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Abstract. This paper studies a robust Markowitz mean-variance model where an intractable claim is involved
in the terminal wealth. The term “intractable claim” refers to claims (rewards or losses) that are
completely irrelevant to the underlying market. The payoffs of such claims cannot be predicted or
hedged based on the underlying financial market even if the information of the financial market
is increasingly available to the investor over time. The target of the investor is to minimize the
variance in the worst scenario over all the possible realizations of the underlying intractable claim.
Because of the time-inconsistent nature of the problem, both the standard penalization approach
and the duality method used to tackle robust stochastic control problems fail in solving our problem.
Instead, the quantile formulation approach is adopted to tackle the problem and an explicit closed-
form solution is obtained. The properties of the mean-variance frontier are also discussed.
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1. Introduction. Since Markowitz [31, 32] published his seminal work on mean-variance
portfolio selection in the middle of the last century, the mean-variance portfolio selection
framework has been one of the most predominant investment decision rules in financial port-
folio selection theory. This framework is concerned with the allocation of wealth among a
variety of financial securities so as to achieve a trade-off between the return and the risk at
the end of the investment horizon. The return is measured by the expected terminal wealth,
while the risk is measured by the variance of the terminal wealth.

Abundant research has been conducted in studying the dynamic mean-variance portfolio
problem in both discrete- and continuous-time settings. Models with constraints on wealth
process, investment strategies, and market parameters have been addressed. Recent contri-
butions include Li and Ng [26], Zhou, and Li [42], Li, Zhou, and Lim [28], Goldfarb and
Iyengar [15], Lim [29], Zhu, Li, and Wang [43], Hu and Zhou [19], Bielecki et al. [2], Sun and
Wang [35], Labbé and Heunis [24], Xiong and Zhou [37], Dai, Xu, and Zhou [10], Cui, Li,
and Li [7] Czichowsky and Schweizer [9], Heunis [18], Cui et al. [6], and Li and Xu [27]. In
these works, the terminal wealth is defined as the investment payoff in the underlying financial
market at maturity.
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A MEAN-VARIANCE MODEL WITH AN INTRACTABLE CLAIM 125

At the same time, the mean-variance hedging problem has also been widely studied in
the literature. Recent contributions on this problem include, among many others, Duffie
and Richardson [13], Schweizer [34, 5], Lim [30], Czichowsky and Schweizer [8], and Jeanblanc
et al. [20]. The goal of the mean-variance hedging problem is to minimize the distance between
the investment payoff in the underlying financial market and a (stochastic or deterministic)
claim.

In the existing literature, the payoff of a claim is typically determined by the investor’s
investment strategy as well as the state of the underlying financial market, that is, a complete
specification of all relevant variables describing the financial market over the relevant time
horizon. Those claims (rewards or losses) determined by the state of the underlying financial
market are called market-state-tractable contingent claims or simply tractable claims in this
paper. We classify them into the following categories:

Known claims: those claims whose future cash flows are known at the initial time; U.S.
treasuries are examples of such claims.

Replicatable claims: those claims that can be perfectly replicated in the financial
market; the vanilla European options in the Black–Scholes market setting are
examples of such claims.

Other state tractable claims: all the other market-state-tractable contingent claims; for
instance, options that are not replicable in an incomplete market belong to this
category.

On the other hand, in financial and insurance industries, investors often face claims that
are irrelevant or less related to the underlying financial market but determined by another
(nontradable) “market” (for instance, traffic accidents or lottery market). We call such claims
market-state-intractable contingent claims or simply intractable claims. The intractable claims
can also be regarded as one kind of background risk ; see, e.g., [21, 25, 14] for the models with
background risk. It is natural to consider investment models with intractable claims. In this
paper, we consider a Markowitz mean-variance problem with an intractable claim. In our
model, the terminal wealth consists of an investment payoff X in the financial market and
an intractable claim θ. Because, except for some trivial cases, no information is available on
the relationship between X and θ, which is needed to determine the value of Var(X + θ), we
propose an alternative model leading to the following robust cost functional:

inf
Y ∈Rθ

Var(X + Y ),

where Rθ denotes the set of all the possible realizations of the underlying intractable claim θ.
Similar problems were considered in the literature; for example, Li [25] examined the demand
for a risky asset in the presence of two risks; a financial risk and a background risk, while
Jiang, Ma, and An [21] and Franke, Schlesinger, and Stapleton [14] examined the effects of
background risks on optimal portfolio choice.

Different forms of Rθ lead to different models. In this paper we only focus on one case: Rθ
is the set of all the random variables having the same distribution function as θ, corresponding
to the so-called full information intractable claim. Because this risk measure is a robust
version of variance, we call our model the robust Markowitz mean-variance portfolio selection
model.D
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126 DANLIN HOU AND ZUO QUAN XU

Robustness is concerned with the stability of the estimators of parameters in a given
model when model misspecification exists, in particular, in the presence of outlying observa-
tions. An abundance of research has been conducted on robust control problems. We refer to
Hansen and Sargent [16], Goldfarb and Iyengar [15], Bordigoni, Matoussi, and Schweizer [3],
An and Øksendal [1], Jin and Zhou [22], and the references therein on the robust stochastic
control problems. In these robust models, the investor’s knowledge about each possible sce-
nario increases with time so that the standard penalization approach and duality method can
be applied to solve them. In contrast, our knowledge about an intractable claim stays the
same before it is realized at the maturity, so the existing standard penalization and duality
approaches, both of which heavily depend on the updating of knowledge, cannot be directly
applied to tackle the problem. Our model is in this sense significantly different from the
classical robust ones and new methodologies are called for in order to analyze and solve it.

A key observation for our problem is that because the distribution or moments of the
payoff of the intractable claim are known, the optimal value

inf
Y ∈Rθ

Var(X + Y )

is expected to depend only on the distribution of controllable financial payoff X. This suggests
that we may turn the dynamic stochastic control problem into a static optimization problem
and may adopt the so-called quantile formulation to solve the latter. The main idea of the
quantile formulation is to change the decision variable from the terminal random payoff to
its quantile function, and then apply the convex optimization or the calculus of variations
techniques to solve the optimization problem. This approach has attracted great attention in
recent years, for it has been proved to be a powerful tool in solving quantitative behavioral
finance models under, for example, cumulative prospect theory and rank-dependent utility
theory. We refer to He and Zhou [17], Xia and Zhou [36], Xu [38, 39], and Xu and Zhou
[41] for the latest development of quantile formulation. In this paper, we adopt Xu’s [38]
relaxation method to solve the problem and obtain an explicit closed-form solution.

The rest of this paper is organized as follows. In section 2, we formulate a robust Markowitz
mean-variance portfolio selection model with an intractable claim. Then, the problem is turned
into a quantile formulation problem in section 3. In section 4, we adopt the relaxation method
to solve the quantile formulation problem. In section 5, we present our main result, which gives
the complete solution of the problem. Section 6 discusses the properties of the mean-variance
frontier. Section 7 concludes the paper. Some technical results and proofs are presented in
the appendix.

Notation. Throughout this paper, we make use of the following notation:
MT , the transpose of a matrix or vector M ;

‖M‖, =
√∑

i,jm
2
ij for a matrix or vector M = (mij);

Rm, m-dimensional real Euclidean space.
Throughout this paper, let T > 0 be a fixed (deterministic) terminal time. Let (Ω,F ,P,

F = (Ft : t ∈ [0, T ])) be a fixed filtered complete probability space on which is defined a
standard m-dimensional Brownian motion

W (t) ≡ (W 1(t),W 2(t), . . . ,Wm(t))T , t ∈ [0, T ],D
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A MEAN-VARIANCE MODEL WITH AN INTRACTABLE CLAIM 127

with W (0) = 0. It is also assumed that Ft is equal to σ{W (s) : 0 6 s 6 t} augmented by all
the null sets and FT ( F .

Remark 1.1. We remark that FT is a proper subset of F . An intractable claim considered
below should be F-measurable but may not be FT -measurable.

The set of all square integrable FT -measurable random variables is defined as

L2
FT :=

{
X

∣∣∣∣ X is an FT -measurable random variable, and E[X2] < +∞
}
,

and L2
F is defined in a similar way.

Given a Hilbert space H with the norm ‖ · ‖H, we define a Banach space

L2
F([0, T ];H) :=

{
f(·)

∣∣∣∣ f(·) is an F-adapted, H-valued progressively measurable

process on [0, T ] and ‖f(·)‖F < +∞

}
with the norm

‖f(·)‖F :=

(
E

[∫ T

0
‖f(t, ω)‖2H dt

]) 1
2

.

The quantile QX(·) of a real-valued F-measurable random variable X is defined as the
right-continuous inverse function of its cumulative distribution function FX(·), that is,

QX(t) = sup{s ∈ R : FX(s) 6 t} ∀ t ∈ (0, 1),

with convention sup ∅ = −∞. We call a function a quantile if it is the quantile of some
F-measurable random variable.

2. Problem formulation.

2.1. Market model. Following Karatzas and Shreve [23], we consider a continuous-time
arbitrage-free underlying financial market where m+1 assets are traded continuously on [0, T ].
One of the assets is the bond, whose price S0(·) evolves according to an ordinary differential
equation:  dS0(t) = r(t)S0(t) dt, t ∈ [0, T ],

S0(0) = s0 > 0,

where r(t) is the appreciation rate of the bond at time t. The remaining m assets are stocks,
and their prices are driven by a system of stochastic differential equations (SDEs): dSi(t) = Si(t){βi(t) dt+

∑m
j=1 σij(t) dW j(t)}, t ∈ [0, T ],

Si(0) = si > 0,

where βi(t) is the appreciation rate of the stock i and σij(t) is the volatility coefficient at time
t, i = 1, . . . ,m. Denote the appreciation rate vector process β(t) := (β1(t), . . . , βm(t))T and
the volatility matrix process σ(t) := (σij(t))m×m. We also define the excess return rate vector
process:

B(t) := β(t)− r(t)1, t ∈ [0, T ],D
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128 DANLIN HOU AND ZUO QUAN XU

where 1 = (1, 1, . . . , 1)T is an m-dimensional vector.
We impose the following basic assumptions on the market parameters in this paper:
• The processes of r(·), β(·), B(·), and σ(·) are all uniformly bounded F-progressively

measurable stochastic processes on [0, T ]; and
• The process σ(·) is nonsingular and the price of risk process defined by

θ(t) := σ(t)−1B(t), t ∈ [0, T ],

is uniformly bounded and not identically zero on [0, T ].
Under these assumptions, the market is complete.

2.2. Investment problem. Now consider an investor in the market and assume that her
transactions have no influence on the prices of the assets in the market. Suppose she has an
initial wealth x > 0 to invest in the underlying financial market over the time period [0, T ].
Denote by πi(t) the total market value of her wealth invested in stock i at time t, i = 1, . . . ,m.
We assume that short selling is allowed in market so that πi(t) can take negative values. We
also assume that the trading of shares takes place continuously in a self-financing fashion (i.e.,
there is no consumption or income) and the market is frictionless (i.e., the transactions do
not incur any fees or costs). We call any

π(·) := (π1(·), . . . , πm(·))T ∈ L2
F([0, T ];Rm)

an admissible portfolio. The investor’s total wealth at time t > 0 corresponding to a portfolio
π(·) is denoted by Xπ(t). Then the wealth process Xπ(·) evolves according to an SDE (see,
e.g., Karatzas and Shreve [23]):

(1)

{
dXπ(t) = [r(t)Xπ(t) + π(t)TB(t)] dt+ π(t)Tσ(t) dW (t), t ∈ [0, T ],

Xπ(0) = x.

For any admissible portfolio π(·), the above SDE admits a unique solution Xπ(·) ∈ L2
F([0, T ];

Rm). We call Xπ(·) an admissible wealth process and (Xπ(·), π(·)) an admissible pair. We
also assume that bankruptcy is allowed so that the wealth process may take negative values.
Note that the SDE (1) is linear in (Xπ(·), π(·)), so the set of all admissible pairs is convex.

Markowitz’s mean-variance portfolio selection refers to the problem of, given a favorable
targeted mean return $, finding an allowable investment policy π(·) (i.e., an admissible port-
folio), such that the expected investment payoff E[Xπ(T )] is $, while the risk measured by the
variance of the terminal wealth, Var(Xπ(T )) is minimized. Mathematically, it is formulated
as follows.

Definition 2.1. The classical continuous-time Markowitz mean-variance portfolio selection
problem, parameterized by $, is

inf
π(·)

Var(Xπ(T )),

subject to

{
E[Xπ(T )] = $,

(Xπ(·), π(·)) is an admissible pair.

(2)
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A MEAN-VARIANCE MODEL WITH AN INTRACTABLE CLAIM 129

For simplicity, we also call it the classical problem. We note here that any admissible
payoff Xπ(T ) must be FT -measurable.

The problem (2) can be solved by the martingale approach: first find the optimal solution
X∗ of a static optimization problem

inf
X

Var(X),(3)

subject to E[X] = $, X ∈ A,

where we denote by A the set of all the admissible payoffs,

A = {Xπ(T ) : (Xπ(·), π(·)) is an admissible pair},(4)

and then derive the optimal portfolio π(·) by replicating the optimal payoff Xπ(T ) = X∗.
The second step is accomplished by the theory of backward stochastic differential equation
(BSDE) developed by Peng [33]. Refer to Bielecki et al. [2] for more details of this martingale
approach.

In the classical Markowitz mean-variance portfolio selection model, only the investor’s
payoff in the underlying financial market is considered. In practice, however, as stated in the
introduction, investors often face claims that are irrelevant or less related to the underlying
financial market but depend on allother nonunderlying market. The payoffs of such claims
are not predictable, replicable, or tractable in the underlying financial market even if all the
information of the underlying financial market is available to the investor. On the other hand,
the distributions of the payoffs of such claims can be precisely determined and are indeed the
only thing available to the investor. We call such claims market-state-intractable-contingent
claims or simply intractable claims.

Intractable claims: those claims about which the only thing we know is their moments
and/or distributions.

They have full information if their distributions are known or partial information if not
distributions but only a few moments (such as mean and variance) are known. Lotteries
are good examples of intractable claims as nobody could predict their outcomes until they
are opened. The moments or distributions of the payoffs of intractable claims may be time-
dependent or time-independent. We call the former time-variant and the latter time-invariant
intractable claims. The total payments of car insurance contracts are time-variant, while the
payoffs of lotteries are typically time-invariant.

The aforementioned practical examples motivate us to consider a Markowitz mean-variance
problem with an intractable claim in the present paper. In our model, the terminal wealth
of the investor consists of two parts: an investment payoff Xπ(T ) in the underlying financial
market and an intractable claim θ (which could be regarded as a reward when its realiza-
tion is positive, a loss when negative). If we follow the classical Markowitz mean-variance
framework, at the outset it seems natural to minimize Var(Xπ(T ) + θ). However, it is im-
possible to evaluate this objective because, except for some trivial cases, no information is
available on the relationship between Xπ(T ) and θ, which is needed to determine the value of
Var(Xπ(T ) +θ). A natural alternative modeling approach is to apply the idea of robust deci-
sion making, namely, to minimize the variance in the worst scenario, leading to the followingD
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130 DANLIN HOU AND ZUO QUAN XU

objective functional:
sup
Y ∈Rθ

Var(Xπ(T ) + Y ),

where Rθ denotes the set of all the possible realizations of the underlying intractable claim θ.
In this paper, Rθ is chosen as the set of all the random variables having the same distribution
function as θ, i.e.,

Rθ = {Y | Y is an F-measurable random variable, Y ∼ θ},

corresponding to a full information intractable claim. This new risk measure reflects the risk-
averse attitude of the investor. Because it is a robust version of variance, we call our model
the robust Markowitz mean-variance portfolio selection model. It should be noticed that any
possible realization of the underlying intractable claim Y ∈ Rθ must be F-measurable but
may not be FT -measurable.

If the claim θ is deterministic, then Rθ = {θ}, and consequently,

sup
Y ∈Rθ

Var(Xπ(T ) + Y ) = Var(Xπ(T )).

The new risk measure hence reduces to the standard risk measure of variance, and our model
reduces to the classical one. Therefore, our model is a natural extension of the classical one.

Now we state our model as follows.
Definition 2.2. The continuous-time robust Markowitz mean-variance portfolio selection

problem with an intractable claim θ, parameterized by $, is

inf
π(·)

sup
Y ∈Rθ

Var(Xπ(T ) + Y ),

subject to

{
E[Xπ(T ) + θ] = $,

(Xπ(·), π(·)) is an admissible pair.

(5)

Mathematically, this leads to a stochastic differential game between the investor who
chooses the best financial investment portfolio π(·) and the “intractable market” who chooses
the worst payoff Y :

inf
π(·)

sup
Y ∈Rθ

Var(Xπ(T ) + Y ).

To ensure the problem is well-posed, we assume that the intractable claim θ is square
integrable throughout the paper, that is,

E[θ2] ≡
∫ 1

0
Q2(t) dt <∞,(6)

where Q(·) denotes the quantile of θ.1 And consequently, Y is square integrable whenever
Y ∈ Rθ.

Remark 2.1. In this paper, bankruptcy is allowed. The model can be similarly formulated
when bankruptcy is prohibited in the market. Our argument below, with slight modifications,
also works for the bankruptcy prohibited case. Refer to Bielecki et al. [2] for more details.
We encourage interested readers to give the details of the solution.

1Since the distribution of θ is given, its moments are thus determined. Hence, the notation E[θ] and E[θ2]
would not be vague, although the payoff of θ in each market scenario is unknown.D
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A MEAN-VARIANCE MODEL WITH AN INTRACTABLE CLAIM 131

3. Static problem and its quantile formulation. Similar to the classical case, the new
problem (5) can be solved by the martingale approach: first find the optimal solution X∗ of
a static optimization problem

inf
X

sup
Y ∈Rθ

Var(X + Y ),(7)

subject to E[X + θ] = $, X ∈ A,

and then derive the optimal portfolio π(·) by replicating the optimal payoff Xπ(T ) = X∗ by
the standard theory of BSDE. From now on, we focus on solving the problem (7) and leave
the second step to the interested readers.

Remark 3.1. The model (7) in fact encompasses single-period models as well. For example,
it is a single-period model when A = {

∑
λiξi}, where ξi is the possible payoff of one unit of

asset i at the end of the investment horizon and λi is the number of shares invested in it.
Let us first reformulate the problem (7) into a more tractable form. Observing that for

any feasible solution X of the problem (7) and any Y ∈ Rθ, we have

E[X + θ] = E[X] + E[θ] = E[X] +

∫ 1

0
Q(t) dt = $

and

Var(X + Y ) = E[(X + Y )2]− (E[X + Y ])2 = E[(X + Y )2]− (E[X] + E[Y ])2

= E[(X + Y )2]− (E[X] + E[θ])2 = E[(X + Y )2]−$2,

the problem (7) is equivalent to2

inf
X

sup
Y ∈Rθ

E[(X + Y )2],(8)

subject to E[X] = d, X ∈ A,

where

d := $ −
∫ 1

0
Q(t) dt

represents the targeted mean return at the end of the investment horizon in the underlying
financial market.

To solve the problem (8), we need to express the set A in a more tractable form. The
following result is well-known (see, e.g., Bielecki et al. [2]).

Lemma 3.1. The set of all the admissible payoffs, A can be expressed as

A = {X ∈ L2
FT : E[ρX] = x},

where

ρ := exp

(
−
∫ T

0

(
r(s) +

1

2
‖θ(s)‖2

)
ds+

∫ T

0
θ(s)T dW (s)

)
.

2In this paper, problems are called equivalent if they admit the same optimal solution(s).D
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We remark that ρ > 0 is not a constant as θ(·) is not identically zero. Moreover, ρ is
FT -measurable.

Now the static the problem (8) is equivalent to

inf
X∈L2

FT

J0(X),(9)

subject to E[X] = d, E[ρX] = x,

where
J0(X) := sup

Y ∈Rθ
E[(X + Y )2].

Let us show some properties of the cost function J0(·).
Lemma 3.2. The function J0(·) is finite and convex on L2

FT .

Proof. For any X ∈ L2
FT , we have

J0(X) = sup
Y ∈Rθ

E[(X + Y )2] 6 sup
Y ∈Rθ

E[2(X2 + Y 2)]

= E[2X2] + sup
Y ∈Rθ

E[Y 2] = 2E[X2] + E[θ2] <∞,

where we used the assumption (6). Thus the function J0(·) is finite. For any X1, X2 ∈ L2
FT

and α ∈ (0, 1), we have by the convexity of square function

J0(αX1 + (1− α)X2) = sup
Y ∈Rθ

E[(αX1 + (1− α)X2 + Y )2]

6 sup
Y ∈Rθ

E[α(X1 + Y )2 + (1− α)(X2 + Y )2]

6 α sup
Y ∈Rθ

E[(X1 + Y )2] + (1− α) sup
Y ∈Rθ

E[(X2 + Y )2]

= αJ0(X1) + (1− α)J0(X2).

Therefore, the function J0(·) is convex.
In the subsequent argument, we will frequently use the following well-known result, which

is often called the Hoeffding–Frechet bounds or Hardy–Littlewood inequality. Recalling that
the probability space (Ω,F ,P) is atomless, we have the following.

Lemma 3.3. Let QX(·) and QY (·) denote the quantiles of X ∈ L2
F and Y ∈ L2

F , respec-
tively. Then X and Y are comonotonic3 if and only if

sup
ψ∼Y

E[Xψ] = E[XY ] =

∫ 1

0
QX(t)QY (t) dt.

Similarly, X and Y are anticomonotonic if and only if

inf
ψ∼Y

E[Xψ] = E[XY ] =

∫ 1

0
QX(t)QY (1− t) dt.

Now we are ready to give an explicit expression for J0(·).
3See, e.g., [11, 12] for the properties of comonotonic and anticomonotonic random variables.D
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Lemma 3.4. The function J0(·) is law-invariant4 on L2
FT and

J0(X) =

∫ 1

0
(QX(t) + Q(t))2 dt,(10)

where QX(·) denotes the quantile of X.

Proof. Observing that for any X ∈ L2
FT ,

J0(X) = sup
Y ∈Rθ

E[(X + Y )2] = sup
Y ∈Rθ

(E[X2] + E[Y 2] + 2E[XY ])

= E[X2] +

∫ 1

0
Q2(t) dt+ 2 sup

Y ∈Rθ
E[XY ];

and applying Lemma 3.3 to the last term, we deduce that

J0(X) = E[X2] +

∫ 1

0
Q2(t) dt+ 2 sup

Y ∈Rθ
E[XY ]

=

∫ 1

0
QX(t)2 dt+

∫ 1

0
Q2(t) dt+ 2

∫ 1

0
QX(t)Q(t) dt =

∫ 1

0
(QX(t) + Q(t))2 dt.

Furthermore, it follows that J0(·) is law-invariant.

Remark 3.2. It seems very hard to show the convexity of J0(·) via the expression (10). It
is also interesting to investigate whether J0(·) will be still convex if Q(·) in (10) is replaced
by a general nonmonotone function and the financial meaning of such a cost function.

Because J0(·) is convex, applying the Lagrangian method, the problem (9) is equivalent
to

inf
X∈L2

FT

Jλ(X),(11)

subject to E[ρX] = x,

for some real scalar λ, where

(12) Jλ(X) := J0(X)− λ(E[X]− d) = sup
Y ∈Rθ

E[(X + Y )2]− λ(E[X]− d)

=

∫ 1

0
(QX(t) + Q(t))2 dt− λ

∫ 1

0
QX(t) dt+ λd.

The next lemma then follows immediately from the above results.

Lemma 3.5. The function Jλ(·) is finite, convex, and law-invariant on L2
FT .

Let Vλ(x) denote the optimal value of the problem (11).

Lemma 3.6. The function Vλ(·) is finite and convex on (0,+∞).

4A functional is called law-invariant if it gives the same value for any two identically distributed random
variables.D
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134 DANLIN HOU AND ZUO QUAN XU

Proof. Since x
E[ρ] is a feasible solution of the problem (11), by definition, we have Vλ(x) 6

Jλ( x
E[ρ]) < +∞. For any α ∈ (0, 1), X1 ∈ L2

FT , and X2 ∈ L2
FT such that E[ρX1] = x1 > 0,

E[ρX2] = x2 > 0, we have E[ρ(αX1 + (1− α)X2)] = αx1 + (1− α)x2 and consequently,

Vλ(αx1 + (1− α)x2) 6 Jλ(αX1 + (1− α)X2) 6 αJλ(X1) + (1− α)Jλ(X2),

where the last inequality is due to the convexity of Jλ(·). Because X1 and X2 are arbitrarily
chosen, the convexity of Vλ(·) is thus proved.

Remark 3.3. Because Jλ( x
E[ρ]) is a quadratic function in x, Vλ(·) is at most quadratic

growth.
If we apply the Lagrangian method to solve the problem (11), then we need to consider

inf
X∈L2

FT

Jλ(X)− µ(E[ρX]− x).

The sign of µ thus plays an important role in this problem. To determine the sign of µ, we
have the following key observation. As is well-known, µ is in fact equal to V ′λ(x), so the sign of
µ is the same as that of V ′λ(x). On the other hand, since Vλ(·) is convex, to determine the sign
of V ′λ(x), it suffices to determine the minimizer of Vλ(·). This will be done in the following
section.

3.1. Minimizer of Vλ(·). We want to determine the minimizer of Vλ(·) on R. To this
end, consider the unconstrained version of the problem (11):

inf
X∈L2

FT

Jλ(X).(13)

The optimal value of this problem clearly provides a lower bound for that of the problem (11).
Let us show that this optimal value is in fact the infimum of Vλ(·).

Suppose the problem (13) admits an optimal solution X∗; we then set

x∗ := E[ρX∗].(14)

Clearly, X∗ is also an optimal solution of problem

inf
X∈L2

FT

Jλ(X),

subject to E[ρX] = x∗,

whose optimal value is Vλ(x∗) by definition. Therefore,

Vλ(x∗) = Jλ(X∗) = inf
X∈L2

FT

Jλ(X) 6 Vλ(y) ∀ y ∈ R.(15)

This means x∗ is a minimizer of Vλ(·). If the problem (13) does not admit an optimal solution,
an approximation argument leads to the same conclusion.

Remark 3.4. We do not know the existence and uniqueness of the solution of the problem
(13). We may take any one if the solution is not unique, though we will show below that the
solution in fact exists and is unique.D
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Now let us focus on the problem (13). Recall (12),

(16) inf
X∈L2

FT

Jλ(X) =

∫ 1

0
(QX(t) + Q(t))2 dt− λ

∫ 1

0
QX(t) dt+ λd

=

∫ 1

0

(
QX(t) + Q(t)− 1

2λ
)2

dt− 1

4
λ2 + λ

∫ 1

0
Q(t) dt+ λd.

Observe that the objective functional in (16) only depends on the quantile of X. Denote by
Q the set of all quantiles generated by X ∈ L2

FT :

Q :=
{
Q(·) : Q(·) is the quantile of some X ∈ L2

FT
}
.

It is not hard to show that

Q =

{
Q(·) : Q(·) is a quantile with

∫ 1

0
Q2(t) dt <∞

}
.

We now consider the quantile formulation5 of the problem (16), that is,

inf
Q∈Q

∫ 1

0

(
Q(t) + Q(t)− 1

2λ
)2

dt− 1

4
λ2 + λ

∫ 1

0
Q(t) dt+ λd.(17)

Observe that the quantile of any optimal solution of the problem (16) solves the above problem.

Theorem 3.5. The unique optimal solution of the problem (17) is given by

Q0(t) := −
∫ 1

0
Q(s) ds+ 1

2λ ∀ t ∈ (0, 1).

A proof for this result is given in the appendix.
Because the unique solution of the problem (17) is a constant, the optimal solution of the

problem (16) (as well as the problem (13)) is also unique and a constant given by

X∗ = −
∫ 1

0
Q(s) ds+ 1

2λ.

And consequently, the minimizer x∗ of Vλ(·) on R is uniquely given by

x∗ = E[ρX∗] = −E[ρ]

∫ 1

0
Q(s) ds+ 1

2λE[ρ],

and the corresponding minimum value is

Vλ(x∗) = Jλ(X∗) =

∫ 1

0
Q2(t) dt−

(∫ 1

0
Q(t) dt

)2

− 1

4
λ2 + λ

∫ 1

0
Q(t) dt+ λd.

5See Xu [39] for more about the quantile formulation problem.D
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Because Vλ(·) is a convex function and admits a unique minimizer x∗, we conclude as
follows.

Corollary 3.6. Let

x∗ = −E[ρ]

∫ 1

0
Q(s) ds+ 1

2λE[ρ].(18)

Then the function Vλ(·) is strictly increasing on [x∗,+∞) and strictly decreasing on (−∞, x∗].

3.2. Quantile formulation. Because Jλ(·) is convex, applying the Lagrangian method, we
conclude as follows.

Proposition 3.7. The problem (11) is equivalent to

inf
X∈L2

FT

Jλ(X)− µ(E[ρX]− x)(19)

for some µ satisfying

µ


> 0 if x > x∗;

= 0 if x = x∗;

< 0 if x < x∗,

where

x∗ = −E[ρ]

∫ 1

0
Q(s) ds+ 1

2λE[ρ].

Proof. It follows from Corollary 3.6.
Recalling (12), the problem (19) is

inf
X∈L2

FT

∫ 1

0
(QX(t) + Q(t))2 dt− λ

∫ 1

0
QX(t) dt− µE[ρX] + λd+ µx,(20)

and this is equal to

(21) inf
X∈L2

FT

inf
ψ∼X

∫ 1

0
(Qψ(t) + Q(t))2 dt− λ

∫ 1

0
Qψ(t) dt− µE[ρψ] + λd+ µx

= inf
X∈L2

FT

inf
ψ∼X

∫ 1

0
(QX(t) + Q(t))2 dt− λ

∫ 1

0
QX(t) dt− µE[ρψ] + λd+ µx

= inf
X∈L2

FT

(∫ 1

0
(QX(t) + Q(t))2 dt− λ

∫ 1

0
QX(t) dt− sup

ψ∼X
µE[ρψ] + λd+ µx

)
.

The inner optimization problem is solved by Lemma 3.3,

sup
ψ∼X

µE[ρψ] =

{
µ
∫ 1
0 QX(t)Qρ(t) dt if µ > 0

µ
∫ 1
0 QX(t)Qρ(1− t) dt if µ < 0

}
= |µ|

∫ 1

0
QX(t)η(t) dt,(22)
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where

η(t) := Qρ(t)1{µ>0} −Qρ(1− t)1{µ<0} = Qρ(t)1{x>x∗} −Qρ(1− t)1{x<x∗},(23)

and the last equation is due to Proposition 3.7.
Hence the problem (20) reduces to

inf
X∈L2

FT

∫ 1

0
(QX(t) + Q(t))2 dt− λ

∫ 1

0
QX(t) dt− |µ|

∫ 1

0
QX(t)η(t) dt+ λd+ µx

or

inf
X∈L2

FT

∫ 1

0
(QX(t)− ζ(t))2 dt+ C0,(24)

where

ζ(t) :=
1

2
λ+

1

2
|µ|η(t)−Q(t),(25)

and C0 does not depend on X and is given by

C0 = −µ
2

4

∫ 1

0
η2(t) dt− 1

4
λ2 + λd+ µx.

We remark that the optimal solution of the problem (24) and ρ are comonotonic if µ > 0 and
anticomonotonic if µ < 0.

The quantile formulation of the problem (24) is

inf
Q∈Q

∫ 1

0
(Q(t)− ζ(t))2 dt+ C0.(26)

We will use the relaxation method introduced by Xu [38] to solve this problem. This can also
be solved by the calculus of variations method used in Xia and Zhou [36]. Remark that if Q(·)
is an optimal solution of the problem (26), then the optimal solution of the problem (24) is
given by

X =

Q(U) if µ > 0;

Q(1− U) if µ < 0,

where U is any FT -measurable random variable uniformly distributed on (0, 1) and is comono-
tonic with ρ.

4. Relaxation method. Rewrite the problem (26) as

(27) inf
Q∈Q

∫ 1

0
(Q(t)− ζ(t))2 dt+ C0 =

∫ 1

0

(
Q2(t)− 2Q(t)ζ(t)

)
dt+

∫ 1

0
ζ2(t) dt+ C0

=

∫ 1

0

(
Q2(t) + 2Q(t)ϕ′(t)

)
dt+ C1,
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where

ϕ(t) :=

∫ 1

t
ζ(s) ds,(28)

and C1 does not depend on Q ∈ Q and is given by

C1 =

∫ 1

0
ζ2(t) dt+ C0 =

∫ 1

0
ζ2(t) dt− µ2

4

∫ 1

0
η2(t) dt− 1

4
λ2 + λd+ µx.

The key idea of applying the relaxation method to solve the problem (27) is replacing ϕ(·) by
some function δ(·) so that

(i) the new Lagrangian gives a lower bound to that in the problem (27);
(ii) the new problem can be solved by pointwise minimizing the new Lagrangian; and
(iii) there is no gap between the new and old Lagrangians in the pointwise solution.
This approach allows us to solve the problem completely without making any assumptions on
the function ϕ(·).

Theorem 4.1. The unique optimal solution of the problem (26) is given by

Q(t) := −δ′(t), t ∈ (0, 1),

where δ(·) is the concave envelope of ϕ(·) on [0, 1], that is,

δ(t) := sup
06a6t6b61

(b− t)ϕ(a) + (t− a)ϕ(b)

b− a
, t ∈ [0, 1].

Furthermore, the optimal solution of the problem (24) as well as the problem (19) is given by

X =

{
Q(U) if µ > 0;

Q(1− U) if µ < 0,
(29)

where U is any FT -measurable random variable uniformly distributed on (0, 1) and is comono-
tonic with ρ.

Its proof is given in the appendix.

5. Lagrangian multipliers and optimal solution. Observe that the problem (19) and the
problem (9) are equivalent if there exist λ and µ such that

E[ρX] = x, E[X] = d,

where X is defined in (29). We next show the existence of such λ and µ.
Observing that

(30)

∫ 1

0
η(t) dt =

∫ 1

0

(
Qρ(t)1{µ>0} −Qρ(1− t)1{µ<0}

)
dt

=

∫ 1

0
Qρ(t) dt1{µ>0} −

∫ 1

0
Qρ(1− t) dt1{µ<0}

=

∫ 1

0
Qρ(t) dt1{µ>0} −

∫ 1

0
Qρ(t) dt1{µ<0}

= sgn(µ)

∫ 1

0
Qρ(t) dt = sgn(µ)E[ρ],
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where sgn(µ) := 1{µ>0} − 1{µ<0}, we have

(31) E[X] =

∫ 1

0
Q(t) dt = −

∫ 1

0
δ′(t) dt = δ(0)− δ(1) = ϕ(0)− ϕ(1) =

∫ 1

0
ζ(t) dt

=
1

2
λ+

1

2
|µ|
∫ 1

0
η(t) dt−

∫ 1

0
Q(t) dt =

1

2
λ+

1

2
|µ|sgn(µ)E[ρ]−

∫ 1

0
Q(t) dt

=
1

2
λ+

1

2
µE[ρ]−

∫ 1

0
Q(t) dt.

Hence, E[X] = d if and only if

λ = 2d+ 2

∫ 1

0
Q(t) dt− µE[ρ],(32)

which is henceforth assumed. In this case, by (31) and (32), we have

δ(0) = ϕ(0) = ϕ(0)− ϕ(1) = d.(33)

Now our problem reduces to finding µ such that E[ρX] = x under the condition (32).
We need some properties of the function δ(·) for further discussion; their proofs are given

in the appendix.
Lemma 5.1. The function δ is continuous and increasing with respect to µ on [0,+∞) and

decreasing on (−∞, 0].
Lemma 5.2. We have

lim
|µ|→∞

δ(t) = +∞ ∀ t ∈ (0, 1).

Lemma 5.3. We have

lim
|µ|→0

δ(t) = (1− t)d ∀ t ∈ [0, 1].

In particular, when µ = 0,

δ(t) = (1− t)d ∀ t ∈ [0, 1].

Now we are ready to show the following.
Proposition 5.1. For any x > 0 and d ∈ R, there exist λ and µ such that E[ρX] = x and

E[X] = d. Furthermore,

λ = 2d+ 2

∫ 1

0
Q(t) dt− µE[ρ].

Proof. It suffices to show that there exists µ such that E[ρX] = x under the condition
λ = 2d+ 2

∫ 1
0 Q(t) dt− µE[ρ].

We consider three different cases. They correspond to the lower, middle, and upper parts
of the mean-variance frontier.D
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(†) d < 1
E[ρ]x. We will show that there exists µ > 0 such that E[ρX] = x. Observe that
if µ > 0, then

E[ρX] =

∫ 1

0
Q(t)Qρ(t) dt = −

∫ 1

0
δ′(t)Qρ(t) dt =

∫ 1

0
δ(t) dQρ(t),

where we used Fubini’s theorem and Qρ(0) = δ(1) = 0. Applying Lemmas 5.1,
5.2, and 5.3 and using the monotone convergence theorem,

lim
µ→+∞

E[ρX] = lim
µ→+∞

∫ 1

0
δ(t) dQρ(t) =

∫ 1

0
lim

µ→+∞
δ(t) dQρ(t) = +∞

and

lim
µ→0+

E[ρX] = lim
µ→0+

∫ 1

0
δ(t) dQρ(t) =

∫ 1

0
lim
µ→0+

δ(t) dQρ(t)

=

∫ 1

0
(1− t)d dQρ(t) = d

∫ 1

0
Qρ(t) dt = dE[ρ] < x,

where we used Fubini’s theorem to get the second to last equality. Therefore,
there exists µ > 0 such that E[ρX] = x.

(††) d = 1
E[ρ]x. In this case, we take µ = 0. Then by Lemma 5.3,

X = Q(U) = −δ′(U) = d, E[ρX] = dE[ρ] = x.

(†††) d > 1
E[ρ]x. Observe that if µ < 0, then

E[ρX] =

∫ 1

0
Q(t)Qρ(1− t) dt = −

∫ 1

0
δ′(t)Qρ(1− t) dt

= −
∫ 1

0
δ′(1− t)Qρ(t) dt =

∫ 1

0
(δ(1− t)− δ(0))′Qρ(t) dt

=

∫ 1

0
(δ(0)− δ(1− t)) dQρ(t) =

∫ 1

0
(d− δ(1− t)) dQρ(t),

where we used the fact that Qρ(0) = 0 and Fubini’s theorem to get the second to
last equality. Applying again Lemmas 5.1, 5.2, and 5.3 and using the monotone
convergence theorem, we have

lim
µ→−∞

E[ρX] = lim
µ→−∞

∫ 1

0
(d− δ(1− t)) dQρ(t)

=

∫ 1

0
lim

µ→−∞
(d− δ(1− t)) dQρ(t) = −∞
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and

lim
µ→0−

E[ρX] = lim
µ→0−

∫ 1

0
(d− δ(1− t)) dQρ(t)

=

∫ 1

0
lim
µ→0−

(d− δ(1− t)) dQρ(t)

=

∫ 1

0
(d− td) dQρ(t) = d

∫ 1

0
Qρ(t) dt = dE[ρ] > x,

where we used Fubini’s theorem to get the second to last equality. Therefore,
there exists µ < 0 such that E[ρX] = x.

The proof is complete.

From the proof, we can see the following.

Corollary 5.2. The implied µ is increasing with respect to x on R.

This is useful for numerical calculation of the optimal solution and the mean-variance
frontier. We also note the following:

• When d < 1
E[ρ]x, X and ρ are comonotonic. In this case, the initial target d is too low

compared with the initial wealth x, and this forces the investor to take unnecessary
risk. This property is consistent with the classical model and the optimal portfolio is
not efficient.
• When d > 1

E[ρ]x, X and ρ are anticomonotonic. In this case, the initial target d is
relatively high compared with the initial wealth x, and the investor would get a higher
return if she would like to take a higher risk. This is also consistent with the classical
model and the optimal portfolio is efficient.

Putting all of the results obtained thus far together, we conclude as follows.

Theorem 5.3. The optimal solution of the problem (7) is given by

X =


−δ′(U) if d < 1

E[ρ]x;

1
E[ρ]x if d = 1

E[ρ]x;

−δ′(1− U) if d > 1
E[ρ]x,

where U is any FT -measurable random variable uniformly distributed on (0, 1) and is comono-
tonic with ρ, the function δ(·) is given by

δ(t) = sup
06a6t6b61

(b− t)ϕ(a) + (t− a)ϕ(b)

b− a
, t ∈ [0, 1];
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142 DANLIN HOU AND ZUO QUAN XU

the function ϕ(·) is given by

ϕ(t) = (1− t)d+ (1− t)
(∫ 1

0
Q(t) dt− 1

1− t

∫ 1

t
Q(s) ds

)
− 1

2
µ(1− t)

(∫ 1

0
Qρ(s) ds− 1

1− t

∫ 1

t
Qρ(s) ds

)
1{d6 1

E[ρ]
x}

− 1

2
µ(1− t)

(∫ 1

0
Qρ(s) ds− 1

1− t

∫ 1−t

0
Qρ(s) ds

)
1{d> 1

E[ρ]
x}, t ∈ [0, 1];

and the implied constant µ exists and is determined by E[ρX] = x.

Corollary 5.4. Under the same assumption of Theorem 5.3, if θ is a constant, then ϕ(t) =
δ(t) for all t ∈ [0, 1].

Their proofs are given in the appendix. If the intractable claim is a constant, our model
as well as the optimal solution reduces to the classical one.

6. Mean-variance frontier. In this part, we study the properties of the mean-variance
frontier of the model. Similar to the classical model, the mean-variance frontier of the robust
model is defined as a set in the R2 plane:{(

sup
Y ∈Rθ

√
Var(X + Y ),E[X + θ]

)
: $ ∈ R

}
,

where X is defined in Theorem 5.3.

Theorem 6.1. If

1

Var(ρ)

(
x−$E[ρ] +

∫ 1

0
Q(t)Qρ(1− t) dt

)
6 − sup

t∈(0,1)

Q′(t)

Q′ρ(1− t)
,

then the corresponding mean-variance frontier is linear and given by(
1√

Var(ρ)

(
$E[ρ]− x−

∫ 1

0
Q(t)Qρ(1− t) dt

)
, $

)
.

If
1

Var(ρ)

(
x−$E[ρ] +

∫ 1

0
Q(t)Qρ(t) dt

)
> sup

t∈(0,1)

Q′(t)

Q′ρ(t)
,

then the corresponding mean-variance frontier is linear and given by(
1√

Var(ρ)

(
x−$E[ρ] +

∫ 1

0
Q(t)Qρ(t) dt

)
, $

)
.

The financial meaning of this result is as follows. As is well-known, the mean-variance
frontier consists of two half-lines when no intractable claim is involved. The above resultD
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A MEAN-VARIANCE MODEL WITH AN INTRACTABLE CLAIM 143

states that the intractable claim has no impact on the shape of the frontier for extremely high
and low target levels of the targeted mean return.

By contrast, it changes the shape of the frontier for the nonextreme case. This can be
seen from the following remark.

Remark 6.2. We see that ϕ′′(t) = Q′(t) − 1
2µQ

′
ρ(t) > 0 as µ → 0+ from the proof of

Theorem 6.1. This is also true when µ→ 0−. This means ϕ is not concave when µ is close to
zero or, equivalently, d is close to 1

E[ρ]x. The corresponding part of the mean-variance frontier

is no longer linear.6

The assumptions in Theorem 6.1 can be satisfied. The following gives an example in the
Black–Scholes market setting.

Corollary 6.3. If ρ is log-normal distributed and Q′(t) is bounded,7 then the mean-variance
frontier is linear for big and small $.

Proof. By Theorem 6.1, it suffices to show that both Q′(t)
Q′ρ(1−t)

and Q′(t)
Q′ρ(t)

are bounded on

(0, 1). By assumption, Q′(t) is bounded, so it reduces to showing Q′ρ(t) is uniformly bounded
away from zero. In fact,

Q′ρ(Fρ(t)) =
1

F ′ρ(t)
= t
√

2πVar(ρ)e
1

2Var(ρ)
(ln(t)−E[ρ])2

=
√

2πVar(ρ)e
1

2Var(ρ)
(ln(t)−E[ρ])2+ln(t) >

√
2πVar(ρ)eE[ρ]− 1

2
Var(ρ).

The right-hand side is a positive constant, so the claim follows.

7. Concluding remarks. In this paper, we formulate a robust Markowitz mean-variance
model where an intractable claim is involved in the final wealth in a continuous-time com-
plete market setting. The occurrence of the intractable claim makes the standard penalization
approach and duality method fail in solving the model. Instead, we adopt the quantile for-
mulation technique to tackle the problem and an explicit closed-form solution is eventually
obtained. Futhurmore, we also compare the shape of the mean-variance frontier to that of the
classical model.

In insurance practice, intractable claims such as car insurance contracts are often priced
by multiplying the expected losses by a safety loading factor. The theoretical foundation of
this pricing rule is the law of large numbers. In the case of a small number of insureds, such a
pricing rule becomes inapplicable or at least questionable. In such a situation, it is natural to
consider the worst possible scenario when pricing the contract. On the other hand, insurance
companies also need to consider the best number of insurance contracts to sell so as to achieve
a trade-off between the insurance premiums received from selling these contracts and the risk
arising from execution of these contracts. If the insurance companies believe in the so-called
utility indifference pricing rule (see Carmona [4]) and adopt our robust variance as their utility,
the results obtained in this paper will be able to analytically (and thus numerically) price the
intractable claims and determine the best number to sell.

In this paper, we have only considered the mean-variance model with a full information
intractable claim. In a series of forthcoming papers, we will study the mean-variance model

6We leave the proof for the interested readers.
7For example, when θ is uniformly distributed, Q′(t) is bounded.D
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144 DANLIN HOU AND ZUO QUAN XU

with partial information intractable claims (see Xu [40]) as well as the (expected utility or
rank-dependent utility) indifference pricing models with full or partial information intractable
claims.

Appendix A. One lemma.
Lemma A.1. Let f(·) : [0, 1] 7→ R be a square integrable increasing function and let c ∈ [0, 1].

Then

inf
a6b

∫ c

0

(
a+ f(t)

)2
dt+

∫ 1

c

(
b+ f(t)

)2
dt = inf

a

∫ 1

0

(
a+ f(t)

)2
dt.

Proof. Denote

g(a) =

∫ c

0

(
a+ f(t)

)2
dt, h(b) =

∫ 1

c

(
b+ f(t)

)2
dt,

and the minimizers of g and h are, respectively, denoted by

a = −1

c

∫ c

0
f(t) dt, b = − 1

1− c

∫ 1

c
f(t) dt.

We remark that a > b as f is increasing. Note both g and h are strictly decreasing on
(−∞, a] ∩ (−∞, b] = (−∞, b] and strictly increasing on [a,∞) ∩ [b,∞) = [a,∞); therefore,

g(a) + h(b) > g(b) + h(b), a 6 b < b,

and
g(a) + h(b) > g(a) + h(a), a < a 6 b.

Hence
inf
a6b

g(a) + h(b) = inf
b6a6b6a

g(a) + h(b).

On [b, a], we have g is strictly decreasing and h is strictly increasing; therefore,

inf
b6a6b6a

g(a) + h(b) = inf
b6a=b6a

g(a) + h(b) = inf
b6a6a

g(a) + h(a).

Thus,

inf
a6b

g(a) + h(b) = inf
b6a6a

g(a) + h(a) > inf
a
g(a) + h(a) = inf

a

∫ 1

0

(
a+ f(t)

)2
dt.

On the other hand,

inf
a6b

g(a) + h(b) 6 inf
a=b

g(a) + h(b) = inf
a
g(a) + h(a) = inf

a

∫ 1

0

(
a+ f(t)

)2
dt.

The desired result follows.

Appendix B. Proofs.D
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Proof of Theorem 3.5. For any Q ∈ Q, set

tQ = inf
{
t ∈ (0, 1) : Q(t) + Q(t)− 1

2λ > 0
}
.

Because both Q(t) and Q(t) are increasing, we have

(34) Q(t) + Q(t)− 1
2λ 6 Q(tQ−) + Q(t)− 1

2λ 6 Q(tQ−) + Q(tQ−)− 1
2λ 6 0 ∀ t ∈ (0, tQ)

and

(35) Q(t) + Q(t) − 1
2λ > Q(tQ) + Q(t) − 1

2λ > Q(tQ) + Q(tQ) − 1
2λ > 0 ∀ t ∈ [tQ, 1)

It then follows that∣∣∣Q(t) + Q(t)− 1
2λ
∣∣∣ > ∣∣∣Q̃(t) + Q(t)− 1

2λ
∣∣∣ ∀ t ∈ (0, 1),

where
Q̃(t) = Q(tQ−)1(0,tQ)(t) +Q(tQ)1[tQ,1)(t) ∀ t ∈ (0, 1).

Observing that Q̃(·) is increasing and takes at most two different values, we thus have∫ 1

0

(
Q(t) + Q(t)− 1

2λ
)2

dt >
∫ 1

0

(
Q̃(t) + Q(t)− 1

2λ
)2

dt

> inf
c∈(0,1), a6b

∫ 1

0

(
a1(0,c)(t) + b1[c,1)(t) + Q(t)− 1

2λ
)2

dt

= inf
c∈(0,1)

inf
a6b

∫ c

0

(
a+ Q(t)− 1

2λ
)2

dt+

∫ 1

c

(
b+ Q(t)− 1

2λ
)2

dt

= inf
c∈(0,1)

inf
a

∫ 1

0

(
a+ Q(t)− 1

2λ
)2

dt =

∫ 1

0
Q2(t) dt−

(∫ 1

0
Q(t) dt

)2

,

where we used Lemma A.1 to get the second to last equation. We note that the lower bound
on the right-hand side is achieved at Q0. So Q0 is an optimal solution of the problem (17).
The uniqueness follows from the strict convexity of quadratic functions.

Proof of Theorem 4.1. Let δ(·) and Q(·) be defined as in the assumption. Then δ(·)
is an absolutely continuous function dominating ϕ(·) on [0, 1]. Observing δ(0) = ϕ(0) and
δ(1) = ϕ(1) = 0 and using Fubini’s theorem,∫ 1

0
Q(t)(ϕ′(t)− δ′(t)) dt =

∫ 1

0

(
δ(t)− ϕ(t)

)
dQ(t) > 0(36)

for every Q(·) ∈ Q. The above inequality leads to

(37)

∫ 1

0

(
Q2(t) + 2Q(t)ϕ′(t)

)
dt >

∫ 1

0

(
Q2(t) + 2Q(t)δ′(t)

)
dt

=

∫ 1

0

(
Q(t) + δ′(t)

)2
−
(
δ′(t)

)2
dt > −

∫ 1

0

(
δ′(t)

)2
dt

=

∫ 1

0

(
Q

2
(t) + 2Q(t)δ′(t)

)
dt.
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To make Q(·) an optimal solution of the problem (11), it suffices, by (37), to have∫ 1

0

(
Q

2
(t) + 2Q(t)ϕ′(t)

)
dt =

∫ 1

0

(
Q

2
(t) + 2Q(t)δ′(t)

)
dt.(38)

Observing δ(0) = ϕ(0) and δ(1) = ϕ(1) = 0 and using Fubini’s theorem, the above equality is
equivalent to

0 =

∫ 1

0
δ′(t)

(
ϕ′(t)− δ′(t)

)
dt =

∫ 1

0

(
δ(t)− ϕ(t)

)
dδ′(t).

This is true because δ′(·) is a constant on any subinterval of {t ∈ [0, 1] : δ(t) 6= ϕ(t)} by the
definition of δ(·).

Proof of Lemma 5.1. We take (32) into the definition of ϕ to get

(39) ϕ(t) =

∫ 1

t
ζ(s) ds =

∫ 1

t

(1

2
λ+

1

2
|µ|η(s)−Q(s)

)
ds

=

∫ 1

t

(
d+

∫ 1

0
Q(r) dr − 1

2
µE[ρ] +

1

2
|µ|η(s)−Q(s)

)
ds

= (1− t)d+ (1− t)
∫ 1

0
Q(s) ds− 1

2
(1− t)µE[ρ] +

1

2
|µ|
∫ 1

t
η(s) ds−

∫ 1

t
Q(s) ds

= (1− t)d+ (1− t)
∫ 1

0
Q(s) ds− 1

2
(1− t)|µ|

∫ 1

0
η(s) ds+

1

2
|µ|
∫ 1

t
η(s) ds−

∫ 1

t
Q(s) ds

= (1− t)d+(1− t)
∫ 1

0
Q(s) ds+

1

2
(1− t)|µ|

(
1

1− t

∫ 1

t
η(s) ds−

∫ 1

0
η(s) ds

)
−
∫ 1

t
Q(s) ds.

Observe that η is an increasing function, so we have

1

1− t

∫ 1

t
η(s) ds−

∫ 1

0
η(s) ds > 0 ∀ t ∈ (0, 1).

And consequently, for each fixed t ∈ (0, 1), ϕ(t) is continuously increasing with respect to
µ on [0,+∞) and decreasing on (−∞, 0]. Since δ is the concave envelope of ϕ, it is also
continuously increasing with respect to µ on [0,+∞) and decreasing on (−∞, 0].

Proof of Lemma 5.2. Suppose

1

1− t

∫ 1

t
η(s) ds−

∫ 1

0
η(s) ds = 0 ∀ t ∈ (0, 1),

or equivalently, ∫ 1

t
η(s) ds = (1− t)

∫ 1

0
η(s) ds ∀ t ∈ (0, 1).
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Differentiating both sides with respect to t we get that η(·) is a constant. This means ρ is a
constant, which contradicts our assumption. We conclude that there exists t0 ∈ (0, 1) such
that

1

1− t0

∫ 1

t0

η(s) ds−
∫ 1

0
η(s) ds > 0,

and by (39),

lim
|µ|→∞

ϕ(t0) = +∞.

Observe that δ is concave and (33), so

δ(t) >
t0 − t
t0

δ(0) +
t

t0
δ(t0) >

t0 − t
t0

d+
t

t0
ϕ(t0) ∀ t ∈ [0, t0];

δ(t) >
1− t
1− t0

δ(t0) +
t− t0
1− t0

δ(1) >
1− t
1− t0

ϕ(t0) ∀ t ∈ [t0, 1].

The claim follows immediately.

Proof of Lemma 5.3. By the continuity of δ in µ, it suffices to show, when µ = 0,

δ(t) = (1− t)d ∀ t ∈ [0, 1].

Because δ is the smallest concave function dominating ϕ, it suffices to prove that

(1− t)d > ϕ(t) ∀ t ∈ [0, 1].

In fact, using µ = 0 and (39), we have

ϕ(t)− (1− t)d = (1− t)
∫ 1

0
Q(s) ds−

∫ 1

t
Q(s) ds 6 0,

where the last inequality is due to Q begin an increasing function.

Proof of Theorem 5.3. We first notice that µ > 0 is equivalent to d < 1
E[ρ]x, and µ < 0 is

equivalent to d > 1
E[ρ]x. Therefore, by (23),

η(t) = Qρ(t)1{µ>0} −Qρ(1− t)1{µ<0} = Qρ(t)1{d6 1
E[ρ]

x} −Qρ(1− t)1{d> 1
E[ρ]

x},

and consequently, by (25),

ζ(t) =
1

2
λ+

1

2
|µ|η(t)−Q(t) =

1

2
λ+

1

2
µQρ(t)1{d6 1

E[ρ]
x} +

1

2
µQρ(1− t)1{d> 1

E[ρ]
x} −Q(t),
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and by (28),

ϕ(t) =

∫ 1

t
ζ(s) ds =

1

2
λ(1− t) +

1

2
µ

∫ 1

t
Qρ(s) ds1{d6 1

E[ρ]
x}

+
1

2
µ

∫ 1

t
Qρ(1− s) ds1{d> 1

E[ρ]
x} −

∫ 1

t
Q(s) ds

=

(
d+

∫ 1

0
Q(t) dt− 1

2
µE[ρ]

)
(1− t) +

1

2
µ

∫ 1

t
Qρ(s) ds1{d6 1

E[ρ]
x}

+
1

2
µ

∫ 1−t

0
Qρ(s) ds1{d> 1

E[ρ]
x} −

∫ 1

t
Q(s) ds

= (1− t)d+ (1− t)
(∫ 1

0
Q(t) dt− 1

1− t

∫ 1

t
Q(s) ds

)
− 1

2
µ(1− t)

(∫ 1

0
Qρ(s) ds− 1

1− t

∫ 1

t
Qρ(s) ds

)
1{d6 1

E[ρ]
x}

− 1

2
µ(1− t)

(∫ 1

0
Qρ(s) ds− 1

1− t

∫ 1−t

0
Qρ(s) ds

)
1{d> 1

E[ρ]
x}.

The left is an easy exercise.
Proof of Corollary 5.4. Suppose d 6 1

E[ρ]x. Then

ϕ(t) = (1− t)d+ (1− t)
(∫ 1

0
Q(t) dt− 1

1− t

∫ 1

t
Q(s) ds

)
− 1

2
µ(1− t)

(∫ 1

0
Qρ(s) ds− 1

1− t

∫ 1

t
Qρ(s) ds

)
= (1− t)d+ (1− t)

∫ 1

0
Q(t) dt−

∫ 1

t
Q(s) ds− 1

2
µ(1− t)

∫ 1

0
Qρ(s) ds+

1

2
µ

∫ 1

t
Qρ(s) ds,

and thus,

ϕ′(t) = −d−
∫ 1

0
Q(t) dt+ Q(t) +

1

2
µ

∫ 1

0
Qρ(s) ds− 1

2
µQρ(t).(40)

If θ is a constant, so is Q(·), and consequently,

ϕ′(t) = −d+
1

2
µ

∫ 1

0
Qρ(s) ds− 1

2
µQρ(t)

is decreasing as µ > 0. This means ϕ(·) is concave, so it coincides with its concave envelope
δ(·). The case d > 1

E[ρ]x can be treated similarly.
Proof of Theorem 6.1. Suppose

1

Var(ρ)

(
x−$E[ρ] +

∫ 1

0
Q(t)Qρ(t) dt

)
> sup

t∈(0,1)

Q′(t)

Q′ρ(t)
.
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We will show

µ :=
2

Var(ρ)

(
x−$E[ρ] +

∫ 1

0
Q(t)Qρ(t) dt

)

satisfies the requirement in Theorem 5.3. Observing µ > 0, so d 6 1
E[ρ]x. By (40),

ϕ′(t) = −d−
∫ 1

0
Q(t) dt+ Q(t) +

1

2
µ

∫ 1

0
Qρ(s) ds− 1

2
µQρ(t)

and consequently,

ϕ′′(t) = Q′(t)− 1

2
µQ′ρ(t) 6 0.

This means ϕ(·) is concave, so ϕ(·) = δ(·). Thus,

E[ρX] =

∫ 1

0
Q(t)Qρ(t) dt = −

∫ 1

0
δ′(t)Qρ(t) dt = −

∫ 1

0
ϕ′(t)Qρ(t) dt

= −
∫ 1

0

(
−d−

∫ 1

0
Q(t) dt+ Q(t) +

1

2
µ

∫ 1

0
Qρ(s) ds− 1

2
µQρ(t)

)
Qρ(t) dt

= d

∫ 1

0
Qρ(t) dt+

∫ 1

0
Q(t) dt

∫ 1

0
Qρ(t) dt−

∫ 1

0
Q(t)Qρ(t) dt

− 1

2
µ

(∫ 1

0
Qρ(t) dt

)2

+
1

2
µ

∫ 1

0
Q2
ρ(t) dt

= dE[ρ] + E[ρ]E[θ]−
∫ 1

0
Q(t)Qρ(t) dt+

1

2
µVar(ρ)

= $E[ρ]−
∫ 1

0
Q(t)Qρ(t) dt+

1

2
µVar(ρ) = x.

Observing that

ϕ′(t)−Q(t) = −d−
∫ 1

0
Q(t) dt+

1

2
µ

∫ 1

0
Qρ(s) ds− 1

2
µQρ(t) = A− 1

2
µQρ(t),

where A is independent of t, therefore,

sup
Y ∈Rθ

Var(X + Y ) = sup
Y ∈Rθ

E[(X + Y )2]− (E[X + Y ])2 = sup
Y ∈Rθ

E[(X + Y )2]−$2

= J0(X)−
(∫ 1

0
QX(t) + Q(t) dt

)2

=

∫ 1

0
(QX(t) + Q(t))2 dt−

(∫ 1

0
QX(t) + Q(t) dt

)2

D
ow

nl
oa

de
d 

02
/1

3/
23

 to
 1

58
.1

32
.1

61
.5

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

150 DANLIN HOU AND ZUO QUAN XU

=

∫ 1

0
(−δ′(t) + Q(t))2 dt−

(∫ 1

0
−δ′(t) + Q(t) dt

)2

=

∫ 1

0
(−ϕ′(t) + Q(t))2 dt−

(∫ 1

0
−ϕ′(t) + Q(t) dt

)2

=

∫ 1

0
(−A+

1

2
µQρ(t))

2 dt−
(∫ 1

0
−A+

1

2
µQρ(t) dt

)2

=
1

4
µ2
∫ 1

0
Qρ(t)

2 dt− 1

4
µ2
(∫ 1

0
Qρ(t) dt

)2

=
1

4
µ2Var(ρ) =

1

Var(ρ)

(
x−$E[ρ] +

∫ 1

0
Q(t)Qρ(t) dt

)2

.

This finishes the proof. The other case can be treated in a similar way.
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