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Abstract: We determine the optimal strategies for purchasing term life insurance and for investing in

a risky financial market in order to maximize the probability of reaching a bequest goal while consuming

from an investment account. We extend Bayraktar and Young (2015) by allowing the individual to

purchase term life insurance to reach her bequest goal. The premium rate for life insurance, h, serves

as a parameter to connect two seemingly unrelated problems. As the premium rate approaches 0,

covering the bequest goal becomes costless, so the individual simply wants to avoid ruin that might

result from her consumption. Thus, as h approaches 0, the problem in this paper becomes equivalent to

minimizing the probability of lifetime ruin, which is solved in Young (2004). On the other hand, as the

premium rate becomes arbitrarily large, the individual will not buy life insurance to reach her bequest

goal. Thus, as h approaches infinity, the problem in this paper becomes equivalent to maximizing the

probability of reaching the bequest goal when life insurance is not available in the market, which is

solved in Bayraktar and Young (2015).
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1. Introduction

We determine the optimal strategies for purchasing term life insurance and for investing in a risky

financial market in order to maximize the probability of reaching a bequest goal while consuming

from an investment account. We extend Bayraktar and Young (2015) by allowing the individual to

purchase term life insurance to reach her bequest goal. The premium rate for life insurance, h, serves

as a parameter to connect two seemingly unrelated problems. As the premium rate approaches 0,

covering the bequest goal becomes costless, so the individual simply wants to avoid ruin that might

result from her consumption. Thus, as h approaches 0, the problem in this paper becomes equivalent to

minimizing the probability of lifetime ruin, which is solved in Young (2004). On the other hand, as the

premium rate becomes arbitrarily large, the individual will not buy life insurance to reach her bequest

goal. Thus, as h approaches infinity, the problem in this paper becomes equivalent to maximizing the

probability of reaching the bequest goal when life insurance is not available in the market, which is

solved in Bayraktar and Young (2015).

http://arxiv.org/abs/1412.2262v3
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The work in this paper combines two areas of research. One area is the optimal purchase of

life insurance. There are two traditional reasons for buying life insurance: (1) protecting household

income when a wage earner dies, and (2) individuals wishing to leave bequests to their children or

other heirs. To address the first problem, researchers generally assume households wish to maximize

utility of consumption and, perhaps, bequest. For example, Bayraktar and Young (2013) maximize

expected exponential utility of a household’s consumption when an income earner might die; they

determine the optimal investment and life insurance purchasing strategies.1 Pliska and Ye (2007) have

no risky asset in their financial market, and the optimal strategy for purchasing insurance decreases

with increasing wealth. By contrast, Richard (1975) includes a risky asset in his financial market, and

the optimal strategy for purchasing insurance increases with wealth.2 Thus, the presence of a risky

asset can affect the optimal strategy for purchasing insurance; we note a similar difference in Section

3 of this paper.

The other area is the optimal control of wealth to reach a goal. Research on this topic began

with the seminal work of Dubins and Savage (1965, 1976) and continued with the work of Pestien and

Sudderth (1985), Orey et al. (1987), Sudderth and Weerasinghe (1989), Kulldorff (1993), Karatzas

(1997), and Browne (1997, 1999a, and 1999b). A typical problem considered in this research is to

control a process to maximize the probability the process reaches b, either before a fixed time T , such

as in Karatzas (1997), or before the process reaches a < b, such as in Pestien and Sudderth (1985).

In either of these forms of the problem, the game ends if wealth reaches b. The problem we consider

in this paper is similar in that we control a wealth process to maximize the probability of reaching b

before 0, but we want to reach b at a random time, namely, the time of death of the investor. The

game does not end if wealth reaches b before the investor dies; the game only ends when the individual

dies or ruins.

Related goal-seeking research in insurance economics focuses on minimizing the probability of

financial ruin of an infinitely-lived insurance company by controlling, for example, investment in a risky

financial market and purchasing reinsurance; see Schmidli (2002) and Promislow and Young (2005) for

two relatively early papers in this area. By contrast with that line of research, we focus on individual

decision making, which includes the possibility of bankruptcy, as in Schmidli (2002), but which also

includes the possibility of death and incorporates life insurance in the market to “compensate” the heirs

when that event occurs. If an insurance company were to maximize the probability of being prepared

for a catastrophe, then that problem would be more closely related to what we are considering in this

paper.

Bayraktar, Promislow, and Young (2014, 2015) introduce the problem of allowing the individual

to buy life insurance in order to reach a bequest goal. In that work, the individual does not consume

from the investment account, nor is there a risky asset in which the individual could invest. The

only uncertainty is the time of death. Bayraktar, Promislow, and Young (2014) consider a time-

homogeneous model in which the hazard rate λ and the riskless return r are constant. We discuss the

results of that paper at the beginning of Section 3. Bayraktar, Promislow, and Young (2015) extend

their 2014 paper by allowing the hazard rate to vary deterministically with time, while keeping the

1 In a paper with a similar model, but without life insurance available to protect income, Vellekoop

and Davis (2009) maximize utility of consumption when income might cease due to a random event.
2 In both of those papers, the authors maximize expected utility of consumption plus expected

utility of wealth at the time of death.
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remainder of the model the same. One interesting result from the latter paper is that if the future

lifetime random variable is uniformly distributed on [0, T ], then the optimal strategy for purchasing

life insurance is as follows: (1) If r ≤ 1
T
, then it is optimal for the individual to buy full life insurance

until death or ruin, whichever comes first. (2) If r > 1
T
, then it is optimal not to buy life insurance

until time T − 1
r
, after which time, it is optimal to buy full life insurance until death or ruin.

Then, Bayraktar and Young (2015) consider the problem of reaching the bequest goal with no

life insurance available in the market but, unlike Bayraktar, Promislow, and Young (2014, 2015), the

individual consumes from her investment account and there is a risky asset in which the individual

could invest. The main contributions of Bayraktar and Young (2015) are (1) to prove the duality

between the bequest problem and an optimal stopping problem in a particular case (see Sections 4.1

and 4.2); and (2) to emend some details of Browne (1997) (see Theorem 4.3 and Remark 4.1). Also,

that paper provides some mathematical background for the methods used in this paper.

In this paper, we extend the work of Bayraktar and Young (2015) by including life insurance in

the market. (Also, we extend Bayraktar, Promislow, and Young (2014) by including a risky asset and

non-zero consumption.) The resulting optimal strategy for purchasing life insurance is very different

from the one found in Bayraktar, Promislow, and Young (2014). Specifically, when there is no risky

asset, if the mortality rate is less than the riskless return, the optimal strategy is not to buy life

insurance until wealth reaches the safe level; otherwise, if the mortality rate is greater than the riskless

return, the optimal strategy is to buy life insurance if wealth is less than some level. When there is a

risky asset and when the rate of consumption is large enough, it is optimal for the individual to buy

insurance at all levels of wealth, a result we did not expect; otherwise, for lower rates of consumption,

it is optimal to buy insurance only when wealth is greater than some level.

The rest of the paper is organized as follows. In Section 2, we present the financial and insurance

market in which the individual invests, we formalize the problem of maximizing the probability of

reaching a bequest goal, and we give a verification lemma that will help us to find that maximum

probability, along with the optimal strategies for investing in the financial market and for purchasing

term life insurance. In Section 3, we solve the problem of maximizing the probability of reaching

a bequest goal when the rate of consumption is zero; we separate this case because we can solve it

explicitly. Sections 4 and 5 parallel Section 3 for a positive rate of consumption. In that case, we

have an explicit solution only when the rate of consumption is large enough but not too large (Section

4.1). Otherwise, we solve the problem by solving for the convex Legendre transform of the maximum

probability and, then, use the verification lemma to prove that our ansatz is, indeed, the maximum

probability of reaching the bequest goal.

In Section 6, we prove properties of the solution obtained in Sections 3 through 5. In particular,

we show that, as the premium rate for life insurance h increases, the maximum probability of reaching

the bequest goal (weakly) decreases, and the optimal amount invested in the risky asset (weakly)

increases. Furthermore, we show that as h approaches 0, the maximum probability of reaching the

bequest goal and the optimal amount invested in the risky asset approach 1 minus the minimum

probability of lifetime ruin and the corresponding optimal strategy, respectively. Also, we show that

as h approaches ∞, the solution to the problem in this paper approaches the solution in Bayraktar

and Young (2015) for the problem of maximizing the probability of reaching a bequest goal without

life insurance available in the market. Finally, at the end of Section 6, we provide numerical examples

to illustrate our results. Section 7 concludes the paper.
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2. Statement of the problem and verification lemma

In this section, we define the financial and insurance market in which the individual invests. Then,

we state the optimization problem this individual faces and present a verification lemma we use in

Sections 3 through 5 to solve the optimization problem.

2.1. Financial market and probability of reaching the bequest goal

We assume the individual has an investment account she manages in order to reach a given bequest

goal b. She consumes from this account at the constant rate c. The individual invests in a Black-

Scholes financial market with one riskless asset earning interest at the rate r ≥ 0 and one risky asset

whose price process S = {St}t≥0 follows geometric Brownian motion:

dSt = µSt dt+ σ St dBt,

in which B = {Bt}t≥0 is a standard Brownian motion on a filtered probability space (Ω,F ,F =

{Ft}t≥0,P), with µ > r and σ > 0.

Let Wt denote the wealth of the individual’s investment account at time t ≥ 0. Let πt denote

the dollar amount invested in the risky asset at time t ≥ 0. An investment policy Π = {πt}t≥0 is

admissible if it is an F-progressively measurable process satisfying
∫ t

0
π2
s ds < ∞ almost surely, for all

t ≥ 0.

Denote the future lifetime random variable of the individual by τd. We assume τd follows an

exponential distribution with mean 1/λ. We assume the individual buys life insurance via a premium

paid continuously at the rate of h > 0 per dollar of insurance. Furthermore, we assume the individual

can change the amount of her insurance coverage at any time, that is, the individual may purchase

so-called instantaneous term life insurance. Bayraktar et al. (2014, Section 3.1) assume h ≥ λ, but we

allow h < λ in this paper to account for imperfect information of the insurer in pricing life insurance

for a particular individual.

Let Dt denote the amount of death benefit payable at time τd in force at time t ≥ 0. An insurance

strategy D = {Dt}t≥0 is admissible if it is F-progressively measurable and non-negative. Thus, with

instantaneous term life insurance, wealth follows the dynamics

{

dWt = (rWt + (µ− r)πt − c− hDt) dt+ σ πt dBt, 0 ≤ t < τd,

Wτd = Wτd− +Dτd−.
(2.1)

We assume the individual seeks to maximize the probability that Wτd ≥ b, by optimizing over

admissible controls (Π,D). Because of the constant drain on wealth by the negative drift term −c,

financial ruin might occur before death, and we end the game if wealth reaches 0 before the individual

dies. Define τ0 = inf{t ≥ 0 : Wt ≤ 0}, and define the value function by

φ(w) = sup
(Π,D)

Pw (Wτd∧τ0 ≥ b) , (2.2)

in which Pw denotes conditional probability given W0 = w ≥ 0. We refer to φ as the maximum

probability of reaching the bequest goal, with the understanding that if ruin occurs before death, then

the bequest goal cannot be attained.
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Remark 2.1. We assume that the individual’s consumption rate c is constant and exogenously

given. If the individual were allowed to control her consumption process {ct}, then, to maximize the

probability of reaching her bequest goal, she would optimally choose ct ≡ 0 almost surely, for all t ≥ 0.

In that case, we argue that the individual would starve to death. Therefore, we assume that there is a

subsistence level, as in Sethi et al. (1992), below which the individual will not reduce her consumption.

The consumption rate c in this paper represents that subsistence level.

The results of this paper will give the optimal investment and life insurance purchasing strategies

for a given value of c, along with the maximum probability of reaching a bequest goal. The individual

can, then, vary c and compare the resulting strategies and value function to better understand her

options. A natural extension, then, is to allow a time-varying rate of consumption (varying as a

deterministic function of time or of wealth), and we invite the interested reader to pursue this problem.

Remark 2.2. As the premium rate for life insurance approaches 0+, then the bequest goal can be

covered without cost, and the problem reduces to the one of minimizing the probability of lifetime ruin

(Young, 2004). On the other hand, as the premium rate becomes arbitrarily large, then we expect the

individual to buy no life insurance, and the problem reduces to the one of maximizing the probability

of reaching the bequest without life insurance in the market (Bayraktar and Young, 2015). Thus, the

problem solved in this paper connects these two seemingly unrelated problems as the premium rate

varies from 0 to ∞; see the work in Section 6 below for results proving the continuity of our solution

as h → 0+ and as h → ∞.

Remark 2.3. If wealth is large enough, say at least ws (“s” for safe), then the individual can invest

all her wealth in the riskless asset with the interest income sufficient to cover her consumption and

insurance premium for death benefit (b − ws)+. That is, wealth ws generates interest of rws =

c+ h(b− ws)+. By solving this equation for ws, we obtain

ws =







c+hb
r+h

, if 0 ≤ c ≤ rb,

c
r
, if c > rb,

(2.3)

which we call the safe level. Thus, φ(w) = 1 if w ≥ ws, and it remains for us to determine φ(w) for

0 < w < ws.

2.2 Verification lemma

In this section, we provide a verification lemma that states that a smooth solution to a boundary-

value problem (BVP) associated with the maximization problem in (2.2) equals the value function

φ. Therefore, we can reduce our problem to one of solving a BVP. We state the verification lemma

without proof because its proof is similar to others in the literature; see, for example, Schmidli (2002,

Theorem 1), Promislow and Young (2005, Theorem 2.1), or Wang and Young (2012, Theorem 3.1 and

Corollary 3.1).

First, for π ∈ R and D ≥ 0, define a differential operator Lπ,D by its action on a test function f ,

whose definition is derived from the wealth dynamics in (2.1):

Lπ,D f = (rw + (µ− r)π − c− hD)fw +
1

2
σ2π2fww − λ

(

f − 1{w+D≥b}

)

. (2.4)
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Lemma 2.1. Let Φ = Φ(w) be a C2([0, ws]) function for which Φw > 0 and Φww < 0 in (0, ws).

Suppose Φ satisfies the following BVP on [0, ws] :







max
π,D≥0

Lπ,D Φ(w) = 0,

Φ(0) = 0, Φ(ws) = 1.
(2.5)

Then, on [0, ws],

φ = Φ,

the optimal amount invested in the risky asset is given in feedback form by

π∗
t = −

µ− r

σ2

Φw(W ∗
t )

Φww(W ∗
t )

, (2.6)

in which W ∗
t is the optimally controlled wealth at time t, and the optimal amount of instantaneous

term life insurance equals

D∗
t = (b−W ∗

t )1{wb≤W∗

t ≤min(ws,b)}, (2.7)

in which

wb = inf{w ≥ 0 : λ− h(b− w) Φw(w) ≥ 0} ∧ b. (2.8)

Remark 2.4. Note that the optimal amount of life insurance to buy at any instant is either 0 or

b− w, as written in (2.7). If c > rb, then the safe level c
r
> b, and it is optimal not to buy insurance

when b ≤ Wt <
c
r
. Thus, we can rewrite (2.5) as











λ
(

Φ− 1{w≥wb}

)

=
(

rw − c− h(b− w)1{wb≤w≤min(ws,b)}

)

Φw +max
π

[

(µ− r)πΦw +
1

2
σ2π2Φww

]

,

Φ(0) = 0, Φ(ws) = 1.

(2.9)

Remark 2.5. The problem of maximizing the probability of reaching the bequest goal scales jointly

with wealth w, the bequest goal b, and the rate of consumption c. Specifically, if we write φ = φ(w; b, c),

wb = wb(b, c), and π∗ = π∗(w; b, c) to denote the dependence of φ and the optimal strategies on w, b,

and c, then the following relationships hold. For any constant k > 0,

φ(kw; kb, kc) = φ(w; b, c), (2.10)

wb(kb, kc) = k wb(b, c), (2.11)

and

π∗(kw; kb, kc) = k π∗(w; b, c). (2.12)

The reader will observe these relationships in the solutions in Sections 3 through 5.

Because of this scaling, we could set, say, b = 1, solve for φ, wb, and π∗ with b = 1, then

obtain the more general quantities as follows: φ(w; b, c) = φ(w/b; 1, c/b), wb(b, c) = b wb(1, c), and

π∗(w; b, c) = b π∗(w/b; 1, c/b). Alternatively, we could set c = 1 and proceed similarly. We choose

not to set b = 1 or c = 1 because we want to allow b → 0 and observe that the solution approaches
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the one for minimizing the probability of lifetime ruin, and we want to keep c general in order to

compare the optimal investment strategy to other optimal investment strategies for which c plays a

role. Furthermore, setting b = 1 or c = 1 does not simplify the mathematical analysis, except to

remove one parameter.

Remark 2.6. Bayraktar and Young (2009) considered the problem of minimizing shortfall at death

without life insurance in the market; they found that the optimal amount to invest in the risky asset is

greater than the optimal amount when minimizing lifetime shortfall. If we were to add life insurance

to the market when minimizing Ew[(b−Wτd∧τ0)+] (again, with the understanding that the game ends

if wealth reaches 0, or equivalently, 0 is an absorbing state for the wealth process), then because the

price of life insurance and the shortfall target are (piecewise) linear in the size of the death benefit, if

it is optimal to buy any amount of life insurance, it will be optimal to buy b − w. Furthermore, we

anticipate that the corresponding value function, V , will be decreasing and convex; if so, the optimal

life insurance purchasing strategy will be given by (2.7) for wb = inf{w ≥ 0 : λ + h Vw(w) ≥ 0} ∧ b,

and V will solve the following BVP:


















λ(V − (b− w)+) = (rw − c)Vw +min
π

[

(µ− r)π Vw +
1

2
σ2π2Vww

]

− (b− w)(λ+ hVw)1{wb≤w≤min(ws,b)},

V (0) = b, V (ws) = 0.

Thus, even though V measures the magnitude of the shortfall, and not just whether there is shortfall,

the optimal insurance purchasing strategy is of the same form as for the bequest goal problem solved

in this paper.

In the following sections, we use Lemma 2.1 to calculate φ. The solution differs depending on

whether c = 0, 0 < c ≤ rb, or c > rb, so we split the problem into those three cases in the next three

sections. Specifically, in Section 3, we consider the case for which c = 0 and explicitly determine φ. In

Sections 4 and 5, we consider the cases for which 0 < c ≤ rb and c > rb, respectively, and express φ

through its convex Legendre transform (a technique employed in Bayraktar and Young (2007, 2015)),

except for the special case in Section 4.1, for which we can write φ explicitly.

3. The case for which c = 0

Bayraktar et al. (2014, Section 3.1) computed the maximum probability of reaching the bequest

goal in the case for which c = 0, with no risky asset in the market; let φd denote the maximum

probability in this deterministic case. In that work, we found that if r ≥ λ, then the individual does

not buy insurance until her wealth reaches the safe level ws =
hb
r+h

. At the other extreme, if r+h ≤ λ,

then for all levels of wealth, the individual buys term life insurance of b−w until death or ruin because

insurance is cheap enough and the riskless return is low enough relative to the hazard rate.

Otherwise, if r < λ < r + h, then for wealth less than a certain value (w∗ in that paper), the

individual buys term life insurance of b−w until death or ruin, while for wealth greater than w∗, she

does not buy insurance until her wealth reaches the safe level. We showed that φd equals

φd(w) =















1−
(

1− w
ws

)
λ

r+h

, if 0 ≤ w < w∗,

(

w
ws

)
λ
r

, if w∗ ≤ w ≤ ws =
hb
r+h

,

(3.1)
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in which w∗ = 0 if r ≥ λ; otherwise, if r < λ, 0 < w∗ < ws is the unique value that makes φd

continuous. In (3.1), 1−
(

1− w
ws

)
λ

r+h

is the probability of reaching the bequest goal if the individual

buys term life insurance of b−w until she dies or ruins, and
(

w
ws

)
λ
r

is the probability of reaching the

bequest goal if the individual does not buy insurance until her wealth reaches the safe level. When

there is no risky asset, the individual buys life insurance at low wealth levels when λ > r because

the probability that her wealth will reach the safe level through saving is too small relative to her

probability of dying.

When the financial market includes a risky asset, the corresponding strategy for buying term life

insurance is turned upside down. Specifically, for wealth less than the buy level wb (“b” for buy),

the individual does not buy life insurance, while for wealth greater than the buy level wb, she buys

insurance of b−w. Because of the existence of a risky asset, when wealth is low, the individual wants

to keep her wealth as unconstrained as possible to invest in the risky asset so that she can reach the

buy level.

In the no-risky-asset case, there is only one uncertainty, the time of death, so the individual

essentially compares the probability of surviving long enough to reach the safe level (while not buying

insurance) with the probability of dying before hitting 0 (while buying insurance). When there is a

risky asset in the market, there is additional uncertainty, the uncertainty in investment returns, and

the individual will gamble on that uncertainty to help meet her bequest goal.

Recall that we observed a similar phenomenon when maximizing expected utility of lifetime con-

sumption plus utility of wealth at death. Pliska and Ye (2007) have no risky asset in their financial

market, and the optimal strategy for purchasing insurance decreases with increasing wealth. The ana-

log in the bequest-goal setting is that, when there is no risky asset and r < λ < r + h, the individual

only purchases insurance when wealth is small enough. By contrast, Richard (1975) includes a risky

asset in his financial market, and the optimal strategy for purchasing insurance increases with wealth.

The analog in the bequest-goal setting is that, when there is a risky asset, the individual only purchases

insurance when wealth is large enough.

In the following proposition, we present φ and the corresponding optimal strategies for purchasing

life insurance and investing in the risky asset. We omit the proof because it is a straightforward

application of Lemma 2.1.

Theorem 3.1. If c = 0, the maximum probability of reaching the bequest goal equals

φ(w) =











p(1−q)
p−q

(

w
wb

)q

, if 0 ≤ w < wb,

1− q(p−1)
p−q

(

ws−w
ws−wb

)p

, if wb ≤ w ≤ ws =
hb
r+h

,

(3.2)

in which

q =
1

2r

[

(r + λ+m)−
√

(r + λ+m)2 − 4rλ
]

∈ (0, 1), (3.3)

p =
1

2(r + h)

[

(r + h+ λ+m) +
√

(r + h+ λ+m)2 − 4(r + h)λ
]

> 1, (3.4)

m =
1

2

(

µ− r

σ

)2

, (3.5)
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and

wb =
1− q

p− q
ws ∈ (0, ws). (3.6)

When wealth equals w, the optimal amount of instantaneous term life insurance equals

D∗(w) = (b− w)1{wb≤w≤ws}, (3.7)

and the optimal amount invested in the risky asset equals

π∗(w) =







µ−r
σ2

w
1−q

, if 0 < w < wb,

µ−r
σ2

ws−w
p−1

, if wb ≤ w ≤ ws.
(3.8)

We present the following corollary of Theorem 3.1, in which we give the process of optimally

controlled wealth for wealth greater than wb and observe that wealth never reaches the safe level ws

nor does ruin occur.

Corollary 3.2. If c = 0, then the optimally controlled wealth process follows the dynamics

dW ∗
t =











W ∗
t

[(

r + 2m
1−q

)

dt+ µ−r
σ

1
1−q

dBt

]

, if W ∗
t < wb,

(ws −W ∗
t )
[(

2m
p−1

− (r + h)
)

dt+ µ−r
σ

1
p−1

dBt

]

, if W ∗
t > wb.

Thus, 0 < W ∗
t < ws almost surely, for all t ≥ 0, if W0 = w ∈ (0, ws).

Remark 3.1. Optimally controlled wealth never reaches the safe level because ws − W ∗ behaves

like geometric Brownian motion for wealth near ws. Young (2004) observed a similar behavior of

optimally controlled wealth when minimizing the probability of lifetime ruin under a constant rate of

consumption. Indeed, the investment strategy when wealth lies between wb and ws is quite similar

to the investment strategy when minimizing the probability of lifetime ruin, in that both strategies

decrease linearly towards zero as wealth increases towards the safe level. Also, note that ruin will not

occur when optimally investing and buying life insurance because W ∗ behaves like geometric Brownian

motion near 0.

Remark 3.2. As the hazard rate λ increases to ∞, one can show that the buy level wb decreases to 0.

This monotonicity makes sense because as the person is more likely to die, she will be more willing to

buy insurance for a fixed premium rate. Furthermore, as λ → ∞, the individual is likely to die “in the

next second,” so the only way of reaching a bequest goal is to buy life insurance, which is supported

by wb → 0.

4. The case for which 0 < c ≤ rb

When the rate of consumption is large enough and when the premium rate for life insurance is

low enough, then it is optimal to buy life insurance of b− w for all 0 ≤ w ≤ ws (that is, wb = 0), and

we have an explicit expression for φ, as in Theorem 3.1. We present this case in Section 4.1.
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Otherwise, if wb > 0, then we cannot write φ explicitly. However, we can write it semi-explicitly

by using the Legendre transform to obtain an ansatz for φ; see Bayraktar and Young (2007, 2015) for

more details on this technique.

4.1 Buying life insurance at all levels of wealth

When the rate of consumption is large enough and when the premium rate is low enough, it is

optimal for the individual to buy life insurance at all levels of wealth. For this reason, we can explicitly

solve the maximization problem; see Theorem 4.2 below. First, we present the following lemma that

we use in the statement of Theorem 4.2. The proof of the lemma is straightforward, so we omit it.

Lemma 4.1. If h ≤ r
r+m

λ, then C1 ≤ rb, in which C1 is defined by

C1 = hb

(

(r + h)p

λ
− 1

)

. (4.1)

Theorem 4.2. If h ≤ r
r+m

λ and if C1 ≤ c ≤ rb, in which C1 ≤ rb is given in (4.1), then the

maximum probability φ of reaching the bequest goal equals

φ(w) = 1−

(

1−
w

ws

)p

, 0 ≤ w ≤ ws =
c+ hb

r + h
, (4.2)

in which p is given in (3.4). When wealth equals w ∈ (0, ws], the optimal amount of instantaneous

term life insurance equals

D∗(w) = b− w, (4.3)

and the optimal amount invested in the risky asset equals

π∗(w) =
µ− r

σ2

ws − w

p− 1
. (4.4)

Proof. We use Lemma 2.1 to prove this proposition. Because p > 1, the function φ in (4.2) is such

that φw > 0 and φww < 0 in (0, ws). It clearly satisfies the boundary conditions of (2.5), and one can

show that it satisfies the differential equation in (2.5) with D = b−w. As indicated in (2.8), to prove

D = b− w is optimal, we must prove

λ− h(b− w)φw(w) ≥ 0,

for all 0 ≤ w ≤ ws, or equivalently,

λ− h(b− w)
p

ws

(

1−
w

ws

)p−1

≥ 0. (4.5)

Inequality (4.5) holds at w = 0 if and only if

c ≥ C1.

Furthermore, the left side of inequality (4.5) increases with respect to w; thus, if C1 ≤ c ≤ rb, then

(4.5) holds on [0, ws]. Finally, the optimal investment strategy in (4.4) follows from (2.6) and (4.2).
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Remark 4.1. At first blush, it seems as if buying life insurance when consumption is large and when

wealth is near zero would be more likely to lead to ruin than if the individual were not to buy life

insurance when wealth is near zero. However, the key is that insurance is inexpensive relative to the

rate of dying, h ≤ r
r+m

λ. Recall that the individual only wins the game if her wealth at death is at

least equal to b, so if the consumption rate is great enough (C1 ≤ c ≤ rb), the negative tug on wealth

from −c means that she is better off buying life insurance at all levels of wealth rather than waiting

until wealth reaches some higher level and then buying life insurance.

Remark 4.2. From (4.4), we deduce that the second expression for optimally controlled wealth in

Corollary 3.2 also holds for all W ∗
t > 0, when C1 ≤ c ≤ rb. Thus, ws − W ∗ behaves like geometric

Brownian motion for wealth near ws, so wealth never reaches the safe level ws.

4.2 Buying life insurance only when wealth is large enough

When 0 < c ≤ rb and c < C1, with C1 given in (4.1), it is optimal to buy life insurance only when

wealth is larger than some positive level, that is, wb > 0, as in the case for which c = 0. To obtain an

ansatz for φ, we (1) hypothesize that φ solves (2.9) with wb > 0, φw > 0, and φww < 0, (2) formally

define φ’s convex Legendre transform and determine its free-boundary problem, (3) solve this dual

free-boundary problem, and (4) compute the concave Legendre transform of that solution. Bayraktar

and Young (2007, Section 4.1) follow these steps to minimize the expectation of a non-increasing, non-

negative function of minimum wealth in a Black-Scholes market. Also, Bayraktar and Young (2015)

perform steps (3) and (4) when maximizing the probability of reaching the bequest goal without life

insurance in the market. They include those steps because, when 0 < c < rb, the convex Legendre

transform is the value function of an optimal stopping problem.

We omit the details of steps (1)-(4) because they are similar to those found in Bayraktar and

Young (2007, Section 4.1). Instead, in the following theorem, we present the candidate for φ thus

obtained and verify directly that it satisfies the conditions of Lemma 2.1.

Theorem 4.3. If 0 < c ≤ rb and if c < C1, then the maximum probability of reaching the bequest goal

equals

φ(w) =











c
r

(α1−1)(1−α2)
α1−α2

[

−
(

y
y0

)α1

+
(

y
y0

)α2
]

y0, if 0 ≤ w < wb = b− λ
h

1
yb
,

1− λ
hp

ws−wb

b−wb

(

ws−w
ws−wb

)p

, if wb ≤ w ≤ ws =
c+hb
r+h

,

(4.6)

in which

β1 =
1

2m

[

(r + h− λ+m) +
√

(r + h− λ+m)2 + 4mλ
]

> α1,

α1 =
1

2m

[

(r − λ+m) +
√

(r − λ+m)2 + 4mλ
]

> 1,

α2 =
1

2m

[

(r − λ+m)−
√

(r − λ+m)2 + 4mλ
]

< 0,

(4.7)

with p = β1

β1−1 and m given in (3.4) and (3.5), respectively. The parameter yb > 0 is given by

λ

h

1

yb
= b+

c

r

[

α1(1− α2)

α1 − α2
yα1−1
b0 +

α2(α1 − 1)

α1 − α2
yα2−1
b0 − 1

]

, (4.8)
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in which yb0 ∈ (0, 1) uniquely solves

c

r

[

α1(1− α2)(β1 − α1)

α1 − α2
yα1−1
b0 +

α2(α1 − 1)(β1 − α2)

α1 − α2
yα2−1
b0

]

= (β1 − 1)
( c

r
− ws

)

, (4.9)

and the parameter y0 > yb is given by

y0 =
yb
yb0

. (4.10)

In the first expression of (4.6), for a given w ∈ [0, wb), y ∈ (yb, y0] uniquely solves

c

r

[

α1(1− α2)

α1 − α2

(

y

y0

)α1−1

+
α2(α1 − 1)

α1 − α2

(

y

y0

)α2−1
]

=
c

r
− w. (4.11)

When wealth equals w ∈ (0, ws], the optimal amount of instantaneous term life insurance equals

D∗(w) = (b− w)1{wb≤w≤ws}, (4.12)

and the optimal amount invested in the risky asset equals

π∗(w) =











µ−r
σ2

c
r

(α1−1)(1−α2)
α1−α2

[

α1

(

y
y0

)α1−1

− α2

(

y
y0

)α2−1
]

, if 0 < w < wb,

µ−r
σ2

ws−w
p−1

, if wb ≤ w ≤ ws.

(4.13)

Proof. First, note that there exists a unique solution yb0 ∈ (0, 1) of (4.9). Indeed, the left side of (4.9)

increases with respect to yb0, and as yb0 approaches 0+, the left side of (4.9) approaches −∞. When

yb0 = 1, the left side becomes
c

r

(

β1 −
r +m

m

)

,

which is greater than the right side if and only if c is less than

hb
m

(r + h)p− (r + h+m)
,

which equals C1. Thus, because c < C1, there exists a unique solution in (0, 1) of (4.9).

Second, we prove that yb > 0. It is straightforward to show that yb0 increases with c, which

implies that the right side of (4.8) increases with c. So, it is enough to show that the right side of (4.8)

is positive as c → 0+. From (4.9), we deduce that

lim
c→0+

c

r

α2(α1 − 1)(β1 − α2)

α1 − α2
yα2−1
b0 = −(β1 − 1)

hb

r + h
.

Thus, the limit of the right side of (4.8), as c → 0+, equals

b−
β1 − 1

β1 − α2

hb

r + h
> 0.

Third, we prove that wb defined by wb = b− λ
h

1
yb

is positive. In terms of yb0, we write

wb =
c

r

[

1−
α1(1− α2)

α1 − α2
yα1−1
b0 −

α2(α1 − 1)

α1 − α2
yα2−1
b0

]

, (4.14)
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and the quantity in the square brackets decreases with c. We have two cases to consider h ≤ r
r+m

λ

and h > r
r+m

λ. If h ≤ r
r+m

λ, then C1 ≤ rb, so it is enough to show that wb ≥ 0 when c = C1. From

the above discussion, we know that if c = C1, then yb0 = 1; thus, (4.14) gives

wb

∣

∣

c=C1
= 0.

If h > r
r+m

λ, then C1 > rb, so it is enough to show that wb > 0 when c = rb. If c = rb, then

yb0 =

(

−
α2(α1 − 1)(β1 − α2)

α1(1− α2)(β1 − α1)

)
1

α1−α2

,

and (4.14) gives

wb

∣

∣

c=rb
=

c

r



1−

(

α1(1− α2)

β1 − α2

)

1−α2
α1−α2

(

−
α2(α1 − 1)

β1 − α1

)

α1−1

α1−α2



 ,

which increases with h because β1 increases with h. Thus, it is enough to show that wb

∣

∣

c=rb
≥ 0 when

h = r
r+m

λ. If h = r
r+m

λ, then rb = C1, and wb

∣

∣

c=rb
= 0.

Fourth, we prove that wb < ws. From (4.9) and (4.14), we deduce that wb < ws if and only if

α1(1− α2)(β1 − α1)

α1 − α2
yα1−1
b0 +

α2(α1 − 1)(β1 − α2)

α1 − α2
yα2−1
b0 <

α1(1− α2)

α1 − α2
yα1−1
b0 +

α2(α1 − 1)

α1 − α2
yα2−1
b0 ,

which is equivalent to α2 y
α2−1
b0 < α1 y

α1−1
b0 , which holds because α2 < 0 < 1 < α1.

Finally, we use Lemma 2.1 to show that the expression in (4.6) equals the maximum probability

of reaching the bequest goal. When w = 0, (4.11) implies that y = y0, so the first expression in (4.6)

equals 0. Clearly, when w = ws, the second expression in (4.6) equals 1. For 0 ≤ w < wb,

φw(w) = y > 0, (4.15)

and

φww(w) = y

(

c

r

(α1 − 1)(1− α2)

α1 − α2

[

−α1

(

y

y0

)α1−1

+ α2

(

y

y0

)α2−1
])−1

< 0. (4.16)

Using (4.15) and (4.16), one can show that the first expression in (4.6) satisfies the differential equation

in (2.9). It is straightforward to show that the second expression in (4.6) also satisfies the differential

equation in (2.9) in (wb, ws), with φw > 0 and φww < 0 in that interval.

We next show that φ given in (4.6) is C2 at w = wb. To that end, note that when w = wb, the

solution of (4.11) is y = yb; thus, from (4.15),

φw(wb−) = yb,

and from the second expression in (4.6),

φw(wb+) =
λ

h

1

b− wb

= yb.
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Next, from (4.16),

φww(wb−) = yb

(

c

r

(α1 − 1)(1− α2)

α1 − α2

(

−α1 y
α1−1
b0 + α2 y

α2−1
b0

)

)−1

,

and the second expression in (4.6) gives

φww(wb+) = −
λ

h

p− 1

(b− wb)(ws − wb)
= −yb

p− 1

ws − wb

.

The equality of these expressions for φww(wb−) and φww(wb+) follows from (4.9) after substituting

for wb via (4.14). Next, from the differential equation in (2.9),

λφ(wb−) = (rwb − c)φw(wb)−m
φ2
w(wb)

φww(wb)
,

and

λφ(wb+) = (rwb − c)φw(wb)−m
φ2
w(wb)

φww(wb)
+ (λ− h(b− wb)φw(wb)).

From φw(wb) = yb and wb = b− λ
h

1
yb
, we deduce that φ(wb−) = φ(wb+). Thus, we have shown that φ

is C2 at w = wb. Furthermore, we have shown that the expression given in (4.6) satisfies the conditions

of Lemma 2.1 and, thus, equals the maximum probability of reaching the bequest goal.

The optimal strategies in (4.12) and (4.13) follow from (2.6) and (2.7), respectively.

Remark 4.3. When it is optimal not to buy life insurance, that is, when 0 < w < wb, then the

optimal amount invested in the risky asset in (4.13) is independent both of the bequest goal b and of

the premium rate h, a surprising result. Indeed, the solution y
y0

of (4.11) is independent of b and h;

thus, the first expression in (4.13) is independent of b and h. Also, note that this independence holds

when c = 0; see (3.8) in Theorem 3.1.

Moreover, we will see in Proposition 6.4 that, when 0 < w < wb, π
∗(w) is identical to the amount

invested in the risky asset when life insurance is not available in the market. Thus, one might interpret

this by saying that, when 0 < w < wb, the individual is investing to attain any level of wealth greater

than current wealth.

When it is optimal to buy life insurance, that is, when wb ≤ w ≤ ws, the optimal investment

strategy in (4.13) is identical to the one given in (4.4) in Theorem 4.2. Also, note that the relationships

in (2.10) through (2.12) hold for the solution in Theorem 4.3, as expected.

Remark 4.4. From the expression for π∗(w) in (4.13) when wb ≤ w ≤ ws, we deduce that the

expression for optimally controlled wealth in Corollary 3.2 when W ∗
t > wb also holds when 0 < c ≤ rb.

Thus, wealth never reaches the safe level.

We expected wb to decrease monotonically from 1−q
p−q

hb
r+h

as c increases because if h ≤ r
r+m

λ,

then wb

∣

∣

c=C1
= 0. However, the following corollary shows that wb first increases and then decreases

as c increases, a surprising result.

Corollary 4.4. Suppose h ≤ r
r+m

λ, which implies C1 ≤ rb. As c increases from 0 to C1, the buy level

wb first increases from the expression given in (3.6) and then decreases to 0. Moreover, if h > r
r+m

λ,

then the buy level wb increases at c = 0+.
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Proof. By differentiating (4.14) with respect to c and by substituting for ∂yb0

∂c
, which we obtain by

differentiating (4.9) with respect to c, we get

∂wb

∂c
=

1

r

[

1−
α1(1− α2)

α1 − α2
yα1−1
b0 −

α2(α1 − 1)

α1 − α2
yα2−1
b0

]

− (β1 − 1)
hb

c(r + h)

α1 y
α1−1
b0 − α2 y

α2−1
b0

α1(β1 − α1)y
α1−1
b0 − α2(β1 − α2)y

α2−1
b0

.

After substituting for (β1 − 1) hb
c(r+h) from (4.9) and simplifying, we get

∂wb

∂c
∝ α1

(

r

r + h
β1 − α1 +

h

r + h

)

y1−α2

b0 − α2

(

r

r + h
β1 − α2 +

h

r + h

)

y1−α1

b0 + α1α2(α1 − α2).

(4.17)

Define a function k of y ∈ (0, 1) by the right side of (4.17). As c → 0+, yb0 → 0+, and limy→0+ k(y) =

+∞. As c → C1−, wb → 0+, yb0 → 1−, and

lim
y→1−

k(y) ∝ mβ1 − (r + h+m) < 0.

The derivative of k is proportional to

k′(y) ∝ α1(1− α2)

(

r

r + h
β1 − α1 +

h

r + h

)

yα1−α2 + α2(α1 − 1)

(

r

r + h
β1 − α2 +

h

r + h

)

,

which is negative for all y ∈ (0, 1) if k′(1) ≤ 0, or equivalently, if

rβ1 + h

r + h
≤

r +m

m
. (4.18)

It is straightforward to show that the left side of inequality (4.18) increases with h, and limh→∞
rβ1+h
r+h

=
r+m
m

. Thus, (4.18) holds strictly for all h ≤ r
r+m

λ, and we deduce that ∂wb

∂c
switches from positive to

negative as c increases from 0 to C1. Moreover, ∂wb

∂c

∣

∣

c=0+
is positive, independent of the magnitude of

h.

Remark 4.5. We were surprised about the lack of monotonicity of wb with respect to c, and we

initially thought it might be due to the fact that ws also increases with c. That is, perhaps the

difference, ws − wb, increases with c. However, in work parallel to the proof of Corollary 4.4, one can

show that ws −wb first decreases and then increases as c increases. Specifically, as c initially increases

from 0+, wb increases more quickly than ws does.

5. The case for which c > rb

When the safe level ws = c
r
> b, it is optimal not to buy life insurance when w ≥ b. When the

rate of consumption is large enough or when the premium rate for life insurance is low enough, it is

optimal to buy life insurance with death benefit b−w for all 0 < w < b; we present this case in Section

5.1. Otherwise, it is optimal to buy life insurance only for wealth lying between wb > 0 and b; we

present this case in Section 5.2.
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5.1 Buying life insurance at all levels of wealth less than the bequest goal

When the rate of consumption is large enough or when the premium rate is low enough, it is

optimal to buy life insurance at all levels of wealth less than the bequest goal. Unlike the problem in

Section 4.1, we do not have an explicit solution for φ because it is optimal not to buy life insurance

for wealth between b and c
r
. Thus, we rely on φ’s convex Legendre transform, as in Section 4.2, to

obtain an ansatz for φ. Again, we omit the details because they are similar to those in Bayraktar and

Young (2007, 2015). In Theorem 5.2 below, we present the candidate for φ and verify directly that it

satisfies the conditions of Lemma 2.1. First, we prove a useful lemma.

Lemma 5.1. Define the function g by

g(β) = r − (r + h)
β

α1
+ hβ, (5.1)

in which α1 is given in (4.7). Then,

g(β1) > 0 and g(β2) > 0,

in which β1 is given in (4.7) and

β2 =
1

2m

[

(r + h− λ+m)−
√

(r + h− λ+m)2 + 4mλ
]

< 0. (5.2)

Proof. First, g(β1) > 0 if and only if rα1 + ((α1 − 1)h− r)β1 > 0. When h = 0, the latter inequality

holds with equality because β1

∣

∣

h=0
= α1. Thus, if we show that rα1+((α1 −1)h− r)β1 increases with

h, then we are done.

∂

∂h
(rα1 + ((α1 − 1)h− r)β1) = (α1 − 1)β1 +

((α1 − 1)h− r)β1
√

(r + h− λ+m)2 + 4mλ

∝ (α1 − 1)(h+
√

(r + h− λ+m)2 + 4mλ)− r,

which is positive if it is non-negative at h = 0 because h+
√

(r + h− λ+m)2 + 4mλ increases with

h. To show that

(α1 − 1)
√

(r − λ+m)2 + 4mλ− r ≥ 0,

use α1 − 1 = 1
p0−1 , in which p0 = p

∣

∣

h=0
, with p given in (3.4), to obtain the equivalent inequality

√

(r + λ+m)2 − 4rλ− r(p0 − 1) ≥ 0,

or
√

(r + λ+m)2 − 4rλ ≥ (r + λ+m)− 2r.

The latter inequality is straightforward to demonstrate; thus, we have shown g(β1) > 0.

Next, to prove g(β2) > 0, it is enough to show that g(β2) decreases with h and that

limh→∞ g(β2) ≥ 0.

∂

∂h

(

r − (r + h)
β2

α1
+ hβ2

)

∝ (α1 − 1)(h−
√

(r + h− λ+m)2 + 4mλ)− r,
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which is negative if it is non-positive as h → ∞, because h−
√

(r + h− λ+m)2 + 4mλ increases with

h. The limit of h−
√

(r + h− λ+m)2 + 4mλ as h → ∞ equals −(r − λ+m); thus,

lim
h→∞

(α1 − 1)(h−
√

(r + h− λ+m)2 + 4mλ)− r = −(α1 − 1)(r − λ+m)− r,

which one can show is non-positive. Thus, we have shown that g(β2) decreases with h.

To finish proving g(β2) > 0, we observe that, because limh→∞ β2 = 0 and limh→∞ hβ2 = −λ,

lim
h→∞

(

r − (r + h)
β2

α1
+ hβ2

)

= r +
α1 − 1

α1
(−λ) ∝ rp0 − λ,

in which p0 = p|h=0. It is easy to show that rp0 − λ > 0; thus, we have proved g(β2) > 0.

Theorem 5.2. Suppose c > rb, and suppose one of the following two conditions holds:

(1) h ≤ r
r+m

λ, or

(2) h > r
r+m

λ and c ≥ C2, in which C2 > rb uniquely solves

c− rb

r(r + h)

[

c− rb

r(r + h)

g(β2)
hb
λ
β2 +

c+hb
r+h

(1− β2)

]

1−β2
β1−1

=
hb
λ
β1 −

c+hb
r+h

(β1 − 1)

g(β1)
. (5.3)

Then, the maximum probability of reaching the bequest goal equals

φ(w) =











1− c−rb
r(r+h)

[

β1−1
β1−β2

g(β2)
(

y
yg

)β1

+ 1−β2

β1−β2
g(β1)

(

y
yg

)β2

]

yg, if 0 ≤ w < b,

1−
(

c
r
− b
) yg

p0

(

c
r
−w

c
r
−b

)p0

, if b ≤ w ≤ ws =
c
r
,

(5.4)

in which β1, α1, and α2 are given in (4.7); β2, in (5.2); and, g, in (5.1). The parameter y0 > 0 is

given by
1

y0
=

c+ hb

r + h

β1 − 1

β1
+

c− rb

r(r + h)

g(β1)

β1
y1−β2

g0 , (5.5)

in which yg0 ∈ (0, 1) uniquely solves

c− rb

r(r + h)

[

β1

β1 − β2
g(β2) y

1−β1

g0 −
β2

β1 − β2
g(β1) y

1−β2

g0

]

=
c+ hb

r + h
, (5.6)

and yg = y0yg0. Also, p0 = p
∣

∣

h=0
= α1

α1−1 , in which p is given in (3.4). In the first expression of (5.4),

for a given w ∈ [0, b), y ∈ (yg , y0] uniquely solves

c− rb

r(r + h)

[

β1

β1 − β2
g(β2)

(

y

yg

)β1−1

−
β2

β1 − β2
g(β1)

(

y

yg

)β2−1
]

=
c+ hb

r + h
− w. (5.7)

When wealth equals w ∈ (0, ws], the optimal amount of instantaneous term life insurance equals

D∗(w) = (b− w)+, (5.8)

and the optimal amount invested in the risky asset equals

π∗(w) =











µ−r
σ2

c−rb
r(r+h)

[

β1(β1−1)
β1−β2

g(β2)
(

y
yg

)β1−1

+ β2(1−β2)
β1−β2

g(β1)
(

y
yg

)β2−1
]

, if 0 < w < b,

µ−r
σ2

c
r
−w

p0−1 , if b ≤ w ≤ ws.

(5.9)
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Proof. We begin by showing that equation (5.6) has a unique solution yg0 ∈ (0, 1). Note that the left

side approaches +∞ as yg0 → 0+ because g(β2) > 0. Next, when yg0 = 1, the left side equals c−rb
r+h

,

which is less than the right side. Finally, the left side decreases with yg0 ∈ (0, 1) if and only if

−β1(β1 − 1)g(β2)− β2(1− β2)g(β1) y
β1−β2

g0 < 0,

for all 0 < yg0 < 1, which holds if and only if it holds weakly when yg0 = 1 because g(β1) > 0. One

can show that −β1(β1 − 1)g(β2)− β2(1− β2)g(β1) ≤ 0 is equivalent to rp0 − λ ≥ 0, which is true; see

the last line of the proof of Lemma 5.1. (Recall p0 = p
∣

∣

h=0
.)

Second, we prove that the expression in (5.4) satisfies the BVP in (2.9) with wb set equal to 0.

As in the proof of Theorem 4.3, for 0 ≤ w < b,

φw(w) = y > 0,

and

φww(w) = −y

(

c− rb

r(r + h)

[

β1(β1 − 1)

β1 − β2
g(β2)

(

y

yg

)β1−1

+
β2(1− β2)

β1 − β2
g(β1)

(

y

yg

)β2−1
])−1

.

The expression for in square brackets increases with y ∈ (yg, y0]. Thus, φww < 0 for 0 < w < b if the

expression in square brackets is non-negative when y = yg, which is equivalent to rp0 − λ ≥ 0, which

is easy to show. The remainder of the proof that (5.4) satisfies (2.9) is similar to the corresponding

proof of Theorem 4.2, including the proof that φ in (5.4) is C2 at w = b, so we omit those details in

the interest of space.

Third, we prove that wb = 0, in which wb is defined in (2.8). Specifically, we show that

λ−h(b−w)φw(w) ≥ 0 for all 0 ≤ w < b, with φw determined by the first expression in (5.4). Because

φww < 0, this inequality holds for all 0 ≤ w < b if and only if it holds at w = 0, or equivalently,

1

y0
≥

hb

λ
,

because y0 = φw(0). Substitute for 1
y0

from the expression in (5.5) to obtain the equivalent inequality

c− rb

r(r + h)
y1−β2

g0 ≥
hb
λ
β1 −

c+hb
r+h

(β1 − 1)

g(β1)
. (5.10)

The right side of (5.10) is non-positive exactly when c ≥ C1, in which C1 is given in (4.1). Recall that

C1 ≤ rb if and only if h ≤ r
r+m

λ. Thus, inequality (5.10) holds for all c > rb if h ≤ r
r+m

λ.

For the remainder of the proof of inequality (5.10), assume that h > r
r+m

λ; then, C1 > rb, and

inequality (5.10) automatically holds for all c ≥ C1. Thus, suppose c ∈ (rb, C1), so that the right side

of (5.10) is positive. Because the left side of (5.6) decreases with yg0, inequality (5.10) is equivalent to

c− rb

r(r + h)

β1

β1 − β2
g(β2)

[

hb
λ
β1 −

c+hb
r+h

(β1 − 1)
c−rb

r(r+h) g(β1)

]−
β1−1

1−β2

−
β2

β1 − β2

(

hb

λ
β1 −

c+ hb

r + h
(β1 − 1)

)

≥
c+ hb

r + h
,

⇐⇒

[

hb
λ
β1 −

c+hb
r+h

(β1 − 1)
c−rb

r(r+h)
g(β1)

]−
β1−1

1−β2

≥
hb
λ
β2 +

c+hb
r+h

(1− β2)
c−rb

r(r+h)
g(β2)

.
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By following an argument similar to the proof of Lemma 5.1, one can show that the numerator of the

right side of this inequality is positive, and Lemma 5.1 implies that the denominator is positive. Thus,

this inequality is equivalent to

c− rb

r(r + h)

[

c− rb

r(r + h)

g(β2)
hb
λ
β2 +

c+hb
r+h

(1− β2)

]

1−β2
β1−1

≥
hb
λ
β1 −

c+hb
r+h

(β1 − 1)

g(β1)
. (5.11)

The left side of (5.11) increases with c and the right side decreases with c. It follows that there exists

a unique solution C2 ∈ (rb, C1) of (5.3) such that (5.11) holds for all c ∈ [C2, C1). Recall that (5.10)

holds automatically for c ≥ C1. We have shown that, when h > r
r+m

λ, inequality (5.10) holds for all

c ≥ C2. Thus, wb = 0.

Finally, the optimal strategies in (5.8) and (5.9) follow from (2.6) and (2.7), respectively.

Note that the solution in Theorem 5.2 satisfies the relationships in (2.10) through (2.12). Also,

observe that the solution is continuous as the bequest goal approaches 0, that is, as the bequest goal

becomes smaller, then we expect (5.4) and (5.9) to approach 1 minus the minimum probability of

lifetime ruin and the corresponding optimal investment strategy, respectively, as obtained in Young

(2004). The following corollary states this result more formally.

Corollary 5.3. The solution given in Theorem 5.5 is continuous as b → 0+. In particular, for

0 ≤ w ≤ c
r
,

lim
b→0+

φ(w) = 1−
(

1−
rw

c

)p0

, (5.12)

and

lim
b→0+

π(w) =
µ− r

σ2

c
r
− w

p0 − 1
. (5.13)

In the next corollary, we show that π∗ in (5.9) decreases with wealth.

Corollary 5.4. If c > rb and if either condition in Theorem 5.2 holds, then the optimal amount

invested in the risky asset decreases as wealth increases.

Proof. Clearly, π∗(w) decreases with wealth when b ≤ w ≤ c
r
. For 0 < w < b, differentiate the first

expression in (5.9) with respect to w to learn that

dπ∗(w)

dw
∝

∂

∂w

y

yg
.

Next, differentiate (5.7) with respect to w to obtain

∂

∂w

y

yg
∝ −

[

β1(β1 − 1)

β1 − β2
g(β2)

(

y

yg

)β1−1

+
β2(1− β2)

β1 − β2
g(β1)

(

y

yg

)β2−1
]

∝ −π∗(w) < 0.

Remark 5.1. When minimizing the probability of lifetime ruin, the optimal amount invested in the

risky asset decreases (linearly) with wealth. For the problem in this paper, if the individual is buying

life insurance, then the bequest goal is covered and the remaining problem is to avoid ruin. Thus,

we expect π∗ in (5.9) to share properties with the optimal investment strategy for the problem of

minimizing the probability of lifetime ruin. In fact, π∗ for wealth between b and c
r
is identical to the
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amount invested in the risky asset when minimizing the probability of lifetime ruin (Young, 2004).

Also, as in Young (2004) and as in the cases considered in Sections 3 and 4, wealth never reaches the

safe level.

5.2 Buying life insurance only when wealth is large enough and less than the bequest goal

From Theorem 5.2, we know that the remaining case for us to address is h > r
r+m

λ and rb < c <

C2. Recall that h > r
r+m

λ is a necessary condition for a solution C2 > rb of (5.3) to exist. For this

case, based on Theorem 3.1 and Theorem 4.3, we hypothesize that the buy level wb is positive. Under

this hypothesis, in work not shown here, we solve the free-boundary problem of φ’s convex Legendre

transform. In Theorem 5.7 below, we show that the concave Legendre transform of this (unstated)

solution of the free-boundary problem equals the maximum probability of reaching the bequest goal.

First, we prove two useful lemmas.

Lemma 5.5. Define the function ℓ by

ℓ(α, β) = β −

(

h

λ
β + 1

)

α. (5.14)

Then,

ℓ(α1, β1) < 0, ℓ(α1, β2) < 0, ℓ(α2, β1) > 0, and ℓ(α2, β2) < 0,

in which α1, α2, and β1 are given in (4.7), and β2 in (5.2).

Proof. We prove these four inequalities in turn. First, when h = 0, ℓ(α1, β1) = α1 − α1 = 0. Thus,

to show that ℓ(α1, β1) < 0, it is enough to show that ℓ(α1, β1) decreases with h. To that end,

∂

∂h
ℓ(α1, β1) ∝ λ− α1

(

h+
√

(r + h− λ+m)2 + 4mλ
)

,

and this expression is negative for all h > 0 if it is negative when h = 0, which is straightforward to

show.

Second, limh→∞ ℓ(α1, β2) = 0 −
(

1
λ
(−λ) + 1

)

α1 = 0. Thus, to show that ℓ(α1, β2) < 0, it is

enough to show that ℓ(α1, β2) increases with h. To that end,

∂

∂h
ℓ(α1, β2) ∝ λ− α1

(

h−
√

(r + h− λ+m)2 + 4mλ
)

,

and, because this expression decreases with h, it is positive for all h > 0 if its limit, as h approaches

∞, is positive. Now,

lim
h→∞

(

λ− α1

(

h−
√

(r + h− λ+m)2 + 4mλ
))

= λ+ α1(r − λ+m),

which one can show is positive.

Third, because α2 < 0 and β1 > 1, it is clear that ℓ(α2, β1) > 0.

Fourth, when h = 0, ℓ(α2, β2) = α2 − α2 = 0, and limh→∞ ℓ(α2, β2) = 0 −
(

1
λ
(−λ) + 1

)

α2 = 0.

Next,
∂

∂h
ℓ(α2, β2) ∝ λ− α2

(

h−
√

(r + h− λ+m)2 + 4mλ
)

,
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which is negative when h = 0 and monotonically increases to a positive number as h approaches ∞.

Thus, ℓ(α2, β2) < 0 for all h > 0.

Lemma 5.6. If c > rb, then the following equation has a unique solution x > 1 :

1 =

(

c− rb

c(r + h)

)α1−α2
(

1

α1 − 1

)α1−1(
1

1− α2

)1−α2

×

[

h
(

(α1 − 1)−
r

λ
α1

)

−
ℓ(α1, β1)g(β2)

β1 − β2
xβ1−1 +

ℓ(α1, β2)g(β1)

β1 − β2
xβ2−1

]α1−1

×

[

h
(

(1− α2) +
r

λ
α2

)

+
ℓ(α2, β1)g(β2)

β1 − β2
xβ1−1 −

ℓ(α2, β2)g(β1)

β1 − β2
xβ2−1

]1−α2

,

(5.15)

in which α1, α2, and β1 are given in (4.7) and β2 in (5.2).

Proof. When x = 1, the right side of (5.15) equals 0, and as x → ∞, the right side approaches ∞.

Thus, if we show that the right side increases with x, then we are done. Because ℓ(α1, β1)g(β2) < 0,

ℓ(α1, β2)g(β1) < 0, β1 > 1, and β2 < 0, the factor on the second line of (5.15) increases with x. Finally,

d

dx

(

ℓ(α2, β1)g(β2)x
β1−1 − ℓ(α2, β2)g(β1)x

β2−1
)

∝ ℓ(α2, β1)g(β2)(β1 − 1)xβ1−β2 + ℓ(α2, β2)g(β1)(1− β2),

is positive for all x > 1 if it is positive when x = 1. One can show that

ℓ(α2, β1)g(β2)(β1 − 1) + ℓ(α2, β2)g(β1)(1− β2) ∝

(

1−
h

λ
α2

)

(rp0 − λ)− α2m,

and the right side is positive because α2 < 0 and rp0 − λ > 0, in which p0 = p|h=0.

Theorem 5.7. If h > r
r+m

λ and rb < c < C2, then the maximum probability of reaching the bequest

goal equals

φ(w) =































c
r

(α1−1)(1−α2)
α1−α2

[

−
(

y
y0

)α1

+
(

y
y0

)α2
]

y0, if 0 ≤ w < wb = b− λ
h

1
yb
,

1− c−rb
r(r+h)

[

β1−1
β1−β2

g(β2)
(

y
yg

)β1

+ 1−β2

β1−β2
g(β1)

(

y
yg

)β2

]

yg, if wb ≤ w < b,

1−
(

c
r
− b
) yg

p0

(

c
r
−w

c
r
−b

)p0

, if b ≤ w ≤ ws = c
r
,

(5.16)

in which α1, α2, and β1 are given in (4.7); β2 in (5.2); g in (5.1); and p0 = p
∣

∣

h=0
= α1

α1−1
. The

parameter yb > 0 is given by

λ

h

1

yb
= b+

c

r

[

α1(1− α2)

α1 − α2
yα1−1
b0 +

α2(α1 − 1)

α1 − α2
yα2−1
b0 − 1

]

, (5.17)

in which yb0 ∈ (0, 1) is given by

c

r
(1− α2) y

α1−1
b0 =

c− rb

r(r + h)

[

h
(

(1− α2) +
r

λ
α2

)

+
ℓ(α2, β1)g(β2)

β1 − β2
yβ1−1
bg −

ℓ(α2, β2)g(β1)

β1 − β2
yβ2−1
bg

]

,

(5.18)
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and ybg > 1 uniquely solves (5.15). The parameters yg and y0 equal

yg =
yb
ybg

and y0 =
yb
yb0

.

In the first expression of (5.16), for a given w ∈ [0, wb), y ∈ (yb, y0] uniquely solves (4.11). In the

second expression of (5.16), for a given w ∈ [wb, b), y ∈ (yg, yb] uniquely solves (5.7).

When wealth equals w ∈ (0, ws], the optimal amount of instantaneous term life insurance equals

D∗(w) = (b− w)1{wb≤w≤b}, (5.19)

and the optimal amount invested in the risky asset equals

π∗(w) =



























µ−r
σ2

c
r

(α1−1)(1−α2)
α1−α2

[

α1

(

y
y0

)α1−1

− α2

(

y
y0

)α2−1
]

, if 0 ≤ w < wb,

µ−r
σ2

c−rb
r(r+h)

[

β1(β1−1)
β1−β2

g(β2)
(

y
yg

)β1−1

+ β2(1−β2)
β1−β2

g(β1)
(

y
yg

)β2−1
]

, if wb ≤ w < b,

µ−r
σ2

c
r
−w

p0−1
, if b ≤ w ≤ ws.

(5.20)

Proof. From Lemma 5.6, we know that there is a unique solution ybg > 1 of (5.15). Next, we prove

that yb0 defined by (5.18) lies between 0 and 1. It is easy to show that (1 − α2) +
r
λ
α2 is positive;

thus, the right side of (5.18) is positive, so yb0 > 0. One can use (5.15) and (5.18) to show that yb0 = 1

if and only if c = C2, the unique solution of (5.3). Thus, to prove that yb0 < 1, it is enough to prove

that yb0 in (5.18) increases with c. To that end, compute ∂yb0

∂c
via (5.18), compute

∂ybg

∂c
via (5.15), and

solve for ∂yb0

∂c
to obtain

∂yb0
∂c

∝
N1D2 +N2D1

(α1 − 1)N1D2 − (1− α2)N2D1
, (5.21)

in which

N1 = (β1 − 1)ℓ(α1, β1)g(β2) y
β1−1
bg + (1− β2)ℓ(α1, β2)g(β1) y

β2−1
bg ,

N2 = (β1 − 1)ℓ(α2, β1)g(β2) y
β1−1
bg + (1− β2)ℓ(α2, β2)g(β1) y

β2−1
bg ,

D1 = h(β1 − β2)
(

(α1 − 1)−
r

λ
α1

)

− ℓ(α1, β1)g(β2) y
β1−1
bg + ℓ(α1, β2)g(β1) y

β2−1
bg ,

and

D2 = h(β1 − β2)
(

(1− α2) +
r

λ
α2

)

+ ℓ(α2, β1)g(β2) y
β1−1
bg − ℓ(α2, β2)g(β1) y

β2−1
bg .

The numerator on the right side of (5.21) simplifies to the following.

N1D2 +N2D1 ∝ h(β1 − 1)

(

(β1 − 1)−
r + h

λ
β1

)

g(β2) y
β1−1
bg

− h(1− β2)

(

(1− β2) +
r + h

λ
β2

)

g(β1) y
β2−1
bg

− (β1 − β2)g(β1)g(β2) y
β1−1
bg yβ2−1

bg .

It is straightforward to show that
(

(β1 − 1)− r+h
λ

β1

)

< 0 and
(

(1− β2) +
r+h
λ

β2

)

> 0; thus, N1D2 +

N2D1 < 0, from which it follows

∂yb0
∂c

∝ (1− α2)N2D1 − (α1 − 1)N1D2. (5.23)
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If we show that N1 < 0, N2 > 0, D1 > 0, and D2 > 0, then we will have shown that yb0 increases with

c. We prove these four inequalities in turn.

First, N1 < 0 follows directly from ℓ(α1, β1) < 0 and ℓ(α1, β2) < 0, which we proved in Lemma

5.5, and from g(β1) > 0 and g(β2) > 0, which we proved in Lemma 5.1.

Second, N2 > 0 is equivalent to

(β1 − 1)ℓ(α2, β1)g(β2)x
β1−β2 + (1− β2)ℓ(α2, β2)g(β1) > 0,

for all x > 1, which is equivalent to

(β1 − 1)ℓ(α2, β1)g(β2) + (1− β2)ℓ(α2, β2)g(β1) ≥ 0, (5.22)

because (β1 − 1)ℓ(α2, β1)g(β2) > 0. Inequality (5.22) is straightforward, but tedious, to demonstrate.

Third, D1 increases with ybg > 1; thus, we only need to show that D1 ≥ 0 when ybg = 1. Because

D1

∣

∣

ybg=1
= 0, it follows that D1 > 0 for all ybg > 1.

Fourth, D2 > 0 follows directly from
(

(1− α2) +
r
λ
α2

)

> 0, from ℓ(α2, β1) > 0 and ℓ(α2, β2) < 0,

which we proved in Lemma 5.5, and from g(β1) > 0 and g(β2) > 0, which we proved in Lemma 5.1.

Thus, we have proved that yb0 increases with c.

Next, we prove that yb > 0. Because yb0 increases with c, the right side of (5.17) increases with

c, so it is enough to show that the right side of (5.17) is positive as c → rb+. From (5.15), we deduce

that

lim
c→rb+

(c− rb)yβ1−1
bg =

(

−
α1 − 1

ℓ(α1, β1)

)

α1−1

α1−α2

(

1− α2

ℓ(α2, β1)

)

1−α2
α1−α2 β1 − β2

g(β2)
rb(r + h),

which implies that

lim
c→rb+

yb0 =

(

−
α1 − 1

1− α2

ℓ(α2, β1)

ℓ(α1, β1)

)
1

α1−α2

. (5.23)

Thus, the limit of the right side of (5.17), as c → rb+, equals

bα1(1− α2)

(

−
α1 − 1

1− α2

ℓ(α2, β1)

ℓ(α1, β1)

)

al1−1

α1−α2

+ bα2(α1 − 1)

(

−
α1 − 1

1− α2

ℓ(α2, β1)

ℓ(α1, β1)

)−
1−α2

α1−α2

∝ α1ℓ(α2, β1)− α2ℓ(α1, β1) = β1(α1 − α2) > 0.

From yb > 0, it follows that wb = b− λ
h

1
yb

< b.

Next, we prove that wb > 0. From the expression in (5.17), we obtain the same expression for wb,

as a function of yb0, as the one in (4.14). The expression in square brackets in (4.14) decreases with c

because yb0 increases with c. Thus, to show that wb > 0, it is enough to show that

lim
c→rb+

1−
α1(1− α2)

α1 − α2
yα1−1
b0 −

α2(α1 − 1)

α1 − α2
yα2−1
b0 ≥ 0,

which, from (5.23), is equivalent to

(

−
α1 − 1

ℓ(α1, β1)

)α1−1(
1− α2

ℓ(α2, β1)

)1−α2

≤ 1. (5.24)
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The term −ℓ(α1, β1) is positive and increases with h. Thus, to show that the first factor on the left

side of (5.24) is less than 1 for all h > r
r+m

λ, it is enough to show that the first factor is less than or

equal to 1 for h = r
r+m

λ.

−
α1 − 1

ℓ(α1, β1)

∣

∣

∣

∣

h= r
r+m

λ

≤ 1

is equivalent to
hp

λ

∣

∣

∣

∣

h= r
r+m

λ

· α1 ≥ 1,

which is true because the left side reduces to α1, and we know that α1 > 1. Also, the second factor

on the left side of (5.24) is less than 1 for all h ≥ 0. Thus, we have proved that wb > 0.

The rest of the proof is similar to the proofs of Theorems 4.3 and 5.2, so we omit those details.

Remark 5.2. As noted in Remark 4.3 for the case studied in Section 4.2, when 0 < w < wb, the

optimal amount invested in the risky asset is independent of both b and h, a surprising myopic result.

Observe that the solution in Theorem 5.7 is continuous as the bequest goal approaches 0, as in

Corollary 5.3 for the case in Section 5.1.

Corollary 5.8. The solution given in Theorem 5.7 is continuous as b → 0+. In particular, for

0 ≤ w ≤ c
r
,

lim
b→0+

φ(w) = 1−
(

1−
rw

c

)p0

,

and

lim
b→0+

π∗(w) =
µ− r

σ2

c
r
− w

p0 − 1
.

In the next corollary, we observe that the optimal amount invested in the risky asset decreases

with wealth if w ≥ wb, as shown in Corollary 5.4 for the case in Section 5.1; there, wb = 0. We omit

the proof because it is identical to the proof of Corollary 5.4. Also, Remark 5.1 applies in this case.

Corollary 5.9. If h > r
r+m

λ and rb < c < C2, then the optimal amount invested in the risky asset

decreases as wealth increases for wb ≤ w ≤ ws.

6. Properties of φ, D∗, and π∗

In this section, we prove general properties of the solution obtained in Sections 3 through 5. As

the premium rate for life insurance increases, we expect the maximum probability of reaching the

bequest goal to decrease because it becomes more difficult for the individual to reach her bequest goal.

We demonstrate this in the following proposition and find the limits of φ as h → 0+ and h → ∞.

Proposition 6.1. The maximum probability of reaching the bequest goal (weakly) decreases with h.

Furthermore,

lim
h→0+

φ(w) = 1−
(

1−
rw

c

)p0

, 0 ≤ w ≤
c

r
, (6.1)

in which

p0 = p
∣

∣

h=0
=

1

2r

[

(r + λ+m) +
√

(r + λ+m)2 − 4rλ
]

> 1, (6.2)
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and

lim
h→∞

φ(w) = φ0(w), 0 ≤ w ≤ max
( c

r
, b
)

, (6.3)

in which φ0 is the maximum probability of reaching the bequest goal when life insurance is not available

(Bayraktar and Young, 2015).

Proof. In Sections 3 through 5, we showed that φ in (2.2) is a classical solution of its HJB equation

(2.9). Define F by

F (w, f, fw, fww;h) = λf − (rw − c)fw −max
π

[

(µ− r)π fw +
1

2
σ2π2fww

]

− (λ− h(b− w)+fw)+.

Note that F increases with f and decreases with fww; thus, F satisfies the monotonicity condition

(0.1) in Crandall et al. (1992). Suppose h1 < h2, and let φ(i) denote the maximum probability of

reaching the bequest goal when h = hi for i = 1, 2, with corresponding safe level w
(i)
s . Note that

w
(1)
s ≤ w

(2)
s . We have F

(

w, φ(i), φ
(i)
w , φ

(i)
ww;hi

)

= 0 for i = 1, 2, and

F
(

w, φ(2), φ(2)
w , φ(2)

ww;h
1
)

=
(

λ− h2(b− w)+φ
(2)
w

)

+
−
(

λ− h1(b− w)+φ
(2)
w

)

+
≤ 0,

because φ increases with w. Thus, φ(2) is a viscosity subsolution of F
(

w, φ, φw, φww;h
1
)

= 0. Because

φ(1) is a classical solution of this equation, because φ(2)(0) = φ(1)(0), and because φ(2)
(

w
(1)
s

)

≤ 1 =

φ(1)
(

w
(1)
s

)

, it follows from Crandall et al. (1992, Theorem 3.3) that φ(2) ≤ φ(1) on
[

0, w
(1)
s

]

.

Furthermore, from the stability of viscosity solutions, we can find the limit of φ as h → 0+ or

h → ∞ by taking the corresponding limit of the HJB equation. To that end, note that as h → 0+,

(2.9) becomes










λ(Φ− 1) = (rw − c)Φw +max
π

[

(µ− r)πΦw +
1

2
σ2π2Φww

]

,

Φ(0) = 0, Φ(c/r) = 1,

(6.4)

because limh→0+ hφw(w) = 0 for all w ∈ (0, b), and the solution of this BVP is given in (6.1). Also,

note that as h → ∞, (2.9) becomes











λ(Φ− 1{w≥b}) = (rw − c)Φw +max
π

[

(µ− r)πΦw +
1

2
σ2π2Φww

]

,

Φ(0) = 0, Φ(max(c/r, b)) = 1.

(6.5)

The BVP in (6.5) is the one solved by φ0, as computed in Bayraktar and Young (2015).

Remark 6.1. As h approaches 0, the maximum probability of reaching the bequest goal approaches

1 minus the minimum probability of lifetime ruin (Young, 2004). We expect this result because, as h

approaches 0, covering the bequest goal becomes costless, so the problem reduces to one of avoiding

ruin.

Remark 6.2. From the solution to the optimization problem given in Theorems 4.2 and 5.2, it is

optimal to buy insurance for all levels of wealth less than b if either of the following holds:

(a) h ≤ r
r+m

λ and c ≥ C1; or
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(b) h > r
r+m

λ and c ≥ C2.

Thus, it is optimal to buy life insurance for all levels of wealth less than b if the rate of consumption

is large enough, in which large enough depends on h.

As the premium rate becomes arbitrarily small, covering the bequest goal with life insurance

becomes costless, and we expect the buying level to become arbitrarily small. By contrast, as the

premium rate becomes arbitrarily large, the individual will not purchase life insurance, that is, we

expect the buying level to approach b. These limits are easy to prove, so we present the next proposition

without proof.

Proposition 6.2. The buying level for insurance wb obeys the following limits:

lim
h→0+

wb = 0,

and

lim
h→∞

wb = b.

As the premium rate for life insurance increases, we expect the amount invested in the risky asset

to increase because the individual has to take on more financial risk to reach her bequest goal. We

demonstrate this in the following proposition and find the limits of π∗ as h → 0+ and h → ∞.

Proposition 6.3. The optimal amount invested in the risky asset (weakly) increases as h increases.

Furthermore,

lim
h→0+

π∗(w) = πmin(w), 0 ≤ w ≤
c

r
, (6.6)

in which πmin is the optimal amount invested in the risky asset when minimizing the probability of

lifetime ruin, specifically,

πmin(w) =
µ− r

σ2

c
r
− w

p0 − 1
,

and

lim
h→∞

π∗(w) = π0(w), 0 ≤ w ≤ max
( c

r
, b
)

, (6.7)

in which π0 is the optimal amount invested in the risky asset when life insurance is not available

(Bayraktar and Young, 2015).

Proof. From the solution in Sections 3 through 5, we know that π∗(w) is independent of h for

0 ≤ w < wb (although wb itself depends on h) and for b ≤ w ≤ c
r
; the latter applies to the solution in

Section 5 only. For wb < w < min(ws, b), we will find a differential equation for π∗ and use comparison

to show that π∗ increases with h. To that end, from the solution in Sections 3 through 5, we know

that φ solves the following differential equation for wb < w < min(ws, b):

λ(φ− 1) = ((r + h)w − (c+ hb))φw −m
φ2
w

φww

,

or equivalently,

λ(φ − 1) = ((r + h)w − (c+ hb))φw +
µ− r

2
φw π∗,
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because π∗ = −µ−r
σ2

φw

φww
. Differentiate this expression with respect to w and rewrite the result to

obtain a differential equation for π∗:

µ− r

2
π∗
w +

µ− r

σ2

(c+ hb)− (r + h)w

π∗
+ (r + h− λ−m) = 0. (6.8)

Differentiate (6.8) with respect to h to obtain a differential equation for π∗
h:

µ− r

2
(π∗

h)w −
µ− r

σ2

(c+ hb)− (r + h)w

(π∗)2
π∗
h +

µ− r

σ2

b− w

π∗
+ 1 = 0. (6.9)

Redefine the independent variable so that min(ws, b) becomes the new origin: w̃ := min(ws, b)−w, and

π̃∗(w̃) := π∗(min(ws, b)− w̃). Then, (c+hb)− (r+h)w = (r+h)w̃+(c− rb)+, b−w = w̃+(b−ws)+,

π∗
h = π̃∗

h, (π
∗
h)w = −(π̃∗

h)w̃, and (6.9) becomes

µ− r

2
(π̃∗

h)w̃ +
µ− r

σ2

(r + h)w̃ + (c− rb)+
(π̃∗)2

π̃∗
h −

µ− r

σ2

w̃ + (b− ws)+
π̃∗

− 1 = 0.

Define G by

G(w̃, f, fw̃) =
µ− r

2
fw̃ +

µ− r

σ2

(r + h)w̃ + (c− rb)+
(π̃∗)2

f −
µ− r

σ2

w̃ + (b− ws)+
π̃∗

− 1.

Note that G increases with f ; thus, G satisfies the monotonicity condition (0.1) in Crandall et al.

(1992). Then, G(w̃, π̃∗
h, (π̃

∗
h)w̃) = 0, and

G(w̃, 0, 0) = −
µ− r

σ2

w̃ + (b− ws)+
π̃∗

− 1 < 0.

After a great deal of algebra, one can show that π̃∗
h(0+) = π∗

h(min(ws, b)−) ≥ 0; then, from Crandall

et al. (1992, Theorem 3.3), we conclude that π∗
h(w) ≥ 0 for wb < w < min(ws, b).

One can show the limits in (6.6) and (6.7) on a case-by-case basis by using the solution given in

Sections 3 through 5. In the interest of space, we do not include those calculations here.

Proposition 6.3 tells us that π∗ ≥ πmin because the problem of minimizing the probability of

lifetime ruin is equivalent to the problem we obtain as h → 0+. Furthermore, the expressions for π∗

in (5.9) and (5.20) show us that π∗(w) = πmin(w) for all b ≤ w ≤ c
r
.

Bayraktar and Young (2015) compute the optimal investment strategy to maximize the probability

of reaching the bequest goal when life insurance is not available. Proposition 6.3 tells us that π∗ ≤ π0.

By comparing the results in Bayraktar and Young (2015) with the solution here when it is optimal

not to purchase life insurance, we have the following proposition.

Proposition 6.4. Let πmin and π0 denote the optimal investment strategies to minimize the probability

of lifetime ruin and to maximize the probability of reaching the bequest goal when life insurance is not

available, respectively. Then,

πmin(w) ≤ π∗(w) = π0(w), 0 ≤ w < wb, (6.10)

πmin(w) ≤ π∗(w) ≤ π0(w), wb ≤ w < b, (6.11)
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and

πmin(w) = π∗(w) = π0(w), b ≤ w ≤
c

r
, (6.12)

with the understanding that π∗(w) = 0 if w ≥ ws.

Remark 6.3. The investment strategy when it is optimal not to buy life insurance (0 ≤ w < wb or

b ≤ w ≤ c
r
) is myopic because the individual is seemingly indifferent to the presence or lack of life

insurance. On the other hand, when it is optimal to buy life insurance (wb ≤ w < b), the presence

of life insurance leads the individual to invest less in the risky asset than when life insurance is not

available. To reach the bequest goal, the individual does not have to take on as much risk when life

insurance is available.

Life insurance allows the individual to achieve her bequest goal without the necessity of wealth

reaching the bequest target itself. If no life insurance is available, the only way the individual will

reach her bequest goal is if wealth itself reaches that bequest goal b.

We find it interesting that the optimal investment strategy when wealth is greater than the bequest

goal b is identical to the corresponding one for minimizing the probability of lifetime ruin, which is

independent of the ruin level. Once wealth is greater than the bequest goal b, our individual invests

as if she were minimizing the probability of lifetime ruin with ruin level b, or any ruin level, for that

matter (Bayraktar and Young, 2007).

We end this section with two numerical examples. In the following example, we demonstrate how

the optimal strategies change as c increases.

Example 6.1. Consider the following parameters values: r = 0.03, µ = 0.06, σ = 0.20, λ = 0.04,

h = 0.05, and b = 1.0. Thus, C1 = 0.0736, as defined by equation (4.1), and C2 = 0.0629, as defined

by equation (5.3); note that h > r
r+m

λ. We have the following table that displays how the optimal

strategies wb and π∗ vary as c increases from 0 to C2. We set π∗(w) = 0 when w ≥ ws.

c wb ws π∗(0.1) π∗(0.3) π∗(0.5) π∗(0.7) π∗(0.9)

0 0.375 0.625 0.212 0.637 0.397 0 0

0.0005 0.381 0.631 0.207 0.622 0.417 0 0

0.005 0.403 0.688 0.428 0.724 0.560 0 0

0.01 0.397 0.750 0.748 0.983 0.794 0.159 0

0.02 0.354 0.875 1.407 1.597 1.191 0.556 0

0.03 0.295 1.000 2.072 2.223 1.588 0.953 0.318

0.04 0.215 1.333 2.693 2.575 1.932 1.284 0.615

0.05 0.124 1.667 3.359 2.893 2.239 1.573 0.874

0.06 0.028 2.000 3.851 3.194 2.528 1.846 1.122

0.0629 0 2.097 3.937 3.278 2.609 1.923 1.193

Note that, in this example, even though h > r
r+m

λ = 0.02909, wb first increases from 0.375 to 0.403

and then decreases to 0 as c increases from 0 to C2.

Recall that the dollar amounts invested in the risky asset are relative to a bequest goal of b = 1,

so one can think of the dollar amounts as proportions of the bequest goal, as discussed in Remark 2.5.

We see that π∗ is not monotone in c and is not monotone in w for 0 < w < wb. However, from the
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expressions in (4.4) and (4.13) and from Corollaries 5.4, and 5.9, we know that π∗ decreases with w

for w > wb. Also note that, in this example, π∗ eventually increases with c because the individual

needs to invest more in the risky asset to cover her additional consumption.

Example 6.2. Continue with the parameter values of the Example 6.1, except that we will examine

how the optimal strategies vary with the price of insurance h; recall that λ = 0.04 and r
r+m

λ = 0.02909.

We have the following table for c = 0.02 < rb = 0.03:

h wb ws π∗(0.1) π∗(0.3) π∗(0.5) π∗(0.7) π∗(0.9)

0 0 0.667 0.400 0.259 0.118 0 0

0.01 0 0.750 0.707 0.490 0.272 0.0544 0

0.02 0 0.800 1.078 0.770 0.462 0.154 0

0.03 0.133 0.833 1.407 1.092 0.683 0.273 0

0.04 0.259 0.857 1.407 1.447 0.927 0.408 0

0.05 0.357 0.875 1.407 1.600 1.191 0.556 0

0.10 0.609 0.923 1.407 1.600 1.833 1.402 0.145

0.20 0.782 0.957 1.407 1.600 1.833 2.106 0.724

0.50 0.907 0.981 1.407 1.600 1.833 2.106 2.406

∞ b = 1 1.000 1.407 1.600 1.833 2.106 2.406

Note that π∗ (weakly) increases with h, as expected from Proposition 6.3. Also, π∗ is independent of

h for 0 ≤ w < wb, as expected from (6.10) in Proposition 6.4.

7. Summary

We determined the optimal strategies for purchasing instantaneous term life insurance and for

investing in a risky asset in order to maximize the probability of reaching a specific bequest goal

b. We proved the following properties of these optimal strategies and the corresponding maximum

probability.

• The premium rate for life insurance h acts as a parameter to connect two seemingly unrelated

problems. First, as h → 0+, the problem becomes equivalent to minimizing the probability of

lifetime ruin. Second, as h → ∞, the problem becomes equivalent to maximizing the probability

of reaching the bequest goal without life insurance in the market. See Propositions 6.1 through

6.4 for focused results about this connection.

• As in the problem of minimizing the probability of lifetime ruin (Young, 2004), optimally controlled

wealth never reaches the safe level.

• As h increases, the maximum probability of reaching the bequest goal (weakly) decreases, and

the optimal amount invested in the risky asset (weakly) increases because one has to take on

more risk in the financial market to reach the bequest goal if one does not buy life insurance; see

Propositions 6.1 and 6.3.

• It is optimal to buy life insurance for all levels of wealth (less than b) if the rate of consumption

is large enough, in which large enough depends on the premium rate; see Theorems 4.2 and 5.5,

as well as Remark 6.2. This result is surprising because if wealth is close to zero and one buys

insurance, then the probability of ruin is greater than if one does not buy insurance. However,
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the goal is not simply not to ruin; the goal is to reach the bequest b, which can only be achieved

by buying sufficient life insurance if wealth is small.

• It is optimal to buy life insurance only when wealth lies between a positive buying level wb > 0

and b if either of the following conditions holds:

(a) h ≤ r
r+m

λ and 0 ≤ c < C1, or

(b) h > r
r+m

λ and 0 ≤ c < C2.

Thus, it is optimal not to buy life insurance if one is poor and if the rate of consumption is small

enough, in which ‘small enough’ depends on the premium rate.

• When it is optimal to buy life insurance, the optimal amount invested in the risky asset decreases

with wealth (sometimes linearly), which is the case when minimizing the probability of lifetime

ruin. This result makes sense because if one is purchasing life insurance, then the bequest goal is

covered, and the remaining problem is to avoid ruin. In fact, for wealth greater than the bequest

goal b, the optimal amount to invest in the risky asset is identical to the corresponding amount

when minimizing the probability of lifetime ruin; see Proposition 6.4 and Remark 6.3.

• When it is optimal not to buy life insurance, the optimal amount invested in the risky asset

is independent of both the bequest goal and the price of life insurance and is identical to the

corresponding amount when maximizing the probability of reaching the bequest goal without

life insurance in the market; see Proposition 6.4. We were surprised by this myopic investment

behavior.
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