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Abstract. R. Cont and A. de Larrard [5] introduced a tractable stochastic model for the dynamics
of a limit order book, computing various quantities of interest such as the probability of a price
increase or the diffusion limit of the price process. As suggested by empirical observations, we
extend their framework to 1) arbitrary distributions for book events inter-arrival times (possibly
non-exponential) and 2) both the nature of a new book event and its corresponding inter-arrival
time depend on the nature of the previous book event. We do so by resorting to Markov renewal
processes to model the dynamics of the bid and ask queues. We keep analytical tractability via
explicit expressions for the Laplace transforms of various quantities of interest. We justify and
illustrate our approach by calibrating our model to the five stocks Amazon, Apple, Google, Intel
and Microsoft on June 21st 2012. As in [5], the bid-ask spread remains constant equal to one tick,
only the bid and ask queues are modeled (they are independent from each other and get reinitialized
after a price change), and all orders have the same size.

Key words. limit order book, Markov renewal process, diffusion limit, duration analysis, Weibull,
Gamma.
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1 Introduction

Recently, interest in the modeling of limit order markets has increased. Some research has focused
on optimal trading strategies in high-frequency environments: for example [8] studies such optimal
trading strategies in a context where the stock price follows a semi-Markov process, while market
orders arrive in the limit order book via a point process correlated with the stock price itself. [2] de-
velops an optimal execution strategy for an investor seeking to execute a large order using both limit
and market orders, under constraints on the volume of such orders. [13] studies optimal execution
strategies for the purchase of a large number of shares of a financial asset over a fixed interval of time.

On the other hand, another class of articles has aimed at modeling either the high-frequency dy-
namics of the stock price itself, or the various queues of outstanding limit orders appearing on the
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bid and the ask side of the limit order book, resulting in specific dynamics for the stock price. In
[7], a semi-Markov model for the stock price is introduced: the price increments are correlated and
equal to arbitrary multiples of the tick size. The correlation between these price increments occurs
via their sign only, and not their (absolute) size. In [4], the whole limit order book is modeled (not
only the ask and bid queues) via an integer-valued continuous-time Markov chain. Using a Laplace
analysis, they compute various quantities of interest such as the probability that the mid-price in-
creases, or the probability that an order is executed before the mid-price moves. A detailed section
on parameter estimation is also presented. For a more thorough literature on limit order markets,
we refer to the above cited articles and the references thereof.

The starting point of the present manuscript is the article [5], in which a stochastic model for the
dynamics of the limit order book is presented. Only the bid and ask queues are modeled (they are
independent from each other and get reinitialized after a price change), the bid-ask spread remains
constant equal to one tick and all orders have the same size. Their model is analytically tractable,
and allows them to compute various quantities of interest such as the distribution of the duration
between price changes, the distribution and autocorrelation of price changes, the probability of
an upward move in the price and the diffusion limit of the price process. Among the various
assumptions made in this article, we seek to challenge two of them while preserving analytical
tractability:

i) the inter-arrival times between book events (limit orders, market orders, order cancellations)
are assumed to be independent and exponentially distributed.

ii) the arrival of a new book event at the bid or the ask is independent from the previous events.

Assumption i) is relatively common among the existing literature ([9], [12], [3], [6], [11], [15], [4]).
Nevertheless, as it will be shown later, when calibrating the empirical distributions of the inter-
arrival times to the Weibull and Gamma distributions (Amazon, Apple, Google, Intel and Microsoft
on June 21st 2012), we find that the shape parameter is in all cases significantly different than 1
(∼ 0.1 to 0.3), which suggests that the exponential distribution is typically not rich enough to
capture the behavior of these inter-arrival times.

Regarding Assumption ii), we split the book events into 2 different types: limit orders that in-
crease the size of the corresponding bid or ask queue, and market orders/order cancellations that
decrease the the size of the corresponding queue. Assimilating the former to the type ”+1” and
the latter to the type ”−1”, we find empirically that the probability to get an event of type ”±1”
is not independent of the nature of the previous event. Indeed, we present below the estimated
transition probabilities between book events at the ask and the bid for the stock Microsoft on June
21st 2012. It is seen that the unconditional probabilities P (1) and P (−1) to obtain respectively an
event of type ”+1” and ”−1” are relatively close to 1/2, as in [5]. Nevertheless, denoting P (i, j)
the conditional probability to obtain an event of type j given that the last event was of type i, we
observe that P (i, j) can significantly depend on the previous event i. For example, on the bid side,
P (1, 1) = 0.63 whereas P (−1, 1) = 0.36.
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Microsoft Bid Ask
P (1, 1) 0.63 0.60
P (−1, 1) 0.36 0.41
P (−1,−1) 0.64 0.59
P (1,−1) 0.37 0.40
P (1) 0.49 0.51
P (−1) 0.51 0.49

Estimated probabilities for book event arrivals. June 21st 2012.

On another front, we will show that we can obtain diffusion limit results for the stock price with-
out resorting to the strong symmetry assumptions of [5]. In particular, the assumption that price
increments are i.i.d., which is contrary to empirical observations, as shown in [7] for example.

The paper is organized as follows: section 2 introduces our semi-Markovian modeling of the limit
order book, section 3 presents the main probabilistic results obtained in the context of this semi-
Markovian model (duration until the next price change, probability of price increase and characteri-
zation of the Markov renewal process driving the stock price process), section 4 deals with diffusion
limit results for the stock price process, and section 5 presents some calibration results on real
market data.

2 A Semi-Markovian modeling of limit order markets

Throughout this paper and to make the reading more convenient, we will use - when appropriate
- the same notations as [5], as it is the starting point of the present article. In this section we
introduce our model, highlighting when necessary the mains differences with the model in [5].

Let st, s
a
t , sbt be respectively the mid, the ask and the bid price processes. Denoting δ the ”tick

size”, these quantities are assumed to be linked by the following relations:

st =
1

2
(sat + sbt), sat = sbt + δ.

We will also assume that sb0 is deterministic and positive. In this context, sa0 = sb0+δ and s0 = sb0+ δ
2

are also deterministic and positive. As shown in [5], the assumption that the bid-ask spread sat − sbt
is constant and equal to one tick does not exactly match the empirical observations, but it is a
reasonable assumption as [5] shows that - based on an analysis of the stocks Citigroup, General
Electric, General Motors on June 26st 2008 - more than 98% of the observations have a bid-ask
spread equal to 1 tick. This corresponds to a situation where the order book contains no empty
levels (also called ”gaps”).

The price process st is assumed to be piecewise constant: at random times {Tn}n≥0 (we set T0 := 0),
it jumps from its previous value sT−n to a new value sTn = sT−n ± δ. By construction, the same

holds for the ask and bid price processes sat and sbt . These random times {Tn} correspond to the
times at which either the bid or the ask queue get depleted, and therefore, the distribution of these
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times {Tn} will be obtained as a consequence of the dynamics that we will choose to model the bid
and ask queues. Let us denote qat and qbt the non negative integer-valued processes representing the
respective sizes of the ask and bid queues at time t, namely the number of outstanding limit orders
at each one of these queues. If the ask queue gets depleted before the bid queue at time Tn - i.e.
qaTn = 0 and qbTn > 0 - then the price goes up: sTn = sT−n + δ and both queue values (qbTn , q

a
Tn

) are
immediately reinitialized to a new value drawn according to the distribution f , independently from
all other random variables. In this context, if nb, na are positive integers, f(nb, na) represents the
probability that, after a price increase, the new values of the bid and ask queues are respectively
equal to nb and na. On the other hand, if the bid queue gets depleted before the ask queue at time
Tn - i.e. qaTn > 0 and qbTn = 0 - then the price goes down: sTn = sT−n − δ and both queue values

(qbTn , q
a
Tn

) are immediately reinitialized to a new value drawn according to the distribution f̃ , inde-
pendently from all other random variables. Following the previous discussion, one can remark that
the processes qbt , q

a
t will never effectively take the value 0, because whenever qbTn = 0 or qaTn = 0, we

”replace” the pair (qbTn , q
a
Tn

) by a random variable drawn from the distribution f or f̃ . The precise

construction of the processes (qbt , q
a
t ) will be explained below.

Let τn := Tn − Tn−1 the ”sojourn times” between two consecutive price changes, Nt := sup{n :
Tn ≤ t} = sup{n : τ1 + ...+τn ≤ t} the number of price changes up to time t, Xn := sTn−sTn−1 the
consecutive price increments (which can only take the values ±δ). With these notations we have:

st =

Nt∑
k=1

Xk.

Let us now present the chosen model for the dynamics of the bid and ask queues. As mentioned in
introduction, we seek to extend the model [5] in the two following directions, as suggested by our
calibration results:

i) inter-arrival times between book events (limit orders, market orders, order cancellations) are
allowed to have an arbitrary distribution.

ii) the arrival of a new book event at the bid or the ask and its corresponding inter-arrival time
are allowed to depend on the nature of the previous event.

In order to do so, we will use a Markov renewal structure for the joint process of book events and
corresponding inter-arrival times occurring at the ask and bid sides. Formally, for the ask side,
consider a family {Rn,a}n≥0 of Markov renewal processes given by:

Rn,a := {(V n,ak , Tn,ak )}k≥0.

For each n, Rn,a will ”drive” the dynamics of the ask queue on the interval [Tn, Tn+1) where the
stock price remains constant. {V n,ak }k≥0 and {Tn,ak }k≥0 represent respectively the consecutive
book events and the consecutive inter-arrival times between these book events at the ask side on
the interval [Tn, Tn+1). At time Tn+1 where one of the bid or ask queues gets depleted, the stock
price changes and the model will be reinitialized with an independent copy Rn+1,a of Rn,a: it will
therefore be assumed that the processes {Rn,a}n≥0 are independent copies of the same Markov
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renewal process of kernel Qa, namely for each n:

P[V n,ak+1 = j, Tn,ak+1 ≤ t|T
n,a
p , V n,ap : p ≤ k] = Qa(V n,ak , j, t), j ∈ {−1, 1}

P[V n,a0 = j] = va0 (j), j ∈ {−1, 1}
P[Tn,a0 = 0] = 1.

We recall that as mentioned earlier, we consider two types of book events V n,ak : events of type +1
which increase the ask queue by 1 (limit orders), and events of type −1 which decrease the ask
queue by 1 (market orders and order cancellations). In particular, the latter assumptions constitute
a generalization of [5] in the sense that for each n:

• V n,ak+1 depends on the previous queue change V n,ak : {V n,ak }k≥0 is a Markov chain.

• the inter-arrival times {Tn,ak }k≥0 between book events can have arbitrary distributions. Fur-
ther, they are not strictly independent anymore but they are independent conditionally on
the Markov chain {V n,ak }k≥0.

We use the same notations to model the bid queue - but with indexes a replaced by b - and we
assume that the processes involved at the bid and at the ask are independent.

In [5], the kernel Qa is given by (the kernel Qb has a similar expression with indexes a replaced by
b):

Qa(i, 1, t) =
λa

λa + θa + µa
(1− e−(λ

a+θa+µa)t), i ∈ {−1, 1}

Qa(i,−1, t) =
θa + µa

λa + θa + µa
(1− e−(λ

a+θa+µa)t), i ∈ {−1, 1}.

Given these chosen dynamics to model to ask and bid queues between two consecutive price changes,
we now specify formally the ”state process”:

L̃t := (sbt , q
b
t , q

a
t )

which will keep track of the state of the limit order book at time t (stock price and sizes of the bid

and ask queues). In the context of [5], this process L̃t was proved to be Markovian. Here, we will
need to ”add” to this process the process (V bt , V

a
t ) keeping track of the nature of the last book event

at the bid and the ask to make it Markovian: in this sense we can view it as being semi-Markovian.
The process:

Lt := (sbt , q
b
t , q

a
t , V

b
t , V

a
t )

constructed below will be proved to be Markovian.

The process L is piecewise constant and changes value whenever a book event occurs at the bid or
at the ask. We will construct both the process L and the sequence of times {Tn}n≥0 recursively on
n ≥ 0. The recursive construction starts from n = 0 where we have T0 = 0, sb0 > 0 deterministic,
and (qb0, q

a
0 , V

b
0 , V

a
0 ) is a random variable with distribution f0 × vb0 × va0 , where f0 is a distribution

on N∗ × N∗, and both vb0 and va0 are distributions on the two-point space {−1, 1}, that is vb0(1) =
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P[V b0 = 1] is given and vb0(−1) = 1 − vb0(1) (and similarly for the ask). We will need to introduce
the following processes for the bid side (for the ask side, they are defined similarly):

T̄n,bk :=

k∑
p=0

Tn,bp , Nn,b
t := sup{k : Tn + T̄n,bk ≤ t}.

With these notations, the book events corresponding to the interval [Tn, Tn+1) occur at times

Tn+ T̄n,bk (k ≥ 0) until one of the queues gets depleted, and Nn,b
t counts the number of book events

on the interval [Tn, t], for t ∈ [Tn, Tn+1).

The joint construction of L and of the sequence of times {Tn}n≥0 is done recursively on n ≥ 0. The
following describes the step n of the recursive construction:

• For each T ∈ {Tn + T̄n,bk }k≥1, the book event vbn,T := V n,b
Nn,bT

occurs at time T at the bid side.

If qbT− + vbn,T > 0, there is no price change at time T and we have:

(sbT , q
b
T , q

a
T , V

b
T , V

a
T ) = (sbT− , q

b
T− + vbn,T , q

a
T− , v

b
n,T , V

a
T−).

If on the other hand qbT− + vbn,T = 0, there is a price change at time T and the model gets
reinitialized:

(sbT , q
b
T , q

a
T , V

b
T , V

a
T ) = (sbT− − δ, x̃

b
n, x̃

a
n, v

b
0,n, v

a
0,n),

where {(x̃bk, x̃ak)}k≥0 are i.i.d. random variables, independent from all other random vari-

ables, with joint distribution f̃ on N∗ × N∗, and {vb0,k, va0,k}k≥0 are i.i.d. random variables,

independent from all other random variables, with joint distribution vb0 × va0 on the space
{−1, 1} × {−1, 1}. We then set Tn+1 = T and move from the step n of the recursion to the
step n+ 1.

• For each T ∈ {Tn + T̄n,ak }k≥1, the book event van,T := V n,a
Nn,aT

occurs at time T at the ask side.

If qaT− + van,T > 0, there is no price change at time T and we have:

(sbT , q
b
T , q

a
T , V

b
T , V

a
T ) = (sbT− , q

b
T− , q

a
T− + van,T , V

b
T− , v

a
n,T ).

If on the other hand qaT− + van,T = 0, there is a price change at time T and the model gets
reinitialized:

(sbT , q
b
T , q

a
T , V

b
T , V

a
T ) = (sbT− + δ, xbn, x

a
n, v

b
0,n, v

a
0,n),

where {(xbk, xak)}k≥0 are i.i.d. random variables, independent from all other random variables,
with joint distribution f on N∗×N∗, and {vb0,k, va0,k}k≥0 are the i.i.d. random variables defined
above. We then set Tn+1 = T and move from the step n of the recursion to the step n+ 1.

It results from the above construction and the Markov renewal structure of the processes {Rn,a}n≥0,
{Rn,b}n≥0 that the process Lt is Markovian.
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Since the processes {Rn,a}n≥0 are independent copies of the same Markov renewal process of kernel
Qa, we will drop the index n when appropriate in order to make the notations lighter. Following
this remark, we will introduce the following notations for the ask, for i, j ∈ {−1, 1} (for the bid,
they are defined similarly):

P a(i, j) := P[V ak+1 = j|V ak = i],

F a(i, t) := P[T ak+1 ≤ t|V ak = i],

Ha(i, j, t) := P[T ak+1 ≤ t|V ak = i, V ak+1 = j],

ha(i, j) :=

∫ ∞
0

tHa(i, j, dt),

ha1 := ha(1, 1) + ha(−1,−1), ha2 := ha(−1, 1) + ha(1,−1),

ma(s, i, j) :=

∫ ∞
0

e−stQa(i, j, dt), s ∈ C,

Ma(s, i) := ma(s, i,−1) +ma(s, i, 1) =

∫ ∞
0

e−stF a(i, dt), s ∈ C.

Throughout this paper, we will use the following mild technical assumptions:

(A1) 0 < P a(i, j) < 1, 0 < P b(i, j) < 1, i, j ∈ {−1, 1}.

(A2) F a(i, 0) < 1, F b(i, 0) < 1, i ∈ {−1, 1}.

(A3)
∫∞
0
t2Ha(i, j, dt) <∞,

∫∞
0
t2Hb(i, j, dt) <∞, i, j ∈ {−1, 1}.

Some brief comments on these assumptions: (A1) implies that each state ±1 is accessible from
each state. (A2) means that each inter-arrival time between book events has a positive probability
to be non zero, and (A3) constitutes a second moment integrability assumption on the cumulative
distribution functions Ha and Hb.

3 Main Probabilistic Results

Throughout this section and as mentioned earlier, since the processes {Rn,a}n≥0 are independent
copies of the same Markov renewal process of kernel Qa, we will drop the index n when appropriate
in order to make the notations lighter on the random variables Tn,ak , T̄n,ak , V n,ak (and similarly for
the bid side).

3.1 Duration until the next price change

Given an initial configuration of the bid and ask queues (qb0, q
a
0 ) = (nb, na) (nb, na integers), we

denote σb the first time at which the bid queue is depleted:

σb = T̄ bk∗ , k∗ := inf{k : nb +

k∑
m=1

V bm = 0}.
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Similarly we define σa the first time at which the ask queue is depleted. The duration until the
next price move is thus:

τ := σa ∧ σb.

In order to have a realistic model in which the queues always get depleted at some point, i.e.
P[σa <∞] = P[σb <∞] = 1, we impose the conditions:

P a(1, 1) ≤ P a(−1,−1), P b(1, 1) ≤ P b(−1,−1).

These conditions correspond to the condition λ ≤ θ + µ in [5], and the proof of the proposition
below shows that they are respectively equivalent to P[σa < ∞] = 1 and P[σb < ∞] = 1. Indeed,
as s → 0 (s > 0), the Laplace transform La(s) := E[e−sσa ] of σa tends to P[σa < ∞]. The
proposition below shows that if P a(1, 1) > P a(−1,−1), this quantity is strictly less than 1, and if
P a(1, 1) ≤ P a(−1,−1), this quantity is equal to 1. We have the following result which generalizes
the Proposition 1 in [5] (see also Remark .2 below):

Proposition .1. The conditional law of σa given qa0 = n ≥ 1 has a regularly varying tail with:

• tail exponent 1 if P a(1, 1) < P a(−1,−1).

• tail exponent 1/2 if P a(1, 1) = P a(−1,−1).

More precisely, we get: if P a(1, 1) = P a(−1,−1) = pa:

P[σa > t|qa0 = n]
t→∞∼ αa(n)√

t

with:

αa(n) :=
1

pa
√
π

(n+
2pa − 1

pa − 1
va0 (1))

√
pa(1− pa)

√
paha1 + (1− pa)ha2 .

If P a(1, 1) < P a(−1,−1), we get:

P[σa > t|qa0 = n]
t→∞∼ βa(n)

t

with:

βa(n) := va0 (1)ua1 + va0 (−1)ua2 + (n− 1)ua3 ,

ua1 := ha(1,−1) +
P a(1, 1)

1− P a(1, 1)
(ua3 + ha(1, 1))

ua2 := −ha(1, 1) +
1− P a(−1,−1)

1− P a(1, 1)
(ua3 + ha(1, 1)) + P a(−1,−1)ha1 + (1− P a(−1,−1))ha2 ,

ua3 := ha(1, 1) +
1− P a(1, 1)

P a(−1,−1)− P a(1, 1)
(P a(−1,−1)ha1 + (1− P a(−1,−1))ha2) .
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Similar expressions are obtained for P[σb > t|qb0 = n], with indexes a replaced by b.

Remark .2. We retrieve the results of [5]: if P a(1, 1) = P a(−1,−1), then within the con-
text/notations of [5] we get pa = 1/2 and:

ha(i, j) =

∫ ∞
0

2tλe−2λtdt =
1

2λ
,

and so αa(n) = n√
πλ

. For the case P a(1, 1) < P a(−1,−1) (λ < θ+µ with their notations), we find:

βa(n) =
n

θ + µ− λ
,

which is different from the result of [5] that is βa(n) = n(θ+µ+λ)
2λ(θ+µ−λ) .. We believe that they made a

small mistake in their Taylor expansion on page 10: in the case λ < θ + µ, they should find:

L(s, x)
s→0∼ 1− sx

θ + µ− λ
.

Proof. Let s > 0 and denote L(s, n, i) := E[e−sσa |qa0 = n, V a0 = i]. We have:

σa =

k∗∑
m=1

T am, k∗ := inf{k : n+

k∑
m=1

V am = 0}.

Therefore:

L(s, n, i) = E[e−sT
a
1 E[e−s(σa−T

a
1 )|qa0 = n, V a0 = i, V a1 , T

a
1 ]|qa0 = n, V a0 = i]

= E[e−sT
a
1 E[e−s(σa−T

a
1 )|qaTa1 = n+ V a1 , V

a
0 = i, V a1 , T

a
1 ]︸ ︷︷ ︸

L(s,n+V a1 ,V a1 )

|qa0 = n, V a0 = i]

= E[e−sT
a
1 L(s, n+ V a1 , V

a
1 )|qa0 = n, V a0 = i]

=

∫ ∞
0

e−stL(s, n+ 1, 1)Qa(i, 1, dt) +

∫ ∞
0

e−stL(s, n− 1,−1)Qa(i,−1, dt)

= ma(s, i, 1)L(s, n+ 1, 1) +ma(s, i,−1)L(s, n− 1,−1)

Denote for sake of clarity an := L(s, n, 1), bn := L(s, n,−1). These sequences therefore solve the
system of coupled recurrence equations:

an+1 = ma(s, 1, 1)an+2 +ma(s, 1,−1)bn, n ≥ 0

bn+1 = ma(s,−1, 1)an+2 +ma(s,−1,−1)bn

a0 = b0 = 1.

Simple algebra (computing an+1−ma(s,−1,−1)an on the on hand and ma(s, 1, 1)bn+1− bn on the
other hand) gives us that both an and bn solve the same following recurrence equation (but for
different initial conditions):

ma(s, 1, 1)un+2 − (1 + ∆a(s))un+1 +ma(s,−1,−1)un, n ≥ 1

9



with:

∆a(s) := ma(s, 1, 1)ma(s,−1,−1)−ma(s,−1, 1)ma(s, 1,−1).

The parameter ∆a(s) can be seen as a coupling coefficient and is equal to 0 when the random
variable (V ak , T

a
k ) doesn’t depend on the previous state V ak−1, for example in the context of [5].

If we denote R(X) the characteristic polynomial associated to the previous recurrence equation
R(X) := ma(s, 1, 1)X2 − (1 + ∆a(s))X +ma(s,−1,−1), then simple algebra gives us:

R(1) = (Ma(s, 1)− 1)︸ ︷︷ ︸
<0

(1−ma(s,−1,−1))︸ ︷︷ ︸
>0

+ma(s, 1,−1)︸ ︷︷ ︸
>0

(Ma(s,−1)− 1)︸ ︷︷ ︸
<0

< 0

Note that Ma(s, i) < 1 for s > 0 because F a(i, 0) < 1. Since ma(s, 1, 1) > 0, this implies that R
has only one root < 1 (and an other root > 1):

λa(s) :=
1 + ∆a(s)−

√
(1 + ∆a(s))2 − 4ma(s, 1, 1)ma(s,−1,−1)

2ma(s, 1, 1)
.

Because we have an, bn ≤ 1 for s > 0, then we must have for n ≥ 1:

an = a1λ
a(s)n−1 bn = b1λ

a(s)n−1

The recurrence equations on an, bn give us:

a1 =
ma(s, 1,−1)

1− λa(s)ma(s, 1, 1)
b1 =

ma(s,−1, 1)a1 + ∆a(s)

ma(s, 1, 1)

Finally, letting L(s, n) := E[e−sσa |qa0 = n], we obtain:

L(s, n) =
∑
i

L(s, n, i)va0 (i) = anv
a
0 (1) + bnv

a
0 (−1).

The behavior of P[σa > t|qa0 = n] as t → ∞ is obtained by computing the behavior of L(s, n)
as s → 0, together with Karamata’s Tauberian theorem. By the second moment integrability
assumption on Ha(i, j, dt), we note that:

ma(s, i, j) =

∫ ∞
0

e−stQa(i, j, dt) = P a(i, j)

∫ ∞
0

e−stHa(i, j, dt)

s→0∼ P a(i, j)− sP a(i, j)

∫ ∞
0

tHa(i, j, dt) = P a(i, j)− sP a(i, j)ha(i, j).

Now, assume P a(1, 1) = P a(−1,−1) = pa. A straightforward but tedious Taylor expansion of
L(s, n) as s→ 0 gives us:

L(s, n)
s→0∼ 1−

√
παa(n)

√
s.

10



The same way, if P a(1, 1) < P a(−1,−1), a straightforward Taylor expansion of L(s, n) as s → 0
gives us:

L(s, n)
s→0∼ 1− βa(n)s.

We are interested in the asymptotic behavior of the law of τ , which is, by independence of the
bid/ask queues:

P[τ > t|(qb0, qa0 ) = (nb, na)] = P[σa > t|qa0 = na]P[σb > t|qb0 = nb].

We get the following immediate consequence of Proposition .1:

Proposition .3. The conditional law of τ given (qb0, q
a
0 ) = (nb, na) has a regularly varying tail with:

• tail exponent 2 if P a(1, 1) < P a(−1,−1) and P b(1, 1) < P b(−1,−1). In particular, in this
case, E[τ |(qb0, qa0 ) = (nb, na)] <∞.

• tail exponent 1 if P a(1, 1) = P a(−1,−1) and P b(1, 1) = P b(−1,−1). In particular, in this
case, E[τ |(qb0, qa0 ) = (nb, na)] =∞ whenever nb, na ≥ 1.

• tail exponent 3/2 otherwise. In particular, in this case, E[τ |(qb0, qa0 ) = (nb, na)] <∞.

More precisely, we get: if P a(1, 1) = P a(−1,−1) and P b(1, 1) = P b(−1,−1):

P[τ > t|(qb0, qa0 ) = (nb, na)]
t→∞∼ αa(na)αb(nb)

t

if P a(1, 1) < P a(−1,−1) and P b(1, 1) < P b(−1,−1):

P[τ > t|(qb0, qa0 ) = (nb, na)]
t→∞∼ βa(na)βb(nb)

t2

if P a(1, 1) = P a(−1,−1) and P b(1, 1) < P b(−1,−1):

P[τ > t|(qb0, qa0 ) = (nb, na)]
t→∞∼ αa(na)βb(nb)

t3/2

if P a(1, 1) < P a(−1,−1) and P b(1, 1) = P b(−1,−1):

P[τ > t|(qb0, qa0 ) = (nb, na)]
t→∞∼ βa(na)αb(nb)

t3/2

Proof. Immediate using proposition .1.
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It will be needed to get the full law of τ , which is, by independence of the bid/ask queues:

P[τ > t|(qb0, qa0 ) = (nb, na)] = P[σa > t|qa0 = na]P[σb > t|qb0 = nb].

We have computed explicitely the Laplace transforms of σa and σb (cf. the proof of Proposition
.1 above). There are two possibilities: either it is possible to invert those Laplace transforms
so that we can compute P[σa > t|qa0 = na] and P[σb > t|qb0 = nb] in closed form and thus
P[τ > t|(qb0, qa0 ) = (nb, na)] in closed form as in [5]. If not, we will have to resort to a numeri-
cal procedure to invert the characteristic functions of σa and σb. Below we give the characteristic
functions of σa and σb:

Proposition .4. Let φa(t, n) := E[eitσa |qa0 = n] (t ∈ R) the characteristic function of σa condi-
tionally on qa0 = n ≥ 1. We have:

if ma(−it, 1, 1) 6= 0:

φa(t, n) = (ca(−it)va0 (1) + da(−it)va0 (−1))λa(−it)n−1,

ca(z) =
ma(z, 1,−1)

1− λa(z)ma(z, 1, 1)
,

da(z) =
ma(z,−1, 1)ca(z) + ∆a(z)

ma(z, 1, 1)
,

∆a(z) := ma(z, 1, 1)ma(z,−1,−1)−ma(z,−1, 1)ma(z, 1,−1),

λa(z) :=
1 + ∆a(z)−

√
(1 + ∆a(z))2 − 4ma(z, 1, 1)ma(z,−1,−1)

2ma(z, 1, 1)
.

and if ma(−it, 1, 1) = 0:

φa(t, n) = (ma(−it, 1,−1)va0 (1) + λ̃a(−it)va0 (−1))λ̃a(−it)n−1,

λ̃a(z) :=
ma(z,−1,−1)

1−ma(z, 1,−1)ma(z,−1, 1)
.

The coefficient ∆a(z) can be seen as a coupling coefficient and is equal to 0 when the random vari-
able (V ak , T

a
k ) doesn’t depend on the previous state V ak−1, for example in the context of [5].

The characteristic function φb(t, n) := E[eitσb |qb0 = n] has the same expression, with indexes a

replaced by b.

Proof. Similarly to the proof of Proposition .1, we obtain (using the same notations but denoting
this time an := L(−it, n, 1), bn := L(−it, n,−1)):

an+1 = ma(−it, 1, 1)an+2 +ma(−it, 1,−1)bn, n ≥ 0

bn+1 = ma(−it,−1, 1)an+2 +ma(−it,−1,−1)bn

a0 = b0 = 1.

12



Ifma(−it, 1, 1) = 0, we can solve explicitly the above system to get the desired result. Ifma(−it, 1, 1) 6=
0, we get as in the proof of Prop .1 that both an and bn solve the same following recurrence equation
(but for different initial conditions):

ma(−it, 1, 1)un+2 − (1 + ∆a(−it))un+1 +ma(−it,−1,−1)un, n ≥ 1.

Because |ma(−it, j,−1) +ma(−it, j, 1)| = |Ma(−it, j)| =
∣∣∫∞

0
eitsF a(j, ds)

∣∣ ≤ 1, tedious computa-
tions give us that |λa+(−it)| > 1 whenever t 6= 0, where:

λa+(z) :=
1 + ∆a(z) +

√
(1 + ∆a(z))2 − 4ma(z, 1, 1)ma(z,−1,−1)

2ma(z, 1, 1)
.

Since both |an|, |bn| ≤ 1 for all n, it must be that:

an = a1λ
a(−it)n−1 bn = b1λ

a(−it)n−1,

with a1, b1 being given by the recurrence equations on an, bn:

a1 =
ma(−it, 1,−1)

1− λa(−it)ma(−it, 1, 1)
b1 =

ma(−it,−1, 1)a1 + ∆a(−it)
ma(−it, 1, 1)

.

Finally we conclude by observing that:

φa(t, n) = anv
a
0 (1) + bnv

a
0 (−1).

3.2 Probability of Price Increase

Starting from an initial configuration of the bid and ask queues, (qb0, q
a
0 ) = (nb, na), the probability

that the next price change is a price increase will be denoted pup1 (nb, na). This quantity is equal to
the probability that σa is less than σb:

pup1 (nb, na) = P[σa < σb|qb0 = nb, q
a
0 = na].

Since we know the characteristic functions of σa, σb (cf. Proposition .4), we can compute their
individual laws up to the use of a numerical procedure. Since σa and σb are independent, the law
of σb − σa can be computed using the individual laws of σa, σb, and therefore pup1 (nb, na) can be
computed up to the use of numerical procedures to 1) invert the characteristic function and 2)
compute an indefinite integral. Indeed, denoting fna,a the p.d.f of σa conditionally on qa0 = na, and
Fnb,b the c.d.f. of σb conditionally on qb0 = nb, we have:

pup1 (nb, na) = P[σa < σb|qb0 = nb, q
a
0 = na] =

∫ ∞
0

fna,a(t)(1− Fnb,b(t))dt,
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where Fnb,b and fna,a are obtained by the following inversion formulas:

fna,a(t) =
1

2π

∫
R
e−itxφa(x, na)dx,

Fnb,b(t) =
1

2
− 1

π

∫ ∞
0

1

x
Im{e−itxφb(x, nb)}dx.

3.3 The stock price seen as a functional of a Markov renewal process

As mentioned earlier, we can write the stock price st as:

st =

Nt∑
k=1

Xk,

where {Xn}n≥0 are the consecutive price increments taking value ±δ, {τn}n≥0 are the consecutive
durations between price changes and {Tn}n≥0 the consecutive times at which the price changes.

In this context, the distribution of the random variable τn+1 will depend on the initial configuration
of the bid and ask queues at the beginning Tn of the period [Tn, Tn+1), which itself depends on the
nature of the previous price change Xn: if the previous price change is a price decrease, the initial
configuration will be drawn from the distribution f̃ , and if it is an increase, the initial configura-
tion will be drawn from the distribution f . Because for each n the random variable (Xn, τn) only
depends on the previous increment Xn−1, it can be seen that the process (Xn, τn)n≥0 is a Markov
renewal process ([10], [16]), and the stock price can therefore be seen as a functional of this Markov
renewal process. We obtain the following result.

Proposition .5. The process (Xn, τn)n≥0 is a Markov renewal process. The law of the process
{τn}n≥0 is given by:

F (δ, t) := P[τn+1 ≤ t|Xn = δ] =

∞∑
p=1

∞∑
n=1

f(n, p)P[τ ≤ t|(qb0, qa0 ) = (n, p)],

F (−δ, t) := P[τn+1 ≤ t|Xn = −δ] =

∞∑
p=1

∞∑
n=1

f̃(n, p)P[τ ≤ t|(qb0, qa0 ) = (n, p)].

The Markov chain {Xn}n≥0 is characterized by the following transition probabilities:

pcont := P[Xn+1 = δ|Xn = δ] =

∞∑
i=1

∞∑
j=1

pup1 (i, j)f(i, j).

p′cont := P[Xn+1 = −δ|Xn = −δ] =

∞∑
i=1

∞∑
j=1

(1− pup1 (i, j))f̃(i, j).
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The generator of this Markov chain is thus (we assimilate the state 1 to the value δ and the state
2 to the value −δ):

P :=

(
pcont 1− pcont

1− p′cont p′cont

)

Let pupn (b, a) := P[Xn = δ|qb0 = b, qa0 = a]. We can compute this quantity explicitly:

pupn (b, a) = π∗ + (pcont + p′cont − 1)n−1 (pup1 (b, a)− π∗) ,

π∗ := π∗(δ) :=
p′cont − 1

pcont + p′cont − 2
,

where π∗ is the stationary distribution of the Markov chain {Xn}:

π∗ = lim
n→∞

P[Xn = δ|X1].

Further:

E[Xn|qb0 = b, qa0 = a] = δ(2pupn (b, a)− 1),

and the (conditional) covariance between two consecutive price moves:

cov[Xn+1, Xn|qb0 = b, qa0 = a] = 4δ2pupn (b, a)(1− pupn (b, a))(pcont + p′cont − 1).

Remark .6. In particular, if pcont = p′cont, then π∗ = 1/2 and we retrieve the results of [5]. We also
note that the sign of the (conditional) covariance between two consecutive price moves does not de-
pend on the initial configuration of the bid and ask queues and is given by the sign of pcont+p

′
cont−1.

We also note that the quantities pcont, p
′
cont can be computed up to the knowledge of the quantities

pup1 (nb, na) which computation was discussed in the previous section. The quantities F (±δ, t) can
be computed up to the knowledge of the law of τ , which is known up to the use of a numerical pro-
cedure to invert the characteristic functions of σa and σb, together with the results of Proposition .4.

Proof. The results follow from elementary calculations in a similar way to what is done in [5].
Indeed, we have:

(
pupn (b, a) 1− pupn (b, a)

)
=
(
pup1 (b, a) 1− pup1 (b, a)

)( pcont 1− pcont
1− p′cont p′cont

)n−1

We also have: (
pcont 1− pcont

1− p′cont p′cont

)
= S

(
1 0
0 pcont + p′cont − 1

)
S−1
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with:

S =

(
1 − 1−pcont

1−p′cont
1 1

)

4 Diffusion Limit of the Price Process

In [5] it is assumed that f(i, j) = f̃(i, j) = f(j, i) in order to make the price increments Xn in-
dependent and identically distributed. In fact, this assumption can be entirely relaxed. Indeed,
as we mentioned above, (Xn, τn)n≥0 is in fact a Markov renewal process and therefore we can use
the related theory to compute the diffusion limit of the price process. The results of this section
generalize the results of Section 4 in [5].

4.1 Balanced Order Flow case: P a(1, 1) = P a(−1,−1) and P b(1, 1) = P b(−1,−1)
Throughout this section we make the assumption:

(A4) Using the notations of Proposition .1, the following holds:

∞∑
n=1

∞∑
p=1

αb(n)αa(p)f(n, p) <∞,
∞∑
n=1

∞∑
p=1

αb(n)αa(p)f̃(n, p) <∞.

Using Proposition .3, we obtain the following result generalizing lemma 1 in [5]:

Lemma .7. Under assumption (A4), the following weak convergence holds as n→∞:

1

n log(n)

n∑
k=1

τk ⇒ τ∗ :=

∞∑
n=1

∞∑
p=1

αb(n)αa(p)f∗(n, p),

where f∗(n, p) := π∗f(n, p) + (1− π∗)f̃(n, p).

Proof. We have:

1

n log(n)

n∑
k=1

τk =
∑

i∈{−δ,δ}

Ni(n)

n

log(Ni(n))

log(n)

1

Ni(n) log(Ni(n))

Ni(n)∑
k=1

τp(k,i),

where for i ∈ {−δ, δ}, Ni(n) represents the number of times that Xk−1 = i for 1 ≤ k ≤ n; and
{p(k, i) : k ≥ 1} the successive indexes for which Xk−1 = i. By the standard theory of Markov
Chains, we have for i ∈ {−δ, δ}:

Ni(n)

n

a.e.→ π∗(i),
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and therefore we have log(Ni(n))
log(n)

a.e.→ 1. We recall that π∗(δ) := π∗, and π∗(−δ) = 1− π∗. For fixed

i ∈ {−δ, δ}, the random variables {τp(k,i) : k ≥ 1} are i.i.d. with distribution F (i, ·), and with tail
index equal to 1 (by Proposition .3). Using [5] (Lemma 1) together with Proposition .3, we get
that:

1

n log(n)

n∑
k=1

τp(k,δ) ⇒
∞∑
n=1

∞∑
p=1

αb(n)αa(p)f(n, p),

1

n log(n)

n∑
k=1

τp(k,−δ) ⇒
∞∑
n=1

∞∑
p=1

αb(n)αa(p)f̃(n, p).

The latter convergence holds in probability and we finally have:

1

n log(n)

n∑
k=1

τk
P→ π∗

∞∑
n=1

∞∑
p=1

αb(n)αa(p)f(n, p) + (1− π∗)
∞∑
n=1

∞∑
p=1

αb(n)αa(p)f̃(n, p).

Let s∗ := δ(2π∗ − 1). Using the previous lemma .7, we obtain the following diffusion limit for the
renormalized price process stn log(n):

Proposition .8. Under assumption (A4), the renormalized price process stn log(n) satisfies the
following weak convergence in the Skorokhod topology ([14]):(stn log(n)

n
, t ≥ 0

)
n→∞⇒

(
s∗t

τ∗
, t ≥ 0

)
,(

stn log(n) −Ntn log(n)s
∗

√
n

, t ≥ 0

)
n→∞⇒ σ√

τ∗
W,

where W is a standard Brownian motion and σ is given by:

σ2 = 4δ2
(

1− p′cont + π∗(p′cont − pcont)
(pcont + p′cont − 2)2

− π∗(1− π∗)
)
.

Remark .9. If p′cont = pcont = π∗ = 1
2 as in [5], we find s∗ = 0 and σ = δ as in [5]. If

p′cont = pcont = p, we have π∗ = 1
2 , s∗ = 0 and:

σ2 = δ2
p

1− p
.
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Proof. Because m(±δ) := E[τn|Xn−1 = ±δ] = +∞ by Proposition .3, we cannot directly apply the
well-known invariance principle results for semi-Markov processes. Denote for t ∈ R+:

Rn :=

n∑
k=1

(Xk − s∗), Un(t) := n−1/2
[
(1− λn,t)Rbntc + λn,tRbntc+1

]
,

where λn,t := nt − bntc. We can show, following a martingale method similar to [16] (section 3),
that we have the following weak convergence in the Skorokhod topology:

(Un(t), t ≥ 0)
n→∞⇒ σW,

where W is a standard Brownian motion, and σ is given by:

σ2 =
∑

i∈{−δ,δ}

π∗(i)v(i),

where for i ∈ {−δ, δ}:

v(i) := b(i)2 + p(i)(g(−i)− g(i))2 − 2b(i)p(i)(g(−i)− g(i)),

b(i) := i− s∗,
p(δ) := 1− pcont, p(−δ) := 1− p′cont,

and (the vector) g is given by:

g = (P + Π∗ − I)−1b,

where Π∗ is the matrix with rows equal to (π∗ 1− π∗). After completing the calculations we get:

σ2 = 4δ2
(

1− p′cont + π∗(p′cont − pcont)
(pcont + p′cont − 2)2

− π∗(1− π∗)
)
.

For the sake of exhaustivity we also give the explicit expression for g:

g(δ) = δ
p′cont − pcont + 2(1− π∗)

pcont + p′cont − 2
− s∗,

g(−δ) = δ
p′cont − pcont − 2π∗

pcont + p′cont − 2
− s∗.

Indeed, to show the above convergence of Un, we observe that we can write Rn as the sum of a
Fn−martingale Mn and a bounded process:

Rn = Mn + g(Xn)− g(X0) +Xn −X0︸ ︷︷ ︸
unif.bounded

, Mn :=

n∑
k=1

b(Xk−1)− g(Xk) + g(Xk−1),

where Fn := σ(τk, Xk : k ≤ n) and X0 := 0. The process Mn is a martingale because g is the
unique solution of the following Poisson equation, since Π∗b = 0:

[P − I]g = b.
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The rest of the proof for the convergence of Un follows exactly [16] (section 3).

We proved earlier (lemma .7) that:

Tn
n log(n)

⇒ τ∗,

where Tn :=
∑n
k=1 τk. Since the Markov renewal process (Xn, τn)n≥0 is regular (because the state

space is finite), we get Nt →∞ a.s. and therefore:

TNt
Nt log(Nt)

⇒ τ∗.

Observing that TNt ≤ t ≤ TNt+1 a.s., we get:

TNt
Nt logNt

≤ t

Nt logNt
≤ (Nt + 1) log(Nt + 1)

Nt logNt

TNt+1

(Nt + 1) log(Nt + 1)
,

and therefore:

t

Nt log(Nt)
⇒ τ∗.

Let tn := tn log(n). We would like to show as in [5], equation (17) that:

Ntn
P∼ nt

τ∗
.

We have denoted by An
P∼ Bn iff P − lim An

Bn
= 1. We denote as in [5] ρ : (1,∞)→ (1,∞) to be the

inverse function of t log(t), and we note that ρ(t)
t→∞∼ t

log(t) . The first equivalence in [5], equation

(17): Ntn
P∼ ρ

(
tn
τ∗

)
is not obvious. Indeed, we have Ntn log(Ntn)

P∼ tn
τ∗ , and we would like to

conclude that Ntn = ρ(Ntn log(Ntn))
P∼ ρ

(
tn
τ∗

)
. The latter implication is not true for every function

ρ, in particular if ρ was exponential. Nevertheless, in our case, it is true because ρ(t)
t→∞∼ t

log(t) ,

and therefore for any functions f, g going to +∞ as t→∞:

ρ(f(t))

ρ(g(t))

t→∞∼ f(t)

g(t)

log(g(t))

log(f(t))
.

Therefore we see that if f(t)
t→∞∼ g(t), then by property of the logarithm log(f(t))

t→∞∼ log(g(t))

and therefore ρ(f(t))
t→∞∼ ρ(g(t)). This allows us to conclude as in [5] that:

Ntn
n

P∼ t

τ∗
.
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Therefore, we can make a change of time as in [16], Corollary 3.19 (see also [1], section 14), and

denoting αn(t) :=
Ntn
n , we obtain the following weak convergence in the Skorohod topology:

(Un(αn(t)), t ≥ 0)⇒ (σW t
τ∗
, t ≥ 0),

that is to say: (
stn log(n) −Ntn log(n)s

∗
√
n

, t ≥ 0

)
⇒ σ√

τ∗
W.

The law of large numbers result comes from the fact that
Ntn
n

P∼ t
τ∗ , together with the following

fact (strong law of large numbers for Markov chains):

1

n

n∑
k=1

Xk → s∗ a.e.

4.2 Other cases: either P a(1, 1) < P a(−1,−1) or P b(1, 1) < P b(−1,−1)
In this case, we know by Proposition .3 that the conditional expectations E[τk|qb0 = nb, q

a
0 = na]

are finite. Denoting the conditional expectations m(±δ) := E[τk|Xk−1 = ±δ], we have:

m(δ) =

∞∑
p=1

∞∑
n=1

E[τk|qb0 = n, qa0 = p]f(n, p),

m(−δ) =

∞∑
p=1

∞∑
n=1

E[τk|qb0 = n, qa0 = p]f̃(n, p).

Throughout this section we will need the following assumption:

(A5) Using the previous notations, the following holds:

m(±δ) <∞.

For example, the above assumption is satisfied if the support of the distributions f and f̃ is com-
pact, which is the case in practice. We obtain the following diffusion limit result as a classical
consequence of invariance principle results for semi-Markov processes (see e.g. [16], section 3):

Proposition .10. Under assumption (A5), the renormalized price process snt satisfies the following
convergence in the Skorokhod topology:(snt

n
, t ≥ 0

)
n→∞→

(
s∗t

mτ
, t ≥ 0

)
a.e.,(

snt −Nnts∗√
n

, t ≥ 0

)
n→∞⇒ σ

√
mτ

W,
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where W is a standard Brownian motion, σ is given in Proposition .8 and:

mτ :=
∑

i∈{−δ,δ}

π∗(i)m(i) = π∗m(δ) + (1− π∗)m(−δ).

Proof. This is an immediate consequence of strong law of large numbers and invariance principle
results for Markov renewal processes satisfying m(±δ) <∞ (see e.g. [16] section 3). In the previous
article [16], the proof of the invariance principle is carried on using a martingale method similar to
the one of the proof of proposition .8.

5 Numerical Results

In this section, we present calibration results which illustrate and justify our approach.

In [5], it is assumed that the queue changes V bk , V
a
k do not depend on their previous values

V bk−1, V
a
k−1. Empirically, it is found that P[V bk = 1] ≈ P[V bk = −1] ≈ 1/2 (and similarly for

the ask side). Here, we challenge this assumption by estimating and comparing the probabilities
P (−1, 1) Vs. P (1, 1) on the one side and P (−1,−1) Vs. P (1,−1) on the other side to check
whether or not they are approximately equal to each other, for both the ask and the bid. We
also give - for both the bid and ask - the estimated probabilities P[Vk = 1], P[Vk = −1] that we
call respectively P (1), P (−1), to check whether or not they are approximately equal to 1/2 as in [5].

The results below correspond to the 5 stocks Amazon, Apple, Google, Intel, Microsoft on June 21st

2012 1. The probabilities are estimated using the strong law of large numbers. We also give for
indicative purposes the average time between order arrivals (in milliseconds (ms)) as well as the
average number of stocks per order.

Amazon Apple Google Intel Microsoft
Bid Ask Bid Ask Bid Ask Bid Ask Bid Ask

Avg time btw. orders (ms) 910 873 464 425 1123 1126 116 133 130 113
Avg nb. of stocks per order 100 82 90 82 84 71 502 463 587 565

Average time between orders (ms) & Average number of stocks per order. June 21st 2012.

Amazon Apple Google Intel Microsoft
Bid Ask Bid Ask Bid Ask Bid Ask Bid Ask

P (1, 1) 0.48 0.57 0.50 0.55 0.48 0.53 0.55 0.61 0.63 0.60
P (−1, 1) 0.46 0.42 0.40 0.42 0.46 0.49 0.44 0.40 0.36 0.41
P (−1,−1) 0.54 0.58 0.60 0.58 0.54 0.51 0.56 0.60 0.64 0.59
P (1,−1) 0.52 0.43 0.50 0.45 0.52 0.47 0.45 0.39 0.37 0.40
P (1) 0.47 0.497 0.44 0.48 0.47 0.51 0.495 0.505 0.49 0.508
P (−1) 0.53 0.503 0.56 0.52 0.53 0.49 0.505 0.495 0.51 0.492

Estimated transition probabilities of the Markov Chains V bk , V
a
k . June 21st 2012.

1The data was taken from the webpage https://lobster.wiwi.hu-berlin.de/info/DataSamples.php
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Findings: First of all, we find as in [5] that for all stocks, P[Vk = 1] ≈ P[Vk = −1] ≈ 1/2, except
maybe in the case of Apple Bid. It is worth mentioning that we always have P (1) < P (−1) except
in 3 cases: Google Ask, Intel Ask and Microsoft Ask. Nevertheless, in these cases, P (1) and P (−1)
are very close to each other and so they could be considered to fall into the case P (1) = P (−1) of
[5]. These 3 cases also correspond to the only 3 cases where P (1, 1) > P (−1,−1), which is contrary
to our assumption P (1, 1) ≤ P (−1,−1). Nevertheless, in these 3 cases, P (1, 1) and P (−1,−1) are
very close to each other so we can consider them to fall into the case P (1, 1) = P (−1,−1).

More importantly, we notice that the probabilities P (−1, 1), P (1, 1) can be significantly different
from each other - and similarly for the probabilities P (−1,−1), P (1,−1) - which justifies the use of
a Markov Chain structure for the random variables {V bk }, {V ak }. This phenomenon is particularly
visible for example on Microsoft (Bid+Ask), Intel (Bid+Ask), Apple (Bid+Ask) or Amazon Ask.
Further, regarding the comparison of P (1, 1) and P (−1,−1), it turns out that they are often very
smilar, except in the cases Amazon Bid, Apple Bid, Google Bid.

The second assumption of [5] that we would like to challenge is the assumed exponential distribution
of the order arrival times T ak , T

b
k . To this end, on the same data set as used to estimate the transition

probabilities P a(i, j), P b(i, j), we calibrate the empirical c.d.f.’s Ha(i, j, ·), Hb(i, j, ·) to the Gamma
and Weibull distributions (which are generalizations of the exponential distribution). We recall that
the p.d.f.’s of these distributions are given by:

fGamma(x) =
1

Γ(k)θk
xk−1e−

x
θ 1x>0,

fWeibull(x) =
k

θ

(x
θ

)k−1
e−( xθ )

k

1x>0.

Here, k > 0 and θ > 0 represent respectively the shape and the scale parameter. The variable k is
dimensionless, whereas θ will be expressed inms−1. We perform a maximum likelihood estimation of
the Weibull and Gamma parameters for each one of the empirical distributions Ha(i, j, ·), Hb(i, j, ·)
(together with a 95 % confidence interval for the parameters). As we can see on the tables below,
the shape parameter k is always significantly different than 1 (∼ 0.1 to 0.3), which indicates that
the exponential distribution is not rich enough to fit our observations. To illustrate this, we present
below the empirical c.d.f. of H(1,−1) in the case of Google Bid, and we see that Gamma and
Weibull allow to fit the empirical c.d.f. in a much better way than Exponential.
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H(1,-1) - Google Bid - June 21st 2012.

We summarize our calibration results in the tables below.

Amazon Bid H(1, 1) H(1,−1) H(−1,−1) H(−1, 1)

Weibull θ 99.1 185.5 87.7 87.0
(90.2-109.0) (171.3-200.8) (80.1-96.0) (78.7-96.1)

Weibull k 0.279 0.323 0.285 0.258
(0.274-0.285) (0.317-0.329) (0.280-0.290) (0.253-0.263)

Gamma θ 4927 4321 4712 5965
(4618-5257) (4075-4582) (4423-5019) (5589-6366)

Gamma k 0.179 0.215 0.179 0.165
(0.174-0.184) (0.209-0.220) (0.175-0.184) (0.161-0.169)

Amazon Bid: Fitted Weibull and Gamma parameters. 95 % confidence intervals in brackets. June 21st 2012.
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Amazon Ask H(1, 1) H(1,−1) H(−1,−1) H(−1, 1)

Weibull θ 80.8 197.8 57.9 137.0
(74.4-87.7) (181.9-215.1) (52.8-63.4) (124.2-151.2)

Weibull k 0.274 0.324 0.279 0.276
(0.269-0.278) (0.317-0.330) (0.274-0.285) (0.270-0.281)

Gamma θ 4732 4623 3845 5879
(4475-5004) (4345-4919) (3609-4095) (5502-6283)

Gamma k 0.174 0.215 0.173 0.181
(0.170-0.178) (0.209-0.221) (0.168-0.177) (0.176-0.186)

Amazon Ask: Fitted Weibull and Gamma parameters. 95 % confidence intervals in brackets. June 21st 2012.

Apple Bid H(1, 1) H(1,−1) H(−1,−1) H(−1, 1)

Weibull θ 75.9 180.9 31.5 78.2
(71.6-80.5) (172.6-189.7) (29.5-33.6) (73.4-83.3)

Weibull k 0.317 0.400 0.271 0.300
(0.313-0.321) (0.394-0.405) (0.267-0.274) (0.296-0.304)

Gamma θ 2187 1860 2254 2711
(2094-2284) (1787-1935) (2157-2355) (2592-2835)

Gamma k 0.206 0.276 0.168 0.196
(0.202-0.210) (0.271-0.282) (0.165-0.171) (0.192-0.199)

Apple Bid: Fitted Weibull and Gamma parameters. 95 % confidence intervals in brackets. June 21st 2012.

Apple Ask H(1, 1) H(1,−1) H(−1,−1) H(−1, 1)

Weibull θ 46.6 152.5 27.7 95.5
(44.1-49.2) (145.5-159.8) (26.0-29.6) (90.0-101.5)

Weibull k 0.298 0.394 0.271 0.308
(0.294-0.301) (0.388-0.399) (0.267-0.275) (0.303-0.312)

Gamma θ 2019 1666 1995 2740
(1942-2099) (1603-1732) (1907-2087) (2624-2861)

Gamma k 0.189 0.271 0.168 0.204
(0.186-0.192) (0.266-0.277) (0.165-0.171) (0.200-0.208)

Apple Ask: Fitted Weibull and Gamma parameters. 95 % confidence intervals in brackets. June 21st 2012.

Google Bid H(1, 1) H(1,−1) H(−1,−1) H(−1, 1)

Weibull θ 113.9 158.5 67.9 56.8
(102.8-126.2) (143.4-175.3) (60.6-76.0) (50.5-63.8)

Weibull k 0.276 0.284 0.261 0.246
(0.270-0.282) (0.278-0.290) (0.255-0.266) (0.241-0.251)

Gamma θ 6720 6647 6381 7025
(6263-7210) (6204-7122) (5913-6886) (6517-7571)

Gamma k 0.174 0.185 0.160 0.151
(0.169-0.179) (0.180-0.191) (0.155-0.165) (0.147-0.156)

Google Bid: Fitted Weibull and Gamma parameters. 95 % confidence intervals in brackets. June 21st 2012.
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Google Ask H(1, 1) H(1,−1) H(−1,−1) H(−1, 1)

Weibull θ 196.7 271.6 38.1 57.0
(180.6-214.2) (248.5-296.8) (33.8-43.0) (51.3-63.3)

Weibull k 0.290 0.310 0.258 0.263
(0.285-0.295) (0.303-0.316) (0.253-0.264) (0.258-0.268)

Gamma θ 6081 6571 4304 4698
(5734-6450) (6165-7003) (3971-4664) (4380-5040)

Gamma k 0.195 0.209 0.156 0.164
(0.190-0.200) (0.203-0.215) (0.151-0.161) (0.159-0.168)

Google Ask: Fitted Weibull and Gamma parameters. 95 % confidence intervals in brackets. June 21st 2012.

Intel Bid H(1, 1) H(1,−1) H(−1,−1) H(−1, 1)

Weibull θ 2.76 2.56 3.33 2.01
(2.66-2.86) (2.45-2.67) (3.21-3.45) (1.92-2.10)

Weibull k 0.227 0.226 0.267 0.209
(0.226-0.229) (0.225-0.228) (0.265-0.269) (0.208-0.211)

Gamma θ 1016 912 543 1093
(991-1040) (888-937) (530-557) (1063-1124)

Gamma k 0.129 0.130 0.151 0.120
(0.128-0.130) (0.129-0.131) (0.150-0.152) (0.119-0.121)

Intel Bid: Fitted Weibull and Gamma parameters. 95 % confidence intervals in brackets. June 21st 2012.

Intel Ask H(1, 1) H(1,−1) H(−1,−1) H(−1, 1)

Weibull θ 1.33 5.46 4.63 5.15
(1.28-1.38) (5.21-5.73) (4.45-4.80) (4.90-5.41)

Weibull k 0.235 0.231 0.256 0.225
(0.234-0.237) (0.230-0.233) (0.254-0.257) (0.224-0.227)

Gamma θ 705 1219 884 1305
(688-723) (1183-1256) (862-907) (1266-1345)

Gamma k 0.126 0.137 0.146 0.133
(0.125-0.127) (0.136-0.139) (0.144-0.147) (0.132-0.135)

Intel Ask: Fitted Weibull and Gamma parameters. 95 % confidence intervals in brackets. June 21st 2012.

Microsoft Bid H(1, 1) H(1,−1) H(−1,−1) H(−1, 1)

Weibull θ 0.79 2.98 2.68 2.64
(0.76-0.82) (2.83-3.13) (2.59-2.78) (2.50-2.78)

Weibull k 0.215 0.221 0.259 0.211
(0.214-0.217) (0.219-0.223) (0.257-0.260) (0.209-0.213)

Gamma θ 1012 1315 664 1488
(987-1039) (1274-1358) (648-681) (1440-1537)

Gamma k 0.112 0.125 0.142 0.120
(0.111-0.113) (0.124-0.127) (0.141-0.143) (0.118-0.121)

Microsoft Bid: Fitted Weibull and Gamma parameters. 95 % confidence intervals in brackets. June 21st 2012.
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Microsoft Ask H(1, 1) H(1,−1) H(−1,−1) H(−1, 1)

Weibull θ 0.85 1.57 2.07 1.43
(0.82-0.89) (1.50-1.64) (2.00-2.15) (1.36-1.50)

Weibull k 0.218 0.223 0.259 0.210
(0.217-0.219) (0.222-0.225) (0.258-0.261) (0.208-0.211)

Gamma θ 1004 1081 574 1138
(980-1028) (1051-1112) (560-588) (1105-1171)

Gamma k 0.113 0.121 0.140 0.116
(0.112-0.114) (0.120-0.122) (0.139-0.141) (0.115-0.117)

Microsoft Ask: Fitted Weibull and Gamma parameters. 95 % confidence intervals in brackets. June 21st 2012.

6 Conclusion and Future Work

In this paper, we introduced a semi-Markovian modeling of limit order books in order to match
empirical observations. We extended the model of [5] in the following ways:

i) inter-arrival times between book events (limit orders, market orders, order cancellations) are
allowed to have an arbitrary distribution.

ii) the arrival of a new book event at the bid or the ask and its corresponding inter-arrival time
are allowed to depend on the nature of the previous event.

In order to do so, both the bid and ask queues are driven by Markov renewal processes. It results
from these chosen dynamics that the price process can be expressed as a functional of another
Markov renewal process, which we characterized explicitly. In this context, we obtained probabilistic
results such as the duration until the next price change, the probability of price increase and the
characterization of the Markov renewal process driving the stock price process (section 3). In section
4, we obtained diffusion limit results for the stock price process generalizing those of [5]. Finally,
we presented in section 5 calibration results on real market data in order to illustrate and justify
our approach.
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