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Abstract

The Douglas–Rachford algorithm is a classical and very successful splitting method
for finding the zeros of the sums of monotone operators. When the underlying oper-
ators are normal cone operators, the algorithm solves a convex feasibility problem. In
this paper, we provide a detailed study of the Douglas–Rachford iterates and the cor-
responding shadow sequence when the sets are affine subspaces that do not necessar-
ily intersect. We prove strong convergence of the shadows to the nearest generalized
solution. Our results extend recent work from the consistent to the inconsistent case.
Various examples are provided to illustrates the results.
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1 Introduction

Throughout this paper
X is a real Hilbert space,

with inner product 〈·, ·〉 and induced norm ‖·‖. A (possibly) set-valued operator A : X ⇒
X is monotone if any two pairs (x, u) and (y, v) in the graph of A satisfy 〈x− y, u− v〉 ≥ 0,
and is maximally monotone if it is monotone and any proper enlargement of the graph of
A (in terms of set inclusion) destroys the monotonicity of A. Monotone operators play an
important role in modern optimization and nonlinear analysis; see, e.g., the books [5], [9],
[10], [12], [25], [26], [28], [29], and [30].

Let A : X ⇒ X be maximally monotone and let Id : X → X be the identity operator.
The resolvent of A is JA := (Id+A)−1 and the reflected resolvent is RA := 2JA − Id. It is
well-known that JA is single-valued, maximally monotone and firmly nonexpansive.

The sum problem for two maximally monotone operators A and B is to find x ∈ X
such that 0 ∈ Ax + Bx. When (A + B)−1(0) 6= ∅ one approach to solve the problem
is the Douglas–Rachford splitting technique. Recall that the Douglas–Rachford splitting
operator [21] for the ordered pair of operators (A, B) is defined by

(1) T(A,B) := 1
2(Id+RBRA) = Id−JA + JBRA.

Let x0 ∈ X. When (A + B)−1(0) 6= ∅ the “governing sequence” (Tn
(A,B)x0)n∈N produced by

the Douglas–Rachford operator converges weakly to a point in Fix T(A,B)
1 (see [21]) and

the “shadow sequence” (JATn
(A,B)x0)n∈N converges weakly to a point in (A + B)−10. For

further information on the Douglas–Rachford algorithm, we refer the reader to [17], [21],
[27], and also [5].

When A := NU and B := NV
2, where U and V are nonempty closed convex subsets of

X, the sum problem is equivalent to the convex feasibility problem: Find x ∈ U ∩ V. In
this case, using [5, Example 23.4],

(2) T := T(NU ,NV) = Id−PU + PV RU,

where RU = 2PU − Id. In the inconsistent case, when U ∩V = ∅, the governing sequence
is proved to satisfy that ‖Tnx‖ → +∞ and the shadow sequence (PUTnx)n∈N remains
bounded with the weak cluster points being the best approximation pairs relative to U
and V provided they exist (see [6]).

1Fix T =
{

x ∈ X
∣∣ x = Tx

}
is the set of fixed points of T.

2Throughout the paper we use NC and PC to denote the normal cone and projector associated with a
nonempty closed convex subset C of X, respectively.
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Unlike the method of alternating projections, which employs the operator PV PU, the
Douglas–Rachford method is not fully understood in the inconsistent case. Nonetheless,
the Douglas-Rachford operator is used in [8] to define the “normal problem” when the orig-
inal problem is possibly inconsistent. In this case the set of best approximation solutions
relative to U (which are also known as the normal solutions, see [8]) is U ∩ (v+V), where
v = Pran(Id−T)0. It is natural to ask what can we learn about the algorithm in the highlight
of the new concept of the normal problem.

The goal of this paper is to study the case when U and V are closed affine subspaces
that do not necessarily intersect. The Douglas–Rachford method for two closed affine
subspaces has recently shown to be very useful in many applications, for instance, the
nonconvex sparse affine feasibility problem (see [18] and [19]) and basis pursuit problem
(see [14]). Our results show that the shadow sequence will always converge strongly to a
best approximation solution in U ∩ (v+V) and therefore we generalize the main results
in [3]. This is remarkable because we do not have to have prior knowledge about the
gap vector v; the shadow sequence is simply (PUTnx0)n∈N. Our proofs critically rely on
the well-developed results in the consistent case in [3] and the structure of the normal
problem studied in [8].

We are now ready to briefly summarize our main results:

R1 We compare the sequences ((− vT)nx)n∈N, ((T− v)nx)n∈N
3 and (Tnx + n v)n∈N

when T is an affine nonexpansive operator 4 and v := PId−T0 ∈ ran(Id−T) 5. We
prove that the three sequences coincide (see Theorem 3.2). Surprisingly, when we
drop the assumption of T being affine, the sequences can be dramatically different
(see Example 3.3).

R2 We prove the strong convergence of the shadow sequence (PUTnx0)n∈N when U
and V are affine subspaces that do not have to intersect (see Theorem 4.4). We
identify the limit to be the best approximation solution; moreover, the rate of con-
vergence is linear when U + V is closed.

R3 In view of R2 it is tempting to conjecture that the shadow sequence (JATnx0)n∈N

in the inconsistent case (i.e., when (A + B)−1 = ∅) converges in a more general
setting. We illustrate the somewhat surprising fact that if A and B are affine — but
not normal cone — operators (see Example 4.8), the sequence (JATnx0)n∈N can be
unbounded. In fact, we can have ‖JATnx0‖ → +∞ even though the sum problem

3Let w ∈ X. We define the inner shift and outer shift of an operator T by w at x ∈ X by Twx := T(x− w)
and wTx := −w + Tx, respectively.

4Recall that T is nonexpansive if (∀x ∈ X)(∀y ∈ X) ‖Tx− Ty‖ ≤ ‖x− y‖.
5In highlight of Fact 2.2 the vector v is unique and well-defined.
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has normal solutions 6. This illustrates that normal cone operators have additional
structure that makes R2 possible.

Organization

The remainder of this paper is organized as follows. Section 2 contains a collection of
new results concerning nonexpansive and firmly nonexpansive operators whose fixed
point sets could possibly be empty. Section 3 focuses on affine nonexpansive operators
and their corresponding inner and outer “normal” shifts. Various examples that illustrate
our theory are provided. Section 4 is devoted to present the main results. We prove strong
convergence of the shadows of the Douglas-Rachford iterates of two (not necessarily in-
tersecting) affine subspaces.

Notation

Let C be a nonempty closed convex subset of X. The recession cone of C is rec C := {x ∈
X | x+C ⊆ C}, the polar cone of C is C	 := {u ∈ X | sup〈C, U〉 ≤ 0} and the dual cone of C
is C⊕ = −C	. When C is an affine subspace the linear space parallel to C is par C = C− C.
Otherwise, the notation we utilize is standard and follows, e.g., [5] and [24].

2 Nonexpansive and firmly nonexpansive operators

In this section, we collect various results on (firmly) nonexpansive operators that will be
useful later. Let w ∈ X. Recall that for a single-valued or set-valued operator T we define
the inner shift and outer shift by w at x ∈ X by

(3) Twx := T(x− w) and wTx := −w + Tx,

respectively.

Lemma 2.1. Let T : X → X and let w ∈ X. Then the following hold:

(i) Fix(T−w) = −w + Fix(w + T) = −w + Fix(−wT).

(ii) w ∈ ran(Id−T) ⇐⇒ Fix(w + T) 6= ∅ ⇐⇒ Fix(T−w) 6= ∅.

6The normal solutions are the counterpart of the best approximation solutions in the context of the
normal problem [8] when the operators are not normal cone operators (see Section 4 for details).
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(iii) (∀x ∈ X)(∀n ∈N) (T−w)nx = −w + (w + T)n(x + w) = −w + (−wT)n(x + w).

Proof. (i): Let x ∈ X. Then x ∈ Fix(T−w) ⇐⇒ x = T(x + w) ⇐⇒ x + w = w + T(x +
w) ⇐⇒ x + w ∈ Fix(w + T) ⇐⇒ x ∈ −w + Fix(w + T).

(ii): w ∈ ran(Id−T) ⇐⇒ (∃x ∈ X) such that w = x− Tx ⇐⇒ (∃x ∈ X) such that
x = w + Tx ⇐⇒ Fix(w + T) 6= ∅. Now combine with (i).

(iii): We proceed by induction. The conclusion is clear when n = 0. Now assume that
for some n ∈ N it holds that (T−w)nx = −w + (w + T)n(x + w). Then (T−w)n+1x =
T((T−w)nx + w) = T(−w + (w + T)n(x + w) + w) = −w + w + T((w + T)n(x + w)) =
−w + (w + T)n+1(x + w), as claimed. �

We recall the following important fact.

Fact 2.2 (Infimal displacement vector). (See, e.g., [2],[11] and [22].) Let T : X → X be
nonexpansive. Then ran(Id−T) is convex; consequently, the infimal displacement vector

(4) v := Pran(Id−T)0

is the unique and well-defined element in ran(Id−T) such that ‖v‖ = inf
x∈X
‖x− Tx‖.

Unless stated otherwise, throughout this paper we assume that

(5) T is a nonexpansive operator on X,

and that

(6) v := Pran(Id−T)0 ∈ ran (Id−T).

In view of (6) and Lemma 2.1(ii) we have

(7) Fix(T− v) 6= ∅ and Fix(v+T) 6= ∅.

We start with the following useful result.

Lemma 2.3. Let C be a nonempty closed convex subset of X and let c ∈ C satisfies that ‖c‖ =
‖PC0‖. Then c = PC0.

Proof. See Appendix A. �

Proposition 2.4. Let y0 ∈ Fix(v+T). Then the following hold:

(i) y0 −R+ v ⊆ Fix(v+T).
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(ii) Fix(v+T)−R+ v = Fix(v+T).

(iii) −R+ v ⊆ rec(Fix(v+T)).

(iv) (∀n ∈N) Tny0 = y0 − n v.

(v) ]−∞, 1] · v+ Fix T− v ⊆ Fix(v+T). In particular it holds that Fix(T− v) ⊆ Fix(v+T).

(vi) For every x ∈ X, the sequence (Tnx + n v)n∈N is Féjer monotone with respect to both
Fix(v+T) and Fix(T− v).

(vii) Suppose that x0 ∈ Fix T− v and set (∀n ∈ N) xn = Tnx0. Then xn = x0 − n v and
(xn)n∈N lies in Fix(T− v).

Proof. (i): First we use induction to show that

(8) (∀n ∈N) y0 − n v ∈ Fix(v+T).

Clearly when n = 0 the base case holds true. Now suppose that for some n ∈ N it holds
that y0 − n v ∈ Fix(v+T), i.e.,

(9) y0 − n v = v+T(y0 − n v).

Using (6) and (9) we have

‖v‖ ≤ ‖(Id−T)(y0 − (n + 1) v)‖ = ‖y0 − (n + 1) v−T(y0 − (n + 1) v)‖
= ‖y0 − n v− v−T(y0 − (n + 1) v)‖ = ‖T(y0 − n v)− T(y0 − (n + 1) v)‖ ≤ ‖v‖.

Consequently all the inequalities above are equalities and we conclude that ‖v‖ = ‖y0 −
(n + 1) v−T(y0 − (n + 1) v)‖. It follows from (6) and Lemma 2.3 that

(10) y0 − (n + 1) v−T(y0 − (n + 1) v) = v .

That is, y0 − (n + 1) v = v+T(y0 − (n + 1) v), which proves (8). Now using [5, Corol-
lary 4.15] we learn that Fix(v+T) is convex, which when combined with (8) yields (i).

(ii): On the one hand it follows from (i) that Fix(v+T) −R+ v ⊆ Fix(v+T). On the
other hand Fix(v+T) = Fix(v+T)− 0 · v ⊆ Fix(v+T)−R+ v.

(iii): This follows directly from (ii).

(iv): We use induction. Clearly y0− 0 v = y0 = T0y0. Now suppose that for some n ∈N

it holds Tny0 = y0 − n v. Using (i) we have Tn+1y0 = T(y0 − n v) = − v+y0 − n v =
y0 − (n + 1) v.
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(v): Using Lemma 2.1(i) and (i) we have ]−∞, 1] · v+ Fix T− v = v−R+ v+ Fix T− v =
Fix(v+T) − R+ v = Fix(v+T). In particular we have Fix T− v = 0 · v+ Fix T− v ⊆
Fix(v+T).

(vi): Let x ∈ X and let y ∈ Fix(v+T). Then using (iv) we have for every n ∈N,

‖Tn+1x + (n + 1) v−y‖ = ‖Tn+1x− (y− (n + 1) v)‖ = ‖Tn+1x− Tn+1y‖
≤ ‖Tnx− Tny‖ = ‖Tnx− (y− n v)‖ = ‖Tnx + n v−y‖.

The statement for Fix T− v follows from (v).

(vii): Combine (v) and (iv) to get that xn = x0 − n v. Now by Lemma 2.1(i) x0 + v ∈
Fix(v+T). Using (i) we have (∀n ∈ N) x0 + v−n v ∈ Fix(v+T) or equivalently by
Lemma 2.1(i) x0 − n v ∈ − v+ Fix(v+T) = Fix(T− v). �

The next example is readily verified.

Example 2.5. Let C be a nonempty closed convex subset of X and suppose that T = Id−PC.
Then T is firmly nonexpansive7 and v = PC0. Let x ∈ X. Then x ∈ Fix(v+T) ⇐⇒ PCx = v,
while x ∈ Fix T− v ⇐⇒ PC(x + v) = v.

Proposition 2.6. Suppose that X = R, and that Fix T = ∅. Let x ∈ R and set (∀n ∈N) yn =
Tnx + n v. Then the following hold:

(i) (yn)n∈N converges.

(ii) R→ R : x 7→ lim
n→∞

(Tnx + n v) is nonexpansive.

(iii) Suppose that T is firmly nonexpansive. Then R → R : x 7→ lim
n→∞

(Tnx + n v) is firmly
nonexpansive.

Proof. (i): In view of Proposition 2.4(vi) the sequence (yn)n∈N is Féjer monotone with
respect to Fix(v+T). Now by Proposition 2.4(i) we know that Fix(v+T) contains an
unbounded interval. Since X = R we conclude that int Fix(v+T) 6= ∅. It follows from
[5, Proposition 5.10] that (yn)n∈N converges.

(ii): Let y ∈ R. Then∣∣∣ lim
n→∞

(Tnx + n v)− lim
n→∞

(Tny + n v)
∣∣∣ = ∣∣∣ lim

n→∞
(Tnx + n v−Tny− n v)

∣∣∣
= lim

n→∞
|Tnx− Tny| ≤ lim

n→∞
|x− y| = |x− y|.(11)

7Recall that T : X → X is firmly nonexpansive if (∀x ∈ X)(∀y ∈ X) ‖Tx − Ty‖2 + ‖(Id−T)x −
(Id−T)y‖2 ≤ ‖x− y‖2.
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(iii): It follows from [5, Proposition 4.2(iv)] that an operator is firmly nonexpansive if and
only if it is nonexpansive and monotone. Therefore, in view of (ii), we need to check
monotonicity. Without loss of generality let y ∈ R such that x ≤ y. Since T is firmly
nonexpansive, hence monotone, one can verify that (∀n ∈ N) Tnx ≤ Tny and therefore
(∀n ∈N) Tnx + n v ≤ Tny + n v. Now take the limit as n→ ∞. �

When X = R, it follows from Proposition 2.6(i) that the sequence (Tnx + n v)n∈N con-
verges. In view of Proposition 2.4(vi) the sequence (Tnx+ n v)n∈N is Féjer monotone with
respect to Fix(v+T) which might suggest that the limit lies in Fix(v+T). We show in the
following example that this is not true in general.

Example 2.7. Suppose that X = R and that

(12) T : R→ R : x 7→


x− α, if x ≤ α;
0, if α < x ≤ β;
x− β, if x > β,

where 0 < α < β. Then T is firmly nonexpansive but not affine, v = α, Fix(v+T) = ]−∞, α],
Fix T− v = ]−∞, 0] , and

(13) Tn + n v : R→ R : x 7→


x, if x ≤ α;
α, if α < x ≤ β;
x− n(β− α), if x > β and n ≤ bx/βc;
min

{
α, x−

⌊
x
β

⌋
β
}
+
⌊

x
β

⌋
α, if x > β and n > bx/βc.

Consequently,

(14) lim
n→∞

(Tn + n v) : R→ R : x 7→


x, if x ≤ α;
α, if α < x ≤ β;

min
{

α, x−
⌊

x
β

⌋
β
}
+ α
⌊

x
β

⌋
, if x > β.

Therefore for every x0 ∈ R the sequence (Tnx0 + n v)n∈N is eventually constant. However, if the
starting point x0 lies in the interval ]β, ∞[, then limn→∞ Tnx0 + n v = min{α, x − b x

βcβ}+
αb x

βc 6∈ Fix(v+T).

Proof. See Appendix B. �

3 Affine nonexpansive operators

In this section, we investigate properties of affine nonexpansive operators. This additional
assumption allows for stronger results than those obtained in the previous section. We
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recall the following fact.

Fact 3.1. (See [5, Proposition 3.17].) Let S be a nonempty subset of X, and let y ∈ X. Then

(15) (∀x ∈ X) Py+Sx = y + PS(x− y).

Theorem 3.2. Let L : X → X be linear and nonexpansive, let b ∈ X, and suppose that T : X →
X : x 7→ Lx + b. Suppose also that v ∈ ran(Id−T), and let x ∈ X. Then the following hold:

(i) v = PFix L(−b) ∈ Fix L = (ran(Id−L))⊥, and v 6= 0 ⇐⇒ b 6∈ ran(Id−L).

(ii) (∀n ∈N) Tnx = Lnx + ∑n−1
k=0 Lkb.

(iii) (∀n ∈N) Tnx + n v = Lnx + ∑n−1
k=0 LkPran(Id−L)b.

(iv) (∀n ∈N) (T− v)nx = Tnx + n v.

(v) (∀n ∈N) (T− v)nx = (v+T)nx.

(vi) Fix T− v = − v+ Fix T− v = − v+ Fix(v+T) = Fix(v+T).

(vii) Fix(T− v) = Fix(v+T) = R v+ Fix(v+T) = R v+ Fix(T− v). Consequently v lies in
the lineality space 8 of Fix(T− v) = Fix(v+T).

Proof. (i): Note that ran(Id−T) = ran(Id−L)− b and hence ran(Id−T) = ran(Id−L)−
b. Therefore, using Fact 3.1 we have v = Pran(Id−T)0 = P−b+ran(Id−L)0 = −b +

Pran(Id−L)(0 − (−b)) = −b + Pran(Id−L)b. Using [5, Fact 2.18(iv)] and [7, Lemma 2.1],
we learn that ran(Id−L)⊥ = ker(Id−L∗) = Fix L∗ = Fix L, and hence

(16) v = (Id−Pran(Id−L))(−b) = P(ran(Id−L))⊥(−b) = PFix L(−b).

Note that v 6= 0 ⇐⇒ b 6∈ ran(Id−L).

(ii): We prove this by induction. When n = 0 the conclusion is obviously true. Now
suppose that for some n ∈N it holds that

(17) Tnx = Lnx +
n−1

∑
k=0

Lkb.

Then Tn+1x = T(Tnx) = T(Lnx + ∑n−1
k=0 Lkb) = L(Lnx + ∑n−1

k=0 Lkb) + b = Ln+1x +

∑n
k=0 Lkb, as claimed.

8For the definition and a detailed discussion of the lineality space, we refer the reader to [23, page 65].
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(iii): Note that b = Pran(Id−L)b + PFix Lb. Using (i) and (ii) yields

Tnx + n v = Lnx +
n−1

∑
k=0

(Lkb + v) = Lnx +
n−1

∑
k=0

(
Lkb + Lk v

)
= Lnx +

n−1

∑
k=0

(
Lkb− LkPFix Lb

)
= Lnx +

n−1

∑
k=0

Lk(Id−PFix L)b

= Lnx +
n−1

∑
k=0

LkPran(Id−L)b.

(iv): We prove this by induction. Note that by (i) v ∈ Fix L, hence L v = v. When
n = 0 we have (T− v)0x = x = T0x + 0 · v. Now suppose that for some n ∈ N it holds
that (T− v)nx = Tnx + n v. Then (T− v)n+1x = T− v(Tnx + n v) = T(Tnx + n v+ v) =
L(Tnx) + L((n + 1) v) + b = Tn+1x + (n + 1) v.

(v) We use induction again. The base case is obviously true. Now suppose that for
some n ∈ N it holds that (v+T)nx = Tnx + n v . Then (v+T)n+1x = v+T(v+T)nx =
v+T(Tnx + n v) = v+L(Tnx + n v) + b = v+LTnx + n v+b = LTnx + b + (n + 1) v
= Tn+1x + (n + 1) v. Now combine with (iv).

(vi): Using (v) with n = 1 we have T− v = v+T. Now apply Lemma 2.1(i).

(vii): Using (vi) and the assumption that T is an affine operator, we have Fix(T− v) =
Fix(v+T) is an affine subspace. Now let y0 ∈ Fix(T− v) = Fix(v+T). Using Propo-
sition 2.4(i) we have −R+ v ⊆ Fix(v+T) − y0 = par Fix(v+T) and therefore R v ⊆
par Fix(v+T). Hence y0 + R v ⊆ Fix(v+T) which yields Fix(v+T) + R v ⊆ Fix(v+T).
Since the opposite inclusion is obviously true we conclude that (vii) holds. �

Suppose T is nonexpansive but not affine. Theorem 3.2 might suggest that, for ev-
ery x ∈ X, the sequences (Tnx + n v)n∈N, (Tn

− vx)n∈N
and ((v+T)nx)n∈N coincide, and

consequently (Tnx + n v)n∈N is a sequence of iterates of a nonexpansive operator. Inter-
estingly, this is not the case as we illustrate now.

Example 3.3. Suppose that X = R and let β > 0. Suppose that

(18) T : R→ R : x 7→
{

x− β, x ≤ β;
α (x− β) , x > β,

where 0 < α < 1. Then Fix T = ∅, v = β, for every n ∈N

(19) (T− v)
n : R→ R : x 7→ αn max {x, 0}+ min {x, 0} ,

(20) (v+T)n : R→ R : x 7→ αn max {x− β, 0}+ min {x, β} ,
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and

(21) Tn + n v : R→ R : x 7→


x, if x ≤ β;

αnx−
(

α(1−αn)
1−α

)
β + nβ, if x > β, n < q(x);

αq(x)x−
(

α(1−αq(x))
1−α

)
β + q(x)β, if x > β, n ≥ q(x),

where q(x) : R→N : x 7→
⌈

logα
β

αβ+(1−α)x

⌉
. Consequently,

(22) (∀x ∈ R) lim
n→∞

(T− v)
n x = min {x, 0} ,

(23) (∀x ∈ R) lim
n→∞

(v+T)nx = min {x, β} ,

and

(24) (∀x ∈ R) lim
n→∞

(Tnx + n v) =

x, if x ≤ β;

αq(x)x−
(

α(1−αq(x))
1−α

)
β + q(x)β, if x > β.

Moreover, there is no operator S : R → R such that for every x ∈ R and for every n ∈ N we
have Snx = Tnx + n v.

Proof. See Appendix C. �

Figure 1: The solid curve represents limn→∞(T− v)nx, the dashed dotted curve represents
limn→∞(v+T)nx, and the dashed curve represents limn→∞ Tnx + n v, when α = 0.5 and
β = 1.
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Figure 1 provides a plot of the functions defined by (22), (23) and (24) that illustrates
that they are pairwise distinct.

4 The Douglas–Rachford operator for two affine subspaces

Unless otherwise stated we assume from now on that

A and B are maximally monotone operators on X.

The Attouch–Théra dual pair of (A, B) (see [1]) is the pair (A, B)∗ := (A−1, B−>), where

(25) A> := (− Id) ◦ A ◦ (− Id) and A−> := (A−1)> = (A>)−1.

We shall use

(26) Z := Z(A,B) = (A + B)−1(0) and K := K(A,B) = (A−1 + B−>)−1(0),

to denote the primal and dual solutions respectively (see e.g. [4]).

The normal problem associated with the ordered pair (A, B) (see [8]) is to find x ∈ X such
that

(27) 0 ∈ vAx + Bvx = Ax− v+B(x− v),

where

(28) v = Pran(Id−T),

and T = T(A,B) is defined by (1). We recall (see [13, Lemma 2.6(iii)] and [4, Corollary 4.9])
that

(29) Z = JA(Fix T) and K = (Id−JA)(Fix T),

and that T is self-dual (see [16, Lemma 3.6 on page 133] and [4, Corollary 4.3]), i.e.,

(30) T(A,B) = T(A,B)∗ = T(A−1,B−>).

The normal pair associated with the ordered pair (A, B) is the pair (vA, Bv) and the normal
Douglas-Rachford operator is T(v A,Bv). Using [8, Proposition 2.24] we have

(31) T(v A,Bv) = T− v.

The set of normal solutions is Zv := Z(v A,Bv) and the set of dual normal solutions is Kv :=
K(v A,Bv).
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Lemma 4.1. The following hold:

(i) Zv = Jv A(Fix(T− v)) = J(− v+A)(Fix(T− v)) = JA(Fix(T− v) + v) = JA(Fix(v+T)).

(ii) Kv = (Id−Jv A)(Fix(T− v)) = (Id−J(− v+A))(Fix(T− v)).

(iii) Kv 6= ∅ ⇐⇒ Zv 6= ∅ ⇐⇒ v ∈ ran(Id−T).

Proof. (i): Apply (29) to the normal pair (vA, Bv) and use (31) and (3). Now apply [5,
Proposition 23.15(ii)]. The last equality follows from Lemma 2.1(i). (ii): Apply (29) to the
normal pair (vA, Bv) then use (31) and [5, Proposition 23.15(iii)]. (iii): The first equiv-
alence follows from applying [4, Proposition 2.4(v)] to the normal pair (vA, Bv). Now
combine Lemma 2.1(ii) and (i). �

In the following we assume that

(32) v = Pran(Id−T)0 ∈ ran (Id−T),

that

(33) U and V are nonempty closed convex subsets of X

and that

(34) A = NU and B = NV .

Using [5, Example 23.4], (1) becomes

(35) TU,V := T(NU ,NV) = Id−PU + PV RU,

where RU = 2PU − Id. In this case (see [8, Proposition 3.16])

(36) v = PU−V0,

or equivalently

(37) − v ∈ NU−V(v).

The normal problem now is to find x ∈ X such that

(38) 0 ∈ NUx− v+NV(x− v).

Lemma 4.2. Let w ∈ X. Then the following hold:

13



(i) J−w+NU = JNU(·+ w) = PU(·+ w).

(ii) JNU(·−w) = w + JNU(· − w) = w + PU(· − w).

(iii) NV(· − w) = Nw+V .

(iv) Suppose that U is an affine subspace and and that w ∈ (par U)⊥. Then (∀α ∈ R)(∀x ∈ X)
PU(x + αw) = PUx.

Proof. (i) and(ii): See [5, Proposition 23.15(ii) and (iii) and Example 23.4]. (iii): One can
easily verify that (∀w ∈ X) we have ιV(· − w) = ιw+V . Therefore NV(· − w) = ∂ιV(· −
w) = ∂ιw+V = Nw+V . (iv): Let a ∈ U. Then U = a + par U. Using Fact 3.1, we have
(∀α ∈ R)(∀x ∈ X) PU(x + αw) = Pa+par U(x + αw) = a + Ppar U(x + αw − a) = a +
Ppar U(x− a) + αPpar Uw = a + Ppar U(x− a) = Pa+par Ux = PUx. �

Proposition 4.3. Suppose that U and V are closed affine subspaces of X and that T = TU,V .
Then the following hold:

(i) T is affine and T = Id−PU − PV + 2PV PU.

(ii) v ∈ (par U)⊥ ∩ (par V)⊥.

(iii) (∀x ∈ X) (∀α ∈ R) PUx = PU(x + α v).

(iv) (∀x ∈ X) (∀α ∈ R) PV x = PV(x + α v).

(v) T− v = v+T = TNU ,NV(·−v) = TU,v+V .

(vi) Zv = U ∩ (v+V).

(vii) Kv = (par U)⊥ ∩ (par V)⊥.

(viii) Fix(T− v) = Fix(v+T) = Zv + Kv = (U ∩ (v+V)) + ((par U)⊥ ∩ (par V)⊥).

Proof. (i): Note that JA = PU and JB = PV are affine (see e.g. [5, Corollary 3.20(i)]). Using
(35) we have T = Id−PU + PV(2PU − Id) = Id−PU + 2PV PU − PV . Since the class of
affine operators is closed under addition, subtraction and composition we deduce that T
is affine.

(ii): It follows from [6, Proposition 2.7 & Remark 2.8(ii)] that v ∈ (rec U)⊕ ∩ (rec V)	 =
(par U)⊥ ∩ (par V)⊥, where the last equality follows from [5, Proposition 6.22 and Propo-
sition 6.23(v)].

(iii) and (iv): Combine (ii) with Lemma 4.2(iv).
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(v) It follows from (iv) with α replaced by −1, and Lemma 4.2(ii) that JNV(·−v) =

v+PV(· − v) = v+PV . Consequently, using Theorem 3.2(v) and (1) we have T− v =
v+T = Id−PU + v+PV RU = TNU ,NV(·−v). Finally, Lemma 4.2(iii) implies that
TNU ,NV(·−v) = TNU ,Nv+V = TU,v+V .

(vi): See [8, Proposition 3.16].

(vii): Let z ∈ U ∩ (v+V) = Zv and note that, as subdifferential operators, NU and
NV are paramonotone (see, e.g., [20]) and so are the translated operators − v+NU and
NV(· − v). Therefore, in view of [4, Remark 5.4] and (ii) we have

Kv = (− v+NUz) ∩ (−NV(z− v)) = (− v+(par U)⊥) ∩ (par V)⊥

= (par U)⊥ ∩ (par V)⊥.(39)

(viii): Since − v+NU and NV(· − v) are paramonotone, it follows from (v), (vii) and [4,
Corollary 5.5] applied to the normal pair (vA, Bv) that Fix(T− v) = Fix(v+T) = Zv + Kv.
Now combine with (vi) and (vii). �

We are now ready for our main result. It illustrates that, even in the inconsistent case,
the “shadow sequence” (PUTnx)n∈N behaves extremely well because it converges to a
normal solution without prior knowledge of the infimal displacement vector. The proof of
Theorem 4.4 relies on the work leading up to this point as well as the convergence analysis
of the consistent case in [3].

Theorem 4.4 (Douglas-Rachford algorithm for two affine subspaces). Let x ∈ X. Then
(∀n ∈N) we have

(40) PUTnx = PU(Tnx + n v) = PU((T− v)
nx) = PUTn

U,v+V = J− v+NU((T− v)
nx),

and

(41) PUTnx → PZv x = PU∩(v+V)x.

Moreover, if par U + par V is closed (as is always the case when X is finite-dimensional) then the
convergence is linear 9 with rate being the cosine of the Friedrichs angle

(42) cF(par U, par V) := sup
u∈par U∩W⊥∩ball(0;1)
v∈par V∩W⊥∩ball(0;1)

|〈u, v〉| < 1,

where W = par U ∩ par V and ball(0; 1) is the closed unit ball.

9Recall that xn → x linearly with rate γ ∈ ]0, 1[ if (γ−n‖xn − x‖)n∈N is bounded.
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Proof. Let n ∈ N. Using 4.3(iii) with (x, α) replaced by (Tnx, n) we learn that
PUTnx = PU(Tnx + n v). Now combine with Theorem 3.2(iv) to get the second iden-
tity. The third identity follows from applying Proposition 4.3(v). Finally note that using
the first identity, 4.3(iii) with (x, α) replaced by ((T− v)nx, 1) and Lemma 4.2(i) we learn
that PUTnx = PU((T− v)nx + v) = J− v+NU((T− v)nx). Now we prove (41). It follows from
(32), Lemma 4.1(iii) and Proposition 4.3(vi) that Zv = U ∩ (v+V) 6= ∅. Now apply [3,
Corollary 4.5]. �

Figure 2: Two nonintersecting affine subspaces U (blue line) and V (purple line) in R3.
Shown are also the first few iterates of (Tnx0)n∈N (green points) and (PUTnx0)n∈N (red
points).

Figure 2 shows a Geogebra snapshot [15] of the Douglas–Rachford iterates and its shad-
ows for two nonintersecting nonparallel lines U and V in R3.

The following result is known (see e.g., [11, Corollary 1.5] and [2, Corollary 2.3]). We
include a simple proof for completeness in Appendix D.

Proposition 4.5. Suppose that T : X → X be firmly nonexpansive, and that v = Pran(Id−T)0 ∈
ran(Id−T). Then

(43) (∀x ∈ X) Tnx− Tn+1x → v .
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Proposition 4.6 (When only one set is an affine subspace). Suppose that U is an affine sub-
space of X, and that T = TU,V . Then for every x ∈ X the sequence (PUTnx)n∈N is asymptotically
regular, i.e., PUTnx− PUTn+1x → 0.

Proof. Using [6, Remark 2.8(ii)] we have v ∈ (par U)⊥. It follows from Lemma 4.2(iv)
applied with (x, α) replaced by (Tn+1x, 1) and Proposition 4.5 that

(44) ‖PUTnx− PUTn+1x‖ = ‖PUTnx− PU(Tn+1x + v)‖ ≤ ‖Tnx− Tn+1x− v‖ → 0,

as claimed. �

Example 4.7. (The dual shadows) Consider the case when U and V are affine subspaces of
X such that U ∩ V = ∅. Set Ã := N−1

U and B̃ := N−>
V . Then Ã−1 = NU, B̃−> = NV ,

and using (30) we have T(Ã,B̃) = T(Ã−1,B̃−>) = TU,V . Moreover the inverse resolvent identity
(see, e.g., [24, Lemma 12.14]) implies that (∀x ∈ X) JÃTnx = (Id−PU)Tnx = Tnx− PUTnx.
Note that K = U ∩ V = ∅, hence by (29) and (30) Fix T(Ã,B̃) = ∅. Using [22, Corollary 6(a)]
we learn that for every x ∈ X we have ‖Tnx‖ → ∞. Moreover, in view of (32), using [6,
Theorem 3.13(iii)] we know that for every x ∈ X we have (PUTnx)n∈N is a bounded sequence.
Therefore, ‖JÃTnx‖ = ‖Tnx− PUTnx‖ ≥ ‖Tnx‖ − ‖PUTnx‖ → ∞.

We conclude with the following example which shows that for two affine (but not nor-
mal cone) operators the shadows need not converge.

Example 4.8. Suppose that X = R2 and let S : R2 → R2 : (x1, x2) 7→ (−x2, x1), be the
counter-clockwise rotator by π/2. Let b ∈ R2 r {(0, 0)}. Suppose that A := S and set B :=
−S + b. Then zer A 6= ∅, zer B 6= ∅ yet zer(A + B) = ∅. Moreover, v = (Id+S)(b), the set
of normal solutions Zv = R2 and for every x ∈ R2 we have ‖JATnx‖ → ∞.

Proof. Let x ∈ R2 and note that S and −S are both linear, continuous, single-valued,
monotone and S2 = (−S)2 = − Id. It follows from [8, Proposition 2.10] that JAx =
JSx = 1

2(Id−S)x = 1
2(x − Sx). Similarly using [5, Proposition 23.15(ii)] we can see that

JBx = 1
2(x − b + Sx − Sb). Therefore we have RAx = −Sx and RBx = −b + Sx − Sb.

Hence RBRAx = S(−Sx) − Sb − b = −S2x − Sb − b = x − Sb − b = x − (Id+S)b.
Consequently we have

(45) (∀x ∈ R2) Tx = 1
2(Id+RBRA)x = x− 1

2(Id+S)b.

It follows from (45) that ran(Id−T) = {1
2(Id+S)b}, hence v = 1

2(Id+S)b and Tx = x−v.
Therefore, using Theorem 3.2(v) Fix(v+T) = Fix(T− v) = R2. Moreover, using (29) and
(31) applied to the normal pair (vA, Bv) we learn that Zv = Jv A(Fix(T− v)) = R2. In
view of Proposition 2.4(i) we have Tnx = x − n v. Hence, using that JA is linear, we get
JATnx = JA(x − n v) = JAx − nJA v. Now JA v = 1

2(Id−S)(1
2(Id+S)b) = 1

2 b 6= (0, 0),
which completes the proof. �
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Appendix A

Proof of Lemma 2.3. Using that PC is firmly nonexpansive we have ‖c− PC0‖2 = ‖PCc−
PC0‖2 ≤ ‖c − 0‖2 − ‖(Id−PC)c − (Id−PC)0‖2 = ‖c‖2 − ‖c − PCc + PC0‖2 = ‖c‖2 −
‖PC0‖2 = 0. �

Appendix B

Proof of Example 2.7. Clearly

(46) Id−T = P[α,β] : R→ R : x 7→


α, if x ≤ α;
x, if α < x ≤ β;
β, if x > β.

Therefore, ran(Id−T) = [α, β], and consequently v = α. Moreover

(47) (∀x ∈ R) x ≥ Tx + α ≥ T2x + 2α ≥ · · · ≥ Tnx + nα ≥ · · · .

It is clear from Example 2.5 that

(48) Fix(v+T) = ]−∞, α] .

The statement for Fix T− v then follows from combining (48) and Lemma 2.1(i). The con-
vergence of the sequence follows from Example 2.5 or Proposition 2.6(i). Now we prove
(13). We claim that
(49)

Tn : R→ R : x 7→


x− nα, if x ≤ α;
(1− n)α, if α < x ≤ β;
x− nβ, if x > β and n ≤ bx/βc;
min

{
α, x−

⌊
x
β

⌋
β
}
+
(⌊

x
β

⌋
− n

)
α, if x > β and n > bx/βc.

Using induction it is easy to verify the cases when x ≤ α and when α < x ≤ β. Now we
focus on the case when x > β. Set

(50) K := bx/βc and r := x− Kβ,
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and note that x = Kβ + r, K ∈ {1, 2, 3, . . .} and 0 ≤ r < β. In view of (47), if n ∈
{0, 1, 2, 3, . . . , K} we get Tnx = x− nβ = (K− n)β + r. In particular,

(51) TKx = x− bx/βcβ = r.

If n > K we examine two cases. Case 1: 0 ≤ r ≤ α. It follows from (51) and (12) that
(∀n ≥ K) Tnx = r + (K − n)α. Case 2: α < r < β. Note that TK+1x = 0, therefore using
(51) and (12) we have (∀n > K) Tnx = (K + 1− n)α = α + (K − n)α, which proves (49).
Now (13) follows from (49) because v = α. Letting n → ∞ in (13) yields (14). Note that
min{α, x− b x

βcβ} ≥ 0 and b x
βc ≥ 1. By considering cases (K = 1 and K ≥ 1), (14) implies

that limn→∞(Tnx0 + n v) = min{α, x− b x
βcβ}+ b

x
βcα > α 6∈ ]−∞, α] = Fix(v+T).

�

Appendix C

Proof of Example 3.3. Considering cases, we easily check that

(52) Id−T : R→ R : x 7→ (1− α)max {x, β}+ αβ ≥ β > 0.

Hence Fix T = ∅ and v = β as claimed. Moreover, using (52) one can verify that

(53) (∀x ∈ X) x ≥ Tx + β > · · · ≥ Tnx + nβ ≥ Tn+1x + (n + 1)β ≥ · · · .

We also verify that

(54) (∀x ∈ R) T− v : R→ R : x 7→ max {x, 0} α + min {x, 0} .

We now prove (19) by induction. Let x ∈ R.

Clearly when n = 0 the base case holds true. Now suppose that for some n ∈ N (19)
holds. If x ≤ 0 then (T− v)

n x = x ≤ 0, and therefore, (54) implies that (T− v)
n+1 x =

T− v((T− v)
n x) = T− vx = x. Similarly we have x > 0 ⇒ αnx = (T− v)

n x > 0, and
consequently (54) implies that (T− v)

n+1 x = T− v((T− v)
n x) = T− v(αnx) = αn+1x. The

proof of (20) follows from combining (19) and Lemma 2.1(iii). Now we turn to (21). We
consider two cases.
Case 1: x ≤ β. It is obvious using the definition of T that (∀n ∈N) Tnx = x− nβ.
Case 2: x > β. Let n ∈N be such that Tnx > β. By (53) and (18) we have

Tn+1x = αn+1x− (αn+1 + αn + · · ·+ α)β = αn+1x− α(1− αn+1)

1− α
β
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= αn+1
(
(1− α)x + αβ

1− α

)
− α

1− α
β.(55)

In view of (53) there exists a unique integer, say, q(x) ∈ {1, 2, . . .} that satisfies Tq(x)−1x >

β and Tq(x)x ≤ β. Since 0 < α < 1, using (55) we have

Tq(x)x ≤ β ⇐⇒ αq(x)
(
(1− α)x + αβ

1− α

)
− α

1− α
β ≤ β

⇐⇒ αq(x)
(
(1− α)x + αβ

1− α

)
≤ β

1− α
⇐⇒ αq(x) ((1− α)x + αβ) ≤ β

⇐⇒ αq(x) ≤ β

(1− α)x + αβ
⇐⇒ q(x) ≥ logα

β

αβ + (1− α)x
.

Consequently, q(x) =
⌈

logα
β

αβ+(1−α)x

⌉
. At this point, since Tq(x)x ≤ β, we must have

(∀n ≥ q(x)) Tnx = Tq(x)x− (n− q(x))β, which proves (21). The formulae (22), (23) and
(24) are direct consequences of (19), (20) and (21), respectively. To prove the last claim
note that if S : R → R is such that for every n ∈ N we have Sn = Tn + n v, then setting
n = 1 must yield

(56) S = v+T : R→ R : x 7→
{

x, x ≤ β;
α (x− β) + β, x > β.

Now compare (20) and (21). �

Appendix D

Proof of Proposition 4.5. Let y0 ∈ Fix(v+T) and note that Proposition 2.4(iv) implies that
(∀n ∈ N) (Id−T)Tny0 = v. Since T is firmly nonexpansive, it follows from Proposi-
tion 2.4(vi) and [5, Proposition 5.4(ii)] that

‖Tnx− Tn+1x− v‖2 = ‖(Id−T)Tnx− (Id−T)Tny0‖2

≤ ‖Tnx− Tny0‖2 − ‖Tn+1x− Tn+1y0‖2

= ‖Tnx + n v−y0‖2 − ‖Tn+1x + (n + 1) v−y0‖2 → 0.

�
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