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INTERNAL CONTROLLABILITY OF FIRST ORDER QUASILINEAR

HYPERBOLIC SYSTEMS WITH A REDUCED NUMBER OF

CONTROLS

FATIHA ALABAU-BOUSSOUIRA, JEAN-MICHEL CORON AND GUILLAUME OLIVE∗

Abstract. In this paper we investigate the exact controllability of n× n first order quasilinear
hyperbolic systems by m < n internal controls that are localized in space in some part of the
domain. We distinguish two situations. The first one is when the equations of the system have
the same speed. In this case, we can use the method of characteristics and obtain a simple and
complete characterization for linear systems. Thanks to a linear test this also provides some sufficient
conditions for the local exact controllability around the trajectories of semilinear systems. However,
when the speed of the equations are not anymore the same, we see that we encounter the problem of
loss of derivatives if we try to control quasilinear systems with a reduced number of controls. To solve
this problem, as in a prior article by J.-M. Coron and P. Lissy on a Navier-Stokes control system,
we first use the notion of algebraic solvability due M. Gromov. However, in contrast with this prior
article where a standard fixed point argument could be used to treat the nonlinearities, we use here
a fixed point theorem of Nash-Moser type due to M. Gromov in order to handle the problem of loss
of derivatives.

Key words. Quasilinear hyperbolic systems, exact internal controllability, controllability of
systems, algebraic solvability.

AMS subject classifications. 35L50, 93B05, 93C10.

1. Introduction. In this paper we investigate the exact controllability of n ×
n first order quasilinear hyperbolic systems by m < n internal controls that are
localized in space in some part of the domain. While the controllability of quasilinear
hyperbolic systems by boundary controls has been intensively studied, [Cir69, LR02,
LR03, Wan06, Zha09, LRW10], to our knowledge there are no equivalent results for
the internal controllability. On the other hand, the controllability of systems of PDEs
with a reduced number of controls has been a challenging problem for the last decades,
see for instance [AB03, ABL12, AB13, DLRL14, AB14] for linear hyperbolic systems
and [Zha09] for quasilinear hyperbolic systems, [BGBPG02], [GBPG05], [Gue07] and
the survey [AKBGBdT11] for linear parabolic systems, [CGR10, CL14] for nonlinear
parabolic systems, [CG09b] for Stokes equations, [FCGIP06], [CG09a] and [CL14] for
Navier-Stokes equations. Let us also point out that, in many of these articles, the
general strategy is to start with a controllability result in the case where there are as
many controls as the number of equations and then to try to remove some of these
controls by a suitable procedure. We also follow this general strategy here.

In [LR03], the authors introduced a constructive method to control quasilinear
systems of n equations by n boundary controls. This proficient method is based on
existence and uniqueness results of semi-global solutions [LJ01] (i.e. with large time
and small data) that they apply to several mixed initial-boundary value problems,
using also the equivalent roles of the time and the space. As we shall see below, using
a method of extension of the domain (as it is often used in the parabolic framework),
we can recover this result for the internal controllability, that is we can prove the
controllability of n × n quasilinear systems by n internal controls. The situation is
more complicated when we have less controls than equations. Indeed, even though
some results are known for the boundary controllability of n× n quasilinear systems
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with m < n controls [Zha09], the extension method is not anymore applicable in this
context. Thus, we need to develop direct methods to solve the problem of internal
controllability.

We start the study with linear systems of equations with the same velocity. In this
case, we can apply the method of characteristics and obtain a complete and simple
characterization of the exact controllability. We show that the linear system can be
viewed as a parametrized family of ODEs that are controlled independently. The
difficulty is actually to prove that this is enough to build a smooth (C1) control for
the linear hyperbolic system. Moreover, since we look for controls of the hyperbolic
system that are localized in some part of the domain, a nonstandard condition on the
supports of the ODEs also appears and needs to be handled. Another key point of
the proof is the explicit formula of the HUM control for ODEs.

Using then a standard fixed point argument we can obtain sufficient conditions for
the local exact controllability around the trajectories of semilinear systems. However,
when the equations do not have the same speed anymore and the nonlinearity is
stronger, that is when we consider quasilinear systems, the standard linear test fails
because of a loss of derivatives. To solve this problem, we need to use a fixed point of
Nash-Moser type. We propose to use the fixed point theorem of M. Gromov [Gro86,
Section 2.3.2, Main Theorem], which is based on the notion of algebraic solvability
for partial differential operators. The method consists in, first controlling the n × n
system by n controls, and then to eliminate a certain number of controls through the
algebraic solvability. The use of the Gromov algebraic solvability in the framework
of the control theory was introduced in [Cor07, Pages 13-15] in the framework of
the control of linear ordinary differential equations (however it does not lead to new
results in this case) and in [CL14] for a for a Navier-Stokes control system. In this last
case, the parabolicity allows to have smooth controls, as shown in [CL14], and thus
to avoid the problem of loss of derivatives. The difference between the present work
and [CL14], where the algebraic solvability was the difficult task (the fixed point was
standard), is that, following the algebraic solvability step, we show how to apply the
fixed point theorem of Gromov to obtain the controllability of the quasilinear system.
Last, but not least, this method is probably not optimal with the regularity obtained,
which leaves some challenging problems.

2. Systems of equations with the same velocity.

2.1. Linear systems. Let us consider the following linear hyperbolic system
with periodic boundary conditions:



















yt + yx +A(t, x)y = B(t, x)Θ, (t, x) ∈ [0, T ]× [0, L],

y(t, L) = y(t, 0), t ∈ [0, T ],

y(0, x) = y0(x), x ∈ [0, L].

(2.1)

In (2.1), T > 0 is the control time, L > 0 is the length of the domain. A and B
are time and space dependent matrices of size n× n and n×m, respectively, where
n ∈ N

∗ denotes the number of equations of the system and m ∈ N
∗ the number of

controls (with possibly m < n). y0 is the initial data and y(t, ·) : [0, L] −→ R
n is the

state at time t ∈ [0, T ]. Finally, Θ(t, ·) : [0, L] −→ R
m is the distributed control at

time t ∈ [0, T ], that we look subject to the constraint

suppΘ ⊂ [0, T ]× [a, b], (2.2)
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where here, and in what follows, the interval [a, b], with 0 ≤ a < b ≤ L, is fixed.
Throughout this article, for k ∈ N and p ∈ N

∗, we denote by Ck
L([0, T ]× [0, L])p

(resp. Ck
L([0, L])

p) the Banach space of functions y ∈ Ck
L([0, T ]× [0, L])p (resp. y ∈

Ck
L([0, L])

p) that are x L-periodic, that is

∂ixy(t, 0) = ∂ixy(t, L), ∀t ∈ [0, T ], ∀i ∈ J0, kK. (2.3a)
(

resp. y(i)(0) = y(i)(L), ∀i ∈ J0, kK.
)

(2.3b)

All along Section 2.1 we assume that A ∈ C1
L([0, T ]× [0, L])n×n, B ∈ C1

L([0, T ]×
[0, L])n×m. These assumptions are made for regularity purposes, see below.

We recall that, for every T > 0, there exists C > 0 such that, for every Θ ∈
C1

L([0, T ]× [0, L])m and every y0 ∈ C1
L([0, L])

n, there exists a unique classical global
solution y ∈ C1

L([0, T ]× [0, L])n to (2.1), and this solution satisfies the estimate

‖y‖C1 ≤ C
(

‖y0‖C1 + ‖Θ‖C1

)

.

This well-posedness result follows from the classical theory of linear hyperbolic systems
using the method of characteristics [LY85]. Note that the kind of boundary conditions
we consider is nonlocal but, as already noticed in [CBdN08] (see also [LRW10]), it can
always be reduced to more standard (i.e. local) boundary conditions by introducing
the enlarged system satisfied by (y, ỹ) where ỹ(t, x) = y(t, L− x).

Definition 2.1. We say that System (2.1) is exactly controllable at time T > 0
if, for every y0 ∈ C1

L([0, L])
n and for every y1 ∈ C1

L([0, L])
n, there exists a control Θ ∈

C1
L([0, T ]×[0, L])m that satisfies the constraint (2.2) and is such that the corresponding

solution y ∈ C1
L([0, T ]× [0, L])n to (2.1) satisfies

y(T, x) = y1(x), ∀x ∈ [0, L].

2.1.1. The extended characteristics. Let us now introduce an important tool
when dealing with hyperbolic systems, namely the characteristics of the system. In
our case (speed 1 on each equation), the characteristic X of System (2.1) passing
through the point (t0, x0) ∈ [0, T ]× [0, L] is the straight line

X(t, t0, x0)
def
= t− t0 + x0, t ∈ [0, T ].

However, in this paper, the crucial tools we need are the extended characteristics
X : [0, T ]× [0, L) −→ [0, L], defined by (see Fig. 2.1 below):

X(t, x)
def
=







X (t, 0, x) if t ∈ [0, τ0(x, L)] ,

X (t, τk−1(x, L), 0) if t ∈ (τk(x, 0), τk(x, L)] , k ∈ J1, kmax(x, 0)K,

where, for every k ∈ N and c ∈ [0, L], we introduce the functions

τk(x, c)
def
=



















0 if c− x+ kL ∈ (−∞, 0),

c− x+ kL if c− x+ kL ∈ [0, T ],

T if c− x+ kL ∈ (T,+∞),
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and kmin(x, c) (resp. kmax(x, c)) denotes the smallest (resp. greatest) integer k ∈ N

such that c− x+ kL > 0 (resp. c− x+ kL < T ). More precisely, denoting by ⌊·⌋ the
floor function and ⌈·⌉ the ceiling function,

kmin(x, c)
def
= ⌊

−c+ x

L
⌋+ 1 =







0 if x ∈ [0, c),

1 if x ∈ [c, L),

kmax(x, c)
def
= ⌈

T − c+ x

L
⌉ − 1 =







⌈T−c
L ⌉ − 1 if x ∈ [0, p(c)] ,

⌈T−c
L ⌉ if x ∈ (p(c), L) ,

where

p(c)
def
=

(

⌈
T − c

L
⌉ −

T − c

L

)

L.

Note that τk(x, 0) = τk−1(x, L) for every k ≥ 1 and τkmax(x,0)(x, L) = T , so that

X(t, x) is indeed defined for every t ∈ [0, T ].

x

t0

L

T

a

b
x

X(·, x)[

]

(

]

(

]

τ0(x,L) τ1(x,L)
τ1(x, a) τ1(x, b)

Fig. 2.1: The extended characteristics X(·, x).

For 0 ≤ a < b ≤ L, we list below some properties of these functions, under
the essential assumption that every extended characteristic X crosses the domain
[0, T ]× [a, b] at some time, that is

T > L− (b− a).

1. kmin(x, b) ≤ kmax(x, a).
2. τk(x, a) < τk(x, b) for every k ∈ Jkmin(x, b), kmax(x, a)K if x 6= b and x 6= p(a).
3. τk(x, b) ≤ τk+1(x, a) for every k ∈ Jkmin(x, b), kmax(x, a)− 1K.
4. X(t, x) ∈ (a, b) for every t ∈ (τk(x, a), τk(x, b)) for every k satisfying

k ∈ Jkmin(x, b), kmax(x, a)K.
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We then introduce the following open sets (see Fig. 2.2 below)

T0
def
= {(t, x) ∈ (0, T )× (0, L) | t ∈ (0, τ0(x, L))} ,

T⌈ T
L
⌉
def
=
{

(t, x) ∈ (0, T )× (p(0), L) ,
∣

∣

∣ t ∈
(

τ⌈ T
L
⌉(x, 0), T

)}

,

and, for k ∈ J1, ⌈T
L ⌉ − 1K,

Tk
def
= {(t, x) ∈ (0, T )× (0, L) | t ∈ (τk(x, 0), τk(x, L))} .

We set

T
def
=

⌈T
L
⌉

⋃

k=0

Tk.

x

t0

L

T

T0

T1

T2
T0 ∩ T1

T1 ∩ T2

Fig. 2.2: Domains Tk and the parts Tk ∩ T k+1 of their boundary.

Remark 1. Let us give some comments about the properties of the extended
characteristics. First, we have

X ∈ C1 (T ) ,

with Xt(t, x) = Xx(t, x) = 1 for every (t, x) ∈ T . Moreover, at the boundary ∂T , we
have

∀(t0, x0) ∈ Tk ∩ T k+1, lim
(t,x)→(t0,x0)

(t,x)∈Tk

X(t, x) = L, lim
(t,x)→(t0,x0)
(t,x)∈Tk+1

X(t, x) = 0,

lim(t,x)→(t0,0)X(t, x) = X(t0, 0) for every t0 ∈ [0, T ], and

∀t0 ∈ [0, T ], lim
(t,x)→(t0,L)

X(t, x) =







X(t0, 0) if t0 ∈ (0, T ],

L if t0 = 0.
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In particular X has a continuous extension (still denoted by X) to all the points of
the boundary (t, L), t ∈ [0, T ].

Second, the map (t, x) 7→ (t,X(t, x)) is a C1-diffeomorphism from T to T ′ =

(0, T )× (0, L)\
{

(t,X(t, 0))
∣

∣ t ∈ [0, T ]
}

. We denote by (t,X
−1

(t, x)) its inverse.
Finally, for every x ∈ [0, L], we denote by Ax and Bx the values of A and B along

the extended characteristic X(·, x):

Ax(t)
def
= A(t,X(t, x)), Bx(t)

def
= B(t,X(t, x)), ∀t ∈ [0, T ].

Clearly, (t, x) 7→ Ax(t) ∈ C1(T )n×n. Since A is x L-periodic, we have A ∈

C0
(

T
)n×n

= C0([0, T ]× [0, L])n×n. On the same manner, since ∂tA and ∂xA are x
L-periodic, we have A ∈ C1([0, T ]× [0, L])n×n. Note also that AL = A0. The same
statements hold for the map (t, x) 7→ Bx(t) as well.

2.1.2. Characterization of the controllability of (2.1). The main result of
section 2.1 is the following:

Theorem 2.2. Let T, L > 0 and 0 ≤ a < b ≤ L. System (2.1) is exactly
controllable at time T if, and only if, the following 2 conditions hold:
(H1) T > L− (b− a).
(H2) For every x ∈ [0, L), the following ODE is controllable:







d

dt
z(t) = −Ax(t)z(t) + Bx(t)ψ(t), ∀t ∈ [0, T ],

z(0) = z0 ∈ R
n,

(2.4)

with controls ψ such that

ψ ≡ 0 in [0, T ]\





kmax(x,a)
⋃

k=kmin(x,b)

[τk(x, a), τk(x, b)]



 . (2.5)

Remark 2. When [a, b] = [0, L], hypothesis (H1) and (2.5) are automatically
satisfied.

Remark 3. As we shall see below (Proposition 2.3) the controllability of (2.4)
with (2.5) only depends on the values of A and B inside the control domain [0, T ]×
[a, b].

Remark 4. In the proof of Theorem 2.2 we will explicitly construct a control Θ
that steers the solution y to (2.1) from y0 to y1, see (2.14) below. We can see that
this control Θ satisfies the following additional properties:

1. Continuity: there exists C > 0 (depending only on T, L, a, b, A,B) such that

‖Θ‖C1 ≤ C
(

‖y0‖C1 + ‖y1‖C1

)

.

2. Locality: there exists δ > 0 small enough (depending only on T, L, a, b, A,B),
such that

suppΘ ⊂ [δ, T − δ]× [a+ δ, b− δ]. (2.6)

3. Higher regularity: if y0, y1 ∈ Ck
L([0, L])

n and A ∈ Ck
L([0, T ] × [0, L])n×n,

B ∈ Ck
L([0, T ]× [0, L])m×n (k ≥ 1), then

Θ ∈ Ck([0, T ]× [0, L])m.
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2.1.3. Controllability of linear O.D.E with constraints. Let us recall that
we know some powerful tools to characterize the controllability of linear time-varying
ODEs if no constraint are imposed on the controls. We state below the extensions
of these theorems to the case where the controls are supported in some part of the
domain.

Let us consider the n× n ODE






d

dt
z(t) = −A(t)z(t) +B(t)ψ(t), ∀t ∈ [0, T ],

z(0) = z0 ∈ R
n,

(2.7)

with A ∈ C1([0, T ])n×n, B ∈ C1([0, T ])n×m. We want to characterize the controlla-
bility of (2.7) with the following additional constraint on the controls:

ψ ≡ 0 in [0, T ]\

(

M
⋃

i=1

[ai, bi]

)

, (2.8)

where 0 ≤ ai < bi ≤ T are such that bi ≤ ai+1 for every i ∈ J1,M − 1K.
Let us denote by R ∈ C1([0, T ]× [0, T ])n×n the resolvent associated with −A ∈

C1([0, T ])n×n, that is, for every s ∈ [0, T ], R(·, s) is the classical solution to the ODE






∂tR(t, s) = −A(t)R(t, s), ∀t ∈ [0, T ],

R(s, s) = Id.

Proposition 2.3. The ODE (2.7) is controllable with (2.8) if, and only if, its
controllability Gramian, that is the n× n matrix

Q
def
=

M
∑

i=1

∫ bi

ai

R (T, s)B(s)B(s)∗R (T, s)
∗
ds, (2.9)

is invertible.
The proof of Proposition 2.3 can be adapted from the one of [KHN63, Theorem 5].

To do so, we consider the control problem (2.7) with ηB instead of B, where η is a cut-

off function that vanishes outside
⋃M

i=1 [ai, bi] and is equal to 1 in
⋃M

i=1 [ai + ε, bi − ε]
with ε > 0 small enough so that, by continuity, the Gramian (2.9) with ai + ε (resp.
bi − ε) instead of ai (resp. bi) remains invertible.

Thanks to the previous characterization, we obtain the following propostions (see
[KHN63, Theorem 10] and [SM67] for a proof)

Proposition 2.4. Assume that A and B are constant. Then, the controllability
of (2.7)-(2.8) is equivalent to the algebraic condition

rank [A : B ] = n,

where the n× nm matrix [A : B ] is defined by

[A : B ]
def
= [B|AB|A2B| · · · |An−1B]. (2.10)

Proposition 2.5. Assume that

A ∈ Cn−2([0, T ])n×n and B ∈ Cn−1([0, T ])n×m
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and let us introduce the following notation:

∀t ∈ [0, T ],







B0(t) = B(t),

Bj(t) =
d

dt
Bj−1(t) +A(t)Bj−1(t), ∀j ∈ J1, n− 1K,

and, for every t ∈ [0, T ], the n× nm matrix

[A : B ] (t)
def
= [B0(t)|B1(t)| · · · |Bn−1(t)],

(which provides an extension of (2.10)). Then, the ODE (2.7) is controllable with
(2.8) if the following property holds:

∃i ∈ J1,MK, ∃ti ∈ [ai, bi], rank [A : B ] (ti) = n.

2.1.4. Proof of Theorem 2.2, sufficient part. The proof of the sufficient part
of Theorem 2.2 relies on the following key lemma (the proof of which is postponed to
the appendix; see Section A). It states that we can always reduce a little bit the domain
of control. This is a uniform result with respect to x (compare with Proposition 2.3).

All along this section, for x ∈ [0, L] we denote by Rx ∈ C1([0, T ] × [0, T ])n×n

the resolvent associated with −Ax ∈ C1([0, T ])n×n. It is important to notice that
the map (t, s, x) 7→ Rx(t, s) is of class C1([0, T ] × [0, T ] × [0, L])n×n since the map
(t, x) 7→ Ax(t) is also of class C1([0, T ]× [0, L])n×n (see, for instance [Har82, Chapter
V, Theorem 3.1]).

Lemma 2.6. Assume that (H1) and (H2) hold. Then, there exists δ > 0 small
enough and a cut-off function η ∈ C1([0, T ]× [0, L]) with (see Fig. 2.3)

η ≡ 0 in [0, T ]× [0, L]\ ((δ, T − δ)× (a+ δ, b− δ)) , (2.11)

such that, for every x ∈ [0, L], the Gramian

Qx
def
=

∫ T

0

Rx (T, s)Bx(s)Bx(s)
∗Rx (T, s)

∗
η(s,X(s, x)) ds, (2.12)

is invertible.

Proof of Theorem 2.2 (sufficient part). Assume that (H1) and (H2) hold and let
us show that System (2.1) is exactly controllable at time T . Let y0, y1 ∈ C1

L([0, L])
n.

Let Qx be the controllability Gramian defined by (2.12). For every (t, x) ∈ [0, T ]×
[0, L], we set

ψ(t, x)
def
= η(t,X(t, x))Bx(t)

∗Rx(T, t)
∗Q−1

x

(

y1
(

X(T, x)
)

−Rx(T, 0)y
0(x)

)

. (2.13)

Since η ∈ C1
L([0, T ]× [0, L]), we have (t, x) 7→ η(t,X(t, x)) ∈ C1([0, T ]× [0, L]). Using

Lebesgue’s dominated convergence theorem, we obtain x 7→ Qx ∈ C1([0, L])n×n. On
the other hand, since y1 ∈ C1

L([0, L])
n, we have x 7→ y1(X(T, x)) ∈ C1([0, L])n. As a

result,

ψ ∈ C1([0, T ]× [0, L])m.
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x

t0

L

T

a

b

δ

η ≡ 0

η ≡ 1

η ≡ 0

Fig. 2.3: Reduction of the control domain.

For every (t, x) ∈ [0, T ]× [0, L], we set

Θ(t, x)
def
=



















ψ(t,X
−1

(t, x)) if (t, x) ∈ T ′,

ψ(t, 0) if x = X(t, 0),

0 if (t, x) ∈ ∂ ([0, T ]× [0, L]) .

(2.14)

From (2.11) we have Θ ∈ C1([0, T ]× [0, L])m and (2.6). Moreover,

Θ(t,X(t, x)) = ψ(t, x), ∀(t, x) ∈ [0, T ]× [0, L].

Let y ∈ C1([0, T ]×[0, L])m be the solution to (2.1) associated with Θ defined by (2.14).
For every x ∈ [0, L), writing y along the extended characteristics X(·, x), we see that
t 7→ y(t,X(t, x)) solves the ODE (2.4) with ψ defined by (2.13) and z0 = y0(x) (at least
in the weak sense W 1,∞(0, T )n). As a result we obtain y(T,X(T, x)) = y1(X(T, x))
for every x ∈ [0, L). Since x 7→ X(T, x) defines a bijective map from [0, L) to (0, L],
we obtain that y(T, x) = y1(x) for every x ∈ [0, L). By continuity it follows that
y(T, x) = y1(x) for every x ∈ [0, L].

2.1.5. Proof of Theorem 2.2, necessary part. Assume now that System
(2.1) is exactly controllable at time T and let us prove that this implies that (H1)
and (H2) hold.

Assume first that 0 < T ≤ L−(b−a) and let t0 = max(0, T−a) and x0 = −t0+L.
Note that t0 ∈ [0, T ] and x0 ∈ [0, L]. Let y1 = 0 and let y0 ∈ C1

L([0, L])
n be such that

y0(x0) 6= 0. (2.15)

Writing y along the characteristic X(s, t0, 0) for s ∈ [t0, T ], gives

y(T,X(T, t0, 0)) = R1(T, t0)y(t0, 0) +

∫ T

t0

R1(T, s)B(s)Θ(s,X(s, t0, 0)) ds,

where R1 is the resolvent associated with t ∈ [t0, T ] 7→ A(t,X(t, t0, 0)). Now observe
that, since T ≤ t0 + a, we have X(s, t0, 0) ≤ a for s ∈ [t0, T ], so that, thanks to (2.2),

Θ(s,X(s, t0, 0)) = 0, ∀s ∈ [t0, T ].
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As a result,

y(T,X(T, t0, 0)) = R1(T, t0)y(t0, 0). (2.16)

Similarly, writing y along the characteristic X(s, 0, x0) for s ∈ [0, t0], and using that
x0 ≥ b, this leads to

y(t0, L) = y(t0, X(t0, 0, x0)) = R2(t0, 0)y
0(x0),

where R2 is the resolvent associated with t ∈ [0, t0] 7→ A(t,X(t, 0, x0)). Since
y(t0, 0) = y(t0, L), the previous equality can be combined with (2.16) and (2.15) to
show that y(T,X(T, t0, 0)) 6= 0 and therefore System (2.1) is not exactly controllable
at time T .

We turn out to the necessity of (H2). Let z0, z1 ∈ R
n be fixed. We then define

y0 ≡ z0 and y1 ≡ z1, which belong to C1
L([0, L])

n. Thus, by assumption, there exists
Θ ∈ C1

L([0, T ] × [0, L])m that satisfies (2.2) such that the corresponding solution
y ∈ C1([0, T ]× [0, L])n to (2.1) satisfies

y(T, x) = z1, ∀x ∈ [0, L]. (2.17)

For every (t, x) ∈ [0, T ]× [0, L), we set

ψ(t)
def
= Θ

(

t,X(t, x)
)

. (2.18)

Since Θ ∈ C1
L([0, T ] × [0, L])m, we have ψ ∈ C1([0, T ])m, while (2.5) follows from

(2.2). Let z ∈ C1([0, T ])n be the solution to (2.4) associated with ψ defined by (2.18).
Let x ∈ [0, L) being fixed. Writing y along the extended characteristic X(·, x), we see
that t ∈ [0, T ] 7→ y(t,X(t, x)) solves (2.4) with z0 = y0(x) (at least in the weak sense
W 1,∞(0, T )n). By uniqueness of the solution to (2.4) we then have

z(t) = y
(

t,X(t, x)
)

, ∀t ∈ [0, T ].

In particular, z(T ) = z1 thanks to (2.17).

2.2. Semilinear systems. Let us consider the following semilinear first order
hyperbolic system with periodic boundary conditions:



















yt + yx = f(y,Θ), (t, x) ∈ [0, T ]× [0, L],

y(t, L) = y(t, 0), t ∈ [0, T ],

y(0, x) = y0(x), x ∈ [0, L].

(2.19)

We assume that the nonlinearity f : Rn × R
m −→ R

n is of class C2.
Definition 2.7. We say that (ỹ, Θ̃) ∈ C1

L([0, T ]× [0, L])n × C1
L([0, T ]× [0, L])m

is a trajectory of System (2.19) if it is a classical solution to (2.19) for some y0 ∈
C1

L([0, L])
n and Θ satisfies (2.2).

Definition 2.8. Let (ỹ, Θ̃) be trajectory of System (2.19). We say that System
(2.19) is locally exactly controllable around the trajectory (ỹ, Θ̃) at time T > 0 if, for
every ε > 0, there exists µ > 0 such that, for every y0, y1 ∈ C1

L([0, T ]× [0, L])n with

‖y0 − ỹ(0, ·)‖C1 ≤ µ, ‖y1 − ỹ(T, ·)‖C1 ≤ µ,
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there exists a control Θ ∈ C1
L([0, T ] × [0, L])m that satisfies (2.2) and a classical

solution y ∈ C1
L([0, T ]× [0, L])n to (2.19) such that

y(T, x) = y1(x), ∀x ∈ [0, L], (2.20a)

‖y − ỹ‖C1 ≤ ε, (2.20b)

‖Θ− Θ̃‖C1 ≤ ε. (2.20c)

Then, we have the following result. The proof is classical and use the Banach
fixed point theorem (see for instance [Cor07, Section 4.1]).

Theorem 2.9. Let (ỹ, Θ̃) be a trajectory of System (2.19). Assume that the
linearization of system (2.19) around the trajectory (ỹ, Θ̃), that is the linear system



















yt + yx =
∂f

∂y

(

ỹ(t, x), Θ̃(t, x)
)

y +
∂f

∂Θ

(

ỹ(t, x), Θ̃(t, x)
)

Θ, (t, x) ∈ [0, T ]× [0, L],

y(t, L) = y(t, 0), t ∈ [0, T ],

y(0, x) = y0(x), x ∈ [0, L],

is exactly controllable at time T > 0. Then, System (2.19) is locally exactly control-
lable around the trajectory (ỹ, Θ̃) at time T .

3. Quasilinear systems with different velocities. In what follows, we denote
by e1 = (1, 0), e2 = (0, 1), the canonical basis of R2.

We are now interested in the controllability of the following 2 × 2 quasilinear
system by one control force



















yt + Λ(y)yx + f(y) = e1Θ, (t, x) ∈ [0, T ]× [0, L],

y(t, L) = y(t, 0), t ∈ [0, T ],

y(0, x) = y0(x), x ∈ [0, L],

(3.1)

where

Λ(y) = diag(λ1(y), λ2(y)), ∀y ∈ R
2,

with

λ1(y) 6= 0, λ2(y) 6= 0, ∀y ∈ R
2,

and

f(y) =





f1(y)

f2(y)



 , ∀y ∈ R
2,

with

f1(0) = f2(0) = 0,

so that (0, 0) is a trajectory of system (3.1). We assume that λ1, λ2, f1, f2 ∈ C∞(R2).
In particular, System (3.1) is hyperbolic (see for instance [LY85, Pages 1-2]).
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Then, for every T > 0, there exist C > 0 and µ > 0 such that, for every Θ ∈
Ck

L([0, T ]× [0, L]) and every y0 ∈ Ck
L([0, T ]× [0, L])2 (k ∈ N

∗) such that

‖Θ‖Ck ≤ µ, ‖y0‖Ck ≤ µ,

there exists a unique semi-global classical solution y ∈ Ck
L([0, T ] × [0, L])2 to (3.1),

and this solution satisfies the estimate

‖y‖Ck ≤ C
(

‖y0‖Ck + ‖Θ‖Ck

)

.

We refer to [LJ01, Wan06] for a proof of this well-posedness result.
The technical point in the method we will develop lies in the algebraic solvability.

Since the eigenvalues of Λ(y) might be distinct, the more the number n of equations
of the system is large, the more it becomes difficult to solve algebraically the system.
That is why we restrict ourselves to the case of n = 2 equations. We also see during
this step that we have to take the derivatives of the coefficients of the equations,
which shows the loss of derivatives. When n > 2, the algebraic solvability becomes
a difficult task that involves the same arguments as in [CL14] to be solved. This is
not the purpose of the present paper but this could be the investigation of further
developments. On the other hand, once the algebraic solvability is established (under
some conditions), the rest of the proof of Theorem 3.1 below remains unchanged
whether n = 2, 3, . . .

Our main result is the following local exact controllability result around the tra-
jectory (0, 0).

Theorem 3.1. Assume that

T > (L− (b− a))max

{

1

|λ1(0)|
,

1

|λ2(0)|

}

, (3.2)

and

∂f2
∂y1

(0) 6= 0. (3.3)

Then, for every ε > 0, there exists µ > 0, such that, for every y0, y1 ∈ C6
L([0, L])

2

that satisfy

‖y0‖C6 ≤ µ, ‖y1‖C6 ≤ µ,

there exists a control Θ ∈ C1
L([0, T ]× [0, L]) that satisfy

suppΘ ⊂ [δ, T − δ]× [a+ δ, b− δ], (3.4a)

‖Θ‖C1 ≤ ε, (3.4b)

for every 0 < δ < min(T, (b− a)/2)/4 such that

T − 4δ > (L− (b− a− 8δ))max

{

1

|λ1(0)|
,

1

|λ2(0)|

}

, (3.5)

and such that the corresponding solution y ∈ C1
L([0, T ]× [0, L])n to (3.1) satisfy

y(T, x) = y1(x), ∀x ∈ [0, L], (3.6a)

‖y‖C1 ≤ ε. (3.6b)
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Remark 5. The regularity required on the initial and final data (at least C6) is
probably not optimal if we seek a control which is C1. Note however that one cannot
expect a C1-regularity for the control if these data are only C1 (where the problem is
well-posed though), even in the linear case. Indeed, consider the linear system































ut + ux = Θ, (t, x) ∈ [0, T ]× [0, L],

vt + λvx + u = 0, (t, x) ∈ [0, T ]× [0, L],

u(t, L) = u(t, 0), v(t, L) = v(t, 0), t ∈ [0, T ],

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ [0, L],

with λ > 1. Then, for L−(b−a) < T < L, writing the system along the characteristics
(t, t+ λx), we obtain the relation

∫ T

0

Θ(t, t+ λx) dt = u1(T + λx)− u0(λx)

− (1 − λ)λ
(

(v1)′(T + λx)− (v0)′(λx)
)

, ∀x ∈ [0, (L− T )/λ].

This shows that, in order to obtain a C1-regularity for Θ, we have to at least increase
the regularities of v0 and v1 to C2.

3.1. Controllability by two controls. The starting point of the proof of The-
orem 3.1 is to control System (3.1) with 2 internal controls. We are going to use the
results of [LR03] on the controllability of n × n quasilinear systems by n boundary
controls and an extension method to obtain the following result. Observe the different
levels of regularity between the state and the controls.

Proposition 3.2. Let us consider the system



















yt + Λ(y)yx + f(y) = e1Θ1 + e2Θ2, (t, x) ∈ [0, T ]× [0, L],

y(t, L) = y(t, 0), t ∈ [0, T ],

y(0, x) = y0(x), x ∈ [0, L].

(3.7)

Assume that (3.2) holds and let (3.5) be satisfied for δ/2. Then, for every ε > 0, there
exists µ > 0, such that, for every y0, y1 ∈ Ck

L([0, L])
2 (k ≥ 2) that satisfy

‖y0‖Ck ≤ µ, ‖y1‖Ck ≤ µ,

there exist controls Θ1,Θ2 ∈ Ck−1
L ([0, T ]× [0, L]) that satisfy (3.4a) and

‖Θ1‖Ck−1 + ‖Θ2‖Ck−1 ≤ ε,

and such that the corresponding solution y ∈ Ck
L([0, T ]× [0, L])n to (3.7) satisfy

y(T, x) = y1(x), ∀x ∈ [0, L], (3.8a)

‖y‖Ck ≤ ε. (3.8b)
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Proof. We treat only the case where λ1(y) < 0 < λ2(y) for every y ∈ R
2, the other

cases being similar. Let us then consider the following boundary control problem on
the domain [0, T ]× [b− δ, a+ δ + L]:































y∗t + Λ(y∗)y∗x + f(y∗) = 0, (t, x) ∈ [0, T ]× [b− δ, a+ δ + L],

y∗1(t, a+ δ + L) = H1(t), y∗2(t, b− δ) = H2(t), t ∈ [0, T ],

y∗(0, x) = y0(x), x ∈ [b− δ, a+ δ + L],

y∗(T, x) = y1(x), x ∈ [b− δ, a+ δ + L],

(3.9)

where H1, H2 ∈ Ck([0, T ]) are boundary controls, and where we have extended by
periodicity y0 and y1 to

y0(x)
def
=







y0(x) if x ∈ [b− δ, L],

y0(x− L) if x ∈ [L, a+ δ + L],

y1(x)
def
=







y1(x) if x ∈ [b− δ, L],

y1(x− L) if x ∈ [L, a+ δ + L].

Note that, since y0, y1 ∈ Ck
L([0, L])

n, we have y0, y1 ∈ Ck([b − δ, a+ δ + L])2. Since,
by assumption, T satisfies

T > (L− (b− a− 2δ))max

{

1

|λ1(0)|
,

1

|λ2(0)|

}

,

by [LR03, Theorem 1.2], for every µ > 0 small enough, for every y0, y1 such that

‖y0‖Ck ≤ µ, ‖y1‖Ck ≤ µ,

there exists y∗ ∈ Ck([0, T ]× [b− δ, a+ δ+L])2 that satisfies (3.9) with ‖y∗‖Ck small.
Let y∗∗ be any Ck([0, T ]× [0, L])2 function such that ‖y∗∗‖Ck ≤ ‖y∗‖Ck and

y∗∗(t, x) =







y∗(t, x+ L) if x ∈ [0, a+ δ],

y∗(t, x) if x ∈ [b− δ, L].

On the other hand, let us introduce y ∈ Ck([0, T ]× [0, L])2 defined by

y(t, x)
def
= η1(t)u(t, x) + η2(t)v(t, x)

where η1, η2 ∈ C∞([0, T ]) are time cut-off functions with 0 ≤ ηi ≤ 1 and

η1(0) = 1, η1(T ) = 0, η
(i)
1 (0) = η

(i)
1 (T ) = 0, ∀i ∈ J1, k + 1K, (3.10a)

η2(0) = 0, η2(T ) = 1, η
(i)
2 (0) = η

(i)
2 (T ) = 0, ∀i ∈ J1, k + 1K, (3.10b)

and u, v ∈ Ck([0, T ] × [0, L])2 are the forward and backward solutions to the free
evolving systems



















ut + Λ(u)ux + f(u) = 0, (t, x) ∈ [0, T ]× [0, L],

u(t, L) = u(t, 0), t ∈ [0, T ],

u(0, x) = y0(x), x ∈ [0, L],
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and


















vt + Λ(v)vx + f(v) = 0, (t, x) ∈ [0, T ]× [0, L],

v(t, L) = v(t, 0), t ∈ [0, T ],

v(T, x) = y1(x), x ∈ [0, L],

Let now ξ ∈ C∞([0, L]) be a space cut-off function with 0 ≤ ξ ≤ 1 and

ξ(x) =







1 if x ∈ [0, a] ∪ [b, L],

0 if x ∈ [a+ δ, b− δ].

Let y and Θ be defined by

y(t, x)
def
= ξ(x)y∗∗(t, x) + (1− ξ(x))y(t, x),

and

Θ
def
= yt + Λ(y)yx + f(y). (3.11)

By construction, y ∈ Ck([0, T ] × [0, L])2 and Θ ∈ Ck−1([0, T ] × [0, L])2. Still by
construction, (y,Θ) solves (3.7), y satisfies (3.8a) and Θ satisfies

suppΘ ⊂ [0, T ]× [a, b], (3.12a)

∂itΘ(0, ·) = ∂itΘ(T, ·) = 0, ∀i ∈ J0, k + 1K. (3.12b)

The smallnesses of y and Θ follow from the smallnesses of y∗ and y.
To obtain (3.4a) we let system (3.7) evolves freely (without control), forward on

the domain [0, δ]× [0, L] and backward on the domain [T − δ, T ]× [0, L], and denote
by yδ(x) (resp. yT−δ(x)) its value at time t = δ (resp. t = T − δ). By the previous
step, replacing [a, b] by [a+ δ, b− δ], there exists a control Θ with (3.4a) and

∂itΘ(δ, ·) = ∂itΘ(T − δ, ·) = 0, ∀i ∈ J0, k + 1K,

that steers the solution to System (3.7), posed on the time reduced domain [δ, T −δ]×
[0, L], from yδ to yT−δ. Thus, we can extend Θ by zero outside (δ, T−δ)×(a+δ, b−δ).
Note that the smallnesses are preserved.

3.2. Algebraic solvability. In this section we recall the notion of algebraic
solvability and the fixed point theorem of M. Gromov. We refer to [Gro86, Section
2.3] for more details.

In what follows Q is a smooth bounded open subset of R2 and D : Cr(Q)p −→
C0(Q)q (p, q ∈ N

∗) is a nonlinear C∞-differential operator of order r ∈ N
∗. We

recall that this means that there exists a C∞-function F : R
nr,p −→ R

q, where
nr,p = 2 + p card

{

(α1, α2) ∈ N
2
∣

∣α1 + α2 ≤ r
}

, such that D writes

D(z) = F (Jrz), ∀z ∈ Cr(Q)p,

where Jrz denotes the r-jet of z, that is the function defined for every (t, x) ∈ Q by

Jrz(t, x)
def
=

(

(t, x), z(t, x), . . . ,
∂|α|z

∂tα1∂xα2
(t, x), . . . ,

∂rz

∂tα1∂xα2
(t, x)

)

∈ R
nr,p .
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Clearly, the map D is of class C∞ and we denote by Lz : Cr(Q)p −→ C0(Q)q its
differential at z ∈ Cr(Q)p.

Definition 3.3. We say that A is a differential relation of order d (d ∈ N) if
there exists R ⊂ R

nd,p such that

A
def
=
{

z ∈ Cd(Q)p
∣

∣Jdz ∈ R, ∀(t, x) ∈ Q
}

.

It is said to be open if it is an open subset of Cd(Q)p.
Definition 3.4. Let A ⊂ Cd(Q)p be a differential relation of order d. We say

that the operator D admits an infinitesimal inversion of order s ∈ N over A if there
exists a family of linear differential operators of order s, Mz : Cs(Q)q −→ C0(Q)p,
z ∈ A, such that:

1. For every g ∈ Cs(Q)q being fixed, z 7→ Mz(g) is a differential operator of
order d (possibly nonlinear) and it is a C∞-differential operator in (z, g).

2. Algebraic solvability: for every z ∈ Ad+s def
= A ∩Cd+s(Q)p, we have

Lz ◦ Mz = IdCr+s(Q)q ,

The proof of Theorem 3.1 is based on the following result [Gro86, Section 2.3.2,
Main Theorem]:

Theorem 3.5. Let A ⊂ Cd(Q)p be a nonempty open differential relation of order
d. Assume that D admits an infinitesimal inversion of order s over A. Let

σ0 > max(d, 2r + s) (3.13)

ν ∈ (0,+∞) (3.14)

Then, there exist a family of sets Bz ⊂ Cσ0+s(Q)q and a family of operators D−1
z :

Bz −→ A, where z ∈ Aσ0+r+s, such that the following properties hold.
1. Neighborhood property: for every z ∈ Aσ0+r+s, we have 0 ∈ Bz and the set B

defined by

B =
⋃

z∈Aσ0+r+s

{z} × Bz,

is an open subset of Cσ0+r+s(Q)p × Cσ0+s(Q)q.
2. Inversion property:

D
(

D
−1
z (g)

)

= D(z) + g, ∀ (z, g) ∈ B. (3.15)

3. Normalization property:

D
−1
z (0) = z, ∀z ∈ Aσ0+r+s.

4. Locality: for every (t, x) ∈ Q and for every (z1, g1), (z2, g2) ∈ B, if we have

(z1, g1) (t̃, x̃) = (z2, g2) (t̃, x̃), ∀(t̃, x̃) ∈ B((t, x), ν) ∩Q,

then,

D
−1
z1 (g1)(t, x) = D

−1
z2 (g2)(t, x).
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3.3. Proof of Theorem 3.1. All along this section, δ > 0 is a fixed real number
such that (3.5) holds. Let us denote

Qδ
def
= (δ, T − δ)× (a+ δ, b− δ),

and let Q be an open set of R× R of class C∞ such that (see Fig. 3.1 below)

Qδ ⊂ Q, Q ⊂ (0, T )× (a, b).

•y = y∗

Q2δ

Q3δ/2

Qδ

Q

Fig. 3.1: Matching y to y∗.

Let us introduce the operator D defined by

D : C1(Q)3 −→ C0(Q)2

(y,Θ) 7−→ yt + Λ(y)yx + f(y)− e1Θ.

This is a nonlinear C∞-differential operator of order 1. Note that (y,Θ) solves the
equation of (3.1) if, and only if,

D(y,Θ) = 0.

Let L(ỹ,Θ̃) be the differential of the operator D at (ỹ, Θ̃) ∈ C1(Q)3:

L(ỹ,Θ̃) : C1(Q)3 −→ C0(Q)2

(y,Θ) 7−→ yt + Λ(ỹ)yx + (Λ′(ỹ)y) ỹx + f ′(ỹ)y − e1Θ.
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This is a nonlinear C∞-differential operator of order 1 in
(

ỹ, Θ̃
)

.

Let us denote

y =





u

v



 , ỹ =





ũ

ṽ



 , (3.16)

(Λ′(ỹ)y) ỹx + f ′(ỹ)y =





a11 a12

a21 a22









u

v



 . (3.17)

We have

a11 =
∂λ1
∂u

(ỹ)
∂ũ

∂x
+
∂f1
∂u

(ỹ), a21 =
∂λ2
∂u

(ỹ)
∂ũ

∂x
+
∂f2
∂u

(ỹ). (3.18)

Proposition 3.6. Let A be defined by

A
def
=
{(

ỹ, Θ̃
)

∈ C2(Q)3
∣

∣

∣ a21(t, x) 6= 0, ∀(t, x) ∈ Q
}

, (3.19)

(clearly, A is an open differential relation of order 2). Then, the operator D admits
an infinitesimal inversion of order 1 over A.

Proof. Let
(

ỹ, Θ̃
)

∈ A. Let (g1, g2) ∈ C1(Q)2. We have to solve the equation

L(ỹ,Θ̃)(y,Θ) = (g1, g2) in such a way that (y,Θ) is a linear combination of derivatives

of g1 and g2. The equation L(ỹ,Θ̃)(y,Θ) = (g1, g2) rewrites as







ut + λ1(ỹ)ux + a11u+ a12v −Θ = g1, in Q,

vt + λ2(ỹ)vx + a21u+ a22v = g2, in Q.

By definition of A, we have

a21(t, x) 6= 0, ∀(t, x) ∈ Q. (3.20)

In this case, the algebraic solvability is not very difficult: we first put

v = 0, (3.21)

so that the second equation simply becomes a21u = g2. As a result, using (3.20) we
can take

u =
1

a21
g2. (3.22)

Finally, it remains to set

Θ = −g1 +
1

a21
((g2)t + λ1(ỹ)(g2)x) +

((

1

a21

)

t

+ λ1(ỹ)

(

1

a21

)

x

+
a11
a21

)

g2. (3.23)

(Note that (3.23), together with (3.18), shows why C2(Q)3 cannot be replaced by
C1(Q)3 in Proposition 3.6.)
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Then, the following family of differential operators satisfies all the required prop-
erties (s = 1) to be an infinitesimal inversion of D over A:

M(ỹ,Θ̃) : C1(Q)2 −→ C0(Q)3

(g1, g2) 7−→ ((u, v),Θ),

where u, v and Θ are respectively defined by (3.22), (3.21) and (3.23).
Proof of Theorem 3.1. Let ε > 0 be fixed. Let A be the open differential relation

of order 2 defined by (3.19) and set

Aε
def
= A ∩

{

(ỹ, Θ̃) ∈ C1(Q)3
∣

∣

∣ ‖ỹ‖C1 < ε, ‖Θ̃‖C1 < ε
}

. (3.24)

Note that Aε is an open differential relation of order 2 which is nonempty since 0 ∈ Aε

by assumption (3.3). We choose

ν
def
=

δ

2
, (3.25)

d = 2, r = 1, s = 1, σ0 = 4. (3.26)

Note that, from (3.25), one gets (3.14) and, from (3.26), one gets (3.13).
Thanks to Proposition 3.6, D admits an infinitesimal inversion of order 1 over Aε.

Thus, we can apply Theorem 3.5 which provides a family of sets B(ỹ,Θ̃) ⊂ C5(Q)2 and

a family of operators D
−1

(ỹ,Θ̃)
: B(ỹ,Θ̃) −→ Aε, where

(

ỹ, Θ̃
)

∈ A6
ε

def
= Aε ∩ C

6(Q)3,

such that all the properties listed in this theorem hold.
Since 0 ∈ Aε, B also contains 0. Since B is open, there exists ρ > 0 such that

{((

ỹ, Θ̃
)

, g
)

∈ C6(Q)3 × C5(Q)2
∣

∣

∣ ‖ỹ‖C6 ≤ ρ, ‖Θ̃‖C6 ≤ ρ, ‖g‖C5 ≤ ρ
}

⊂ B.

(3.27)
On the other hand, by Proposition 3.2, there exists µ > 0 such that, for every y0, y1 ∈
C6

L([0, L])
2 that satisfy

‖y0‖C6 ≤ µ, ‖y1‖C6 ≤ µ,

there exist Θ∗
1,Θ

∗
2 ∈ C5([0, T ]× [0, L]) and y∗ ∈ C6([0, T ]× [0, L])2 such that

D(y∗, 0) = −e1Θ
∗
1 − e2Θ

∗
2,

y∗(T, x) = y1(x), ∀x ∈ [0, L],

suppΘ∗
1 ⊂ Q2δ, suppΘ∗

2 ⊂ Q2δ,

and

‖y∗‖C6 < ε′, ‖Θ∗
1‖C5 + ‖Θ∗

2‖C5 < ε′,

where ε′ = min(ε, ρ). In particular,

(y∗, 0,−e1Θ
∗
1 − e2Θ

∗
2) ∈ B,
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and we can set

(y,Θ)
def
= D

−1
(y∗,0) (−e1Θ

∗
1 − e2Θ

∗
2) .

By definition (y,Θ) ∈ C1(Q)3 and satisfies

D(y,Θ) = D(y∗, 0)− e1Θ
∗
1 − e2Θ

∗
2 = 0.

Let us now prove that we can match y to y∗ and Θ = 0 in the open neighborhood
Qδ\Q3δ/2 (see Fig. 3.1 below). Let then (t, x) ∈ Qδ\Q3δ/2 be fixed and let us show
that

y(t, x) = y∗(t, x), Θ(t, x) = 0. (3.28)

Since Θ∗
1 and Θ∗

2 are supported in Q2δ, we have

(y∗, 0,−e1Θ
∗
1 − e2Θ

∗
2) (t̃, x̃) = (y∗, 0, 0) (t̃, x̃), ∀(t̃, x̃) ∈ B((t, x), δ/2),

and (y∗, 0,−e1Θ
∗
1 − e2Θ

∗
2) , (y

∗, 0, 0) ∈ B. Thus, by (3.25), the locality and normal-
ization properties, we obtain (3.28). To conclude the proof, it remains to set

y(t, x)
def
=







y(t, x) if (t, x) ∈ Qδ,

y∗(t, x) if (t, x) ∈ [0, T ]× [0, L]\Qδ,

and

Θ(t, x)
def
=







Θ(t, x) if (t, x) ∈ Qδ,

0 if (t, x) ∈ [0, T ]× [0, L]\Qδ.

Then, (y,Θ) solves (3.1). Since y = y∗ near the boundary of [0, T ]×[0, L] it satisfies the
same periodic boundary conditions y(·, L) = y(·, 0), the same initial condition y(0, ·) =
y0 and the same final condition y(T, ·) = y1. Finally, note that the smallnesses of y
and Θ follow from the smallness of y∗ and the definition (3.24) of Aε.

Appendix. Proof of Lemma 2.6.

Let us compute τk(x, b) − τk(x, a) for every k ∈ Jkmin(x, b), kmax(x, a)K and for
every x ∈ [0, L):

τk(x, b)− τk(x, a) =






























b− x+ kL if a− x+ kL ∈ (−∞, 0) and b− x+ kL ∈ [0, T ],

T if a− x+ kL ∈ (−∞, 0) and b− x+ kL ∈ (T,+∞),

b− a if a− x+ kL ∈ [0, T ] and b− x+ kL ∈ [0, T ],

T − a+ x− kL if a− x+ kL ∈ [0, T ] and b− x+ kL ∈ (T,+∞).

Thus, we see that the main problem that we have to handle is the fact that the length
τ0(x, b) − τ0(x, a) (resp. τ⌈ T−a

L
⌉(x, b) − τ⌈ T−a

L
⌉(x, a)) goes to zero as x goes to b−

(resp. p(a)+). We are going to approximate uniformly the Gramian associated with
(2.4)-(2.5) by modifying it a little bit near the points b and p(a) in order to avoid the
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aforementioned problems. This has to be done in such a way that the invertibility is
preserved. Let

ℓ0 = min

(

T − a, b− a, L− p(a), b− L+ ⌈
T − a

L
⌉L

)

/2,

(note that ℓ0 is positive thanks to (H1)). Then, for every x ∈ [0, L) and 0 ≤ ℓ < ℓ0
we introduce the approximated Gramian

Q(x, ℓ) = Q0(x, ℓ) +

⌈ T−a
L

⌉−1
∑

k=1

Qk(x, ℓ) +Q⌈T−a
L

⌉(x, ℓ),

where, for every k ∈ J1, ⌈T−a
L ⌉ − 1K,

Qk(x, ℓ) =

∫ τk(x,b)−ℓ

τk(x,a)+ℓ

G(s, x) ds,

with G(s, x) = Rx (T, s)Bx(s)Bx(s)
∗Rx (T, s)

∗
, and

Q0(x, ℓ) =











∫ τ0(x,b)−ℓ

τ0(x,a)+ℓ

G(s, x) ds if x ∈ [0, b− 2ℓ),

0 if x ∈ [b− 2ℓ, L),

and where

Q⌈T−a
L

⌉(x, ℓ) =















0 if x ∈ [0, p(a) + 2ℓ],
∫ τ

⌈T−a
L

⌉
(x,b)−ℓ

τ
⌈T−a

L
⌉
(x,a)+ℓ

G(s, x) ds if x ∈ (p(a) + 2ℓ, L).

Step 1: Let us prove in a first time that there exists r > 0 such that, for every
x ∈ [0, L),

B (Q(x, 0), r) ⊂ GLn(R). (A.1)

where GLn(R) denotes again the set of invertible matrices of size n and B(M,ρ) the
open ball of center M ∈ R

n×n and radius ρ > 0. Since limx→L
x<L

Q(x, 0) = Q(0, 0),

we can extend Q(·, 0) by continuity to [0, L] (still denoted by Q(·, 0)) with Q(L, 0) =
Q(0, 0). By assumption (H2), for every x ∈ [0, L], Q(x, 0) ∈ GLn(R). Since GLn(R)
is open, there exists r(x) > 0 such that

B (Q(x, 0), r(x)) ⊂ GLn(R). (A.2)

On the other hand,

Q([0, L], 0) ⊂
⋃

x∈[0,L]

B

(

Q(x, 0),
r(x)

2

)

,

and Q([0, L], 0) is compact (by continuity of Q(·, 0) on all [0, L]), so that there exists
x1, . . . , xq ∈ [0, L] such that

Q([0, L], 0) ⊂
⋃

x∈{x1,...,xq}

B

(

Q(x, 0),
r(x)

2

)

.
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We define

r = min

{

r(x1)

2
, . . . ,

r(xq)

2

}

.

Thus, for every x ∈ [0, L], for every M ∈ B (Q(x, 0), r), there exists xi ∈ {x1, . . . , xq},
such that

‖M −Q(xi, 0)‖ ≤ ‖M −Q(x, 0)‖+ ‖Q(x, 0)−Q(xi, 0)‖ < r +
r(xi)

2
≤ r(xi),

that is M ∈ B(Q(xi, 0), r(xi)) and shows that M is invertible by (A.2).
Step 2: By construction we have

sup
x∈[0,L)

‖Q(x, ℓ)−Q(x, 0)‖ −−−→
ℓ→0

0.

Thus, there exists δ > 0 small enough such that, for every x ∈ [0, L), we have

Q(x, 2δ) ∈ B (Q(x, 0), r) ,

which shows that Q(x, 2δ) is invertible by (A.1).
Step 3: Let us now define the cut-off function η (see Fig. 2.3). Let us introduce

T0(δ)
def
=

{(t, x) ∈ (0, T )× (0, L) | x ∈ (0, b− 2δ), t ∈ (τ0(x, a) + δ, τ0(x, b)− δ)} ,

T⌈ T−a
L

⌉(δ)
def
=
{

(t, x) ∈ (0, T )× (0, L) ,
∣

∣

∣

x ∈ (p(a) + 2δ, L), t ∈
(

τ⌈ T−a
L

⌉(x, a) + δ, τ⌈T−a
L

⌉(x, b)− δ
)}

,

and, for k ∈ J1, ⌈T−a
L ⌉ − 1K,

Tk(δ)
def
= {(t, x) ∈ (0, T )× (0, L) | t ∈ (τk(x, a) + δ, τk(x, b)− δ)} .

Let ξ ∈ C1([0, T ]× [0, L]) be a cut-off function with 0 ≤ ξ ≤ 1 and such that (see Fig.
2.2 to help)

ξ ≡ 1 in

⌈ T−a
L

⌉
⋃

k=0

Tk(2δ), (A.3a)

ξ ≡ 1 in

⌈T−a
L

⌉−1
⋃

k=0

{(t, 0) | t ∈ (τk(0, a) + 2δ, τk(0, b)− 2δ)} , (A.3b)

ξ ≡ 1 in

⌈T−a
L

⌉
⋃

k=1

{(t, L) | t ∈ (τk−1(0, a) + 2δ, τk−1(0, b)− 2δ)} , (A.3c)

ξ ≡ 0 in [0, T ]× [0, L]\





⌈T−a
L

⌉
⋃

k=0

Tk(δ)



 . (A.3d)
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For every x ∈ [0, L], let us define

Qx =

∫ T

0

G(s, x)ξ(s, x) ds.

Note that QL = Q0. Let us show that Qx is invertible for every x ∈ [0, L]. First,
note that the controllability Gramian Qx is a nonnegative symmetric matrix. Thus,
it is invertible if, and only, if it is positive definite. Let v ∈ R

n. Using ξ ≥ 0 and
(A.3a)-(A.3d), we have

v ·Qxv =

∫ T

0

‖B(s)∗R(T, s)∗v‖2ξ(s, x) ds

=

⌈T−a
L

⌉
∑

k=0

∫

{t∈[0,T ] | (t,x)∈Tk(δ)}
‖B(s)∗R(T, s)∗v‖2ξ(s, x) ds

≥

⌈T−a
L

⌉
∑

k=0

∫

{t∈[0,T ] | (t,x)∈Tk(2δ)}

‖B(s)∗R(T, s)∗v‖2ξ(s, x) ds = v ·Q(x, 2δ)v.

As a result, the positive definiteness of Qx follows from the one of Q(x, 2δ).
To conclude, it remains to set, for every (t, x) ∈ [0, T ]× [0, L],

η(t, x)
def
=



















ξ(t,X
−1

(t, x)) if (t, x) ∈ T ′,

ξ(t, 0) if x = X(t, 0),

0 if (t, x) ∈ ∂ ([0, T ]× [0, L]) .

Thanks to (A.3d), we have η ∈ C1([0, T ]× [0, L]) and (2.11). Moreover,

η
(

t,X(t, x)
)

= ξ(t, x), ∀(t, x) ∈ [0, T ]× [0, L].
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