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Dyck algebras, interval temporal logic and posets of intervals

Luca Ferrari
˚

Abstract

We investigate a natural Heyting algebra structure on the set of Dyck paths of the same
length. We provide a geometrical description of the operations of pseudocomplement and
relative pseudocomplement, as well as of regular elements. We also find a logic-theoretic
interpretation of such Heyting algebras, which we call Dyck algebras, by showing that they
are the algebraic counterpart of a certain fragment of a classical interval temporal logic
(also known as Halpern-Shoham logic). Finally, we propose a generalization of our approach,
suggesting a similar study of the Heyting algebra arising from the poset of intervals of a finite
poset using Birkhoff duality. In order to illustrate this, we show how several combinatorial
parameters of Dyck paths can be expressed in terms of the Heyting algebra structure of
Dyck algebras together with a certain total order on the set of atoms of each Dyck algebra.

1 Introduction

Among the plethora of different logics generalizing and extending the classical one, a family
of logics which has proved very useful especially in computer science is that of temporal logics.
A temporal logic is essentially a kind of logic which allows to deal with statements whose
truth values can vary in time. Applications in computer science concern, for example, formal
verification, where temporal logics show their expressiveness in stating requirements of hardware
or software systems. Starting from the generic idea stated above, one can conceive several
different types of temporal logics, depending on the structure of time states and on how time
states are managed. A particularly interesting class of temporal logics are the so-called interval
temporal logics. An interval temporal logic is characterized by the fact that the truth of a
statement depends on the time interval it is evaluated on (rather than the time instant). Such
kinds of logics are useful when it is important to work with properties which remain true (or
false) for a certain amount of time. The relevance of these logics for computer science is even
more evident: think, for instance, of processes, for which it is meaningful to reason in terms
of time intervals rather than time instants. More generally, interval temporal logics have been
successfully applied to temporal databases, specification, design and verification of hardware
components and concurrent real-time processes; see, for instance [GMS] and the references
therein.

To work with any interval temporal logic, it is important to understand which kinds of
relations among intervals of time instants are relevant to the specific logic one wish to consider.
The classification of all possible such relations has been pursued by Allen [AF], who has also
defined an algebraic structure to deal with them. The modal logic of time intervals resulting
by considering the whole of Allen’s relations is usually referred to as the Halpern-Shoham logic
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[HS]. Typically, one selects a subset of Allen’s relations, thus defining the related fragment of
the Halpern-Shoham logic. Most studied in this context are decidability questions, as witnessed
by many works appeared in recent years (an example related to a fragment which is relevant to
our paper is [MM]).

In the present paper we propose a combinatorial description of a specific interval temporal
logic whose underlying time model is a finite linear order. Specifically, we consider what is
sometimes called the logic of subintervals, that is the interval temporal logic in which, from
the truth of a statement on a certain interval of time instants I, the truth of that statement
on all subintervals of I follows. We show that, given a linearly ordered set of time instants
of cardinality n ´ 1, the algebraic counterpart of the associated logic of subintervals is given
by a certain Heyting algebra structure on the set of Dyck paths of semilength n, which is
more precisely the canonical Heyting algebra structure associated with the distributive lattice
structure on Dyck paths of semilength n induced by ordering them by geometric inclusion (i.e.
a Dyck path P is declared to be less than or equal to a Dyck path Q whenever, in the usual two-
dimensional drawing of Dyck paths, P lies weakly below Q, see [FP] and also the next section).
We also give a fully geometric description of relative pseudocomplement and pseudocomplement
in such Dyck algebras, thus supplementing similar results that have been illustrated in a more
algebraic fashion in [Muh]. Finally, we try to broaden the scope of our work, by proposing a
possible generalization. The idea is to consider the poset of intervals (ordered by inclusion) of
any poset P (rather than a totally ordered set) and to investigate properties of the Heyting
algebra H obtained from P by classical (generalized) Birkhoff duality. More specifically, we ask
what properties of H can be expressed in terms of the partial order P. In the specific case
of a finite totally ordered P (which is the case studied in the present paper), we illustrate
the above project from a combinatorial point of view, namely we express several statistics of
combinatorial interest in terms of the Heyting algebra structure of Dyck paths together with
the partial order structure on the atoms of such an algebra. We close our paper by proposing
some further directions of future research.

2 Heyting algebras of Dyck paths

Given a Cartesian coordinate system, a Dyck path is a lattice path starting from the origin,
ending on the x-axis, never falling below the x-axis and using only two kinds of steps, uppq “
p1, 1q and dpownq “ p1,´1q. A Dyck path can be encoded by a word w on the alphabet tu, du
such that in every prefix of w the number of u is greater than or equal to the number of d and
the total number of u and d in w is the same (the resulting language is called Dyck language
and its words Dyck words). The length of a Dyck path is the length of the associated Dyck word
(which is necessarily an even number). A peak in a Dyck path is a pair of consecutive steps of
the form ud; a hill is a peak at height 0 (i.e. lying on the x-axis). A factor of a Dyck path is
any minimal subsequence of consecutive steps starting and ending on the x-axis; every Dyck
path can be clearly decomposed in a unique way as the product (juxtaposition) of its factors. In
particular, a hill is also called a trivial factor. A pyramid is a subsequence of consecutive steps
of the form ukdk (k ě 1) starting and ending on the x-axis. In particular, a hill is a pyramid. A
return is a point of the path, other than the starting one, lying on the x-axis. We will usually
refer to a return by using its abscissa (which is necessarily an even number).

The set Dn of Dyck paths of semilength n can be endowed with a very natural poset
structure. Given P,Q P Dn, we say that P ď Q when, in the above described two-dimensional
drawing of Dyck paths, P lies weakly below Q. Properties of the posets Dn “ pDn,ďq have
been investigated in [FM1, FM2, FM3, FP]. In particular, it is shown that Dn is a distributive
lattice, and for this reason it will be called the Dyck lattice of order n. We point out that this
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last assertion is a consequence of the (easy to observe) fact that Dn is isomorphic to the dual
of the Young lattice of integer partitions whose Ferrers diagrams fit into the staircase diagram
pn ´ 1, n ´ 2, . . . , 2, 1q [S]. The language of Dyck paths, however, gives a geometric flavor to
the subject which allows to express several properties in a more fascinating way, as well as to
suggest possible analogies with other families of lattice paths.

Recall that a join-irreducible element of a poset P is an element a such that, if a “ x_ y,
then a “ x or a “ y. In particular, if P has minimum 0, an atom is an element covering 0 (hence
an atom is join-irreducible). Moreover, a subset I of P is a down-set whenever, for every x, y
in P, if y P I and x ď y, then x P I. The well-known Birkhoff representation theorem (see, for
instance, [DP]) states that every finite distributive lattice is isomorphic to the lattice of down-
sets of the poset of its join-irreducibles. As a consequence, every element of a finite distributive
lattice is the join of the join-irreducibles below it. Concerning Dyck lattices, a join-irreducible
is a path all of whose factors are hills except for a single pyramid having at least 4 steps (see
[FM1]). In particular, an atom is a join-irreducible in which the unique nontrivial pyramid has
exactly 4 steps.

Since Dyck lattices are finite distributive lattices, they also have a canonical Heyting algebra
structure. Recall that a Heyting algebra is a lattice H with minimum 0 and maximum 1 such
that the relative pseudocomplement of x with respect to y exists for all x, y P H. By definition,
the relative pseudocomplement of x with respect to y is the element x ù y defined as follows:

x ù y “
ł

tz P H | x^ z ď yu.

The Heyting algebra of Dyck paths of semilength n will be denoted Dn, and we will call it
the Dyck algebra of order n.

In a Heyting algebra H, two important notions are those of pseudocomplement and of
regular element. The pseudocomplement of x is defined as „ x “ x ù 0. It can be shown
that x ď„„x. The converse, however, does not hold in general. An element x of H is said to
be regular whenever x “„„x. The subposet of regular elements of a Heyting algebra forms a
Boolean algebra.

The main aim of the present section is to give a combinatorial description of relative pseu-
docomplement and pseudocomplement in Dyck algebras, as well as to characterize the Boolean
algebra of the regular elements. We point out that similar results have been obtained in [Muh].
Our statements, however, have a more geometric flavor, which would hopefully result in a more
natural way of capturing the above mentioned notions.

For any pair of Dyck paths pP,Qq of semilength n, we define the crossing set CpP,Qq Ď
r2ns Y t0u “ t0, 1, 2, . . . , 2nu of pP,Qq by declaring x P CpP,Qq whenever exactly one of the
following conditions holds:

1. x P t0, 2nu;

2. P and Q have a common point having abscissa x; moreover P has an up step starting at
that point and Q has a down step starting at that point;

3. P and Q have a common point having abscissa x; moreover P has a down step arriving
at that point and Q has an up step arriving at that point.

Roughly speaking, an element of the crossing set of pP,Qq is either the abscissa of the
starting/ending point of the two paths or the abscissa of a point in which the two paths crosses
in a specific way. More precisely, suppose that CpP,Qq “ tx0, x1, x2, . . . , xku, where the xi’s are
listed in increasing order (so that x0 “ 0 and xk “ 2n). If i is even, then P lies weakly below Q
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between xi and xi`1 (“weakly” meaning that P and Q may coincide in some point other than
those of abscissas xi and xi`1); if i is odd, then P lies strictly above Q between xi and xi`1.
Notice that k is necessarily an odd number (or, which is the same, the cardinality of CpP,Qq is
even): indeed, both at the beginning and at the end P lies weakly below Q (since both paths
necessarily starts with an up step and ends with a down step). Finally, observe that clearly
CpP,Qq ‰ CpQ,P q in general.

Proposition 2.1 Let P,Q P Dn and let CpP,Qq “ tx0, x1, x2, . . . , xku be the crossing set of
pP,Qq. Then P ù Q P Dn is the Dyck path constructed as follows:

1. if i is even, then the portion of P ù Q between xi and xi`1 is the unique subpath of
the form uαdβ whose starting and ending points are the same as P and Q, for suitable
nonnegative integers α and β;

2. if i is odd, then P ù Q coincides with Q between xi and xi`1.

Proof. We observe that, if i ‰ 0 is even, then necessarily P has an up step starting at
abscissa xi and Q has a down step starting at abscissa xi, whereas, if i ‰ k is odd, then P has
a down step ending at abscissa xi and Q has an up step ending at abscissa xi. Thus, between
xi and xi`1, if i is even then P lies weakly below Q, otherwise (i.e. if i is odd) P lies strictly
above Q (this last statement is true also in the cases i “ 0, k). As a consequence, if i is even,
P ù Q can run as high as possible between xi and xi`1; this is achieved by putting as many
up steps as possible immediately after xi, followed by the correct number of down steps, which
means that the portion of P ù Q between xi and xi`1 is of the form uαdβ , as required. On
the other hand, if i is odd, then P ù Q must coincide with Q between xi and xi`1, in order to
have pP ù Qq ^ P ď Q, and this is clearly the maximum subpath between xi and xi`1 which
satisfies such a condition. �

The result of the above proposition can be restated less formally, but maybe more expres-
sively, as follows: P ù Q is obtained from Q by replacing those portions of path in which P
lies weakly below Q with the highest possible Dyck factors.

In Figure 1 we give an example of how to compute P ù Q starting from P and Q, as
described in the above proposition.

x0 x1 x2 x3 x4 x5

Figure 1: P is red, Q is blue and P ù Q is green.

As a consequence, we have the following result, which gives us a recipe to compute pseu-
docomplements in Dyck algebras (see Figure 2). In the statement of the corollary, we will use
the expression “sequence of k consecutive hills”, which should be clear in the case k ą 0. By
convention, with the expression “sequence of 0 consecutive hills” we will mean a point of the
path lying on the x-axis (other than the starting and the ending ones) and neither preceded nor
followed by a hill (in other words, a return between two nontrivial factors).
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Corollary 2.1 Let P P Dn. Then „P “ P ù 0 is obtained from P by

1. replacing each sequence of k ě 0 consecutive hills starting at abscissa x and ending at
abscissa x1 with a pyramid of suitable height starting at maxp0, x ´ 2q and ending at
minpx1 ` 2, 2nq, and

2. completing the path by suitably adding a (finite) set of hills.

Figure 2: A Dyck path (black) and its pseudocomplement (green).

To conclude this section, we will give a characterization of regular elements of Dyck algebras.
Similarly to the previous results, our description will be in terms of the geometric shape of the
path.

Proposition 2.2 A Dyck path is regular if and only if its factors are all pyramids.

Proof. For any Dyck path P , it follows from the previous corollary that all factors of „P
are pyramids. Therefore, if P is regular, then P “„„P , and all factors of P are pyramids.

For the converse, observe that the pseudocomplement operation exchanges returns and non-
returns of a Dyck path (that is, px, 0q is a return of P if and only if px, 0q is not a return of
„P ). Now, if P is a concatenation of pyramids, then P is uniquely determined by its returns,
and the above observation implies that „„P “ P , i.e. P is regular. �

Recall that, given a poset P, a closure operator is a map : P Ñ P such that, for all x, y
in P, piq x ď x, piiq x ď y ñ x ď y and piiiq x “ x. A general fact of the theory of Heyting
algebras is that performing twice the pseudocomplement operation gives a closure operator.
Thus, in the specific case of Dyck algebras, given a path P , its closure P “„„P is obtained by
turning each of its factors into the unique pyramid greater than it and having the same number
of steps.

We close by noticing that the Boolean algebra structure of regular elements of Dn can be
naturally described in terms of compositions. Indeed, the map which associates a concatenation
of pyramids in Dn with the integer composition (of n) whose parts are the heights of the pyra-
mids (read from left to right) is clearly a bijection. The partial order induced by Dn on the
subset of its regular elements can be translated along such a bijection into the so called refine-
ment order on compositions of n, whose covering relation is defined as follows: a composition λ
is covered by a composition η when η is obtained from λ by summing two consecutive parts (see
Figure 3). These Boolean algebras on compositions have occasionally surfaced in the literature,
see for instance [AS, BLvW, EJ].

3 The logic of subintervals

The aim of this section is to give a logic-theoretic interpretation of Dyck algebras. More
specifically, it turns out that Dyck algebras provide the natural algebraic counterpart of a special
sort of intuitionistic logics, which are more precisely a certain class of interval temporal logics.
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Figure 3: The Boolean algebra of regular elements of D4 and its isomorphic representation in
terms of compositions of 4.

Let Tn “ tt1, t2, . . . , tnu be a finite linearly ordered set, with t1 ă t2 ă ¨ ¨ ¨ ă tn. The
elements of Tn will be sometimes called time states. Denote by IntpTnq the set of all intervals
of Tn, i.e. I P IntpTnq when there exist ti, tj P Tn such that I “ rti, tjs “ tt | ti ď t ď tju. In the
following we will consider IntpTnq partially ordered by inclusion.

Next we define a set of propositions in a recursive fashion, as usual. We point out that
the logic we are going to describe is related to the Halpern-Shoham logic [HS], which is one of
the logics of time intervals. In particular, the propositional logic of interest to us appears to be
intimately related to the fragment of the Halpern-Shoham logic in which a single modal operator
is considered, namely the so-called operator “during”. A paper dealing with this fragment is
[MPS], where the authors show that it is decidable over finite linear orders. We also remark
that, on the other hand, in [MM] a strictly related fragment is shown to be undecidable over
discrete structures.

The set of propositions ITLn is defined as follows, by means of the usual connectives:

• K,J P ITLn; for all 1 ď i ď n, εi P ITLn (the εi’s are the propositional variables);

• if ϕ,ψ P ITLn, then ϕ_ ψ,ϕ ^ ψ,ϕÑ ψ, ϕ P ITLn.

We give an interval-based semantics, for which each proposition ϕ can be true or false
depending on how it is evaluated on a specific interval I P IntpTnq. More formally, if we denote
by 2A the set of all maps from a set A to the set 2 “ t0, 1u, we define a map v as follows:

v : ITLn ÝÑ 2IntpTnq

: ϕ ÞÝÑ vϕ : IntpTnq ÝÑ t0, 1u

where vϕpIq “ 0 (resp., 1) if ϕ is false (resp., true) when evaluated on the interval I. In the
following we will usually write ϕpIq in place of vϕpIq. In particular, we say that ϕ is valid when
ϕpIq “ 1 for all I P IntpTnq.

Thus we have a general evaluation map v, which associates with every proposition ϕ a
specific valuation vϕ which says on which intervals ϕ is true. The behavior of valuations with
respect to connectives is defined as usual. More precisely:

• pϕ_ ψqpIq “ 1 whenever ϕpIq “ 1 or ψpIq “ 1;

• pϕ^ ψqpIq “ 1 whenever ϕpIq “ 1 and ψpIq “ 1;

• p ϕqpIq “ 1 whenever ϕpIq “ 0;
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• pϕÑ ψqpIq “ 1 whenever holds: if ϕpIq “ 1 then ψpIq “ 1.

Moreover, concerning propositional variables, we define εipIq to be true if and only if I “
rti, tis “ ttiu. We have therefore all that we need to evaluate any proposition ϕ P ITLn.

Notice that, at this point, the partial order structure of IntpTnq does not play any role.
We now introduce two new connectives whose semantics instead depend on such partial order.
These connectives are denoted by l and ♦, and their semantics is defined as follows:

• plϕqpIq “ 1 when, for all intervals J Ď I, ϕpJq “ 1;

• p♦ϕqpIq “ 1 when there exists an interval J Ď I such that ϕpJq “ 1.

Notice that l is “idempotent”, in the sense that, for all intervals I, pllϕqpIq “ plϕqpIq.

We are now ready to describe the subset of ITLn which will be relevant to us. Define
Θn “ tϕ P ITLn | ϕ Ñ lϕ is validu. Intuitively, this means that, if ϕ is true in I, then ϕ is
true in all subintervals of I.

We remark here that, from a purely logic-theoretic point of view, the construction of the set
Θn can be suitably described in the framework of modal companions of an superintuitionistic
logic, see for instance [CZ]. However, the main goal of this section is to provide a combinatorial
description of the logic of Θn, which we believe to be new.

As a subset of ITLn, it is not clear a priori if Θn is interesting from a semantic point of
view. We will now clarify this point, by showing that Θn is closed with respect to some, but not
all, of the classical connectives.

Proposition 3.1 If ϕ,ψ P Θn, then ϕ^ ψ,ϕ _ ψ P Θn.

Proof. Given I P IntpTnq, suppose that pϕ ^ ψqpIq “ 1, that is ϕpIq “ ψpIq “ 1. Since
ϕ,ψ P Θn, we have that, for all intervals J Ď I, it is ϕpJq “ ψpJq “ 1, which means that
plpϕ^ ψqqpIq “ 1, i.e. ϕ^ ψ P Θn.

Similarly, if we suppose that pϕ _ ψqpIq “ 1, we then have that ϕpIq “ 1 or ψpIq “ 1.
Assume, for instance, that ϕpIq “ 1. Then, for all intervals J Ď I, it is ϕpJq “ 1, which implies
pϕ_ ψqpJq “ 1. We can thus conclude that plpϕ_ ψqqpIq “ 1, i.e. ϕ_ ψ P Θn. �

Proposition 3.2 Θn is not closed with respect to  , that is there exists a proposition ϕ P Θn

such that  ϕ R Θn.

Proof. Consider the proposition ϕ “ ε1 _ ε2, and take the interval I “ tt1, t2u. We have
clearly ϕpIq “ 0, and so p ϕqpIq “ 1. Now let J “ tt1u Ď I: we then get ϕpJq “ 1. Therefore we
have found an interval J Ď I such that p ϕqpJq “ 0, which implies that plp ϕqqpIq “ 0. We
can thus conclude that pp ϕq Ñ lp ϕqqpIq “ 0, as desired. Notice that this argument clearly
works for any proposition of the type εi _ εi`1. �

Proposition 3.3 Θn is not closed with respect to Ñ, that is there exist propositions ϕ,ψ P Θn

such that ϕÑ ψ R Θn.
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Proof. This proposition can be seen as a corollary of the previous one, since it is not
difficult to prove that, for any interval I, p ϕqpIq “ pϕ Ñ KqpIq. However we will explicitly
provide an example not of that form.

Given ϕ “ ε1 _ ε2 and ψ “ ε2, we clearly have that ϕ,ψ P Θn. Now, given I “ tt2, t3u,
we have ϕpIq “ 0, hence pϕ Ñ ψqpIq “ 1. Set J “ tt2u Ď I, we get ϕpJq “ 1 and ψpJq “ 0,
that is pϕ Ñ ψqpJq “ 0. What we have proved so far is that there is an interval I such that
pϕ Ñ ψqpIq “ 1 having a subinterval J for which pϕ Ñ ψqpJq “ 0. The very last statement
(the one concerning J) means that plpϕ Ñ ψqqpJq “ 0. Therefore we can conclude that
ppϕÑ ψq Ñ plpϕÑ ψqqqpIq “ 0, and so ϕÑ ψ R Θn. �

The facts that we have recorded so far tell us that the connectives _ and ^ have a nice
behavior inside Θn; the same cannot be said for the connectives  and Ñ. We now define two
new connectives „ and ù which can afford better notions of negation and implication inside
Θn.

Given an interval I of Tn, we define the semantics of „ and ù as follows:

• p„ϕqpIq “ 1 whenever @J Ď I, ϕpJq “ 0;

• pϕ ù ψqpIq “ 1 whenever @J Ď I, if ϕpJq “ 1, then ψpJq “ 1.

Thus, roughly speaking, we say that „ϕ is true on I whenever ϕ is false on all subintervals
of I, and that ϕ ù ψ is true on I whenever ψ is true on all subintervals of I on which ϕ is
true. We will call „ and ù pseudonegation and pseudoimplication, respectively.

Observe that the semantics of pseudonegation and pseudoimplication can be described
in terms of classical negation and implication and the connectives l and ♦. In fact, for any
interval I, p„ϕqpIq “ p ♦ϕqpIq “ pl ϕqpIq and pϕ ù ψqpIq “ plpϕÑ ψqqpIq. Moreover, as
an immediate consequence of the definitions, we have p„ϕqpIq “ pϕ ù KqpIq.

It is an easy task (and so we leave it to the reader) to prove that, if ϕ,ψ P Θn, then „ϕ,
ϕ ù ψ P Θn. We now show that pseudonegation has the typical behavior of an intuitionistic
negation.

Proposition 3.4 Given ϕ P Θn and I P IntpTnq, if ϕpIq “ 1, then p„„ ϕqpIq “ 1. The
converse, however, does not hold in general.

Proof. We observe that p„„ϕqpIq “ 1 if and only if, for all intervals J Ď I, there exists
an interval K Ď J such that ϕpKq “ 1. Since ϕ P Θn, if we suppose that ϕpIq “ 1, then we
have that, for all intervals J Ď I, ϕpJq “ 1, hence the thesis follows.

To show that the converse does not hold in general, consider the proposition ϕ “ ε1 _ ε2
and the interval I “ tt1, t2u. We immediately see that ϕpIq “ 0. Moreover, the fact that
p„„ϕqpIq “ 1 is equivalent to the fact that, for all intervals J Ď tt1, t2u, there exists an interval
K Ď J such that pε1 _ ε2qpKq “ 1. It is now easy to realize that the last statement is true. �

Proposition 3.5 Given ϕ P Θn and I P IntpTnq, p„ϕqpIq “ 1 if and only if p„„„ϕqpIq “ 1.

Proof.

ñ) This is a special case of the previous proposition.
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ð) Suppose that p„„„ϕqpIq “ 1, then we have that, for all intervals J Ď I, p„„ϕqpJq “ 0.
Thanks to the previous proposition, this implies that, for all intervals J Ď I, ϕpJq “ 0,
that is p„ϕqpIq “ 1, as required. �

We are now ready to show that pseudonegation and pseudoimplication are the “right connec-
tives” in order to describe the Heyting algebra structure of Dyck paths. Given ϕ,ψ P Θn, we say
that ϕ and ψ are equivalent when vpϕq “ vpψq. In this case we write ϕ () ψ. It is now left to the
reader to show that () is an equivalence relation on Θn which preserves _,^,ù,„; this means
that, denoting with ‹ any of the above mentioned binary connectives, if ϕ1, ϕ2, ψ1, ψ2 P Θn

are such that ϕ1 () ϕ2 and ψ1 () ψ2, then ϕ1 ‹ ψ1 () ϕ2 ‹ ψ2 (and a similar fact holds for the
unary connective „). Thus we can endow Θn{() with the distributive lattice structure in which
_ and ^ are well-defined on equivalence classes thanks to the above considerations. Denote
with rΘns the resulting distributive lattice. Thus, for instance, given ϕ,ψ P Θn, denoting with
rϕs, rψs P Θn{() the associated equivalence classes, in rΘns we have that rϕs _ rψs “ rϕ _ ψs,
rϕs ^ rψs “ rϕ ^ ψs and rϕs ù rψs “ rϕ ù ψs. Our next goal is to show that the canonical
Heyting algebra structure on rΘns is given precisely by the pseudoimplication operation ù.

Proposition 3.6 For every ϕ,ψ P Θn, we have:

rϕs ù rψs “
ł

trαs P Θn{() | rϕs ^ rαs ď rψsu.

In other words, ù is the relative pseudocomplement operation in the canonical Heyting
algebra structure of rΘns.

Proof. We start by observing that the partial order relation ď associated with the lattice
structure of rΘns can be described as follows: rϕs ď rψs whenever ϕpIq ď ψpIq, for all intervals
I (which means that, if ϕpIq “ 1, then ψpIq “ 1; this is the usual partial order derived from an
algebra of propositions). The reader is invited to see that ď is well defined since, if the above
condition is satisfied, then the same inequalities hold when ϕ and ψ are replaced by ϕ1 and ψ1,
for any ϕ1 P rϕs, ψ1 P rψs.

Now suppose that S “ trαs P Θn{() | rϕs^rαs ď rψsu “ trα1s, rα2s, . . . , , rαrsu. Thus we wish
to show that rϕ ù ψs “ rα1_α2_¨ ¨ ¨_αrs. The first step will be to prove that rϕ ù ψs P S.
Indeed, recall that the propositions αi are characterized by the fact that rϕ ^ αis ď rψs. Now,
given I P IntpTnq, suppose that pϕ ^ pϕ ù ψqqpIq “ 1. This implies that ϕpIq “ 1. Then,
in order to have pϕ ù ψqpIq “ 1, necessarily ψpIq “ 1. This is enough to conclude that
rϕ^ pϕ ù ψqs ď rψs, and so that rϕ ù ψs P S, as desired.

To conclude the proof, we will now show that rϕ ù ψs is an upper bound of S, i.e.
rϕ ù ψs ě rαis, for all i ď r. To this aim, suppose that αipIq “ 1, for some interval I; it will
be enough to show that pϕ ù ψqpIq “ 1. Given J Ď I such that ϕpJq “ 1, then we also have
αipJq “ 1 (since αi P Θn), and so pϕ ^ αiqpJq “ 1, hence ψpJq “ 1. We have thus shown that
pϕ ù ψqpIq “ 1, as desired. �

As usual, to avoid heavy notations, the whole Heyting algebra structure on the set rΘns
will simply be denoted rΘns. The next lemma is crucial in the proof of our main theorem.

Lemma 3.1 For any ϕ P ITLn, set ϕ “„„ ϕ. Given an interval I of rns, set εI “
Ž

iPI εi.
Then, for any ϕ P Θn, there exists an antichain of intervals I1, I2, . . . , Ir of rns such that

ϕ () εI1 _ εI2 _ ¨ ¨ ¨ _ εIr .

Moreover, when the intervals are listed in increasing order of their minima, the above one is the
unique proposition of that form equivalent to ϕ.
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Proof. Fix ϕ P Θn. Denote with I Ď IntpTnq the set of all maximal intervals such that
ϕpIq “ 1 (where “maximal” is intended with respect to the inclusion order). By construction,
any two elements of I are incomparable; in particular, no two intervals in I can have either of
the two endpoints in common. Totally order the elements of I “ tI1, I2, . . . Iru with respect to
their smallest elements (notice that we would obtain the same total order if we do the same
with respect to the greatest elements). Moreover, identify each element ti P Tn with its index
i P rns. In this way, we have that I Ď Intprnsq and, for each α ď r, Iα P Intprnsq. Our aim is
now to prove

ϕ ()
ł

1ďαďr

εIα . (1)

Before starting to prove this equivalence, it is convenient to observe the following two facts:

• for all intervals J Ď I, εIpJq “ 1;

• for all intervals J Ę I, εIpJq “ 0.

Indeed, given an interval J Ď I, we have εIpJq “„„ p
Ž

iPI εiqpJq “ 1 if and only if, for all
intervals K Ď J , there exists an interval M Ď K such that

ł

iPI

εipMq “ 1.

The last statement is in fact true: for a given K Ď J , it is enough to choose an element
τ P K in order to have

Ž

iPI εiptτuq ě ετ ptτuq “ 1.
On the other hand, given an interval J Ę I, we have εIpJq “„„ p

Ž

iPI εiqpJq “ 0 if and
only if there exists an interval K Ď J such that, for all intervals M Ď K,

p
ł

iPI

εiqpMq “ 0.

Once again, it is not difficult to see that the last equality is true: choosing, for instance,
K “ JzI, one immediately realizes that, for every i P I, εipMq “ 0 (since i R M , and so
M ‰ tiu).

We are now ready to proceed with the announced proof of (1). Given an interval I, since
the only possible truth values are 0 and 1, it will be enough to prove what follows:

(i) if ϕpIq “ 1, then
Ž

α εIαpIq “ 1;

(ii) if ϕpIq “ 0, then
Ž

α εIαpIq “ 0.

Let us prove the two above statements separately.

(i) Suppose that ϕpIq “ 1. Then there exists s such that Is P I and I Ď Is. Therefore
Ž

α εIαpIq ě εIspIq “ 1.

(ii) Suppose that ϕpIq “ 0. This means that I Ę Is, for all s ď r. Therefore εIspIq “ 0, for all
s, hence

Ž

α εIαpIq “ 0. �

For any given ϕ P Θn, the above lemma provides a canonical form for ϕ, which will be
called its closed disjunctive form (briefly, CDF ).

The next theorem is the main result of the present paper.

Theorem 3.1 The Heyting algebra Dn of Dyck paths of semilength n is isomorphic to the
Heyting algebra rΘn´1s.
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Proof. By the previous lemma, we can (and in fact will) identify each equivalence class of
rΘns with the unique proposition in CDF contained in the class. Moreover, we recall that, in
Dn, the atoms are those paths all of whose factors are hills except for a single pyramid having
exactly 4 steps. If P is an atom of Dn, we denote with xP the abscissa of the unique nontrivial
peak of P , and we call xP {2 the order of the atom P .

Define the function f : rΘn´1s Ñ Dn as follows: given pairwise incomparable intervals
I1, I2, . . . , Ir Ď rn ´ 1s, set fpεI1 _ εI2 _ ¨ ¨ ¨ _ εIrq equal to the Dyck path P of semilength n

whose decomposition into join-irreducibles P “ P1_P2_ ¨ ¨ ¨ _Pr has cardinality r and is such
that, for every j ď r, the interval of atoms below Pj is made by the atoms of order i, for all
i P Ij. We claim that f is a Heyting algebra isomorphism.

We start by showing that f is onto. Indeed, given any Dyck path P in Dn, its decomposition
into join-irreducibles uniquely determines an antichain of intervals of rn´1s, which is given by the
intervals I1, . . . Ir of the orders of the atoms lying below each join-irreducible. By construction,
the proposition (in CDF) εI1 _ ¨ ¨ ¨ _ εIr is mapped by f onto P .

Next we prove that f is order-preserving. To this aim, we first give an alternative descrip-
tion of the partial order of the Heyting algebra rΘn´1s, based on the CDF representatives of
equivalence classes. Given ϕ,ψ in rΘn´1s, suppose that ϕ “ εI1_¨ ¨ ¨_εIr and ψ “ εJ1_¨ ¨ ¨_εJs,
for suitable antichains of intervals in rn´1s. Recall that ϕ ď ψ if and only if, for all I Ď rn´1s,
ϕpIq ď ψpIq. Our assumptions on ϕ and ψ implies that ϕpIq “ 1 if and only if I Ď Ih, for some
h ď r (and analogously for ψ). Thus we get that ϕ ď ψ if and only if, for every h ď r, there
exists k ď s such that Ih Ď Jk. Now suppose that ϕ ď ψ. If r “ s “ 1, then fpϕq “ P and
fpψq “ Q are join-irreducibles in Dn, i.e. they consist of a series of hills and a unique pyramid
having at least 4 steps. Saying that ϕ ď ψ means in this case that I1 Ď J1, hence the interval
of atoms dominated by P is contained in the interval of atoms dominated by Q, that is P ď Q.
In the general case, set fpϕq “ P “ P1 _ ¨ ¨ ¨ _ Pr and fpψq “ Q “ Q1 _ ¨ ¨ ¨ _ Qs; if ϕ ď ψ,
then, for every h ď r, there exists k ď s such that Ih Ď Jk, which implies that Ph ď Qk. From
here it follows that P ď Q.

All the above arguments can be reversed, thus showing that f is also order-reflecting, i.e.
that fpϕq ď fpψq implies that ϕ ď ψ.

Therefore we have shown that f is onto, order-preserving and order-reflecting. It is known
that this is enough to conclude that f is an order isomorphism. As a consequence, f is also
a lattice isomorphism. Finally, thanks to Proposition 3.6, if we consider the canonical Heyting
algebra structure induced by the finite distributive lattice structure, we have that f is a Heyting
algebra isomorphism between Dn and rΘn´1s, as desired. �

4 Posets of intervals

The results of the previous sections suggest that every element of a Dyck algebra can be
described by means of the underlying Heyting algebra structure together with a natural linear
order structure on the set of the atoms of the algebra. Below we will try to clarify this statement.

Given a Dyck path P , denote with P its Heyting algebra closure, that is P “„„P . The
set of atoms of a Dyck algebra can be given a total order structure (which has nothing to do
with the partial order of the algebra) by declaring an atom P strictly less than another atom
Q whenever xP ă xQ (we refer to the notation introduced in the proof of theorem 3.1 for the
order of an atom). In this case we will write P ! Q, to avoid confusion with the partial order on
Dyck paths. The (finite) set of atoms of Dn will then be denoted tπ1, π2, . . . , πn´1u, where πi is
the atom of order i. As we have already noticed, a join-irreducible path is uniquely determined
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by the set of atoms lying below it. Such a set of atoms is obviously an interval with respect
to !. More specifically, if P is a join-irreducible and πi, πi`1, . . . , πi`j are the atoms below P ,
then P “ πi _ πi`1 _ ¨ ¨ ¨ _ πi`j. Summing up, every Dyck path can be expressed (via Birkhoff
representation theorem) as the join of the closure of the join of !-intervals of atoms.

A further step towards abstraction consists of identifying an interval of atoms of Dn with
the interval of the orders of such atoms (which is a subset of rn ´ 1s). Thus a Dyck path of
semilength n can be identified with a family of incomparable intervals (i.e., an antichain of
intervals) of rn´1s. This observation leads to a possible generalization of the approach we have
developed so far for Dyck algebras, which we attempt to sketch in the remainder of this section.

Let P be a poset and denote with IntpPq the poset of bounded intervals of P ordered by
inclusion. The generic element of IntpPq is then rx, ys “ tz P P | x ď z ď yu. We are interested
in the set OpIntpPqq of all down-sets of IntpPq. When ordered by inclusion, OpIntpPqq is a
complete distributive lattice. This kind of lattices is often relevant from a theoretical point of
view. For instance, we recall here that, when P is locally finite (i.e. every interval of P is finite),
OpIntpPqq is isomorphic to the lattice of two-sided ideals of the incidence algebra of P. This is
a crucial fact in showing that two locally finite posets are order-isomorphic if and only if their
incidence algebras are isomorphic (see, for instance, [DRS]).

Lemma 4.1 The lattice OpIntpPqq is atomic (i.e. every element of OpIntpPqq contains at least
one atom), and the set of its atoms is in bijection with P .

Proof. For any x P P, the interval rx, xs is a minimal element of IntpPq (and every minimal
element is of this form). Therefore the set A “ ttH, rx, xsu Ď IntpPq | x P Pu is the set of
atoms of OpIntpPqq. Since every nonempty down-set of IntpPq contains at least one interval
I, if x P I, then obviously tH, rx, xsu is contained in the given down-set, which is enough to
conclude. �

The above lemma asserts that there is a natural partial order on the set of atoms of
OpIntpPqq (inherited from the partial order of P), which has of course nothing to do with the
inclusion order on OpIntpPqq. It would be very interesting to deduce properties of the complete
distributive lattice OpIntpPqq from properties of P. Since lattices of down-sets are completely
distributive, they are also Heyting algebras (in the same canonical way as finite lattices are),
thus the same project can be developed for the Heyting algebra structure of OpIntpPqq. To the
best of our knowledge, it seems that this approach to the study of posets of intervals has never
been considered before. To justify it, we now briefly mention some remarkable examples.

Examples.

1. If P is a discrete poset (i.e., an antichain), then clearly IntpPq » P, hence any element
of OpIntpPqq can be seen as a subset of P. This means that OpIntpPqq is a complete and
atomic Boolean algebra.

2. If P is totally ordered, then, in the finite case, OpIntpPqq is isomorphic to a Dyck lattice
of suitable order, see also [FM1]. In case P is infinite, we obtain a natural infinite analog
of Dyck lattices which still deserves to be studied.

3. If P is a finite Boolean algebra, then IntpPq is the sup-semilattice of the nonempty
faces of a cube of suitable dimension (see [BO1, BO2]). However, the distributive lattice
OpIntpPqq has never been studied; a better understanding of its structure, as well as of its
logic-theoretic properties as a Heyting algebra, is surely desirable. Also, we are not aware
of what happens for infinite Boolean algebras.
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5 Combinatorial properties of Dyck paths in terms of atoms of

Dyck lattices

In this final section we will give a glimpse of the potential applications of the general ap-
proach outlined in the previous section in the particular case of Dyck algebras. More specifically,
we will focus on combinatorics, and we will express several combinatorial properties of Dyck
paths in terms of the Heyting algebra structure of Dyck algebras and the natural linear order
! on their atoms.

We recall once again that every path of the Dyck algebra Dn can be identified with an an-
tichain of intervals of the totally ordered set rn´1s (namely, the family of pairwise incomparable
intervals each of which represents the indices of the atoms dominated by a join-irreducible in
the decomposition of the path). For instance, the red Dyck path in Figure 1 corresponds to the
antichain of intervals tr2, 4s, r4, 5s, r6, 6s, r8, 8s, r9, 9su of the set r9s. For any two such antichains
tI1, . . . , Inu and tJ1, . . . , Jmu, it is tI1, . . . , Inu ď tJ1, . . . , Jmu in Dn whenever, for every i ď n,
there exists j ď m such that Ii Ď Jj (as we already noticed in the proof of Theorem 3.1). It is
also useful to record an explicit expression for join and meet:

tI1, . . . , Inu _ tJ1, . . . , Jmu “ tI1, . . . , In, J1, . . . , Jmu;

tI1, . . . , Inu ^ tJ1, . . . , Jmu “ tIi X Jj | i ď n, j ď mu,

where in both the r.h.s.’s we tacitly assume to discard all intervals that are not maximal (this is
of course needed in order to get an antichain). We can also give a description of pseudonegation:
if a path P is represented by the antichain of intervals tI1, . . . , Imu, then „P is represented by
the (unique) family of maximal intervals constituting a partition of the set rn´1szpI1Y¨ ¨ ¨YImq.
Referring to the black path in Figure 2, its pseudonegation is represented by the antichain of
intervals tr4, 4s, r12, 14su of r15s.

We now state and prove a series of propositions which express some important combinatorial
parameters on Dyck paths in terms of the above described “interval” representation of Dyck
paths. For a classical reference on the enumerative combinatorics of Dyck paths, see the survey
article [D]. Before starting we need to introduce a few notations and definitions.

For a given Dyck path P P Dn, we denote with FP the antichain of intervals of rn ´ 1s
representing that path. If FP “ tI1, . . . , Imu, then the cardinality of FP is |FP | “ m, whereas
the weight of FP is }FP } “ |I1 Y ¨ ¨ ¨ Y Im|. Moreover, we say that I P FP is internal when
1, n ´ 1 R I; the set of internal intervals of FP is denoted with F˚

P .

Proposition 5.1 The number of peaks of a Dyck path P P Dn is given by |FP |`}F„P }´|F
˚
„P |.

Proof. Each peak of P of height ą 1 represents the contribution of a join-irreducible in the
(unique) expansion of P as a join of join-irreducibles. Since join-irreducibles of P correspond
to intervals of FP , the contributions of these peaks is exactly |FP |. As far as peaks at height 1
are concerned (i.e., hills), we observe that a bunch of s consecutive hills of P corresponds to an
internal interval of cardinality s` 1 of F„P , except when the bunch of hills is at the beginning
or at the end of the path, in which cases it corresponds to a noninternal interval of cardinality s
of F„P . This means that the number of hills of P is }F„P } ´ |F

˚
„P |, which concludes the proof.

�

A byproduct of the above proof is the following.

Corollary 5.1 The number of hills of a Dyck path P P Dn is given by }F„P } ´ |F
˚
„P |.
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Proposition 5.2 The sum of the heights of the peaks of a Dyck path P P Dn is given by
}FP } ` |FP | ` }F„P } ´ |F

˚
„P | “ n´ 1` |FP | ´ |F

˚
„P |.

Proof. Concerning peaks of height ą 1, we observe that the height of each of them is the
cardinality of the interval which correspond to it minus 1. Thus the contribution to the total
heights sum of such peaks is }FP } ` |FP |. On the other hand, the sum of the heights of the
hills of P equals the number of hills of P , so (from the proof of the previous proposition), their
contribution is given by }F„P } ´ |F

˚
„P |. Summing up the two quantities we have obtained gives

the desired result. �

Proposition 5.3 The number of returns of a Dyck path P P Dn is given by }F„P } ` 1.

Proof. The total number of returns of P is given by the number of its hills plus the
number of its nontrivial factors. As we have already proved, the number of hills of P is given by
}F„P }´|F

˚
„P |. Moreover we observe that the number of nontrivial factors of P is “approximately

equal” to the number of nontrivial factors of „P . They are indeed equal if and only if P either
starts or ends with a hill (but not both); in this case, P has precisely |F„P | nontrivial factors,
and so the total number of returns of P is }F„P }´ |F

˚
„P |` |F„P | “ }F„P }`1 (since in this case

„P has precisely one nontrivial factor either at the beginning or at the end, which corresponds
to a single noninternal interval). Otherwise, P has one more (resp., less) nontrivial factor than
„P if and only if P both starts and ends with a nontrivial factor (resp., with a hill); in this
case P has precisely |F„P | ` 1 (resp., |F„P | ´ 1) nontrivial factors, and so the total number
of returns of P is }F„P } ´ |F

˚
„P | ` |F„P | ` 1 (resp., }F„P } ´ |F

˚
„P | ` |F„P | ´ 1), which equals

}F„P } ` 1 (the reader is invited to check all the details). �

All the results illustrated so far concern statistics which can be directly expressed in terms
of global parameters. We give below a few simple examples in which it is necessary to take into
account some local information. The last example is especially interesting, being an instance of
a kind of “pattern occurrence” statistic. Since the proofs are quite easy, we leave most of them
to the reader. Recall that the “interval” representation of a generic Dyck path P is written
tI1, . . . , Imu, where each Ii is an interval of rn ´ 1s, and the intervals are listed in increasing
order of their minima. Moreover, we say that two consecutive intervals Ii and Ii`1 are distanced
when max Ii ă min Ii`1 ´ 1.

Proposition 5.4 The height of the first peak of a Dyck path P P Dn is given by

"

|I1| ` 1 , if 1 P I1
1 , otherwise

.

Proposition 5.5 The number of peaks before the first return of a Dyck path P P Dn is given
by

"

maxtk | Ii´1 and Ii are not distanced, for all i ď ku , if 1 P I1
1 , otherwise

.

Proposition 5.6 The number of occurrences of the (consecutive) factor duu in a Dyck path
P P Dn is given by

|ti ď n´ 1 | either Ii´1 and Ii are distanced or |IizIi´1| ą 1u.
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Proof. Each occurrence of duu in P corresponds to the occurrence of a valley not immedi-
ately followed by a peak. For any such valley we have two distinct possibilities. If the valley is not
on the x-axis, then it corresponds to a transition between two consecutive join-irreducibles such
that the rightmost one dominates at least two atoms which are not dominated by the leftmost
one. In terms of the “interval” representation of the path, this corresponds to a consecutive pair
of non-distanced intervals Ii´1 and Ii such that |IizIi´1| ą 1. On the other hand, if the valley
lies on the x-axis, then it is immediately followed by a nontrivial factor, and the first interval
Ii corresponding to such a factor is clearly distanced from the previous one Ii´1. �

6 Further work

As already illustrated in section 4, the case of Dyck algebras investigated here is just an
instance of a more general situation. The study of the complete distributive lattices (Heyting
algebras) of the down-sets of the poset of intervals of a generic poset is a totally unexplored
subject, which seems interesting to be pursued both from the algebraic and the logic-theoretic
point of view. We remark that the relevance of posets of intervals in certain logical framework
has already been noticed, see [CM].

In particular, the case in which the starting poset is a Boolean algebra (example 3 in section
4) is related to the logic of the n-cube, initiated in [RM] and recently explored in [Mun].

It would be nice to have a purely algebraic characterization of Dyck lattices and of Dyck
algebras. Even if they are not a variety (in the sense of universal algebra), they show some
interesting features. For instance, Dyck lattices are projective distributive lattices (this follows
from a result of Balbes [B], which asserts that a finite distributive lattice is projective if and
only if the poset of its join-irreducibles is a meet-semilattice).

It is natural to replace Dyck paths with other families of paths. The first, obvious candidates
are Motzkin and Schröder paths. In both cases, the analogous posets are distributive lattices
too, so an investigation of the associated Heyting algebra structures and of their logic-theoretic
interpretations can be done along similar lines.

Is it possible to find analogous results for other fragments of the Halpern-Shoham logic?
More specifically, are there similar combinatorial descriptions when the underlying order of time
instants is a finite total order?
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