertex set [n+1] and (i, j), (j, k) ∈ E(G0), for some i < j < k, let G1, G2, G3 be as in equations
(4.3). Then

FG̃0
= FG̃1

⋃
FG̃2

,

where all polytopes FG̃0
,FG̃1

,FG̃2
, are of the same dimension and

FG̃3
= FG̃1

∩ FG̃2
is one dimension less.

4.3. Are root polytopes and flow polytopes the same? Given an acyclic graph G Lemmas
4.1 and 4.2 imply that we can dissect P(G) and FG̃ with identical procedures. Are then P(G) and
FG̃ equivalent for acyclic graphs G?

Note that the dimension of P(G) is |E(G)|, while the dimension of FG̃ is |E(G)| + |V (G)| − 1,
so the polytopes cannot be identical. However, we show that FG̃ can be projected onto an |E(G)|-
dimensional polytope S(G) that is equivalent to P(G). When with the subdivision algebra we
are dissecting P(G) and FG̃ in identical ways, we get the corresponding (identifiable) induced
dissections on S(G) and P(G).

Recall the well-known charaterization of the vertices of flow polytopes.

Lemma 4.3. [Sch03, Section 13.1a] The vertex set of FG are the unit flows on increasing paths
going from the smallest to the largest vertex of G.

The polytope FG̃ naturally lives in the space R|E(G̃)|, with the coordinates corresponding to the

edges of G̃. Denoting by e(i,j) the unit coordinate corresponding to the edge (i, j) ∈ E(G̃), we see

that the vectors e(i,j), (i, j) ∈ E(G), e(s,i), e(i,t), for i ∈ [n], are an orthonormal basis of R|E(G̃)|.

Projecting onto the subspace W of R|E(G̃)| spanned by e(i,j), (i, j) ∈ E(G), let the polytope S(G) be
the image of FG̃. Denote the mentioned projection by p. The vertices of S(G) are 0 and vertices of
the form e(i1,i2)+e(i2,i3)+· · ·+e(ik,ik+1), where i1 < · · · < ik+1, (i1, i2), (i2, i3), . . . , (ik, ik+1) ∈ E(G).

Define the map f : W → Rn as follows: f(e(i,j)) = ei− ej , for (i, j) ∈ E(G), and extend linearly.
It follows by definition that the image of S(G) under f is P(G). Since for an acyclic graph G
the vectors ei − ej , (i, j) ∈ E(G), are linearly independent, we get that f is an affine map which
is a bijection onto P(G) when restricted to S(G). Thus, S(G) and P(G) are affinely (and thus
combinatorially) equivalent polytopes.
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Let G0 be an acyclic graph, and let G1, G2, G3 be as specified (4.3) . Then a check shows that
f(p(F

G̃i
)) = P(Gi), for i ∈ [3] and thus any dissection of F

G̃0
that we obtain by repeated reductions

as in Lemma 4.2 under the map f ◦ p yields a dissection of P(G0) obtained by the same sequence
of reductions as interpreted in Lemma 4.1.

The above considerations prove the following theorem, which relates root and flow polytopes.
The maps p and f are as defined above.

Theorem 4.4. The root polytope P(G) is equivalent to S(G), which is a projection of FG̃. Indeed,
P(G) = f(p(FG̃)). Moreover, when the reductions (4.3) are performed on G yielding dissections
D1 and D2 of P(G) and FG̃, respectively, then D1 is the image of D2 under f ◦ p.

It is in the sense of Theorem 4.4 that root polytopes and flow polytopes of acyclic graphs are
the same. Since root polytopes are lower dimensional by definition and in this paper we are only
concerned with acyclic graphs, namely, the path graph, we will use root polytopes in the rest of
the paper.

5. Geometric realization of pipe dream complexes via root polytopes

The main theorem of this section is that the canonical triangulation of the vertex figure V(Pn) of
P(Pn) at 0 is a geometric realization of the pipe dream complex PD(1 n n− 1 · · · 2). The vertex
figure of a polytope P at vertex v is the intersection of a hyperplane H with P , such that vertex v is
on one side ofH and all the other vertices of P are on the other side ofH. See [Zie95, p.54] for further
details. We now explain the canonical triangulation of P(Pn); there is an analogous triangulation
for all root (and flow) polytopes [Mész11a,Mész14a], but since we are only concerned with P(Pn) in
this section, we restrict our attention to this case. PD(1 n n− 1 · · · 2) has previously been been
realized via the classical associahedron [PP12,Ceb12,CLS14].

Recall that a graph G on the vertex set [n] is said to be noncrossing if there are no vertices
i < j < k < l such that (i, k) and (j, l) are edges in G. A graph G on the vertex set [n] is said to
be alternating if there are no vertices i < j < k such that (i, j) and (j, k) are edges in G.

Theorem 5.1. [GGP97,Mész11a] Let T1, . . . , Tk be all the noncrossing alternating spanning trees
of Kn. Then P(T1), . . . ,P(Tk) are top dimensional simplices in a triangulation of P(Pn). Moreover,

P(Ti1) ∩ · · · ∩ P(Til) = P(Ti1 ∩ · · · ∩ Til),

where i1, . . . , il ∈ [k], and Ti1 ∩ · · · ∩ Til = ([n], {(i, j)|(i, j) ∈ E(Ti1) ∩ · · · ∩ E(Til).

The triangulation described in Theorem 5.1 is called the canonical triangulation of P(Pn).
Since all top dimensional simplices in it contain 0, we see that V(Pn) has a triangulation indexed
by the same noncrossing alternating spanning trees:

Theorem 5.2. Let T1, . . . , Tk be all the noncrossing alternating spanning trees of Kn. Then P(T1)∩
V(Pn), . . . ,P(Tk) ∩ V(Pn) are top dimensional simplices in a triangulation of V(Pn). Moreover,

P(Ti1) ∩ · · · ∩ P(Til) ∩ V(Pn) = P(Ti1 ∩ · · · ∩ Til) ∩ V(Pn),

where i1, . . . , il ∈ [k], and Ti1 ∩ · · · ∩ Til = ([n], {(i, j)|(i, j) ∈ E(Ti1) ∩ · · · ∩ E(Til).

We call the triangulation described in Theorem 5.2 the canonical triangulation of V(Pn). The
following is the main theorem of this section.

Theorem 5.3. The canonical triangulation of V(Pn) is a geometric realization of the pipe dream
complex PD(1 n n− 1 · · · 2).
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Figure 5. The interior simplices of PD(1432) with the pipe dreams that label
them. The graphs obtained via the bijection G can be seen in red juxtaposed on
top of the pipe dreams (rotated by 45◦). Note that the top dimensional simplices
are indeed labeled by the noncrossing alternating spanning trees of Kn.

Before proceeding to prove Theorem 5.3 we note that a proof of it could be obtained using the
previous realization of PD(1 n n− 1 · · · 2) via the associahedron. However, instead we will give
a proof using root polytopes.

Proof of Theorem 5.3. First note that the dimensions of both V(Pn) and PD(1 n n− 1 · · · 2) are
n−2. Recall that the top dimensional simplices of PD(1 n n− 1 · · · 2) are indexed by reduced pipe
dreams of 1 n n− 1 · · · 2, whereas their intersections by nonreduced pipe dreams in the following
way. If we identify a pipe dream P with its set of crosses, then the simplex at the intersection of
the simplices labeled by pipe dreams Pi1 , . . . , Pil is labeled by a pipe dream Pi1 ∪ · · · ∪ Pil , where
in the latter we simply let the crosses be all the crosses in Pi1 , . . . , Pil . See Figure 4.

We first show that the top dimensional simplices in PD(1 n n− 1 · · · 2) are in bijection with
the top dimensional simplices in the canonical triangulation of V(Pn). Such a bijective map G is
easy to define. Given a reduced pipe dream P , let

G(P ) = ([n], {(i, j)|there is an elbow in box (n− j + 1, i) in P}).

See Figure 5 for an example.
The map G is clearly one-to-one. On the other hand we know that both reduced pipe dreams

of 1 n n− 1 · · · 2 and noncrossing alternating spanning trees of Kn are counted by the Catalan
numbers [Woo04,GGP97], thereby immediately yielding that G is a bijection between the two sets.
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Given that the simplex at the intersection of the simplices labeled by pipe dreams Pi1 , . . . , Pil is
labeled by a pipe dream Pi1 ∪ · · · ∪ Pil (as explained above), and

P(Ti1) ∩ · · · ∩ P(Til) ∩ V(Pn) = P(Ti1 ∩ · · · ∩ Til) ∩ V(Pn),

where i1, . . . , il ∈ [k], and Ti1 ∩ · · · ∩ Til = ([n], {(i, j)|(i, j) ∈ E(Ti1) ∩ · · · ∩ E(Til) (as in The-
orem 5.2) we have that the bijection G extends to the lower dimensional interior simplices of
PD(1 n n− 1 · · · 2) and V(Pn). See Figure 5. Moreover, the same map also extends to the
boundary simplices in the canonical triangulation of V(Pn) and those in PD(1 n n− 1 · · · 2).
Therefore, we can conclude that the canonical triangulation of V(Pn) is a geometric realization of
PD(1 n n− 1 · · · 2). �

We remark that the h-vector of the canonical triangulation of P(Pn), and so also of PD(1 n n− 1 · · · 2)
consists of Narayana numbers; see [Sta99, Exercise 6.31b].
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[MM15] K. Mészáros and A. H. Morales. Flow polytopes of signed graphs and the Kostant partition function. Int.

Math. Res. Not. IMRN, (3):830–871, 2015.
[Pos09] Alexander Postnikov. Permutohedra, associahedra, and beyond. Int. Math. Res. Not. IMRN, (6):1026–

1106, 2009.
[PP12] Vincent Pilaud and Michel Pocchiola. Multitriangulations, pseudotriangulations and primitive sorting

networks. Discrete Comput. Geom., 48(1):142–191, 2012.
[Sch03] Alexander Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. A, volume 24 of Algo-

rithms and Combinatorics. Springer-Verlag, Berlin, 2003.
[Sta96] R. Stanley. Combinatorics and Commutative Algebra. Birkhäuser, 1996.
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