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Abstract. Sometimes a network of dynamical systems shows a form of in-
complete synchronization, characterized by synchronization of some but not

all of its component systems. This type of incomplete synchronization is called

partial synchronization or cluster synchronization. Partial synchronization is
associated with the existence of partial synchronization manifolds, which are

linear invariant subspaces of C, the state space of the network of systems. We

focus on partial synchronization manifolds in networks of identical systems,
characterized by linear diffusive coupling described by a weighted graph, and

allowing for time-delay in the coupling.

We present equivalent existence criteria for partial synchronization mani-
folds in terms of invariant spaces, the block structure of a reordered adjacency

matrix, and the solvability of a Sylvester equation. We emphasize decompos-
able networks, according to the rational dependency structure of the coupling

weights, and according to the delay values, respectively. It is obvious that

if the existence conditions for partial synchronization manifolds are satisfied
for all subnetworks simultaneously, they hold for the original network, yet the

converse result is not always true, as we shall illustrate with an example. Fur-

thermore, as main results, we show that if the decomposition is according to
the weights and the basis weights are rationally independent numbers, or if the

decomposition is according to different delay values, then finding a partial syn-

chronization manifold for the original network is equivalent to finding common
partial synchronization manifolds for the subnetworks, i.e., restricting to the

analysis of the subnetworks does not impose any conservatism, which simpli-

fies the analysis significantly. For the case of decomposable networks according
to the weights, with rationally independent basis weights, we provide a fourth

existence criterion for partial synchronization manifolds in terms of a balanced

coloring of an associated multi-graph. In addition, we briefly describe publicly
available software for detecting partial synchronization manifolds.

Our equivalent existence criteria, which depend on the network and delay
structure but not on the dynamics of the systems at the nodes, are sufficient

for the presence of a partial synchronization manifold. We show that, under a

mild assumption on the systems at the nodes, namely left-invertibility, these
conditions are necessary as well. In all criteria it turns out that the distinction

between non-invasive and invasive delayed coupling is important, i.e., whether
or not a coupling term between two systems vanishes whenever the latter are
synchronized.

1. Introduction

There are many examples of networks of interacting dynamical systems that
exhibit collective behavior. Fireflies emit their light pulses at the same instants
in time; crickets chirp in unison for extended periods of time; and electrons move
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in synchrony in superconducting Josephson junctions, cf. [40, 30]. The most un-
ambiguous form of collective behavior is that of full synchronization, which refers
to the state in which all systems in the network behave identically. However, it
is not exceptional that networks do not exhibit completely synchronous behavior
but show some kind of incomplete synchronization instead. We study a particular
type of this incomplete network synchronization, which we call partial synchroniza-
tion. Partial synchronization refers to the phenomenon that some systems in the
networks are synchronized identically while others are not.

Partial synchronization has been observed, in particular, in biological networks
[21]. Central pattern generators produce partially synchronous rhythms that de-
fine animal locomotion [10], and synchronization in brains refers in general to the
state of coherent activity in parts of the brain [16]. In fact, excessive amounts of
synchronization in the brain are a signature of brain disorders like epilepsy and
Parkinson’s decease [41].

Perhaps surprisingly, partial synchronization does neither require heterogeneous
system dynamics nor heterogeneous coupling functions; Partial synchronization is
reported in networks of systems which are described by identical vector fields and
identical coupling laws [5, 4, 32, 33]. In this case the modes of partial synchro-
nization exhibited by the coupled systems are mostly determined by their network
structure.

We study how the network structure supports modes of partial synchronization in
networks of systems that interact via time-delay linear coupling laws. The networks
considered are represented by directed weighted graphs G = G(V, E , A), where

• V is a finite set of nodes with cardinality |V| = N ;
• E ⊂ V ×V is the ordered set of edges, where we use the convention that an

edge (i, j) ∈ E has its head at node i and tail at node j;
• A =

(
aij
)
∈ RN×N is the weighted adjacency matrix; For an edge (i, j) ∈ E

constant aij > 0 defines the weight of that edge; aij = 0 if and only if
(i, j) /∈ E .

It is clear that all information about the network structure is stored in matrix A.
hence this matrix will be the central object of our study.

Each node of G hosts a dynamical system of the form{
ẋi(t) = f(xi(t), ui(t))
yi(t) = h(xi(t))

(1)

where i ∈ V, state xi(t) ∈ Rn, input(s) ui(t) ∈ Rm, output(s) yi(t) ∈ Rm, function
f : Rn × Rm → Rn and function h : Rn → Rm. The systems (1) on the graph G
interact via either one of the following two types of coupling functions:

ui(t) =
∑
j∈Ni

aij [yj(t− τ)− yi(t)] (2)

or

ui(t) =
∑
j∈Ni

aij [yj(t− τ)− yi(t− τ)]. (3)

Here the set Ni is the neighbor set of node i ∈ V,

Ni := {j ∈ V|(i, j) ∈ E},
constants aij are the entries of the weighted adjacency matrix A and constant τ
defines the amount of time-delay. For the time being we focus on the single-delay
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case (in Section 6, we extend our results to the multiple delays case). Functions f
and h are assumed to be such that forward solutions of (1), (2) and (1), (3) are
uniquely defined on [t0, ∞), and h is assumed to be injective.

Throughout the paper we will consider only graphs G that are simple; That is,
every pair of nodes of G is joined by at most one edge and G does not contain
self-loops, which are edges of the form (i, i), i ∈ V. We remark that the edges
of G model the interaction structure, hence the presence of self-feedback in the
coupling functions (2) and (3) (i.e., terms −

∑
j∈Ni

aijyi(t) and −
∑

j∈Ni
aijyi(t−

τ), respectively) still leaves G simple in our terminology. We remark that in Section
5, where we discuss decompositions of G, we associate several multi-graphs to the
simple graph G. These multi-graphs are allowed to have multiple edges joining the
same pair of nodes, but they do not contain self-loops.

In addition, we consider only strongly connected graphs. We recall that a graph
is strongly connected if for each pair of nodes u, v ∈ V there exists a directed path
from u to v and a directed path from v to u, cf. [7]. The assumption of a strongly
connected graph avoids, e.g., cases in which partial synchronization could occur
trivially, such as in two disconnected networks.

The linear coupling functions considered in this paper (possibly with zero delay,
i.e. τ = 0) appear in a large number of applications, such as, networks of electri-
cally coupled neurons [6, 11, 22], networks of biological systems [29, 35], coupled
mechanical systems [26, 34, 9, 44] and electrical systems [12, 43]. In case of coupling
functions (2) the coupling signal ui(t) of node i is defined as the sum of weighted
differences of time-delayed outputs of connected systems, yj(t− τ), and the node’s
own output at time instant t, yi(t). In this type of coupling the delay models the
effect of finite speed of signal transmission. For coupling functions (3) both the
node’s own output and the outputs of connected systems are delayed by an amount
of τ . This type of coupling models the effects of sensor/actuator delay. An exam-
ple of the latter type of coupling is found in car-following models, where the delay
accounts for the human reaction time [36]. We remark that there is a fundamental
difference between coupling (2) and coupling (3): The former type of coupling is
invasive coupling, which means that the coupling does not vanish when system i
and its neighbors are synchronized; The second type of coupling is non-invasive
coupling as the coupling inputs ui(t) ≡ 0 given that system i is synchronized to its
neighbors. This fundamental difference between the two types of coupling functions
is reflected in the modes of partial synchronization that a network can exhibit. In
particular, as we will show in this paper, modes of partial synchronization that
exist in networks of systems with coupling (2) always exist in networks of systems
with coupling (3) but the converse is not true. Therefore delay-free coupling, i.e.
coupling of the form,

ui(t) =
∑
j∈Ni

aij [yj(t)− yi(t)],

which is clearly non-invasive, should be considered as a special case of coupling (3)
rather than coupling (2).

We consider the problem of finding partial synchronization manifolds for net-
works (represented by a graph G) of systems (1) and coupling functions (2) or
(3). These partial synchronization manifolds are linear forward invariant manifolds
in C = C([−τ, 0],RNn), the state-space of the coupled systems, which correspond
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to particular modes of partial synchronization. The identification of partial syn-
chronization manifolds is the first step in the analysis of partial synchronization
in networks. The issue of attractivity (or even stability) of partial synchronization
manifolds, which is necessary for partial synchronization in any real-world applica-
tion, is not considered in this paper. For results about stability (and bifurcations)
of partial synchronization manifolds we refer to [32, 33, 37, 28].

The “classical” method for identification of partial synchronization manifolds in
networks of coupled systems is by looking for symmetries in the dynamical equations
of the network, cf. [13, 14, 32, 15, 33, 19]. In particular, the groupoid formalism of
[15] is a very useful tool for finding the modes of partial synchronization in a very
general class of networks of coupled systems; The systems in that framework do
not need to be identical and different types of coupling functions (albeit delay-free
coupling) may be present in a network. Algorithms that exploit the groupoid
formalism (in combination with lattice theory and tools from linear algebra) for
identifying partial synchronization manifolds are presented in, e.g., [1, 2, 20]. Some
of our results presented in Sections 3.1, 3.2 and 5 (in particular those involving
the invariant subspace condition and its equivalent row-sum condition in case of
invasive coupling) may be deducted from the these studies. We also refer to [19] for
related results. However, there are important differences between our results and
those of [15, 1, 2, 20].

First, our conditions for the existence of partial synchronization manifolds are
derived for given systems (1) and given coupling functions (2) or (3) whereas [15, 1,
2, 20] discuss the existence of partial synchronization manifolds in networks along all
admissible vector fields. The restriction to systems of the form (1) and the diffusive
time-delay coupling functions (2) or (3) instead of considering all admissible vector
fields has two important consequences:

• The conditions for existence of partial synchronization manifolds presented
in [15, 1, 2, 20] are necessary and sufficient. To the contrary, our results
are sufficient but become necessary only under additional assumptions. See
the (counter-)examples in Sections 4 and 5.2.
• In our setting it turns out to be important to make a distinction between

invasive coupling and non-invasive coupling; The conditions for existence
of partial synchronization manifolds in networks with invasive coupling are
more restrictive than those for networks with non-invasive coupling.

For both types of time-delay coupling functions we provide a number of algebraic
conditions for the existence of partial synchronization manifolds, namely, an in-
variant subspace condition, a row-sum condition, and the existence of a solution of
a particular matrix equation (which appeared first in [33]). These conditions are
shown to be equivalent. In addition we present an algorithm that, for each type of
coupling, detects all possible partial synchronization manifolds in a given network.
We also identify a class of systems for which our conditions become necessary and
we discuss the case of coupling functions with multiple time-delays. The results
presented in this paper generalize previous results of the authors [42, 37, 38]. We
also generalize the results reported in [15, 20, 33, 19] in the sense that we take time-
delays into account and consider diffusive coupling, thereby making (a necessary)
distinction between invasive and non-invasive coupling.
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Second, the coupling is described by a weighted adjacency matrix with real
valued weights. In this context, another main contribution consists of the char-
acterization of situations where the existence conditions can be checked in exact
arithmetic. It follows from our analysis that if the adjacency matrix of a network
decomposes according to the interdependency of weights and if the basic weights are
rationally independent, then the conditions for existence of partial synchronization
manifolds for that network are equivalent to the conditions for existence of par-
tial synchronization manifolds of an associated network described by a multi-graph
and corresponding unweighted adjacency matrices. This associated network can be
analyzed with tools similar to those in [1], and interpretations will be provided of
the conditions for partial synchronization in terms of generalizations of a balanced
coloring.

The structure of the paper is as follows. Section 2 is devoted to the problem
formulation. Section 3 presents equivalent existence conditions for partial synchro-
nization manifolds of delay-coupled systems, in terms of invariant subspaces of the
adjacency matrix or graph Laplacian, in terms of row-sums of the restructured ad-
jacency matrix, and in terms of the solvability of a Sylvester equation. A condition
for which the results of Section 3 become necessary is presented in Section 4. Sec-
tion 5 addresses decomposable graphs based on the rational dependency structure
of the weights of their edges. Conditions for the existence of partial synchronization
manifolds for coupling functions with multiple time-delays are provided in Section
6. A software implementation of the criteria for partial synchronization manifolds of
Sections 3 and 5 is briefly discussed in Section 7. Concluding remarks are provided
in Section 8.

2. Partial synchronization manifolds

We consider a given graph G = G(V, E , A). Without loss of generality we shall
assume that

V = {1, 2, . . . , N}.
Let P be a partition of V; That is, P is a collection of disjoint non-empty subsets
of V with the property that the union of all these subsets equals the set V. These
disjoint subsets are referred to as the parts of the partition. One may think of the
partitioning of V as dividing the nodes of the network into clusters, where nodes
belonging to the same part of the partition are in the same cluster. The question is
now whether the partition is compatible with the dynamics of the systems, coupling
functions and interaction structure. If this is the case the network has a partial
synchronization manifold and we call that partition a viable partition. We shall
parameterize a partial synchronization manifold by a permutation matrix, which
corresponds to the partition P of V. The main motivation for this parametrization
by a permutation matrix is that it allows for expressing the conditions for the
existence of a partial synchronization manifold algebraically.

In this section we shall first establish a correspondence between a partition P
of the set V and a permutation matrix. Then we shall introduce the concept of
partially synchronous solutions of the coupled systems and introduce the partial
synchronization manifolds.

2.1. Characterization of partitions by permutation matrices. Let Π be a
N ×N permutation matrix. For the network G we let such a permutation matrix
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Π define a partition P of the set of nodes V as follows. Given two nodes i, j ∈ V,
we let i ∼ j, with ∼ denoting an equivalence relation, if the ijth entry of Π is
equal to 1. Note that, because of the transitivity of the equivalence relation, we
have that Πij = 1 and Πj` = 1 implies i ∼ `. The set of equivalence classes then
defines a partition P of V. (Recall that the equivalence class of i in V is the set
{j ∈ V|i ∼ j}). Then a part of the partition P is a subset of V containing all nodes
that belong to the same equivalence class. It can easily be shown that the number
of parts is equal to

K := dim ker(IN −Π),

where IN is the N ×N identity matrix. We let k` denote the size of the `th part of
P, where ` = 1, 2, . . . ,K.

Conversely, to a given partition P of V with K parts we associate a N × N
permutation matrix Π with dim ker(IN−Π) = K as follows. Let P = {P1, . . . ,PN}
be given, where P` is a part of the partition, ` = 1, . . . ,K, and let k` be the size
of P`. If P` = {i}, i.e. k` = 1, then set the iith entry of Π equal to one. If
P` = {j1, j2, . . . , jk`

} then set the j1j
th
2 entry of Π equal to one, . . . , and finally

the jk`
jth1 entry of Π equal to one. Thus for example, if V = {1, 2, 3, 4, 5} and

P = {P1,P2} = {{1, 3, 4}, {2, 5}}, then the construction above gives

Π =


0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0

 .

We remark that a permutation matrix defines a partition P of V uniquely but the
converse is not necessarily true. Indeed, the permutation matrix

Π =


0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0


defines the same partition P = {{1, 3, 4}, {2, 5}} of V = {1, 2, 3, 4, 5}.

2.2. Definition of partial synchronization manifolds. Consider the coupled
systems (1), (2) or (1), (3) on a given graph G. Let C([−τ, 0],RNn) be the space
of continuous functions that map the interval [−τ, 0] ⊂ R into RNn. Then given
initial data ψ ∈ C([−τ, 0],RNn) we denote by xt ∈ C([−τ, 0],RNn), where

xt(θ) :=


xt,1(θ)
xt,2(θ)

...
xt,N (θ)

 =


x1(t+ θ)
x2(t+ θ)

...
xN (t+ θ)

 , θ ∈ [−τ, 0],

a segment of a solution of the coupled systems (1), (2) or (1), (3) that coincides
with ψ at t = t0, i.e. xt0 = ψ. Such a solution is a partially synchronous solution
if there exist i, j ∈ V with i 6= j such that

xt,i = xt,j , ∀t ≥ t0. (4)

Of course, if the above equality holds for all i, j ∈ V we have full synchronization.
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By means of an N ×N permutation matrix Π we can write conditions (4) in a
more compact form:

xt(θ) = (Π⊗ In)xt(θ), ∀θ ∈ [−τ, 0], ∀t ≥ t0, (5)

where ⊗ denotes the Kronecker product (tensor product) of two matrices. Note
that we can rewrite (5) as

xt(θ) ∈ ker(INn −Π⊗ In), ∀θ ∈ [−τ, 0], ∀t ≥ t0,
or as xt ∈M(Π), ∀t ≥ t0, where

M(Π) := {φ ∈ C([−τ, 0],RNn) |φ(θ) = col(φ1(θ), φ2(θ), . . . , φN (θ)),

φi(θ) ∈ Rn, i = 1, . . . , N, φ(θ) ∈ ker(INn −Π⊗ In)∀θ ∈ [−τ, 0]}
is the set of partially synchronous states induced by the permutation matrix Π (i.e.,
for which the synchronized clusters are defined by the partition induced by Π).

It is now clear that for the existence of a partially synchronous solution we
require

1 < K = dim ker(IN −Π) < N,

where K denotes the number of synchronized clusters. Here a synchronized cluster,
or simply, a cluster, refers to the subset of nodes with synchronized dynamics.
These clusters are exactly parts of the partition P of V associated with Π. Thus
for K = 1 we have full synchronization, i.e.

xt,i = xt,j , ∀i, j ∈ V, ∀t ≥ t0,
and K = N corresponds to the case of no synchronization. Note that K = N if
and only if Π = IN . We now define a partial synchronization manifold as follows:

Definition 1. The set M(Π) with permutation matrix Π for which 1 < K < N
is a partial synchronization manifold for the coupled systems (1), (2), or (1), (3),
if and only if it is positively invariant under the dynamics (1), (2), or (1), (3),
respectively.

With the terminology introduced above and the fact that our systems (1) are
assumed to be identical, it is clear thatM(Π) is a partial synchronization manifold
for the coupled systems (1), (2) or (1), (3) if systems that belong to the same cluster
receive identical inputs for all t ≥ t0:

xt(θ) = (Π⊗ IN )xt(θ)⇒ yt(θ) = (Π⊗ Im)yt(θ)⇒ u(t) = (Π⊗ Im)u(t),

with −τ ≤ θ ≤ 0 and

yt(θ) =

 y1(t+ θ)
...

yN (t+ θ)

 , u(t) =

u1(t)
...

uN (t)

 .

Note that xt(θ) = (Π⊗ IN )xt(θ)⇒ yt(θ) = (Π⊗ Im)yt(θ) follows from the assump-
tion that the output map h is injective. As we discuss in Section 4, the condition
of equal inputs to systems in the same cluster, which is sufficient for M(Π) to be
a partial synchronization manifold, is close to necessary. Because

u(t) = (A⊗ Im)y(t− τ)− (D ⊗ Im)y(t)

for coupling functions (2), and

u(t) = ((A−D)⊗ Im)y(t− τ) = −(L⊗ Im)y(t− τ)
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for coupling functions (3), where

D =


∑N

j=2 a1j 0
. . .

0
∑N−1

j=1 aNj


and L := D − A is the weighted Laplacian matrix, it follows readily that the
conditions for the existence of partial synchronization manifolds for a given network
of systems (1), (2) or (1), (3) can be deducted from the matrix A (or its associated
Laplacian matrix L).

3. Algebraic conditions for the existence of partial synchronization
manifolds

In this section we provide for a given network with adjacency matrix A and
given permutation matrix Π for each types of coupling three equivalent algebraic
conditions for M(Π) to be a partial synchronization manifold.

3.1. Invariant subspaces of A and L. Our first set of conditions for the existence
of a partial synchronization manifold expresses the implication

yt(θ) = (Π⊗ Im)yt(θ)⇒ u(t) = (Π⊗ Im)u(t), −τ ≤ θ ≤ 0,

explicitly in terms of the matrices A (for coupling (2)) and L (for coupling (3)).
Recall that the statement above simply means that systems that belong to the same
cluster receive identical inputs.

Proposition 1. Consider the coupled systems (1), (2) on a graph G = (V, E , A)
and consider a N × N permutation matrix Π. If ker(IN − Π) is a right invariant
subspace of A, i.e. AV ⊂ V where V := ker(IN − Π), then M(Π) is a partial
synchronization manifold for the coupled systems (1), (2).

Proof. Observe that 1N ∈ ker(IN − Π), where 1N is the N -dimensional vector
with all entries equal to 1. Because A1N = D1N ∈ ker(IN − Π) we conclude
that ker(IN − Π) being an right invariant subspace of A implies that ker(IN − Π)
is a right invariant subspace of D. For coupled systems (1), (2), for any yt(θ) ∈
ker(INm − Π ⊗ Im), which is equivalent to yt(θ) = (Π ⊗ Im)yt(θ), the invariant
subspace condition implies

u(t) = −(D ⊗ Im)y(t) + (A⊗ Im)y(t− τ) ∈ ker(INm −Π⊗ Im),

i.e. u(t) = (Π⊗ Im)u(t). �

Proposition 2. Consider the coupled systems (1), (3) on a graph G = (V, E , A)
and consider a N × N permutation matrix Π. If ker(IN − Π) is a right invariant
subspace of L = D − A, then M(Π) is a partial synchronization manifold for the
coupled systems (1), (3).

Proof. Analogous to the proof of Proposition 1. �

Remark 1. As ker(IN−Π) being a right invariant subspace of A implies ker(IN−Π)
being a right invariant subspace of D, it follows that ker(IN − Π) is also a right
invariant subspace of L = D − A. Thus the condition of Proposition 1 is also
sufficient for M(Π) to be a partial synchronization manifold for coupled systems
(1), (3). However, the converse is in general not true.
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Propositions 1 and 2 allow us to determine whether a permutation matrix cor-
responds to a partial synchronization manifold by identifying repeating patterns
in the (generalized) eigenvectors of matrices A and L, respectively. An example
is provided at the end of this section. However, we remark that the computation
of generalized eigenvectors has a computational cost of O(N3) and is prone to
numerical errors.

The invariant subspace condition for coupling functions (2) was introduced first
in [38]. However, in that paper the authors made the additional assumption that
ker(In − Π) is a right invariant subspace of D. Here this additional assumption
is redundant. The invariant subspace condition for coupling functions (3) was
introduced first in [42] for a more restrictive class of systems.

3.2. Block-structured adjacency matrix. For our second set of conditions we
relabel the nodes of our network such that the first k1 nodes belong to cluster 1,
the second k2 nodes belong to cluster 2, and so on. Mathematically this relabeling
can be done using a permutation matrix, which we denote by R and we shall refer
to this matrix R as the reordering matrix. For a given N ×N permutation matrix
Π with 1 < K = dim ker(IN − Π) < N , it is always possible to find an N × N
reordering matrix R such that

R>ΠR = Π̄ = Π̄(k1, . . . , kK) :=


ΠC(k1)

ΠC(k2)
. . .

ΠC(kK)

 , (6)

i.e. Π̄ is a block diagonal matrix with K blocks ΠC(k`), each of which is a k` × k`-
dimensional cyclic permutation matrix

ΠC(k`) =



0 0 · · · 0 1
1 0 · · · 0 0

0
. . .

. . .
...

...
...

. . .
. . . 0 0

0 · · · 0 1 0

 ∈ Rk`×k` , (7)

and ΠC(1) = 1. The reordering matrix R can be easily constructed using the
following procedure. First determine the partition P that corresponds to Π (See
Section 2.1). Then relabel the nodes such that the first k1 nodes belong to part 1 of
P, the next k2 nodes belong to part 2 of P, and so on. Then R is the matrix that
defines to this relabeling procedure. Given matrices Π and A, let the reordering
matrix R be such that R>ΠR is of the form (6), and determine the reordered
adjacency matrix

R>AR =


A11 A12 · · · A1K

A21 A22 · · · A2K

...
. . .

. . .
...

AK1 AK2 · · · AKK

 , Aij ∈ Rki×kj . (8)

Note that the block structure in the reordered adjacency matrix (8) is completely
determined by Π and R.
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Lemma 1. Given an adjacency matrix A and a permutation matrix Π of the same
dimension. Associate with Π a reordering matrix R such that R>ΠR is of the form
(6). The following statements are equivalent:

1) ker(IN −Π) is a right invariant subspace of A;
2) all blocks of the block-structured reordered adjacency matrix (8) have con-

stant row-sums.

Proof. 2 ⇒ 1. Without loss of generality we assume that Π takes the form (6) and
A has block-structure (8). Then R = IN and any vector v ∈ ker(IN − Π) is of the
form

v = ν1e1 + ν2e2 + · · ·+ νKeK ,

where ν1, . . . , νK are constants and

e1 =


1k1

0k2

...
0kK

 , e2 =


0k1

1k2

...
0kK

 , . . . , eK =


0k1

...
0kK−1

1kK

 ,

where k` = dim(A``) and 0q denotes the q-dimensional vector with all entries equal
to 0. Clearly

Av = ν1


A111k1

A211k1

...
AK11k1

+ ν2


A121k2

A221k2

...
AK21k2

+ · · ·+ νK


A1K1kK

A2K1kK

...
AKK1kK


If condition 2 holds, then

Av = ν1(ρ11 + ρ21 + · · ·+ ρK1)e1 + · · ·+ νK(ρ1K + ρ2K + · · ·+ ρKK)eK ,

where ρij1kj = Aij1kj . Thus Av ∈ ker(IN −Π) for any v ∈ ker(IN −Π).
1 ⇒ 2. Let again, without loss of generality, Π being of the form (6) and A has
block-structure (8) such that R = IN . Condition 1 states that for any vector

v = ν1e1 + ν2e2 + · · ·+ νKeK ,

where vectors e` are as defined above and ν` are arbitrary constants,

Av =


∑K

j=1 νjA1j1kj

0k2

...
0kK

+ · · ·+


0k1

...
0kK−1∑K

j=1 νjAKj1kj

 ∈ ker(IN −Π).

Take ν1 6= 0 and all other ν` = 0. Then the equation

Av = ν1


A111k1

A211k2

...
AK11kK

 ∈ ker(IN −Π)

requires that all blocks A`1, ` = 1, . . . ,K, to have constant row-sums. By repetition
of this argument (i.e. considering all vectors v ∈ ker(Ik − Π) of the form v = ν`e`
with non-zero ν`) we conclude that condition 1 implies that all block Aij have
constant row-sums. �



PARTIAL SYNCHRONIZATION MANIFOLDS FOR DELAY-COUPLED SYSTEMS 11

Recall that, by Proposition 1, if the conditions of the lemma are satisfied then
M(Π) is a partial synchronization manifold for the coupled systems (1), (2). In
fact, M(Π) is also a partial synchronization manifold for coupled systems (1),
(3). A similar result was obtained in [20, 27]. Unlike these studies, we consider
delayed diffusive coupling type, where the distinction between invasive coupling
and non-invasive coupling is crucial. Namely, as we show next, the constant row-
sum condition on the blocks of the adjacency matrix can be relaxed in case of
non-invasive coupling (3).

Lemma 2. Given an adjacency matrix A and a permutation matrix Π of the same
dimension. Associate with Π a reordering matrix R such that R>ΠR is of the form
(6). The following statements are equivalent:

1) ker(IN−Π) is a right invariant subspace of the Laplacian matrix L = D−A
associated to A;

2) all off-diagonal blocks of the block-structured reordered adjacency matrix (8)
have constant row-sums.

Proof. Let, without loss of generality, Π have the form (6) and A have block-
structure (8) such that R = IN . Assign matrix D the same block-structure as the
(reordered) matrix A,

D =


D11

D22

. . .

DKK

 .

Hence the matrix L has the same block-structure as A. By construction, L1N = 0N ,
with 0N the N -dimensional vector of zeros. Then the condition that all off-diagonal
blocks of the matrix A having constant row-sums is equivalent to all blocks of L
having constant row-sums. Using this fact the proof of the lemma is obtained from
the proof of Lemma 1 when replacing A by L. �

By Proposition 2, if the conditions above hold true, then M(Π) is a partial
synchronization manifold for the coupled systems (1), (3).

An advantage of the row-sum test of the block-structured adjacency matrix over
an eigenvalue decomposition is that the computational cost is O(N2) (provided
that A has been reordered). Moreover, as we show in Section 7, in many practical
cases the row-sum condition can be verified in exact arithmetic.

3.3. A Sylvester equation. Our third set of algebraic conditions for Π to define
a partial synchronization manifold involves the existence of a solution to a Sylvester
equation. This particular equation was introduced in [33], extending the results of
[32], in a study of partial synchronization in networks of systems with delay-free
coupling of the form

ui(t) =
∑
j∈Ni

aij [yj(t)− yi(t)],

where (i, j) ∈ E ⇔ (j, i) ∈ E and aij = aji. It was shown that M(Π) is a partial
synchronization manifold if the Sylvester equation

(IN −Π)L = X(IN −Π)
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has a solution X ∈ RN×N . In the particular case that Π and L commute, i.e.
ΠL = LΠ, the equation has a solution X = L, cf. [32]. The condition of commuting
Π and L (or Π and A in case of invasive coupling) is often used in the study of
partial synchronization in networks, cf. [24, 19, 28]. We wish to emphasize that
commuting Π and L (or A) is sufficient for the existence of a partial synchronization
manifold but not necessary. An example of a network for which Π and L do not
commute but there exist a partial synchronization manifold is found, for instance,
in [33].

The matrix X plays an important role in the stability analysis of partial syn-
chronization; For a particular class of systems one can show that the partial syn-
chronization manifold M(Π) contains an asymptotically stable subset if there is a
positive number γ, which satisfies

(IN −Π)>(X> +X)(IN −Π) ≥ γ(IN −Π)>(IN −Π)

and this number exceeds some critical threshold value (that depends on the vector
field of the systems), cf. [33].

The results of [33] were extended in [37] to the case of asymmetric adjacency ma-
trices and directed graphs, and time-delay coupling functions (2) or (3). Extended
conditions for the existence of partial synchronization manifolds in such networks of
time-delay coupled systems are presented below; We refer to [37] for related results
on the stability of a partial synchronization manifold. We remark that the stability
conditions depend on the matrices XA and XL defined in the two lemmas below.
A proof of these two lemmas is found in [38, 42]. We do present a proof of the
lemmas in this manuscript as it is instructive for the construction of the matrices
XA and XL.

Lemma 3. Given an adjacency matrix A and a permutation matrix Π, the following
statements are equivalent:

1) the set ker(IN −Π) is a right invariant subspace of A;
2) there exists a solution XA ∈ RN×N to the matrix equation

(IN −Π)A = XA(IN −Π).

Proof. 1 ⇒ 2. Consider the singular value decomposition of IN −Π,

IN −Π = V ΣW>,

where, without loss of generality,

V =
(
V1 V2

)
, Σ =

(
Σ1

0K×K

)
, W =

(
W1 W2

)
,

with V1,W1 ∈ RN×(N−K), V2,W2 ∈ RN×K and Σ1 ∈ R(N−K)×(N−K). Note that
ker(IN −Π) = span(W2). Given that condition 1 holds, we consider the equation

(IN −Π)AW = XAV Σ

and we conclude that

(IN −Π)AW2 = 0.

Let Z = XAV ,

Z = col

(
1

σ1
(IN −Π)Aw1, . . . ,

1

σN−K
(IN −Π)AwN−K , 0, . . . , 0

)
,
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where σi is the ith diagonal entry of Σ and wi is the ith column of W (hence W1).
Then XA = ZV > solves the equation (IN −Π)A = XA(IN −Π).
2⇒ 1. Suppose that ker(IN −Π) is not a right invariant subspace of A. Then there
is a vector v ∈ ker(IN − Π) such that Av /∈ ker(IN − Π). Invoking condition 2 we
have

(IN −Π)Av = XA(IN −Π)v = 0

since v ∈ ker(IN −Π). But if Av /∈ ker(IN −Π), then (IN −Π)Av 6= 0, and we have
obtained a contradiction. Thus ker(IN −Π) is a right invariant subspace of A. �

Lemma 4. Given an adjacency matrix A and a permutation matrix Π of the same
dimension. The following statements are equivalent:

1) the set ker(IN − Π) is a right invariant subspace of the Laplacian matrix
L = D −A associated to A;

2) there exists a solution XL ∈ RN×N to the matrix equation

(IN −Π)L = XL(IN −Π).

Proof. Replace A by L and XA by XL in the proof of Lemma 3. �

3.4. Summary of results. For coupled systems (1), (2), combining Proposition
1, Lemma 1 and Lemma 3, we have obtained the following result.

Theorem 1. Given an adjacency matrix A and a permutation matrix Π, and
associate with Π a reordering matrix R such that R>ΠR is of the form (6). The
following statements are equivalent:

1) the set ker(IN −Π) is a right invariant subspace of A;
2) all blocks of the block-structured matrix (8) have constant row-sums.
3) there exists a solution XA ∈ RN×N to the matrix equation

(IN −Π)A = XA(IN −Π).

If these equivalent conditions are satisfied, then M(Π) is a partial synchronization
manifold for the coupled systems (1), (2).

Similarly, for coupled systems (1), (3), combining Proposition 2, Lemma 2 and
Lemma 4, we have obtained the following result.

Theorem 2. Given an adjacency matrix A and a permutation matrix Π, and
associate with Π a reordering matrix R such that R>ΠR is of the form (6). The
following statements are equivalent:

1) the set ker(IN − Π) is a right invariant subspace of the Laplacian matrix
L = D −A associated to A;

2) all off-diagonal blocks of the block-structured matrix (8) have constant row-
sums.

3) there exists a solution XL ∈ RN×N to the matrix equation

(IN −Π)L = XL(IN −Π).

If these equivalent conditions are satisfied, then M(Π) is a partial synchronization
manifold for the coupled systems (1), (3).

In both theorems, the first equivalent condition states that partially synchro-
nized outputs generate partially synchronized inputs. Invoking this condition, one
can determine permutation matrices that define a partial synchronization manifold
from repeating patterns in the generalized eigenvectors of A (for coupling (2)) or
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L (for coupling (3)). The second equivalent condition, i.e. the row-sum condition
on the blocks of the reordered adjacency matrix, has the advantage of being nu-
merically more efficient than the first condition. In particular cases this condition
can be verified even in exact arithmetic. The matrix XA (or XL), provided in
the third equivalent condition, is important for the stability of the corresponding
partial synchronization manifold. In addition, if Π and A commute (or if Π and L
commute), one may set XA = A (or XL = L), cf. [32].

It is worth mentioning that the row-sum condition and its equivalent invariant
subspace condition for invasive coupling (2) also appeared in a quite similar form in
a paper by K. Judd [19], which was put to our attention by an anonymous reviewer.
Note also that for the special case of (2) with an adjacency matrix with integer
elements, one can see the row-sum condition in Proposition 2.2 of [2] as the direct
analogue of the row-sum condition in Theorem 1. We remark that in the setting
of [2] the row-sum condition is necessary and sufficient for the existence of the
associated partial synchronization manifold, whereas in our setting the condition is
only sufficient.

3.5. Example. Consider the network shown in Figure 1, which is characterized by
the set of nodes

V = {1, 2, 3, 4, 5, 6, 7, 8},

edge set

E = {(1, 3), (1, 6), (2, 7), (2, 8), (3, 1), (3, 2), (3, 4), (3, 7), (4, 1), (4, 2), (4, 3), (4, 7),

(5, 1), (5, 2), (5, 3), (5, 4), (5, 7), (6, 7), (7, 1), (7, 2), (7, 3), (7, 4), (8, 5)}

and adjacency matrix

A =



0 0 ω1 0 0 ω1 0 0
0 0 0 0 0 0 ω2 ω1

ω1 ω1 0 ω2 0 0 ω1 0
ω1 ω1 ω1 0 0 0 ω2 0
ω1 ω1 ω2 ω2 0 0 ω2 0
0 0 0 0 0 0 ω1 0
ω1 ω1 ω1 ω2 0 0 0 0
0 0 0 0 ω1 0 0 0


with positive constants ω1 and ω2. This network will be used throughout the whole
text to illustrate and clarify our ideas and results.

3.5.1. Coupling (2). To simplify notation we set ω1 = 1 and ω2 = 2. (The case
with general ω1 and ω2 is discussed in Sections 5 and 7.) We first try to employ the
invariant subspace condition to determine a permutation matrix Π that defined a
partial synchronization manifold for the network. To that extent we determine the
real Jordan canonical form of A:

AV = V J



PARTIAL SYNCHRONIZATION MANIFOLDS FOR DELAY-COUPLED SYSTEMS 15

1

2

3

4

5

6

7

8

Figure 1. Example network. Solid edges have weight ω1, dashed
edges have weight ω2.

with

V =



0.1172 0.0000 1.8898 −0.7071 −1.6764 0.2411 0.1083 0.1216
0.5274 −0.7559 −32.3333 0.7071 1.6764 0.1304 −0.3821 0.2373

−0.4688 0.1890 6.3825 −0.0000 0.0000 −0.1401 0.0511 0.3820

0.3809 0.1890 8.0833 −0.0000 0.0000 −0.1401 0.0511 0.3820
0.2344 −0.3780 −15.0328 −0.0000 0.0000 0.0187 0.5384 0.6728

0.2344 −0.1890 −8.2723 0.0000 −0.7071 0.0529 0.1624 0.0970

−0.4688 0.1890 8.0833 −0.0000 0.0000 −0.1401 0.0511 0.3820
−0.1172 0.3780 15.4107 −0.0000 0.7071 0.6173 0.0000 0.1708


and

J =



−2
−1 1

−1
0 1

0
0.0303 0.8721
−0.8721 0.0303

3.9395


We see that the third, fourth and seventh entries of columns 2, 4, 5, 6, 7 and 8 of
V are identical. This suggests that the permutation matrix

Π1 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1


may define a partial synchronization manifold. Indeed,

span{V2, V4, V5, V6, V7, V8} = ker(I8 −Π1),
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where Vi denotes the ith column of V . Note that dim ker(I8 − Π1) = 6. However,
as remarked before, computation of generalized eigenvectors is prone to numerical
errors, hence we verify the result analytically. The vector

v =
(
v1 v2 v3 v3 v5 v6 v3 v8

)> ∈ ker(I8 −Π1)

and

Av =



v3 + v6
2v3 + v8

v1 + v2 + 3v3
v1 + v2 + 3v3
v1 + v2 + 6v3

v3
v1 + v2 + 3v3

v5


∈ ker(I8 −Π1)

for any constant v1, v2, v3, v5, v6, v8, and thus M(Π1) is a partial synchronization
manifold. Note that Π1 partitions V as {1, 2, {3, 4, 7}, 5, 6, 8}.

The same reasoning suggest that

Π2 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1


and Π3 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1


may define partial synchronization manifolds. Note the third and seventh entry of
column 1 of V are identical, and the fourth and seventh entries of column 3 of V
are identical. Moreover dim ker(I8 −Π2) = dim ker(I8 −Π3) = 7 and

span{V1, V2, V4, V5, V6, V7, V8} = ker(I8 −Π2),

span{V2, V3, V4, V5, V6, V7, V8} = ker(I8 −Π3).

It can easily be verified that both M(Π2) and M(Π3) indeed are partial synchro-
nization manifolds, which correspond to the partitions {1, 2, {3, 7}, 4, 5, 6, 8} and
{1, 2, 3, {4, 7}, 5, 6, 8} of V, respectively.

We continue the example with verifying the row-sum condition and existence of
a solution of the Sylvester equation for coupling (2) for the given adjacency matrix
A with ω1 = 1 and ω2 = 2 and permutation matrix Π1. To test the row-sum
condition on the block structured reordered adjacency matrix we define

R = R1 =



0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
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and observe that

R>1 Π1R1 =



0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.

Then we obtain

R>1 AR1 =



0 1 2 1 1 0 0 0
2 0 1 1 1 0 0 0
2 1 0 1 1 0 0 0
0 1 0 0 0 0 1 0
0 0 2 0 0 0 0 1
2 2 2 1 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0


and we observe that all blocks of the reordered adjacency matrix have constant
row-sums. To determine a solution XA to the equation

(I8 −Π1)A = XA(I8 −Π1)

we employ the procedure proposed in the proof of Lemma 3 and obtain

XA =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 2

3 − 4
3 0 0 2

3 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1

3
1
3 0 0 − 2

3 0
0 0 0 0 0 0 0 0


,

which indeed solves the Sylvester equation.

3.5.2. Coupling (3). Let us show that

Π4 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1


defines a partial synchronization manifold for the coupled systems (1), (3). The
corresponding partition of V is {1, 2, {3, 4, 5, 7}, 6, 8}. Again we start with the
invariant subspace condition. Consider the vector

v =
(
v1 v2 v3 v3 v3 v6 v3 v8

)>
,
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which, for any constant v1, v2, v3, v6, v8, is an element of ker(I8 −Π4). Then

Lv =



2 0 −1 0 0 −1 0 0
0 3 0 0 0 0 −2 −1
−1 −1 5 −2 0 0 −1 0
−1 −1 −1 5 0 0 −2 0
−1 −1 −2 −2 8 0 −2 0
0 0 0 0 0 1 −1 0
−1 −1 −1 −2 0 0 5 0
0 0 0 0 −1 0 0 1





v1
v2
v3
v3
v3
v6
v3
v8


=



2v1 − v3−6

3v2 − 2v3 − v8
−v1 − v2 + 2v3
−v1 − v2 + 2v3
−v1 − v2 + 2v3
−v3 + v6

−v1 − v2 + 2v3
v8 − v3


,

which clearly belongs to ker(I8 − Π4). Thus M(Π4) is a partial synchronization
manifold for the coupled systems (1), (3).

For testing the row-sum condition on the reordered adjacency matrix we let

R = R4 =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1


for which we obtain

R>4 Π4R4 =



0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


and

R>4 AR4 =



0 2 2 2 1 1 0 0
0 0 1 2 1 1 0 0
0 2 0 1 1 1 0 0
0 2 1 0 1 1 0 0
0 0 1 0 0 0 1 0
0 0 0 2 0 0 0 1
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0


Note that all off-diagonal blocks of the reordered adjacency matrix above have
indeed constant row-sums, but the block at the top-left corner has non-constant
row-sums.
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Finally, using the construction explained in the proof of Lemma 3, we find that

XL =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 5 −2 −2 0 −1 0
0 0 − 5

4
23
4 − 9

4 0 − 9
4 0

0 0 − 9
4 − 9

4
23
4 0 − 5

4 0
0 0 0 0 0 0 0 0
0 0 − 3

2 − 3
2 − 3

2 0 9
2 0

0 0 0 0 0 0 0 0


satisfies the equation

(I8 −Π4)L = XL(I8 −Π4).

4. Necessary conditions for the existence of partial synchronization
manifolds

In [39, 15, 20] necessary and sufficient conditions were presented for the existence
of partial synchronization manifolds. The necessary conditions were obtained by
requiring the manifold M(Π) to be forward invariant with respect to all admissi-
ble vector fields. We however consider a given node dynamics and given coupling
functions (2) or (3). The sufficient conditions we presented for the existence of a
partial synchronization manifold ensure that, on the manifold, systems belonging
to the same cluster receive the same inputs. These conditions are not necessary as
illustrated with the following example.

Example. Consider system{
ẋi(t) = −xi(t) + sgn(ui(t)),
yi(t) = xi(t), i = 1, . . . , 3,

(9)

where sgn(·) is the signum function. Consider a network with adjacency matrix

A =

0 1 1
2 0 0
3 0 0

 .

For

Π =

1 0 0
0 0 1
0 1 0


and corresponding partition P(Π) = {{1}, {2, 3}}, subspace M(Π) is a partial
synchronization manifold for both coupled system (1), (2) and (1), (3). To illustrate
this, with invasive coupling (1), (2) the dynamics are described by ẋ1(t) = −x1(t) + sgn (x2(t− τ) + x3(t− τ)− 2x1(t)) ,

ẋ2(t) = −x2(t) + sgn (2x1(t− τ)− 2x2(t)) ,
ẋ3(t) = −x3(t) + sgn (3x1(t− τ)− 3x3(t)) .

Note that for the second and third system the value of the signum function is
independent of the interaction weights. Thus we see that M(Π) is a partial syn-
chronization manifold despite the fact that the row-sum condition on A is not
satisfied.

In the next two theorems we state that under mild structural conditions on
the individual systems, the sufficient conditions presented in the previous section
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become necessary as well. The property of left-invertibility of system (1) plays a
key role; this property is equivalent to being injective of the systems input-output
map. (Note that system (9) is clearly not left-invertible.)

Theorem 3. Consider the coupled systems (1), (2) on a graph G = G(V, E , A) and
suppose that system (1) is left-invertible. For a given permutation matrix Π the
manifold M(Π) is a partial synchronization manifold for the coupled systems (1),
(2) if and only if the following equivalent conditions hold true:

1) the set ker(IN −Π) is a right invariant subspace of A;
2) all blocks of the block-structured matrix (8), where reordering matrix R such

that R>ΠR is of the form (6), have constant row-sums;
3) there exists a solution XA ∈ RN×N to the matrix equation

(IN −Π)A = XA(IN −Π).

Theorem 4. Consider the coupled systems (1), (3) on a graph G = G(V, E , A) and
suppose that system (1) is left-invertible. For a given permutation matrix Π the
manifold M(Π) is a partial synchronization manifold for the coupled systems (1),
(3) if and only if the following equivalent conditions hold true:

1) the set ker(IN − Π) is a right invariant subspace of the Laplacian matrix
L = D −A associated to A;

2) all off-diagonal blocks of the block-structured matrix (8), where reordering
matrix R such that R>ΠR is of the form (6), have constant row-sums;

3) there exists a solution XL ∈ RN×N to the matrix equation

(IN −Π)L = XL(IN −Π).

Proof. Sufficiency follows from Theorems 1 and 2. The proof of necessity in both
theorems is by contradiction. Assume that the row-sum condition is not satisfied.
Then we can always choose initial data for the coupled systems, lying on M(Π)
and such at least two systems within the same cluster receive a different input at
the starting time. By the left-invertibility different inputs imply different outputs,
hence that solution cannot stay on M(Π). �

In light of the discussion above, one can always construct vector fields f and h
such that system (1) is left-invertible. Thus, the conditions presented in Theorems
1 and 2 would be necessary and sufficient if one adopts the definition of a partial
synchronization as used in [39, 15, 20].

Necessary and sufficient conditions for certain classes of systems (1) to be left-
invertible are found in [18, 25]. Because we wish not to introduce additional nota-
tion, we discuss conditions left-invertibility only for a special case of systems (1).
Consider (1) with

f(xi(t), ui(t)) = f̃(xi(t)) +Bui(t)

and

h(xi(t)) = Cxi(t)

where f̃ : Rn → Rn is smooth and matrices B ∈ Rn×m, C ∈ Rm×n. For this class
of systems an easily verifiable condition for left-invertibility is that

rank(CB) = m,
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cf. [17] pp. 342. Indeed, one can show that if the matrix CB has full rank, then
there exists a well-defined change of coordinates (cf. [8, 31])

xi(t) 7→ (zi(t), yi(t)),

with zi(t) ∈ Rn−m and yi(t) ∈ Rm, such that the systems dynamics in these new
coordinates read {

żi(t) = q(zi(t), yi(t)),
ẏi(t) = a(zi(t), yi(t)) + CBui(t),

(10)

where q : Rn−m × Rm → Rn−m and a : Rn−m × Rm → Rm are smooth functions;
Since CB has full rank it is clear that for systems (10) the outputs can only remain
identical if their inputs are the same.

5. Decomposition of graphs

In practical applications it is no exception that there are physically distinct
communication channels, which each have their specific properties such as a char-
acteristic time-delay and/or characteristic interaction weights. In this section we
discuss the latter case; the multiple time-delay case is considered in Section 6.

Suppose that a given network G with r characteristic scalar interaction weights
ω`, ` = 1, . . . , r, decomposes as

G(V, E , A) = G1(V, E1, ω1A1)⊕ · · · ⊕ Gr(V, Er, ωrAr) (11)

where A` are adjacency matrices with non-negative integer coefficients and E` is
the set of edges corresponding to A` (that is, (i, j) ∈ E` if and only if the ijth

entry of A` > 0). Here ⊕ denotes a sum on graphs with the same set of nodes
V, which joins the sets of edges and sums the adjacency matrices. Thus for two
graphs Gi(V, Ei, Ai) and Gj(V, Ej , Aj) their graph sum Gi(V, Ei, Ai)⊕ Gj(V, Ej , Aj)
is the graph with set of nodes V, set of edges E1∪E2 and adjacency matrix A1 +A2.
Hence

G1(V, E1, ω1A1)⊕ · · · ⊕ Gr(V, Er, ωrAr) = G
(
V,∪r`=1E`,

∑r

`=1
ω`A`

)
such that

A = ω1A1 + ω2A2 + . . .+ ωrAr (12)

and

E = ∪r`=1E`.

We assume that none of the subgraphs G` be an empty graph (i.e. an edgeless
graph). However, we remark that

• any subgraph G`(V, E`, ω`A`) may not be strongly connected;
• any two subgraphs Gi and Gj may have common edges.

In what follows we call the numbers ω`, ` = 1, . . . , r the basis weights.
Consider any adjacency matrix A`, ` = 1, . . . , r, and let Π be a permutation

matrix of appropriate dimension. Associate with that Π a reordering matrix R
such that R>ΠR is of the form (6). Then Theorem 1 implies that the following
statements are equivalent:

1) ker(IN −Π) is a right invariant subspace of matrix A`;
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2) all blocks of the block-structured matrix

R>A`R =



A`,11 A`,12 · · · A`,1K

A`,21 A`,22 · · · A`,2K

...
. . .

. . .
...

A`,K1 A`,K2 · · · A`,KK


, (13)

with A`,ij ∈ Rki×kj have constant row-sums;
3) there exist a matrix XA`

such that

(I −Π)A` = XA`
(I −Π).

It readily follows that if the permutation matrix Π is such that the conditions above
hold true for each matrix A`, ` = 1, . . . , r, then M(Π) is a partial synchronization
manifold for the coupled systems (1), (2).

Likewise, Theorem 2 implies that the following statements are equivalent:

1) ker(IN − Π) is a right invariant subspace of the Laplacian matrix L` =
D` −A` associated to A`, where

D` =


∑N

j=2 a`,1j
. . . ∑N−1

j=1 a`,Nj

 ;

2) all off-diagonal blocks of the block-structured matrix (13) have constant
row-sums;

3) there exist a matrix XL`
such that

(I −Π)L` = XL`
(I −Π).

It follows, again, that if the permutation matrix Π is such that the conditions above
hold true for each matrix A`, ` = 1, . . . , r, then M(Π) is a partial synchronization
manifold for the coupled systems (1), (3).

In other words, if a permutation matrix Π defines a partial synchronization
manifold for each subgraph G`(V, E`, ω`A`), ` = 1, . . . , r, then that Π defines a
partial synchronization manifold for the whole network G(V, E , A). However, as we
show in the example at the end of this section, it is possible to construct

G(V, E , A) = G1(V, E1, ω1A1)⊕ · · · ⊕ Gr(V, Er, ωrAr)

for which there is a permutation matrix Π such that M(Π)

• is a partial synchronization manifold for G;
• is not a partial synchronization manifold for each subgraph G`(V, E`, ω`A`),
` = 1, . . . , r.

A condition for which the partial synchronization manifolds for G(V, E , A) are equal
to the common partial synchronization manifolds for all subgraphs G`(V, E`, ω`A`),
` = 1, . . . , r, is provided below.

Lemma 5. Suppose that in decomposition (12) the numbers ω` are rationally in-
dependent, i.e., for integer numbers q1, . . . , qr the implication

r∑
`=1

ω`q` = 0⇒ q` = 0 ∀` = 1, . . . , r
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holds. Suppose there is a permutation matrix Π of appropriate dimension and
associate with this matrix Π a reordering matrix R such that R>ΠR is of the form
(6). Then the ijth block of matrix (8) has constant row-sums if and only if for each
` = 1, . . . , r the ijth block of matrix (13) has constant row-sums.

Proof. We assume without loss of generality that we have R>ΠR of the form (6)
such that R = IN . It is clear that all blocks A1,ij , . . . , Ar,ij having constant row-
sums implies that Aij has constant row-sums. To prove the opposite direction,
consider any block Aij of matrix A. In case all row-sums of that block are zero we
should have all row-sums of the blocks A1,ij , . . . , Ar,ij all being zero. Consider the
case that (some of) the row-sums of that block Aij are non-zero. Our claim is that
each such block Aij can be written as

Aij = ω1A1,ij + . . .+ ωrAr,ij ,

where each block A`,ij of A` has constant row sums. Let ρ` be a vector that
contains the row-sums of A`,ij , i.e. ρ` = A`,ij1. Suppose that the row-sums of
at least one block A`,ij are not constant. The assumption that Aij has constant
row-sums implies that

ω1ρ1,i + ω2ρ2,i + . . .+ ωrρr,i = ω1ρ1,j + ω2ρ2,j + . . .+ ωrρr,j

for every i and j, where ρ`,i is the ith entry of the vector ρ`. Rewrite the latter
equation as

ω1(ρ1,i − ρ1,j) + ω2(ρ2,i − ρ2,j) + . . .+ ωr(ρr,i − ρr,j) = 0.

Because each ρ`,i−ρ`,j is an integer by construction, the last equation can only hold
true if some of the numbers ω` are rationally dependent. Thus we have obtained a
contradiction, which proves that the row-sums of all block A`,ij are constant. �

Theorem 5. Consider a graph G that decomposes as (11) and suppose that the
numbers ω1, . . . , ωr are rationally independent. Given a permutation matrix Π of
appropriate dimension and associate with that Π a reordering matrix R such that
R>ΠR is of the form (6). Then the following statements are equivalent to 1), 2)
and 3) of Theorem 1:

1′) for each ` = 1, . . . , r, ker(IN − Π) is a right invariant subspace of matrix
A`;

2′) for each ` = 1, . . . , r, all blocks of the block-structured matrix (13) have
constant row-sums;

3′) XA = ω1XA1
+ . . .+ ωrXAr

where, for each ` = 1, . . . , r, XA`
solves

(I −Π)A` = XA`
(I −Π).

If the equivalent conditions above hold true, then the conclusion of Theorem 1 ap-
plies. If, in addition, the systems (1) are left-invertible, then the conclusion of
Theorem 3 holds true.

Theorem 6. Consider a graph G that decomposes as (11) and suppose that the
numbers ω1, . . . , ωr are rationally independent. Given a permutation matrix Π of
appropriate dimension and associate with that Π a reordering matrix R such that
R>ΠR is of the form (6). Then the following statements are equivalent to 1), 2)
and 3) of Theorem 2:

1′) for each ` = 1, . . . , r, ker(IN − Π) is a right invariant subspace of the
Laplacian matrix L` associated to A`;
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2′) for each ` = 1, . . . , r, all off-diagonal blocks of the block-structured matrix
(13) have constant row-sums;

3′) XL = ω1XL1 + . . .+ ωrXLr where, for each ` = 1, . . . , r, XL`
solves

(I −Π)L` = XL`
(I −Π).

If the equivalent conditions above hold true, then the conclusion of Theorem 2 ap-
plies. If, in addition, the systems (1) are left-invertible, then the conclusion of
Theorem 4 holds true.

Remark 2. If the weights (ω1, . . . , ωr) are rationally dependent, there always exists
an integer p < r and a matrix Γ ∈ Zr×p of full column rank such that ω1

...
ωr

 = Γ

 s1
...
sp

 ,
with the numbers s1, . . . , sp rationally independent, see [23, Appendix A]. Thus, ra-
tionally dependent numbers depend on a smaller number of rationally independent
numbers. As a consequence there exist matrices A∗1, . . . , A

∗
p with integer elements

such that

A =

r∑
`=1

A`ω` =

p∑
`=1

A∗`s`.

5.1. Balanced coloring of graphs. For networks of systems with delay-free cou-
pling a nice graphical procedure is developed for testing the existence of partial
synchronization manifolds. More precisely, the existence of a partial synchroniza-
tion manifold is implied by the existence of balanced equivalence relations on the
nodes of the network, which is equivalent to the existence of a so-called balanced
coloring of the nodes of the network [39, 15, 20].

In what follows we adapt the definition of a balanced coloring to the problem un-
der consideration (delayed interconnections, diffusive coupling, weighted adjacency
matrix) and we show that the conditions for a partial synchronization manifold
derived in the previous section are equivalent to the existence of a balanced color-
ing, under the assumption that G decomposes as in (11)-(12) with the numbers ω`,
` = 1, . . . , r, being all rationally independent.

More precisely, we associate with G and the decomposition (12) the multi-graph1

Ḡ = (V, Ē) (14)

where Ē = tr`=1Ē`, with t denoting the disjoint union of the multi-sets2 Ē`, ` ∈
{1, . . . , r} whose number, heads and tails are defined by the nonzero entries of A`.
More precisely, if the ijth entry of A` is p, which is an integer by definition, then
the multi-set Ē` contains p edges (i, j). We shall refer to edges in a multi-set Ē` as
edges of type `. The reason for taking the disjoint union (rather than the union)
for construction of Ē is that we shall need to retrieve from Ē not only the existence
of edges but also their type.

Definition 2 (Balanced K-coloring). Consider a graph G = (V, E , A) with adja-
cency matrixA that decomposes as in (12). Let Ḡ be the multi-graph (14) associated

1A multi-graph is a graph in which pairs of nodes may be joined by multiple edges.
2A multi-set is a set in which elements are allowed to occur more than once.
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to G and (12). A coloring of the nodes V with K distinct colors c1, . . . , cK is a bal-
anced K-coloring of Ḡ if and only if for each i = 1, 2 . . . ,K, for each j = 1, 2, . . . ,K,
and for each ` = 1, . . . , r every ci-colored node receives the same number of edges
of type ` from cj-colored nodes.

Remark 3. In the above definition we make a distinction between edges of differ-
ent type, i.e., in the description of the network we assume non-trivial equivalence
relations on the edges. The setting of [15] is more general in the sense that one can
start from any equivalence relation on the nodes as well. This is not necessary in
our setting, as we assume that all systems associated to the nodes to be identical.

Corollary 1. Consider a graph G = (V, E , A) that decomposes as in (11) with all
matrices A` having non-negative integer entries and the numbers ω`, ` = 1, . . . , r,
being all rationally independent. Let Ḡ be the multi-graph (14) associated to G and
(12). Then conditions 1′) – 3′) of Theorem 5 (and conditions 1) – 3) of Theorem
1)) hold if and only if the coloring of the nodes, according to the partition induced
by Π, is a balanced K-coloring of Ḡ.

Proof. Take any ` ∈ {1, . . . , r}. We shall prove that the following statements are
equivalent:

a. the coloring of Ḡ`, induced by Π, is a balanced K-coloring;
b. every block of (13), where R is associated with Π, has constant row-sums.

(b. ⇒ a.) Without loss of generality we assume that the systems have been
relabeled such that Π has the form (6) and the matrix A` has the form (13) (i.e.
R = IN ). Assign the nodes 1, . . . , k1 color c1, nodes k1 +1, . . . , k1 +k2 color c2, and
so on. The assumption of constant row-sums of each block A`,ij implies that every
node of color ci receives the same number of edges from cj-colored nodes. (Recall
that the entries of A` count the number of edges between the corresponding nodes.)
Thus the coloring of the nodes is a balanced K-coloring of Ḡ`.

(a. ⇒ b.) Without loss of generality we assume that the nodes of Ḡ` have been
relabeled such that nodes 1, . . . , k1 have color c1, nodes k1+1, . . . , k1+k2 have color
c2, and so on. Note that the matrix A` associated to this relabeled multi-graph
Ḡ` has the block structure (13). Suppose a. holds true but there is a block A`,ij

with non-constant row-sums. Then there are two ci-colored nodes that receive a
different number of edges from cj-colored nodes. But then the above coloring of Ḡ`
is not balanced K. Hence, by contradiction we conclude that the row-sums of each
block A`,ij need to be constant. �

Remark 4. Theorem 5 and Corollary 1 state, in essence, that the problem of
finding the partial synchronization manifolds of a network with graph Ḡ (and the
original network (1)-(2) if the basis weights are rationally independent) is equivalent
to finding the common partial synchronization manifolds of networks with the same
nodes and graphs G`, ` = 1, . . . , r. In [1] a similar result was obtained.

The condition of existence of a balanced K-coloring is too restrictive for the ex-
istence of a partial synchronization manifoldM(Π) in networks of coupled systems
(1), (3). Because coupling (3) is non-invasive, M(Π) can be a partial synchroniza-
tion manifold even if the number of edges (of any type) between nodes within the
same cluster is not constant, since the corresponding coupling terms in (3) vanish.
This property motives us to introduce the notion of relaxed balanced K-coloring.
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Definition 3 (Relaxed balanced K-coloring). Consider a graph G = (V, E , A) with
adjacency matrix A that decomposes as in (12). Let Ḡ be the multi-graph (14)
associated to G and (12).

A coloring of the nodes V with K distinct colors c1, . . . , cK is a relaxed balanced
K-coloring of Ḡ if and only if for each i = 1, 2 . . . ,K, for each j = 1, 2, . . . ,K with
j 6= i, and for each ` = 1, . . . , r, every ci-colored node receives the same number of
edges of type ` from cj-colored nodes.

Notice that the difference with the definition of a balanced coupling lies in the
condition i 6= j.

We remark that, by definition, every balanced K-coloring is a relaxed balanced
K-coloring. In addition we remark that the relaxed balanced 1-coloring, i.e. the
coloring of all nodes with the same color, always exists; We refer to the relaxed
balanced 1-coloring as the trivial relaxed balanced coloring.

The next result is the counterpart of Corollary 1.

Corollary 2. Consider a graph G = (V, E , A) that decomposes as in (11) with all
matrices A` having non-negative integer entries and the numbers ω`, ` = 1, . . . , r,
being all rationally independent. Let Ḡ be the multi-graph (14) associated to G and
(12). Then conditions 1′) – 3′) of Theorem 6 (and conditions 1)–3) of Theorem 2)
hold if and only if the coloring of the nodes, according to the partition induced by
Π, is a relaxed balanced K-coloring of Ḡ.

Proof. The proof is analogous to the proof of Corollary 1 with the exception that for
a relaxed balanced K-coloring the number of edges that nodes of color ci receive
from nodes of the same color does not need to be constant (by definition), or,
equivalently, the diagonal blocks of (13) do not need to have constant row-sums. �

5.2. Example. We consider again the network presented in Section 3.5. This net-
work decomposes as

G(V, E , A) = G1(V, E1, ω1A1)⊕ G2(V, E2, ω2A2)

where

E1 ={(1, 3), (1, 6), (2, 8), (3, 1), (3, 2), (3, 7),

(4, 1), (4, 2), (4, 3), (4, 7), (5, 1), (5, 2), (6, 7), (7, 1), (7, 2), (7, 3), (8, 5)},
E2 ={(2, 7), (3, 4), (5, 3), (5, 4), (5, 7), (7, 4)},

A1 =



0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1
1 1 0 0 0 0 1 0
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0


and A2 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 1 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0


.
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Let us assume for the moment that ω1 and ω2 are rationally independent and
consider the permutation matrix

Π1 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1


,

which was introduced in Section 3.5. We will show that this matrix Π1 defines a
partial synchronization manifold for the coupled systems (1), (2) (and, of course,
also for coupled systems (1), (3)).

First we verify the invariant subspace condition. Let

v =
(
v1 v2 v3 v3 v5 v6 v3 v8

)
with any real constants v1, v2, v3, v5, v6, v8 such that v ∈ ker(I8 −Πi). Then

A1v =



v3 + v6
v8

v1 + v2 + v3
v1 + v2 + v3
v1 + v2
v3

v1 + v2 + v3
v5


∈ ker(I8 −Π1), A2v =



0
v8
v3
v3
3v3
0
v3
0


∈ ker(I8 −Π1),

hence ker(I8 −Π1) is a right invariant subspace of ω1A1 + ω2A2. ThusM(Π1) is a
partial synchronization manifold for the network of coupled systems.

Next we consider the matrix R1 given in Section 3.5 for which

R>1 Π1R1 =



0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.

Then we obtain

R>1 A1R1 =


0 1 0 1 1 0 0 0
0 0 1 1 1 0 0 0
0 1 0 1 1 0 0 0
0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 1 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0

, R>1 A2R1 =


0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


and it follows that all blocks of

R>1 AR1 = R>1 (ω1A1 + ω2A2)R1
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have constant row-sums. Moreover, matrices

XA1 =


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 − 1

3 − 1
3 0 0 2

3 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1

3
1
3 0 0 − 2

3 0
0 0 0 0 0 0 0 0

, XA2 =


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 − 1

3
2
3 0 0 − 1

3 0
0 0 1

3 − 2
3 0 0 1

3 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


solve the equations

(I8 −Π1)A1 = XA1
(I8 −Π1),

(I8 −Π1)A2 = XA2(I8 −Π1),

and it is straightforward to verify that

(I8−Π1)A = (I8−Π1)(ω1A1 +ω2A2) = (ω1XA1 +ω2XA2)(I8−Π1) = XA(I8−Π1).

For finding additional partial synchronization manifolds for the coupled systems
(1), (2) or (1), (3) we have identified the (relaxed) balanced K-colorings of the
graphs Ḡ associated with G and with the decomposition

A = ω1A1 + ω2A2.

Figure 2 shows all balanced K-colorings and relaxed balanced K-colorings for the
example network with ω1 and ω2 being rationally independent. In this figure the
solid edges are the edges related to A1 and the dashed edges are the edges related
to A2. To make it easier to verify if the coloring is a (relaxed) balanced K-coloring
we have assigned the edges the color of the nodes at their tail.

The colorings shown in Figure 2 correspond to the following partitions of V:

(a) P = {{1}, {2}, {3, 4, 7}, {5}, {6}, {8}}
(b) P = {{1}, {2}, {3, 7}, {4}, {5}, {6}, {8}}
(c) P = {{1}, {2}, {3}, {4, 7}, {5}, {6}, {8}}
(d) P = {{1}, {2}, {3, 5, 7}, {4}, {6, 8}}
(e) P = {{1}, {2}, {3, 5, 7}, {4}, {6}, {8}}
(f) P = {{1}, {2}, {3, 4, 5, 7}, {6, 8}}
(g) P = {{1}, {2}, {3, 4, 5, 7}, {6}, {8}}
(h) P = {{1, 6}, {2}, {3, 7}, {4}, {5}, {8}}
(i) P = {{1, 6}, {2}, {3, 5, 7}, {4}, {8}}
(j) P = {{1, 6, 8}, {2}, {3, 5, 7}, {4}}
(k) P = {{1, 6}, {2}, {3, 4, 7}, {5}, {8}}
(l) P = {{1, 6}, {2}, {3, 4, 5, 7}, {8}}

(m) P = {{1, 6, 8}, {2}, {3, 4, 5, 7}}
(n) P = {{1, 6, 8}, {2, 3, 4, 5, 7}}
(o) P = {{1, 2, 3, 4, 5, 6, 7, 8}}

The colorings shown in (a) – (c) are balanced K-colorings, hence they define a par-
tial synchronization manifold for the systems with either coupling (2) or coupling
(3). Figures (d) – (n) show relaxed balanced K-colorings, which define partial
synchronization manifolds for coupled systems (1), (3). The trivial relaxed bal-
anced coloring is shown in Figure (o). The latter coloring corresponds to the full
synchronization manifold for coupled systems (1), (3).

Consider the coloring shown in Figure 2(a), corresponding to partition P =
{{1}, {2}, {3, 4, 7}, {5}, {6}, {8}}. Let us explain in detail why this coloring is a
balanced 6-coloring. We have to verify that each orange node receives the same
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Figure 2. Balanced K-coloring (a) – (c), relaxed balanced K-
colorings (d) – (n), and the trivial relaxed balanced coloring (o) of
the example network (case of rationally independent basis weights).
Colorings (d) – (g) are balanced K-colorings in case ω1 = 2ω2. For
illustrative purposes the edges are assigned the same color as the
node at their tail.

number of arrows of the same type from nodes with the same color. We see that
every orange node receives one solid edge from the red node, one solid edge from
the cyan node and one solid edge from an other orange node. In addition, every
orange node receives one dashed edge from one other orange node. This shows that
the coloring is indeed a balanced coloring for G.

Let us now discuss the relaxed balanced 5-coloring shown in Figure 2(g). We
observe that every orange node receives one solid edge from the red node, one solid
edge from the cyan node, but the number of solid edges received from other orange
nodes differs. A similar situation holds for the dashed edges, hence, we conclude
about a relaxed balanced 5-coloring of Ḡ.

Let us finally consider the case where ω1 = 2ω2 = 2ω for which ω1 and ω2 are
rationally dependent. Hence

A = ω(2A1 +A2) =: ωA∗.

Note that this new decomposition is in accordance with Remark 2. Let Ḡ be the
multi-graph associated with G and with the decomposition A = A∗ω, i.e., such that
the number of arrows is defined by the elements of A∗. The coloring in Figure
3 is a balanced 4-coloring, hence, it defines a partial synchronization manifold for
the coupled systems with either coupling (2) or (3). Although this coloring is a
balanced 4-coloring of the multi-graph Ḡ associated to A∗ it is not a balanced 4-
coloring of either Ḡ1 or Ḡ2, the multi-graphs associated to A1 and A2, respectively.
For both Ḡ1 and Ḡ2 the coloring is however a relaxed balanced 4-coloring, and as
such it is (for any ω1, ω2) a relaxed balanced 4-coloring of the whole network. See
also Figure 2(f). The same conclusion can be reached for all colorings in subfigures
(d) – (g) in Figure 2. Further details are provided in Section 7.

6. Multiple time-delays

Another case where a decomposition of G is natural occurs when the coupling
functions contain multiple time-delays. Let us therefore consider coupling functions
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Figure 3. A balanced 4-coloring of multi-graph Ḡ (corresponding
to the case ω1 = 2ω2 = 2ω). For illustrative purposes we assigned
edges the same color as the node at their tail.

of the form (2) and (3) with multiple time-delays:

ui(t) =
∑
j∈Ni

aij [yj(t− τij)− yi(t)] (15)

or

ui(t) =
∑
j∈Ni

aij [yj(t− τij)− yi(t− τij)], (16)

with 0 < minij(τij) < maxij(τij) =: τ . For both types of coupling functions it is
clear that there are at most N(N−1) distinct delays (as there are at most N(N−1)
edges in a simple graph with N nodes). Let p be the number of distinct delays such
that each delay τij ∈ {τ1, τ2, . . . , τp}, where 0 < τ1 < τ2 < . . . < τp = τ . Then we
can write (15) as

u(t) = −(D ⊗ Im)y(t) + (Ã1 ⊗ Im)y(t− τ1) + . . .+ (Ãp ⊗ Im)y(t− τp), (17)

and (16) as

u(t) = −(L̃1 ⊗ Im)y(t− τ1)− . . .− (L̃p ⊗ Im)y(t− τp), (18)

where
∑p

`=1 Ã` = A and L̃` = D̃` − Ã` with D̃` = diag(Ã`1N ). The matrices Ã`

are determined as follows:

Ã` =
(
ã`,ij

)
with

ã`,ij =

{
aij if τij = τ`,
0 otherwise.

Accordingly, we can decompose the network G as follows:

G(V, E , A) = G̃1(V, E1, Ã1)⊕ ...⊕ Gp(V, Ep, Ãp).
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Here, Ẽ` ⊂ V ×V is the set of edges corresponding to delay τ`, i.e., (i, j) ∈ Ẽ` if and

only if the ijth entry of Ã` is nonzero.

Analogously to the results of Sections 3 and 4, we can simplify the analysis of
partial synchronization by finding common partial synchronization manifolds for
the subnetworks described by G̃`, ` = 1, . . . , p. The main contribution here is
that this simplification does not induce conservatism: the existence criteria for the
original networks are equivalent to the existence criteria for all subnetworks.

Theorem 7. Consider the coupled systems (1), (17) on a graph G(V, E , A) =

G̃1(V, E1, Ã1) ⊕ ... ⊕ Gp(V, Ep, Ãp). Let Π be a permutation matrix of appropri-
ate dimension and associate with Π a reordering matrix R such that R>ΠR is of
the form (6). Then the following statements are equivalent:

1) ker(IN −Π) is a right invariant subspace of each matrix Ã`, ` = 1, . . . , p;
2) all blocks of each block-structured matrix

R>Ã`R =


Ã`,11 Ã`,12 · · · Ã`,1K

Ã`,21 Ã`,22 · · · Ã`,2K

...
. . .

. . .
...

Ã`,K1 Ã`,K2 · · · Ã`,KK

 , (19)

with Ã`,ij ∈ Rki×kj and ` = 1, . . . , p, have constant row-sums;
3) there exist p matrices XÃ`

such that for each ` = 1, . . . , p,

(I −Π)Ã` = XÃ`
(I −Π).

Moreover, if the above equivalent conditions are satisfied, then M(Π) is a partial
synchronization manifold for the coupled systems (1), (17) on G(V, E , A). If, in
addition, the systems (1) are left-invertible, thenM(Π) is a partial synchronization
manifold for the coupled systems (1), (15) on G(V, E , A) if and only if equivalent
conditions 1)-3) hold true.

Theorem 8. Consider the coupled systems (1), (18) on a graph G(V, E , A) =

G̃1(V, E1, Ã1) ⊕ ... ⊕ Gp(V, Ep, Ãp). Let Π be a permutation matrix of appropri-
ate dimension and associate with Π a reordering matrix R such that R>ΠR is of
the form (6). Then the following statements are equivalent:

1) ker(IN −Π) is a right invariant subspace of each matrix L̃`, ` = 1, . . . , p;
2) all off-diagonal blocks of each block-structured matrix (19) have constant

row-sums;
3) there exist p matrices XL̃`

such that for each ` = 1, . . . , p,

(I −Π)L̃` = XL̃`
(I −Π).

Moreover, if the equivalent conditions above are satisfied, then M(Π) is a partial
synchronization manifold for the coupled systems (1), (18) on G(V, E , A). If, in
addition, the systems (1) are left-invertible, thenM(Π) is a partial synchronization
manifold for the coupled systems (1), (18) on G(V, E , A) if and only if equivalent
conditions 1)-3) hold true.

Proof. The sufficiency part and equivalence of the conditions in Theorems 7 and 8
essentially follows from Theorem 1 (Proposition 1, Lemmas 1 and 3) and Theorem
2 (Proposition 2, Lemmas 2 and 4), respectively.
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Let us prove the necessary condition for M(Π) to be a partial synchronization
manifold for the coupled systems. This proof is by contradiction. Assume that the
row-sum condition is not satisfied. Then pick an initial condition on the manifold
M(Π) that leads to different inputs to systems in the same cluster. One can first
choose x(t0−τ1), . . . , x(t0−τn) that lead to different inputs, and subsequently obtain
the full initial condition (a function on the interval [t0 − τ, t0]) by interpolation.
Then by left-invertibility the solution of the coupled systems can not stay onM(Π)
for t ≥ t0. �

Remark 5. Theorems 7-8 are based on a decomposition of the graph according
to the different delays. Based on the rational dependency structure of the weighs
a further decomposition as in Section 5 is possible. A connection with a balanced
coloring can then be made by defining one multi-graph where the definition and
type of edges (equivalence relation) are according to the combination (delay value,
base weight).

7. An algorithm for detection of partial synchronization manifolds

The characterizations of partial synchronization manifolds, presented in Sec-
tions 3-6, correspond to analysis conditions: given a manifold (or a partition of the
systems), conditions are established to check whether it corresponds to a partial
synchronization manifold. In this section we present an algorithm for the synthesis
problem of determining all possible partitions for which the conditions in Lemma 1,
respectively Lemma 2, are satisfied for a given graph G.

The detection algorithm, which we discuss in what follows, has been implemented
in MATLAB and is available from

http://twr.cs.kuleuven.be/research/software/delay-control/manifolds/

7.1. Description of the algorithm. The algorithm follows the same steps as the
one in [20]. It consist of two ingredients, viz. the generation possible partitions
and checking the row-sum criteria of the previous sections. The latter takes into
account the type of delay-coupling and, possibly, the dependency structure of the
weighs. For an algorithm for finding partial synchronization manifolds based on
the eigenvalue decomposition of A and invariant subspaces, we refer to [1].

To make the paper self contained we briefly discuss the generation of all par-
titions. This is done by induction on the number of systems k and graphically
explained in Table 1. System 1 always gets code 0. If there are two systems, then
there are two possible partitions: one group, coded by 00, or two groups, coded
by 01. Suppose now that we add a third system. For every possible partition of
Systems 1 and 2, we can generate partitions for Systems 1-3. Starting from parti-
tion 00 we can either add System 3 to the group or put it into a new group, coded
by 000 and 001, respectively. Similarly, starting from partition 01, we have three
possibilities: we can add System 3 to System 1 (code 010), add it to System 2 (code
011) or put into a new group (012), etc.

Recall that a partition that corresponds to a partial synchronization manifold
is called a viable partition. To check whether a partition is a viable partition,
the algorithm performs the row-sum test, corresponding to Lemma 1 or Lemma 2,
depending on the coupling type, (2) or (3). If all elements of A are integers or
if an explicit decomposition of A as in (12) is known (i.e., all weights are integer
combinations of rationally independent base weights), then, by Theorems 5 and 6,
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System Systems Systems Systems · · ·
1 1,2 1,2,3 1,2,3,4

0 00 000 0000 · · ·
0001

001 0010
0011
0012

. . .

01 010 0100
0101
0102

011 0110
0111
0112

012 0120
0121
0122
0123

. . .

Table 1. Generating the set of all partitions of a number of systems.

only row-sum tests on matrices with integer elements need to be made. Hence,
the detection algorithm can be carried out in exact arithmetic, without making
conditions more stringent. In this case matrices A` are represented by a structure
passed as input argument. In the other case, the row-sum test of Lemma 1 or
Lemma 2 need to be performed in finite precision arithmetic, where the user can
specify the tolerance on the difference between computed row-sums for accepting
the partition.

For each type of coupling the algorithm detects all partitions for which the cor-
responding row-sum criteria holds true. In case of an explicit decomposition of
A as in (12) the algorithm performs the row-sum test on each matrix A`, which
may be advantageous as the row-sum tests on matrices A` can be done in exact
arithmetic. Recall that, if the basis weights ω` are rationally independent, per-
forming the row-sum test on all matrices A` does not introduce any conservatism.
In case the basis weights are rationally dependent, there are two possibilities. The
first possibility corresponds to performing the row-sum tests on matrix A (with,
possibly, non-integer entries) for identifying all viable partitions (in this case the
input to the algorithm is matrix A). The second possibility consists of rewriting
the decomposition in accordance to Remark 2, and using (A∗1, . . . , A

∗
p) as input.

Under the additional hypothesis that the systems are left-invertible, the algo-
rithm returns all possible partial synchronization manifolds for a given network.
The price to pay is that, due to the combinatorial nature of the algorithm (the
number of possible partitions of N systems, known as the N -th Bell number, ex-
hibits an exponential like growth as a function of N), it scales badly with the
network size. By relaxing requirements to computing selected partitions /clusters
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(instead of all) or to computing approximate invariant manifolds, algorithms ap-
plicable to large networks can be obtained. See also [3, 4, 20] for algorithms to
compute the minimal balanced coloring of a graph in the delay free case. However,
this is beyond the scope of this paper.

7.2. Example. We continue with the example introduced in Sections 3.5 and 5.2,
and illustrate the use of the implementation in MATLAB. Let us first consider the
case where ω1 and ω2 are rationally independent, and let matrices A1 and A2 be
as in Section 5.2.

The partitions corresponding to partial synchronization manifolds for the case
of coupling (2) can be found using the following commands:

>> coupling=1;

>> A={A1,A2};

>> manifolds=compute_manifolds(A,coupling);

invasive coupling

>> manifolds

manifolds =

0 1 2 2 3 4 2 5

0 1 2 3 4 5 2 6

0 1 2 3 4 5 3 6

The first row of the output of the algorithm corresponds to the partition shown
in Figure 2(a), the second row corresponds to the partition shown in Figure 2(b),
and the third row corresponds to the partition shown in Figure 2(c). Note that all
row-sum tests are carried out in exact arithmetic as the elements of A are integers.

In case of coupling type (3) we get:

>> coupling=2;

>> manifolds=compute_manifolds(A,coupling);

non-invasive coupling

>> manifolds

manifolds =

0 0 0 0 0 0 0 0

0 1 1 1 1 0 1 0

0 1 2 2 2 0 2 0

0 1 2 2 2 0 2 3

0 1 2 2 2 3 2 3

0 1 2 2 2 3 2 4

0 1 2 2 3 0 2 4

0 1 2 2 3 4 2 5

0 1 2 3 2 0 2 0

0 1 2 3 2 0 2 4

0 1 2 3 2 4 2 4

0 1 2 3 2 4 2 5

0 1 2 3 4 0 2 5

0 1 2 3 4 5 2 6

0 1 2 3 4 5 3 6

The first row of the output is the trivial partition, which corresponds to one
cluster that contains all systems, i.e. the full synchronization manifold, which
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always exists for coupling (3). For this type of coupling the algorithm detected
twelve partitions additional to the three detected for coupling (2) (obviously, all
valid partitions for coupling (2) are valid partitions for coupling (3)). Given the
small number of systems and that, at a first glance, the graph in Figure 1 is not very
symmetrical, it is quite interesting that fifteen partial synchronization manifolds are
present. All viable partitions found by the algorithm are graphically presented in
Figure 2.

Let us subsequently consider the case where ω1 = 2ω2 = 2ω, for which the trivial
decomposition

A = (2A1 +A2)ω = A∗ω

holds. Note that matrix A∗ has integer entries. Executing the algorithm for cou-
pling (2) with integer matrix A∗ as input gives the following result:

>> coupling=1;

>> manifolds=compute_manifolds(2*A1+A2,coupling);

integer adjacency matrix

invasive coupling

>> manifolds

manifolds =

0 1 2 2 2 3 2 3

0 1 2 2 2 3 2 4

0 1 2 2 3 4 2 5

0 1 2 3 2 4 2 4

0 1 2 3 2 4 2 5

0 1 2 3 4 5 2 6

0 1 2 3 4 5 3 6

We observe that in this case we have four additional viable partitions compared
to the case of general, rationally independent ω1 and ω2. These additional viable
partitions are graphically represented in Figures 2(d) – 2(g). For coupling functions
(3) no additional viable partitions exist.

Let us finally assume a network with adjacency matrix

A∗ =



0 0 1.9968 0 0 1.9976 0 0
0 0 0 0 0 0 1.0254 1.9892

1.9989 1.9922 0 0.9933 0 0 1.9868 0
1.9844 1.9894 2.0016 0 0 0 1.0013 0
2.0192 1.9823 0.9972 0.9922 0 0 0.9856 0

0 0 0 0 0 0 2.0130 0
1.9935 1.9895 1.9885 1.0055 0 0 0 0

0 0 0 0 2.0091 0 0 0


.

This adjacency matrix is actually the matrix 2A1 +A2 with the non-zero elements
contaminated with some noise. One may think of this matrix A∗ as the adjacency
matrix obtained using experiments done on the “true network” with adjacency
matrix 2A1 +A2. As the entries of A∗ are non-integer, we should run the algorithm
with a pre-specified tolerance. The following few lines of code illustrate how the
identified viable partitions depend on the pre-specified tolerance.

>> coupling=1;
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>> tol=0.01;

>> manifolds=compute_manifolds(Astar,coupling,tol)

invasive coupling

manifolds =

[]

>> tol=0.02;

>> manifolds=compute_manifolds(Astar,coupling,tol)

invasive coupling

manifolds =

0 1 2 3 4 5 2 6

0 1 2 3 4 5 3 6

>> tol=0.022;

>> manifolds=compute_manifolds(Astar,coupling,tol)

invasive coupling

manifolds =

0 1 2 3 2 4 2 4

0 1 2 3 2 4 2 5

0 1 2 3 4 5 2 6

0 1 2 3 4 5 3 6

>> tol=0.025;

>> manifolds=compute_manifolds(Astar,coupling,tol)

invasive coupling

manifolds =

0 1 2 2 2 3 2 3

0 1 2 2 2 3 2 4

0 1 2 2 3 4 2 5

0 1 2 3 2 4 2 4

0 1 2 3 2 4 2 5

0 1 2 3 4 5 2 6

0 1 2 3 4 5 3 6

We observe that the number of viable partitions detected by the algorithm de-
pends on the pre-specified tolerance. We need to set the tolerance to 0.025 in
order to detect the viable partitions of the “true” network with adjacency matrix
2A1 +A2. The algorithm does not return additional viable partitions as the toler-
ance is increased up to acceptable levels. Of course, if the tolerance is set to a value
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close to the smallest element in A∗, which is about 1 in this case, the algorithm
may return additional partitions. However, these additional partitions found for
large value of the tolerance are unlikely to be viable partitions.

8. Concluding remarks

We have presented a number of equivalent conditions for the existence of par-
tial synchronization manifolds M(Π) in networks of systems (1) that interact via
invasive time-delay coupling (2) or non-invasive time-delay coupling (3). We have
shown that these conditions are necessary and sufficient under the mild condition
that system (1) is left-invertible.

Particular attention has been paid to decomposable networks. As a central con-
tribution, it has been shown that, in two cases, it suffices to find common partial
synchronization manifolds for the subnetworks, without introducing conservatism.
These cases correspond to a decomposition based on the dependency structure of
the weights, with rationally independent basis weights, and according to different
delay values. It has also been shown with a counterexample that when the basis
weighs are rationally dependent, resorting to finding common partial synchroniza-
tion manifolds for the subnetworks may be too restrictive, i.e., one might not be
able to detect all manifolds.

We also made connections with (generalization of) the concept of balanced col-
oring of multi-graphs, and presented an algorithm for determining partial synchro-
nization manifolds.

Acknowledgements

This research was supported by the Programme of Interuniversity Attraction
Poles of the Belgian Federal Science Policy Office (IAP P6- DYSCO), by OPTEC,
the Optimization in Engineering Center of the KU Leuven and by the project
G.0712.11N of the Research Foundation-Flanders (FWO).

Cees van Leeuwen is supported by an Odysseus grant from the Research Foundation-
Flanders (FWO).

References

[1] A.D. Aguiar and A.P.S. Dias. The lattice of synchrony subspaces of a coupled cell network:
characterization and computation algorithm. J. Nonlinear Sci., 24:949–996, 2014.

[2] A.D. Aguiar, A.P.S. Dias, M. Golubitsky, M. da Conceição, and A. Leite. Bifurcations from
regular quotient networks: A first insight. Physica D, 238:137–155, 2009.

[3] J. W. Aldis. A polynomial time algorithm to determine maximal balanced equivalence rela-

tions. Int. J. Bifurcation and Chaos, 18:407–427, 2008.
[4] I. Belykh and M. Hasler. Mesoscale and clusters of synchrony in networks of bursting neurons.

Chaos, 21(016106), 2011.

[5] V. N. Belykh, I. V. Belykh, and M. Hasler. Hierarchy and stability of partially synchronous
oscillations of diffusively coupled dynamical systems. Phys. Rev. E, 62(5):6332–6345, 2000.

[6] M. V. L. Bennet and R. S. Zukin. Electrical coupling and neuronal synchronization in the

mammalian brain. Neuron, 41:495–511, 2004.
[7] B. Bollobás. Modern graph theory, volume 184 of Graduate Texts in Mathematics. Springer-

Verlag, 1998.

[8] C. I. Byrnes, A. Isidori, and J. C.Willems. Passivity, feedback equivalence, and the global
stabilization of minimum phase nonlinear systems. IEEE trans. Auto. Contr., 36(11):1228–

1240, 1991.

[9] S.-J. Chung and J.-J. E. Slotine. Coorperative robot control and concurrent synchronization
of Lagrangian systems. IEEE trans. Robotics, 25(3):686–700, 2009.



PARTIAL SYNCHRONIZATION MANIFOLDS FOR DELAY-COUPLED SYSTEMS 39

[10] J. J. Collins and I. N. Stewart. Coupled nonlinear oscillators and the symmetries of animal

gaits. J. Nonlinear Sci., 3:349–392, 1993.

[11] S. Coombes. Neuronal networks with gap junctions: A study of piecewise linear planar neuron
models. SIAM J. Appl. Dyn. Syst., 7(3):1101–1129, 2008.

[12] K. M. Cuomo, A. V. Oppenheim, and S. H. Strogatz. Synchronization of Lorenz based chaotic

circuits with applications to communications. IEEE trans. Circ. Syst. II, 40(10):626–633,
1993.

[13] B. Dionne, M. Golubitsky, and I. Stewart. Coupled cells with internal symmetry: I. wreath

products. Nonlinearity, 9(2):559–574, 1996.
[14] B. Dionne, M. Golubitsky, and I. Stewart. Coupled cells with internal symmetry: II. direct

products. Nonlinearity, 9(2):575–599, 1996.

[15] M. Golubitsky, I. Stewart, and A. Török. Patterns of synchrony in coupled cell networks with
multiple arrows. SIAM J. Appl. Dynam. Sys., 4(1):78–100, 2005.

[16] C. M. Gray. Synchronous oscillations in neuronal systems: Mechanisms and functions. J.
Comp. Neuroscience, 1(1–2):11–38, 1994.

[17] Nijmeijer H and A. J. v.d. Schaft. Nonlinear Dynamical Control Systems. Springer-Verlag,

New York, 1990.
[18] R. M. Hirschorn. Invertibility of multivariable nonlinear control systems,. IEEE Trans. Aut.

Contr., 24:855–865, 1979.

[19] K. Judd. Networked dynamical systems with linear coupling: Synchronizaiton patterns, co-
herence and other behaviors. Chaos, 23(043112), 2013.

[20] H. Kamei and P. J. A. Cock. Computation of balanced equivalence relations and their lattice

for a coupled cell network. SIAM J. Appl. Dyn. Syst., 12(1):352–382, 2013.
[21] K. Kaneko. Relevance of dynamic clustering to biological networks. Physica D, 75(1–3):55–73,

1994.

[22] J. G. Mancilla, T. J. Lewis, D. J. Pinto, J. Rinzel, and B. W. Connors. Synchronization of
electrically coupled pairs of inhibitory interneurons in neocortex. J. Neurosci., 27:2058–2073,

2007.
[23] W. Michiels and S.-I. Niculescu. Stability, control, and computation for time-delay systems.

An eigenvalue based approach. SIAM, 2014.

[24] V. Nicosia, M. Valencia, M. Chavez, A. Dı́az-Guilera, and V. Latora. Remote synchronization
reveals network symmetries and functional modules. Phys. Rev. Lett., 110(174102), 2013.

[25] H. Nijmeijer. Invertibility of affine nonlinear control systems: A geometric approach. Syst.

Contr. Lett., 2(3):163–168, 1982.
[26] H. Nijmeijer and A. Rodriguez-Angeles. Synchronization of mechanical systems. World Sci-

entific, Singapore, 2003.

[27] G. Orosz. Decomposition of nonlinear delayed networks around cluster states with applica-
tions to neurodynamics. SIAM J. of Appl. Dyn. Syst., 13(4):1353–1386, 2014.

[28] L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy. Cluster syn-

chronization and isolated desynchronization in complex networks with symmetries. Nature
comm., 5(4079), 2014.

[29] M. Perez-Armendariz, C. Roy, D. C. Spray, and M. V. L. Bennett. Biophysical properties
of gap juntions between freshly dispersed pairs of mouse pancreatic beta cells. Biophys. J.,

59:76–92, 1991.

[30] Arkady Pikovsky, Micheal Rosenblum, and Jürgen Kurths. Synchronization. Cambridge Uni-
versity Press, 2 edition, 2003.

[31] A. Pogromsky, T. Glad, and H. Nijmeijer. On diffusion driven oscillations in coupled dynam-
ical systems. Int. J. Bif. Chaos, 9(4):629 – 644, 1999.

[32] A. Pogromsky, G. Santoboni, and H. Nijmeijer. Partial synchronization: from symmetry

towards stability. Physica D, 172(1–4):65–87, 2002.

[33] A. Y. Pogromsky. A partial synchronization theorem. Chaos, 18:037107, 2008. Erratum:
Chaos 19: 049901, 2009.

[34] A. Rodriguez-Angeles and H. Nijmeijer. Coordination of two robot manipulators based on
position measurements only. Int. J. Control, 74(13), 2001.

[35] A. Sherman, J. Rinzel, and J. Keizer. Emergence of organized bursting in clusters of pancre-

atic beta-cells by channel sharing. Biophys. J., 54(3):411–425, 1998.

[36] R. Sipahi, S. Niculescu, C. T. Abdallah, W. Michiels, and K. Gu. Stability and stabilization
of systems with time delay. IEEE Contr. Syst., 31(1):38–65, 2011.
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[42] H. U. Ünal and W. Michiels. Prediction of partial synchronization in delay-coupled nonlinear
oscillators, with application to Hindmarsh-Rose neurons. Nonlinearity, 26(12):3101–3126,

2013.

[43] C. W. Wu and L. O. Chua. Synchronization in an array of linearly coupled dynamical systems.
IEEE trans. Circ. Syst. I, 42(8):430–447, 1995.
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