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ERGODIC CONVERGENCE OF A STOCHASTIC

PROXIMAL POINT ALGORITHM∗

PASCAL BIANCHI†

Abstract. The purpose of this paper is to establish the almost sure weak ergodic convergence
of a sequence of iterates (xn) given by

xn+1 = (I + λnA(ξn+1, . ))
−1(xn)

where (A(s, . ) : s ∈ E) is a collection of maximal monotone operators on a separable Hilbert space,
(ξn) is an independent identically distributed sequence of random variables on E and (λn) is a
positive sequence in ℓ2\ℓ1. The weighted averaged sequence of iterates is shown to converge weakly
to a zero (assumed to exist) of the Aumann expectation E(A(ξ1, . )) under the assumption that the
latter is maximal. We consider applications to stochastic optimization problems of the form

minE(f(ξ1, x)) w.r.t. x ∈
m⋂

i=1

Xi

where f is a normal convex integrand and (Xi) is a collection of closed convex sets. In this case,
the iterations are closely related to a stochastic proximal algorithm recently proposed by Wang and
Bertsekas.
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1. Introduction. The proximal point algorithm is a method for finding a zero
of a maximal monotone operator A : H → 2H on some Hilbert space H i.e., a point
x ∈ H such that 0 ∈ A(x). The approach dates back to [24] [40] [13] and has aroused
a vast literature. The algorithm consists in the iterations

yn+1 = (I + λnA)
−1yn

for n ∈ N where λn > 0 is a positive step size. When the sequence (λn) is bounded
away from zero, it was shown in [40] that (yn) converges weakly to some zero of A
(assumed to exist). The case of vanishing step size was investigated by several authors
including [13], [31], see also [1]. The condition

∑

n λn = +∞ is generally unsufficient
to ensure the weak convergence of the iterates (yn) unless additional assumptions
on A are made (typically, A must be demi-positive). A counterexample is obtained
when A is a π/2-rotation in the 2D-plane and

∑

n λ
2
n < ∞. However, the condition

∑

n λn = +∞ is sufficient to ensure that yn converges weakly in average to a zero
of A. Here, by weak convergence in average, or weak ergodic convergence, we mean
that the weighted averaged sequence

yn =

∑n
k=1 λkyk

∑n
k=1 λk

converges weakly to a zero of A.
This paper extends the above result to the case where the operator A is no longer

fixed but is replaced at each iteration n by one operator randomly chosen amongst a
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(pascal.bianchi@telecom-paristech.fr).

1

http://arxiv.org/abs/1504.05400v2


2

collection (A(s, . ) : s ∈ E) of maximal monotone operators. We study the random
sequence (xn) given by

(1.1) xn+1 = (I + λnA(ξn+1, . ))
−1xn

where (ξn) is an independent identically distributed sequence with probability dis-
tribution µ on some probability space (Ω,F ,P). We refer to the above iterations as
the stochastic proximal point algorithm. Under mild assumptions on the collection
of operators, the random sequence (xn) generated by the algorithm is shown to be
bounded with probability one. The main result is that almost surely, (xn) converges
weakly in average to some random point within the set of zeroes (assumed non-empty)
of the mean operator A defined by

A : x 7→

∫

A(s, x)dµ(s)

where
∫

represents the Aumann integral [5, Chapter 8]. While the operator A is
always monotone, our key assumption is that it is also maximal. This condition is
satisfied in a number of particular cases. For instance when the random variable ξ1
belongs almost surely to a finite set, say {1, . . . ,m},A(x) coincides with the Minkowski
sum

A(x) =
m
∑

i=1

P(ξ1 = i)A(i, x)

for every x ∈ H, and A is maximal under the sufficient condition that the interiors of
the domains of all operators A(i, . ) (i = 1, . . . ,m) have a non-empty intersection [38].

Related works and applications. In the literature, numerous works have been
devoted to iterative algorithms searching for zeroes of a sum of maximal operators.
One of the most celebrated approach is the Douglas-Rachford algorithm analyzed
by [23]. Though suited to a sum of two operators, the Douglas-Rachford algorithm
can be adapted to an arbitrary finite sum using the so-called product space trick. The
authors of [13] and [31] consider applying product of resolvents in a cyclic manner.
Numerically, the above deterministic approaches become difficult to implement when
the number of operators in the sum is large, or a fortiori infinite (i.e. the mean
operator is an integral). In parallel, stochastic approximation techniques have been
developped in the statistical literature to find a root of an integral functional h :
H → H of the form h(x) =

∫

H(s, x)dµ(s). The archetypal algorithm writes xn+1 =
xn − λnH(ξn+1, xn) as proposed in the seminal work of Robbins and Monro [32]. It
turns out that the iterates (1.1) have a similar form

xn+1 = xn − λnAλn
(ξn+1, xn)

whereAλ(s, . ) is the so-called Yosida approximation of the monotone operatorA(s, . ).
As a matter of fact, our analysis borrows some proof ideas from the stochastic ap-
proximation literature [2].

Applications of stochastic approximation include the minimization of integral
functionals of the form x 7→ E(f(ξ1, x)) where (f(s, . ) : s ∈ E) is a collection of proper
lower-semicontinuous convex functions on H → (−∞,+∞]. We refer to [28] or to [10]
for a survey. In particular, the benefits in terms of convergence rate of considering
average iterates x̄n =

∑

k≤n γkxk/
∑

k≤n γk is established by [28] in the context of
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convex programming and in [21] in the context of variational inequalities. Averaging
of the iterates is introduced in these works (see also [3] for more recent results) where
improved complexity results is the main motivator. For instance, the stochastic sub-
gradient algorithm writes xn+1 = xn−λn∇̃f(ξn+1, xn) where ∇̃f(ξn+1, xn) represents
a subgradient of f(ξn+1, . ) at point xn (assumed in this case to be everywhere well
defined). The algorithm is often analyzed under a uniform boundedness assumption
of the subgradients [28], [10]. In practice, a reprojection step is often introduced to
enforce the boundedness of the iterates.

Denoting by A(s, . ) the subdifferential of f(s, . ), the resolvent (I + λA(s, . ))−1

coincides with the proximity operator associated with f(s, . ) given by

(1.2) proxλf(s, . )(x) = argmin
t∈H

λf(s, t) +
‖t− x‖2

2

for any x ∈ H. The iterations (1.1) can be equivalently written as

(1.3) xn+1 = proxλnf(ξn+1, . )(xn) .

A related algorithm is studied (among others) by Bertsekas in [11] under the assump-
tion that ξ1 has a finite range and f(s, . ) is defined on R

d → R. As functions are
supposed to have full domain, [11] introduces a projection step onto a closed convex
set in order to cover the case of constrained minimization. When there exists a con-
stant c such that the functions f(s, . ) are c-Lipschitz continuous for all s, and under
other technical assumptions, the algorithm of [11] is proved to converge to a sought
minimizer. In [45], the finite range assumption is dropped and random projections
are introduced. Extension to variational inequalities is considered in [46] (see also the
discussion below).

An important aspect is related to the analysis of the convergence rates of the
iterates (1.3). The working draft [41] was brought to our knowledge during the review
process of this paper. The authors analyze a related algorithm and provide asymptotic
convergence rates in the case where the monotone operators A(s, . ) are gradients of
convex functions in R

n and assuming moreover that these functions have the same
domain, are all strongly convex and twice differentiable.

In order to illustrate (1.1), we provide some application examples without insisting
on the hypotheses for the moment.

The simplest application example correspond to the following feasibility problem:
given a collection of closed convex sets X1, . . . , Xm, find a point x in their intersection
X =

⋂m
i=1 Xi. The interest lies in the case where X is not known but revealed

through random realizations of the Xi’s, so that a straightforward projection onto
X is unaffordable [27], [7]. The algorithm (1.3) encompasses this case by letting
f(ξn+1, . ) coincide with the indicator function ιXξn+1

of the set Xξn+1
(equal to

zero on that set and to +∞ elsewhere), where ξn+1 is randomly chosen in the set
E = {1, . . . ,m} according to some distribution µ =

∑m
i=1 αiδi where all the αi’s

are positive and δi is the Dirac measure at i. In this case, the algorithm (1.3) boils
down to a special case of [27] and consists in successive projections onto randomly
selected sets. The algorithm is of particular interest when m is large (our framework
even encompasses the case of an infinite number of sets) or in the case of distributed
optimization methods: in that case, Xi is the set of local constraints of an agent i and
X is nowhere observed [10]. As pointed out in [27], examples of applications include
fair rate allocation problems in wireless networks where Xi represent a set of channel
states [18], [20], [43] or image restoration and tomography [14], [17].
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A generalization of the above feasibility problem is the programming problem

(1.4) min
x

F (x) s.t. x ∈
m
⋂

i=1

Xi

where F is a closed proper convex function. Here we set f̃(0, . ) = F and f̃(i, . ) = ιXi

for 1 ≤ i ≤ m and choose randomly the variable ξn+1 on the set E = {0, 1 . . .m}
according to some discrete distribution

∑m
i=0 α̃iδi for some positive coefficients α̃i.

The use of algorithm (1.3) with f replaced by f̃ leads to an algorithm where either
proxλnF is applied to the current estimate or a projection onto one of the sets Xi is
done, depending on the outcome of ξn+1. A refinement consists in assuming that the
function F is itself an expectation of the form F (x) = E(f(Z, x)) for some random
variable Z. In this case, the previous algorithm can be extended by substituting
proxλnF with a random version proxλnf(Zn+1, . ) where (Zn)n are iid copies of Z. This
example will be discussed in details in Section 6.

Apart from convex minimization problems, Algorithm (1.1) also finds applications
in minimax problems i.e., when the aim is to search for a saddle point of a given
function L [15], [37]. Suppose that H is a cartesian product of two Hilbert spaces
H1 × H2 and define ℓ : E × H → [−∞,+∞] such that ℓ(s, x, y) is convex in x and
concave in y and ℓ(s, . ) is proper and closed in the sense of [37]. Consider the problem
of finding a saddle point (x, y) of function L = E(ℓ(ξ1, . )) i.e. (x, y) ∈ argminimaxL.
For every s ∈ E and z ∈ H of the form z = (x, y), define A(s, x, y) as the set of points
(u, v) such that for every (x′, y′),

ℓ(s, x′, y)− 〈u, x′〉+ 〈v, y〉 ≥ ℓ(s, x, y)− 〈u, x〉+ 〈v, y〉 ≥ ℓ(s, x, y′)− 〈u, x〉+ 〈v, y′〉 .

In that case, the operator A(s, . ) is maximal monotone for every s, and the stochastic
proximal point algorithm (1.1) reads

(xn+1, yn+1) = argminimax
(x,y)

ℓ(ξn+1, x, y) +
‖x− xn‖2

2λn
−

‖y − yn‖2

2λn
.

As a further extension, Algorithm (1.1) can be used to solve variational inequali-
ties. Let X = ∩m

i=1Xi be defined as above and consider the problem of finding x⋆ ∈ X
such that

(1.5) ∀x ∈ X, 〈F (x⋆), x− x⋆〉 ≥ 0

where F : H → H is monotone and, for simplicity, single-valued (extension to set-
valued F is also possible in our framework). Applications of (1.5) are numerous. We
refer to [22] for an overview. Specific applications include game theory where typically,
a Nash equilibrium has to be found amongst users having individual constraints and
observing possibly stochastic rewards [42]. Other examples such as matrix minimax
problems are described in [21]. Similarly to the programming problem (1.4), the ap-
plication of the stochastic proximal point algorithm to the variational inequality (1.5)
yields the following algorithm. Depending on the outcome of a random variable
ξn+1 ∈ {0, . . . ,m}, a projection onto one of the sets X1, . . . , Xm is performed, or the
resolvent (I + λnF )−1 is applied to the current estimate.

Also interesting is the case where the function F in (1.5) is itself defined as an
expectation of the form F (x) = E(f(Z, x)) where f is H-valued and Z is a r.v. In
this case, the previous algorithm can be generalized by substituting the resolvent
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(I + λnF )−1 with its stochastic counterpart (I + λnf(Zn+1, . ))
−1 where (Zn)n are

iid copies of Z. The context of stochastic variational inequalities is investigated by
Juditsky et al., see [21] where a stochastic mirror-prox algorithm is provided. The
algorithm of [21] uses general prox-functions and allows for a possible bias in the
estimation of F . In [21], X is supposed to be a compact subset of RN , m is equal
to one, and ‖F (x) − F (y)‖∗ ≤ L‖x− y‖ +M (for some arbitrary norm ‖ . ‖ and the
corresponding dual norm ‖ . ‖∗) where L, M are constants that are known by the user.
Moreover, a variance bound of the form E(‖f(Z, x)−F (x)‖2) ≤ σ2 is supposed to hold
uniformly in x. Then, using a constant step size depending on L, M and the expected
number of iterations of the algorithm, the authors prove that the algorithm achieves
optimal convergence rate. Note that the black-box model used in the present paper
is different from [21] in the sense that we are making an implicit use of f(Zn+1, . )
instead of an explicit one as in [21]. In our work, this permits to prove the almost
sure convergence of the algorithm under weaker assumptions than [21]. On the other
side, the price to pay with our approach is the absence of convergence rate certificates.
Also related to our framework is the recent work [46]. An algorithm similar to ours
is proposed, F being moreover assumed to be strongly monotone and to verify the
lipschitz-like property E(‖f(Z, x) − f(Z, y)‖2) ≤ C‖x − y‖2. These assumptions are
not needed in our approach.

Organization and contributions. The paper is organized as follows. After
some preliminaries in Section 2, the main algorithm is introduced in Section 3. The
aim of Section 4 is to establish that the algorithm is stable in the sense that the
sequence (xn) is bounded almost surely. We actually prove a stronger result: for any
zero x⋆ of A, the sequence ‖xn − x⋆‖ converges almost surely. This point is the first
key element to prove the weak convergence in average of the algorithm. The second
element is provided in Section 5 where it is shown that any weak cluster point of the
weighted averaged sequence (xn) is a zero of A. Putting together these two arguments
and using Opial’s lemma [31], we conclude that, almost surely, (xn) converges weakly
to a zero of A. The proofs of Section 5 rely on two major assumptions. First, the
operator A is assumed maximal, as discussed above. Second, the averaged sequence of
(random) Yosida approximations evaluated at the iterates is supposed to be uniformly
integrable with probability one. The latter assumption is easily verifiable when all
operators are supposed to have the same domain. The case where operators have
different domains is more involved. We introduce a linear regularity assumption of
the set of domains of the operators inspired by [7] (a similar assumption is also
used in [45]). We provide estimates of the distance between the iterate xn and the
essential intersection of the domains. The latter estimates allow to verify the uniform
integrability condition, and yield the almost sure weak convergence in average of the
algorithm in the general case.

In Section 6, we study applications to convex programming. We use our results
to prove weak convergence in average of (xn) given by (1.3) to a minimizer of x 7→
E(f(ξ1, x)). As an illustration, we address the problem

min E(f(ξ1, x)) w.r.t. x ∈
m
⋂

i=1

Xi

where X1, . . . , Xm are closed convex sets of Rd and f(s, . ) is a convex function on
H → R for each s ∈ E. We propose a random algorithm quite similar to [45] and
whose convergence in average can be established under verifiable conditions.
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2. Preliminaries.

Random closed sets. Let H be a separable Hilbert space (identified with its
dual) equipped with its Borel σ-algebra B(H). We denote by ‖x‖ the Euclidean norm
of any x ∈ H and by d(x,Q) = inf{‖y − x‖ : y ∈ Q} the distance between a point
x ∈ H and a set Q ∈ 2H (equal to +∞ when Q = ∅). We denote by cl(Q) the closure
of Q. We note |Q| = sup{‖x‖ : x ∈ Q}.

Let (T, T ) be a measurable space. Let Γ : T → 2H be a multifunction such that
Γ(t) is a closed set for all t ∈ T . The domain of Γ is denoted by dom(Γ) = {t ∈ T :
Γ(t) 6= ∅}. The graph of Γ is denoted by gr(Γ) = {(t, x) : x ∈ Γ(t)}.

We say that Γ is T -measurable (or Effros-measurable) if {t ∈ T : Γ(t)∩U 6= ∅} ∈
T for each open set U ⊂ H. This is equivalent to say that for any x ∈ H, the mapping
t 7→ d(x,Γ(t)) is a random variable [16], [26]. We say that Γ is graph-measurable if
gr(Γ) ∈ T ⊗B(H). Effros-measurability implies graph measurability and the converse
is true if (T, T ) is complete for some σ-finite measure [16, Chapter III], [26, Theorem
2.3, pp.28].

Given a probability measure ν on (T, T ), a function φ : T → H is called a
measurable selection of Γ if φ is T /B(H)-measurable and if φ(t) ∈ Γ(t) for all t ν-
a.e. We denote by S(Γ) the set of measurable selections of Γ. If Γ is measurable,
the measurable selection theorem states that S(Γ) 6= ∅ if and only if Γ(t) 6= ∅ for
all t ν-a.e. [26, Theorem 2.13, pp.32], [5, Theorem 8.1.3]. For any p ≥ 1, we denote
by Lp(T,H, ν) the set of measurable functions φ : T → H such that

∫

‖φ‖pdν < ∞.
We set Sp(Γ) = S(Γ) ∩ Lp(T,H, ν). The Aumann integral of the measurable map Γ
is the set

∫

Γdν =

{
∫

φdν : φ ∈ S1(Γ)

}

where
∫

φdν is the Bochner integral of φ.

Monotone operators. An operator A : H → 2H is said monotone if ∀(x, y) ∈
gr(A), ∀(x′, y′) ∈ gr(A), 〈y−y′, x−x′〉 ≥ 0. It is said strongly monotone with modulus
α if the inequality 〈y− y′, x−x′〉 ≥ 0 can be replaced by 〈y− y′, x−x′〉 ≥ α‖x−x′‖2.
The operator A is maximal monotone if it is monotone and if for any other monotone
operator A′ : H → 2H, gr(A) ⊂ gr(A′) implies A = A

′. A maximal monotone operator
A has closed convex images and gr(A) is closed [9, pp. 300]. We denote the identity
by I : x 7→ x. For some λ > 0, the resolvent of A is the operator Jλ = (I + λA)−1 or
equivalently: y ∈ Jλ(x) if and only if (x−y)/λ ∈ A(y). The Yosida approximation of A
is the operator Aλ = (I − Jλ)/λ. Assume from now on that A is a maximal monotone
operator. Then Jλ is a single valued map on H → H and is firmly non-expansive in
the sense that 〈Jλ(x) − Jλ(y), x − y〉 ≥ ‖Jλ(x) − Jλ(y)‖2 for every (x, y) ∈ H2. The
Yosida approximation Aλ is 1/λ-Lipschitz continuous and satisfies Aλ(x) ∈ A(Jλ(x))
for every x ∈ H [25], [9, Corollary 23.10]. For any x ∈ dom(A), we denote by A0(x)
the element of least norm in A(x) i.e., A0(x) = projA(x)(0) where projC represents
the projection operator onto a closed convex set C. When A is maximal monotone
and x ∈ dom(A), then ‖Aλ(x)‖ ≤ ‖A0(x)‖. In that case, Aλ(x) and Jλ(x) respectively
converge to A0(x) and x as λ ↓ 0 [9, Section 23.5].

Random convex functions. A function f : E × H → (−∞,+∞] is called a
normal convex integrand if it is E ⊗ B(H)-measurable and if f(s, . ) is lower semi-
continuous proper and convex for each s ∈ E [39]. For such a function f , we define
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(2.1) F (x) =

∫

f(s, x)dµ(s)

where the above integral is defined as the sum

∫

f(s, x)+dµ(s)−

∫

f(s, x)−dµ(s)

where we use the notation a± = max(±a, 0) and the convention (+∞)−(+∞) = +∞.
The subdifferential operator ∂f : E ×H → H is defined for all (s, x) ∈ E ×H by

∂f(s, x) = {u ∈ H : ∀y ∈ H, f(s, y) ≥ f(s, x) + 〈u, y − x〉} .

3. Algorithm.

3.1. Description. Let (E, E , µ) be a complete probability space and let H be a
separable Hilbert space equipped with its Borel σ-algebra B(H). Consider a mapping
A : E×H → 2H and define for any λ > 0, the resolvent and the Yosida approximation
of A as the mappings Jλ and Aλ respectively defined on E ×H → 2H by

Jλ(s, x) = (I + λA(s, . ))−1(x)

Aλ(s, x) = (x− Jλ(s, x))/λ

for all (s, x) ∈ E ×H.

Assumption 1.

(i) For every s ∈ E µ-a.e., A(s, . ) is maximal monotone.
(ii) For any λ > 0 and x ∈ H, Jλ( . , x) is E/B(H)-measurable.

By [4, Lemme 2.1], the second point is equivalent to the assumption that A is
E ⊗B(H)-Effros measurable. Also, by the same result, the statement “for any λ > 0”
in Assumption 1(ii) can be equivalently replaced by “there exists λ > 0”. As A(s, . ) is
maximal monotone, Jλ(s, . ) is a single-valued continuous map for each s ∈ E. Thus,
Jλ is a Carathéodory map. As such, Jλ is E ⊗ B(H)/B(H)-measurable by [5, Lemma
8.2.6].

Consider an other probability space (Ω,F ,P) and let (ξn : n ∈ N
∗) be a sequence

of random variables on Ω → E. For an arbitrary initial point x0 ∈ H (assumed fixed
throughout the paper), we consider the following iterations

(3.1) xn+1 = Jλn
(ξn+1, xn) .

Assumption 2.

(i) The sequence (λn : n ∈ N) is positive and belongs to ℓ2\ℓ1.
(ii) The random sequence (ξn : n ∈ N

∗) is independent and identically distributed
with probability distribution µ.

Let Fn be the σ-algebra generated by the r.v. ξ1, . . . , ξn. We denote by E the
expectation on (Ω,F ,P) and by En = E( . |Fn) the conditional expectation w.r.t. Fn.
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3.2. Mean operator. For any x ∈ H, we define SA(x) = S(A( . , x)) as the
set of measurable selections of A( . , x). We define similarly Sp

A(x) = Sp(A( . , x)).
For each s ∈ E, we set Ds = dom(A(s, . )). Following [19], we define the essential
intersection (or continuous intersection) of the domains Ds as

D =
⋃

N∈N

⋂

s∈E\N

Ds

where N is the set of µ-negligible subsets of E. Otherwise stated, a point x belongs
to D if x ∈ Ds for every s outside a negligible set. We define

A(x) =

∫

A(s, x)dµ(s) .

For any s ∈ E and any x ∈ Ds, we define A0(s, x) = projA(s,x)(0) as the element of
least norm in A(s, x).

Lemma 3.1. Under Assumption 1, A is monotone and has convex values. More-
over, if

∫

‖A0(s, x)‖dµ(s) < ∞ for all x ∈ D, then

dom(A) = D .

Proof. The first point is clear. For any x ∈ D, A0( . , x) is well defined µ-
a.e. and is measurable as the pointwise limit of measurable functions Aλ( . , x) for
λ ↓ 0. By the measurable selection theorem, D = dom(SA). On the other hand,
dom(A) = dom(S1

A) ⊂ D. For any x ∈ D, A0( . , x) is an integrable selection of A( . , x)
by the standing hypothesis. Thus, x ∈ dom(A). As a consequence, D ⊂ dom(A).

Example 1. Consider the case where µ is a finitely supported measure, say
supp(µ) = {1, . . . ,m} for some integer m ≥ 1. Set wi = µ({i}) for each i. Then
A =

∑m
i=1 wiA(i, . ) and its domain is equal to

D =
m
⋂

i=1

Di .

Moreover, if the interiors of the respective sets D1, . . . , Dm have a non-empty inter-
section, then A is maximal by [38].

Example 2. Set H = R
d. Assume A is non-empty valued and for all x ∈ H,

|A( . , x)| ≤ g(.) for some g ∈ L1(E,R, µ). Then A is non-empty (convex) valued and
has a closed graph by [47]. Thus A is maximal monotone by [6, pp. 45].

Example 3. Let f : E × H → (−∞,+∞] be a normal convex integrand and
assume that its integral functional F given by (2.1) is proper. Then F is convex
and lower semicontinuous [44]. Let A(s, x) = ∂f(s, x). Assume that the interchange
between expectation and subdifferential operators holds i.e.,

∫

∂f(s, x)dµ(s) = ∂

∫

f(s, x)dµ(s) ,

otherwise stated, A(x) = ∂F (x). Then, as F is proper convex and lower semicontin-
uous, it follows that A is maximal monotone [9, Theorem 21.2]. Sufficient conditions
for the interchange can be found in [34]. Assume that F (x) < +∞ for every x such
that x ∈ domf(s, . ) µ-almost everywhere. Suppose that F is continuous at some point
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and that the set valued function s 7→ cl(domf(s, . )) is constant almost everywhere.
Then the identity A(x) = ∂F (x) holds.

We denote by zer(A) = {x ∈ H : 0 ∈ A(x)} the set of zeroes of A. We define for
each p ≥ 1

ZA(p) = {x ∈ H : ∃φ ∈ Sp
A(x) :

∫

φdµ = 0} .

For any p ≥ 1, ZA(p) ⊂ ZA(1) and ZA(1) = zer(A).

3.3. Outline of the proofs. Before going into the details, we first provide an
informal overview of the proof structure without insisting on the hypotheses for the
moment.

We start by showing two separate results in Sections 4.1 and 4.2 respectively,
which we merge in Section 4.3. The first result (Proposition 1) states that almost
surely, limn→∞ ‖xn − x⋆‖ exists for every x⋆ ∈ ZA(2). In particular, sequence (xn)
is bounded with probability one, whenever ZA(2) is non-empty. The second result
(Theorem 1) states the following: when A is maximal, all weak cluster points of the
averaged sequence (xn) are zeroes of A, almost surely on the event

(3.2)

{

ω : n 7→

∑

k≤n ‖Aλk
( . , xk(ω))‖

∑

k≤n λk
is uniformly integrable

}

.

Assuming that zer(A) ⊂ ZA(2), the above results can be put together by straightfor-
ward application of Opial’s lemma (see Lemma 4.3). Almost surely on the event (3.2),
(xn) converges weakly to a point in zer(A). The latter result is stated in Theorem 2.
In order to complete the convergence proof, the aim is therefore to provide verifi-
able conditions under which the event (3.2) is realized almost surely. This point is
addressed in Section 5.

Checking that (3.2) holds w.p.1 is relatively easy in the special case where the
domains Ds are all equal to the same set D. Using the inequality ‖Aλk

( . , xk)‖ ≤
‖A0( . , xk)‖ and assuming that for every bounded set K, the family of measurable
functions (‖A0( . , x)‖)x∈K∩D is uniformly integrable, the result follows (see Corol-
lary 1). On the other hand, when the domains Ds are not equal to the same set
D, more developments are needed to prove that the event (3.2) is indeed realized
w.p.1. This point is addressed in Section 5.2 and the main result of the paper is
eventually provided in Theorem 3. As opposed to the case of identical domains, the
difficulty comes from the fact that the inequality ‖Aλk

( . , xk)‖ ≤ ‖A0( . , xk)‖ holds
only if xk ∈ D, which has no reason to be satisfied in the case of different domains.
Instead, a solution is to pick some zk ∈ D close enough to xk in the sense that
‖zk − xk‖ ≤ 2d(xk,D). Using that Aλ(s, . ) is 1/λ-lipschitz continuous for every s,
one has

(3.3) ‖Aλk
(s, xk)‖ ≤ ‖Aλk

(s, zk)‖+
2d(xk,D)

λk
.

As zk ∈ D, the inequality ‖Aλk
( . , zk)‖ ≤ ‖A0( . , zk)‖ can be used and the first term

in the righthand side of (3.3) can be handled similarly to the previous case where the
domains Ds were assumed identical. In order to establish that (3.2) is realized w.p.1,

the remaining task is therefore to provide an estimate of the second term d(xk,D)
λk

. The
latter estimate is provided in Proposition 2 which deeply relies on the mathematical
developments of Lemma 5.1.
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In Section 6, we particularize the algorithm to the case of convex programming.
The proofs of the section mainly consist in checking the conditions of application of
the results of Section 5.

4. Stability and cluster points. The following simple Lemma will be used
twice.

Lemma 4.1. Let Assumption 1 hold true. Consider u ∈ H, φ ∈ S1
A(u), x ∈ H,

λ > 0, β > 0. Then, for every s µ-a.e.,

(4.1) 〈Aλ(s, x) − φ(s), x − u〉 ≥ λ(1 − β)‖Aλ(s, x)‖
2 −

λ

4β
‖φ(s)‖2 .

Proof. As 〈Aλ(s, x)− φ(s), Jλ(s, x)− u〉 ≥ 0 for all s µ-a.e., we obtain

〈Aλ(s, x)− φ(s), x − u〉 ≥ 〈Aλ(s, x) − φ(s), x− Jλ(s, x)〉

= λ〈Aλ(s, x)− φ(s), Aλ(s, x)〉

= λ‖Aλ(s, x)‖
2 − λ〈φ(s), Aλ(s, x)〉 .

Use 〈a, b〉 ≤ β‖a‖2 + 1
4β ‖b‖

2 with a = Aλ(s, x) and b = φ(s), the result is proved.

4.1. Boundedness. The following proposition establishes that the stochastic
proximal point algorithm is stable whenever ZA(2) is non-empty.

Proposition 1. Let Assumptions 1, 2 hold true. Suppose ZA(2) 6= ∅ and let
(xn) be defined by (3.1). Then,

(i) There exists an event B ∈ F such that P(B) = 1 and for every ω ∈ B and
every x⋆ ∈ ZA(2), the sequence (‖xn(ω)− x⋆‖) converges as n → ∞.

(ii) E(
∑

n λ
2
n

∫

‖Aλn
(s, xn)‖

2dµ(s)) < ∞,
(iii) For any p ∈ N

∗ such that ZA(2p) 6= ∅, supn E(‖xn‖2p) < ∞.
Proof. Consider u ∈ ZA(2), φ ∈ S2

A(u) such that
∫

φdµ = 0. Choose 0 < β ≤ 1
2 .

Note that xn+1 = xn − λnAλn
(ξn+1, xn). We expand

‖xn+1 − u‖2 = ‖xn − u‖2 + 2λn〈xn+1 − xn, xn − u〉+ λ2
n‖xn+1 − xn‖

2

= ‖xn − u‖2 − 2λn〈Aλn
(ξn+1, xn), xn − u〉+ λ2

n‖Aλn
(ξn+1, xn)‖

2 .

Using Lemma 4.1, for all s µ-a.e.,

〈Aλn
(s, xn), xn − u〉 ≥ λn(1− β)‖Aλn

(s, x)‖2 −
λn

4β
‖φ(s)‖2 + 〈φ(s), xn − u〉 .

Therefore,

(4.2) ‖xn+1 − u‖2 ≤ ‖xn − u‖2 − λ2
n(1 − 2β)‖Aλn

(ξn+1, x)‖
2

+
λ2
n

2β
‖φ(ξn+1)‖

2 − 2λn〈φ(ξn+1), xn − u〉 .

Take the conditional expectation of both sides of the inequality:

En‖xn+1 − u‖2 ≤ ‖xn − u‖2 − λ2
n(1− 2β)

∫

‖Aλn
(s, x)‖2dµ(s) +

λ2
nc

2β

where we set c =
∫

‖φ‖2dµ and used
∫

φdµ = 0. By the Robbins-Siegmund theorem
(see [33, Theorem 1]) and choosing 0 < β < 1

2 , we deduce that:

∑

λ2
n

∫

‖Aλn
( . , xn)‖

2dµ < ∞
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(thus, point (ii) is proved), supn E(‖xn‖2) < ∞ and finally, the sequence (‖xn − u‖2)
converges almost surely as n → ∞. Let Q be a dense countable subset of ZA(2). There
exists B ∈ F such that P(B) = 1 and for all ω ∈ B, all u ∈ Q, (‖xn(ω)−u‖) converges.
Consider ω ∈ B and x⋆ ∈ ZA(2). For any ǫ > 0, choose u ∈ Q such that ‖x⋆ − u‖ ≤ ǫ
and define ℓu = limn→∞ ‖xn(ω) − u‖. Note that ‖xn(ω) − u‖ ≤ ‖xn(ω) − x⋆‖ + ǫ
thus ℓu ≤ lim inf ‖xn(ω) − x⋆‖ + ǫ. Similarly, ‖xn(ω) − x⋆‖ ≤ ‖xn(ω) − u‖ + ǫ thus
lim sup ‖xn(ω)−x⋆‖ ≤ ℓu+ǫ. Finally, lim sup ‖xn(ω)−x⋆‖ ≤ lim inf ‖xn(ω)−x⋆‖+2ǫ.
As ǫ is arbitrary, we conclude that (‖xn(ω)− x⋆‖) converges. Point (i) is proved.

We prove point (iii) by induction. Set u ∈ ZA(2p). We have shown above that
supn E(‖xn −u‖2) < ∞. Consider an integer q ≤ p such that supn E(‖xn −u‖2q−2) <
∞. We will show that supn E(‖xn − u‖2q) < ∞ and the proof will be complete. Use
Equation (4.2) with β = 1

2 ,

E[‖xn+1 − u‖2q] ≤ E[(‖xn − u‖2 + λ2
n‖φ(ξn+1)‖

2 − 2λn〈φ(ξn+1), xn − u〉)q]

=
∑

k1+k2+k3=q

(

q

k1, k2, k3

)

T (k1,k2,k3)
n(4.3)

where for any ~k = (k1, k2, k3) such that k1 + k2 + k3 = q, we define

T
~k
n = (−2)k3λ2k2+k3

n E[‖xn − u‖2k1‖φ(ξn+1)‖
2k2〈φ(ξn+1), xn − u〉k3 ] .

Note that T
(q,0,0)
n = E[‖xn−u‖2q]. We now prove that there exists a constant c′′ such

that for any ~k 6= (q, 0, 0), |T
~k
n | ≤ c′′λ2

n. Consider a fixed value of ~k 6= (q, 0, 0) such
that k1 + k2 + k3 = q and consider the following cases.
• If k3 = 0, then k1 ≤ q − 1 and k2 ≥ 1. In that case,

|T
~k
n | ≤ λ2k2

n E(‖xn − u‖2k1)
∫

‖φ‖2k2dµ

≤ αλ2
nE(1 + ‖xn − u‖2q−2)

∫

‖φ‖2pdµ

where α is a constant chosen in such a way that λ2k2
n ≤ αλ2

n for any 1 ≤ k2 ≤ q
and where we used the inequality ak1 ≤ 1 + aq−1 for any k1 ≤ q − 1. The constant

c′ = α supn E(1 + ‖xn − u‖2q−2)
∫

‖φ‖2pdµ is finite and we have |T
~k
n | ≤ c′λ2

n.

• If k3 = 1 and k2 = 0, then T
~k
n = 0 using that

∫

φdµ = 0.
• In all remaining cases, k1 ≤ q−2 and k2+k3 ≥ 2. By the Cauchy-Schwarz inequality,

|T
~k
n | ≤ 2k3λ2k2+k3

n E[‖xn − u‖2k1+k3‖φ(ξn+1)‖
2k2+k3 ]

= 2k3λ2k2+k3

n E[‖xn − u‖2k1+k3 ]
∫

‖φ‖2k2+k3dµ .

Now 2k2 + k3 = k2 + q − k1 ≤ 2p and 2k1 + k3 = k1 + q − k2 ≤ k1 + p ≤ 2q − 2.
Using again that supn E(1 + ‖xn − u‖2q−2) < ∞ and

∫

‖φ‖2pdµ < ∞, we conclude

that there exists an other constant c′′ ≥ c′ such that |T
~k
n | ≤ c′′λ2

n.

We have shown that |T
(k1,k2,k3)
n | ≤ c′′λ2

n whenever k1+k2+k3 = q and (k1, k2, k3) 6=
(q, 0, 0). Bounding the rhs of (4.3), we obtain

E[‖xn+1 − u‖2q] ≤ E[‖xn − u‖2q] + c′′λ2
n

which in turn implies that supn E[‖xn − u‖2q] < ∞.
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4.2. Weak cluster points. For an arbitrary sequence (an : n ∈ N), we use the
notation an to represent the weighted averaged sequence an =

∑n
k=1 λkak/

∑n
k=1 λk .

Recall that a family (fi : i ∈ I) of measurable functions on E → R+ is uniformly
integrable if

lim
a→+∞

sup
i

∫

{fi>a}

fi dµ = 0 .

Definition 4.2. We say that a sequence (un) ∈ HN
∗

has the property UI if the
sequence

∑n
k=1 λk‖Aλk

( . , uk)‖
∑n

k=1 λk
(n ∈ N

∗)

is uniformly integrable.
Assumption 3. The monotone operator A is maximal.
Note that Assumption 3 is satisfied in Examples 1, 2 and 3 above.
Theorem 1. Let Assumptions 1–3 hold true and suppose that ZA(2) 6= ∅. Con-

sider the random sequence (xn) given by (3.1) with weighted averaged sequence (xn).
Let G ∈ F be an event such that for almost every ω ∈ G, (xn(ω)) has the property
UI. Then, there exists B ∈ F such that P(B) = 1 and such that for every ω ∈ B ∩G,
all weak cluster points of the sequence (xn(ω)) belong to zer(A).

Proof. Denote hλ(x) =
∫

Aλ(s, x)dµ(s) for any λ > 0, x ∈ H. We justify the fact
that hλ(x) is well defined. As A is maximal, its domain contains at least one point u ∈
H. For such a point u, there exists φ ∈ S1

A(u). As Aλ(s, . ) is
1
λ -Lipschitz continuous,

‖Aλ(s, x)‖ ≤ ‖Aλ(s, u)‖ + 1
λ‖x − u‖. Moreover ‖Aλ(s, u)‖ ≤ ‖A0(s, u)‖ ≤ ‖φ(s)‖

and since φ ∈ L1(E,H, µ), we obtain that Aλ( . , x) ∈ L1(E,H, µ). This implies that
hλ(x) is well defined for all x ∈ H, λ > 0. We write

xn+1 = xn − λnhλn
(xn) + λnηn+1

where ηn+1 = −Aλn
(ξn+1, xn) + hλn

(xn) is a Fn-adapted martingale increment se-
quence i.e., En(ηn+1) = 0. Note that

En‖ηn+1‖
2 ≤

∫

‖Aλn
(s, xn)‖

2dµ(s)

and by Proposition 1(ii), it holds that
∑

λ2
nEn‖ηn+1‖2 < ∞ almost surely. As a

consequence, the Fn-adapted martingale
∑

k≤n λkηk+1 converges almost surely to a
random variable which is finite P-a.e. Along with Proposition 1, this implies that
there exists an event B ∈ E of probability one such that for any ω ∈ B ∩G,

(i) (
∑

k≤n λkηk+1(ω)) converges,
(ii) (xn(ω)) is bounded,
(iii)

∑

n λ
2
n

∫

‖Aλn
( . , xn(ω))‖2dµ is finite,

(iv) (xn(ω)) has the property UI.
From now on to the end of this proof, we fix such an ω. As it is fixed, we omit the
dependency w.r.t. ω to keep notations simple. We write for instance xn instead of
xn(ω) and what we refer to as constants can depend on ω.

Let (u, v) ∈ gr(A) and consider φ ∈ S1
A(u) such that v =

∫

φdµ. Denote by ǫ > 0
an arbitrary positive constant.

We need some preliminaries. By (i), there exists an integerN = N(ǫ) such that for
all n ≥ N , ‖

∑n
k=N λkηk+1‖ ≤ ǫ. Define Yn(s) = ‖Aλn

(s, xn)‖ and let (Y n) represent
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the corresponding weighted averaged sequence. As (Y n) is uniformly integrable, the

same holds for the sequence (Y
(N)

n ) defined by

Y
(N)

n =

∑n
k=N λkYk

∑n
k=N λk

.

In particular, there exists a constant c such that

(4.4) sup
n

∫

Y
(N)

n dµ < c .

Moreover, by [29, Proposition II-5-2], there exists κǫ > 0 such that

∀H ∈ E , µ(H) < κǫ ⇒

∫

H

Y
(N)

n dµ < ǫ .

Since µ({‖φ‖ > K}) → 0 as K → +∞, there exists K1 (depending on ǫ) such that
for all K ≥ K1, µ({‖φ‖ > K}) < κǫ. For any such K,

(4.5)

∫

{‖φ‖>K}

Y
(N)

n dµ < ǫ .

Denote vK =
∫

{‖φ‖>K} φdµ. Note that vK → v by the dominated convergence theo-

rem. Thus, there exists K2 such that for all K ≥ K2, ‖vK − v‖ < ǫ. From now on,
we set K ≥ max(K1,K2).

Using an idea from [2], we define a sequence (yn : n ≥ N) such that yN = xN

and yn+1 = yn − λnhλn
(xn) for all n ≥ N . By induction, yn = xn −

∑n−1
k=N λkηk+1.

In particular, ‖yn − xn‖ ≤ ǫ. We expand

‖yn+1 − u‖2 = ‖yn − u‖2 − 2λn〈hλn
(xn), yn − u〉+ ‖yn+1 − yn‖

2

≤ ‖yn − u‖2 − 2λn〈hλn
(xn), xn − u〉+ 2ǫλn‖hλn

(xn)‖ + λ2
n‖hλn

(xn)‖
2 .

Define δK,λ(x) =
∫

{‖φ‖>K}
Aλ(s, x)dµ(s) and use Lemma 4.1 with β = 1:

〈hλn
(xn)− vK , xn − u〉 ≥ −‖δK,λn

(xn)‖‖xn − u‖ −
λnK

2

4

≥ −c

∫

{‖φ‖>K}

Yndµ−
λnK

2

4

where the constant c is selected in such a way that c > supn ‖xn − u‖. Using that
‖vK − v‖ < ǫ,

〈hλn
(xn)− v, xn − u〉 ≥ −cǫ− c

∫

{‖φ‖>K}

Yndµ−
λnK

2

4
.

As a consequence,

(4.6) ‖yn+1 − u‖2 ≤ ‖yn − u‖2 − 2λn〈v, xn − u〉+ rn

where we define

rn = 2cǫλn + λ2
nsn + 2λnctn,K + 2ǫλntn,0

sn = ‖hλn
(xn)‖

2 +K2/2

tn,a =

∫

{‖φ‖≥a}

Yndµ (∀a ∈ {0,K}).



14

For any a ∈ {0,K}, denote

t
(N)
n,a =

∑n
k=N λktk,a
∑n

k=N λk
.

By inequality (4.4), t
(N)
n,0 < c. By inequality (4.5), t

(N)
n,0 < ǫ. By point (iii),

∑

n λ
2
n‖hλn

(xn)‖2 <
∞. Using Assumption 2(i), it follows that

∑n
k=N rk

∑n
k=N λk

< 6cǫ+ on(1)

where on(1) stands for a sequence which converges to zero as n → ∞. Summing the
inequalities (4.6) down to rank N , and dividing by 2

∑n
k=N λk, we obtain

0 ≤ −

∑n
k=N λk〈v, xk − u〉

∑n
k=N λk

+ 3cǫ+ on(1) .

Let x̃ be a weak cluster point of the weighted averaged sequence xn. Then, x̃ is also
a weak cluster point of the sequence

∑n
k=N λkxk

∑n
k=N λk

.

We obtain 0 ≤ −〈v, x̃ − u〉 + 3cǫ. The inequality holds for any ǫ > 0, thus 0 ≤
−〈v, x̃−u〉. As the inequality holds for any (u, v) ∈ gr(A) and A is maximal monotone,
this means that (x̃, 0) ∈ gr(A) [9, Theorem 20.21].

4.3. Weak ergodic convergence. The aim of Theorem 2 below is to merge
Proposition 1 and Theorem 1 into a weak ergodic convergence result. We need the
following condition to hold.

Assumption 4. zer(A) 6= ∅ and zer(A) ⊂ ZA(2).
The condition zer(A) 6= ∅ means that there exists x⋆ ∈ H for which one can find

a selection φ of A( . , x⋆) such that
∫

φdµ = 0. The condition zer(A) ⊂ ZA(2) means
that moreover, such a φ can be chosen to be square integrable. For instance, this holds
under the stronger condition that for any zero x⋆ of A, |A( . , x⋆)| is square integrable.

Lemma 4.3 (Passty). Let (λn) be a non-summable sequence of positive reals, and
(an) any sequence in H with weighted averaged (an). Assume there exists a non-empty
closed convex subset Q of H such that (i) weak subsequential limits of an lie in Q ;
and (ii) limn ‖an − b‖ exists for all b ∈ Q. Then (an) converges weakly to an element
of Q.

Proof. See [31].
Theorem 2. Let Assumptions 1–4 hold true. Consider the random sequence

(xn) given by (3.1) with weighted averaged sequence (xn). Let G ∈ F be an event
such that for almost every ω ∈ G, (xn(ω)) has the property UI. Then, almost surely
on G, (xn) converges weakly to a point in zer(A).

Proof. It is a consequence of Proposition 1(i), Theorem 1 and Lemma 4.3.
Theorem 2 establishes the almost sure weak ergodic convergence of the stochas-

tic proximal point algorithm under the abstract condition that w.p.1, (xn) has the
property UI. We must now provide verifiable conditions under this property indeed
holds w.p.1. This is the purpose of the next section.
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5. Main results.

5.1. Case of a common domain. We first address the case where the domains
Ds of the operators A(s, . ) (s ∈ E) are equal (at least for all s outside a neglible set).
We also need an additional assumption.

Assumption 5. For any bounded set K ⊂ H, the family (‖A0( . , x)‖ : x ∈ K∩D)
is uniformly integrable.

Assumption 5 is satisfied if the following stronger condition holds for any bounded
set K ⊂ H:

(5.1) ∃rK > 0, sup
x∈K∩D

∫

‖A0(s, x)‖
1+rK dµ(s) < ∞ .

Corollary 1. Let Assumptions 1–5 hold true. Assume that the domains Ds

coincide for all s outside a µ-negligible set. Consider the random sequence (xn) given
by (3.1) with weighted averaged sequence (xn). Then, almost surely, (xn) converges
weakly to a zero of A.

Proof. By Proposition 1 and the fact that Ds = D for all s µ-a.e., there is a set of
probability one such that for any ω in that set, there is a bounded set K = Kω such
that xn(ω) ∈ K ∩D for all n ∈ N

∗. By Assumption 5, the sequence (‖A0( . , xn(ω))‖ :
n ∈ N

∗) is uniformly integrable. As ‖Aλn
( . , xn(ω))‖ ≤ ‖A0( . , xn(ω))‖, the same

holds for the sequence (‖Aλn
( . , xn(ω))‖ : n ∈ N

∗) and holds as well for the corre-
sponding weighted averaged sequence. The conclusion follows from Theorem 2.

5.2. Case of distinct domains. We now address the case where the domains
Ds may vary with s. The case is more involved, because the sole Assumption 5 is not
sufficient to ensure the convergence. The reason is that the inequality ‖Aλn

(s, xn)‖ ≤
‖A0(s, xn)‖ used to prove Corollary 1 does no longer hold when xn /∈ Ds. Nonetheless,
using that Aλ(s, . ) is

1
λ -Lipschitz continuous, the argument can be adapted provided

that the iterates converge “quickly enough” to the essential domain D. The crux of
the paragraph is therefore to provide estimates of the distance between xn and the
set D. To this end, we shall need some regularity conditions on the collection of sets
Ds. These conditions can be seen as an extension to possibly infinitely many sets of
the bounded linear regularity condition of Bauschke et al. [8].

We define the mapping Π : E ×H → H by

Π(s, x) = projcl(Ds)(x) .

Note that Π(s, x) = limλ↓0 Jλ(s, x) by [9, Theorem 23.47]. By Assumption 1, Π is
E ⊗ B(H)/B(H)-measurable as a pointwise limit of measurable maps. The distance
between a point x ∈ H and Ds coincides with d(x,Ds) = ‖x−Π(s, x)‖.

Assumption 6. For every M > 0, there exists κM > 0 such that for all x ∈ H
such that ‖x‖ ≤ M ,

∫

d(x,Ds)
2dµ(s) ≥ κM d(x,D)2 .

The above assumption is quite mild, and is easier to illustrate in the case of finitely
many sets. Following [8], we say that a finite collection of closed convex subsets
(X1, . . . , Xm) over some Euclidean space is boundedly linearly regular if for every
M > 0, there exists κ′

M > 0 such that for every ‖x‖ ≤ M ,

(5.2) max
i=1...m

d(x,Xi) ≥ κ′
Md(x,X) where X =

m
⋂

i=1

Xi
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where implicitely X 6= ∅. Sufficient conditions for a collection of set can be found
in [8] and reference therein. For instance, the qualification condition ∩iri(Xi) 6= ∅ is
sufficient to ensure that X1, . . . , Xm are boundedly linearly regular, where ri stands
for the relative interior.

Now consider the special case of Example 1 i.e., µ is finitely supported. As-
sume that H is a Euclidean space and that the domains D1, . . . , Dm of the operators
A(1, . ), . . . , A(m, . ) are closed. It is routine to check that Assumption 6 holds if and
only if D1, . . . , Dm are boundedly linearly regular.

Lemma 5.1. Let Assumptions 1, 2 and 6 hold true. Assume that λn/λn+1 → 1 as
n → +∞ and D 6= ∅. For each n, consider a Fn-measurable random variable δn on H.
Assume that the sequence (En‖δn+1‖2) is bounded almost surely and in L1(Ω,H,P).
Consider the sequence (xn) given by

(5.3) xn+1 = Π(ξn+1, xn) + λnδn+1 .

Assume that, with probability one, (xn) is bounded. Then

sup
n

∑

k≤n d(xk,D)
∑

k≤n λk
< ∞ a.s.

Proof. Consider an arbitrary point u ∈ D. By definition of D, u ∈ Ds for all s
µ-a.e. For any β > 0,

‖xn+1 − u‖2 ≤ (1 + β)‖Π(ξn+1, xn)− u‖2 + λ2
n(1 +

1

β
)‖δn+1‖

2 .

As Π(ξn+1, . ) is firmly non-expansive,

‖xn+1 − u‖2 ≤ (1 + β)
(

‖xn − u‖2 − ‖xn −Π(ξn+1, xn)‖
2
)

+ λ2
n(1 +

1

β
)‖δn+1‖

2 .

The above inequality holds for any u ∈ D and thus for any u ∈ cl(D). It holds
in particular when substituting u with projcl(D)(xn). Remarking that d(xn+1,D) ≤
‖xn+1 − projcl(D)(xn)‖, it follows that

d(xn+1,D)2 ≤ (1 + β)
(

d(xn,D)2 − ‖xn −Π(ξn+1, xn)‖
2
)

+ λ2
n(1 +

1

β
)‖δn+1‖

2 .

Consider a fixed M > 0, and denote by BM
n the probability event ∩k≤n{‖xk‖ ≤ M}.

Denote by χB the characteristic function of a set B, equal to 1 on B and to zero
outside. By Assumption 6,

En(‖xn −Π(ξn+1, xn)‖
2χBM

n
) =

∫

‖xn −Π(s, xn)‖
2dµ(s)χBM

n

≥ κM d(xn,D)2χBM
n

where κM is the constant defined in Assumption 6. Define tn = tn,M as the random
variable tn = d(xn,D)2χBM

n
. Upon noting that χBM

n+1
≤ χBM

n
, we obtain

t2n+1 ≤ (1 + β)(1− κM )t2n + λ2
n(1 +

1

β
)‖δn+1‖

2 .
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Taking the conditional expectation, Ent
2
n+1 ≤ (1+β)(1−κM )t2n+λ2

n(1+
1
β )En‖δn+1‖2.

Define ∆n = tn/λn. Using that λn/λn+1 → 1 and choosing β small enough, there
exists constants 0 < ρ < 1, c > 0 and a deterministic integer n0 depending on the
sequence (λn) and the constants β, κM such that for all n ≥ n0,

En(∆
2
n+1) ≤ ρ∆2

n + cEn‖δn+1‖
2 .(5.4)

Taking the expectation of both sides and using that (E‖δn+1‖2) is bounded, we obtain
that the sequence (∆n) is uniformly bounded in L2(Ω,R+,P). Now consider the sums

Tn =

n
∑

k=n0+1

tk and ϕn =

n
∑

k=n0+1

λk .

Decompose Tn =
∑n

k=n0+1 Ek−1d(xk,D) +Rn where

Rn =

n
∑

k=n0+1

(tk − Ek−1tk) .

Note that Rn is an Fn-adapted martingale and E((tk − Ek−1tk)
2) ≤ E(t2k) ≤ Cλ2

k for
some finite constant C = supn E(∆

2
n). As

∑

k λ
2
k < ∞, we deduce that Rn converges

a.s. to some r.v. R∞ which is finite P-a.e. As a consequence, Rn/ϕn tends a.s. to
zero. On the other hand, by Jensen’s inequality,

Tn ≤
n
∑

k=n0+1

(

Ek−1t
2
k

)
1
2 + ‖Rn‖ .

By (5.4) again and the assumption that En‖δn+1‖2 is bounded a.s., there exists a
finite r.v. Z > 0 such that, almost surely, En(∆

2
n+1) ≤ ρ∆2

n + c Z. Thus, there exists

other constants ρ < ρ1 < 1 and c1 such that En(∆
2
n+1)

1/2 ≤ ρ1 ∆n+ c1Z. Using that
λn/λn+1 → 1, we obtain

En(t
2
n+1)

1/2 ≤ ρ2 tn+1 + c1λn+1 Z

for some constants ρ1 < ρ2 < 1. As a consequence,

Tn

ϕn
≤

c2Z

1− ρ2
+

‖Rn‖

(1− ρ2)ϕn
.

Therefore, for every M > 0, the exist a probability one event on which Tn/ϕn is
bounded. Hence, on a probability one set, for every integer M > 0, the sequence

∑

k≤n d(xk,D)χBM
k

∑

k≤n λk

is bounded. As (xn) is bounded w.p.1., the conclusion follows.
Assumption 7. There exist p ∈ N

∗ and C ∈ L2(E,R+, µ) such that for any
x ∈ H, λ > 0,

‖Jλ(s, x)−Π(s, x)‖ ≤ λC(s)(1 + ‖x‖p)

and ZA(2p) 6= ∅.
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We recall that Jλ(s, x) converges to the best approximation Π(s, x) of x in Ds

when λ ↓ 0. Assumption 7 provides an additional condition on the rate. Loosely
speaking, the condition means that the resolvent value Jλ(s, x) should be at distance
O(λ) from the projection Π(s, x). A sufficient condition will be provided in Section 6
in the case of subdifferentials.

The second condition ZA(2p) 6= ∅ means that there exists a zero of A, say x⋆, for
which one can find a (2p)-integrable selection φ ∈ A( . , x⋆) such that

∫

φdµ = 0. This
is for instance the case if |A( . , x⋆)|2p is integrable.

Proposition 2. Let Assumptions 1, 2, 6 and 7 hold true. Suppose that λn/λn+1 →
1 as n → ∞. Then, the sequence (xn) given by (3.1) satisfies almost surely

sup
n

∑

k≤n d(xk,D)
∑

k≤n λk
< ∞ .

Proof. The sequence (xn) satisfies (5.3) if we set

δn+1 = (Jλn
(ξn+1, xn)−Π(ξn+1, xn))/λn .

By Assumption 7, En‖δn+1‖2 ≤ c(1+ ‖xn‖2p) for some constant c > 0. Therefore, by
Proposition 1(iii), En‖δn+1‖2 is uniformly bounded almost surely and in L1(Ω,H,P).
The conclusion of Lemma 5.1 applies.

Theorem 3. Let Assumptions 1–7 hold true and let λn/λn+1 → 1 as n → ∞.
Consider the random sequence (xn) given by (3.1) with weighted averaged sequence
(xn). Then, almost surely, (xn) converges weakly to a zero of A.

Proof. For every n, choose any point zn ∈ D such that ‖zn − xn‖ ≤ 2d(xn,D).
As Aλ(s, . ) is

1
λ -Lipschitz continuous,

‖Aλn
(s, xn)‖ ≤ ‖Aλn

(s, zn)‖ +
2d(xn,D)

λn
.

Using moreover that ‖Aλn
(s, zn)‖ ≤ ‖A0(s, zn)‖,

∑n
k=1 λk‖Aλk

(s, xk)‖
∑n

k=1 λk
≤

∑n
k=1 λk‖A0(s, zk)‖

∑n
k=1 λk

+ 2

∑n
k=1 d(xk,D)
∑n

k=1 λk
.

By Proposition 2,

∑n
k=1 λk‖Aλk

(s, xk)‖
∑n

k=1 λk
≤

∑n
k=1 λk‖A0(s, zk)‖

∑n
k=1 λk

+ C′(5.5)

where C′ is a r.v. independent of n and s and which is finite P-a.e. By Assumption 5,
the family ‖A0( . , zk(ω))‖ is uniformly integrable for almost every ω. Thus, the same
holds for the corresponding averaged sequence, which in turn implies that the func-
tions of s given by the lhs of (5.5) are uniformly integrable. The conclusion follows
from Theorem 1.

5.3. Strong monotonicity and strong convergence. We prove the following.
Theorem 4. Let Assumptions 1, 2 hold true. Assume that for every s ∈ E,

A(s, . ) is strongly monotone with modulus α(s) where α : E → R+ is a measurable
function such that P(α(ξ1) 6= 0) > 0. Then A is strongly monotone and, as such,
admits a unique zero x⋆. If x⋆ ∈ ZA(2) then, almost surely, the sequence (xn) defined
by (3.1) converges strongly to x⋆.



19

Proof. Set (x, y) and (x′, y′) in gr(A). Let φ and φ′ be integrable selections of
A( . , x) and A( . , x′) respectively such that y =

∫

φdµ and y′ =
∫

φ′dµ. Then,

〈φ(s) − φ′(s), x− x′〉 ≥ α(s)‖x− x′‖2 .

Integrating over s and noting that
∫

αdµ > 0 by hypothesis, we deduce that A is
strongly monotone. Let x⋆ be its unique zero and assume that x⋆ ∈ ZA(2). Note that
there is no restriction in assuming that α( . ) ≤ 1 (otherwise just replace α( . ) with
min(α( . ), 1)).

By strong monotonicity, the inequality (4.1) of Lemma 4.1 can be replaced by

〈Aλ(s, x)− φ(s), x − u〉 ≥ α(s)‖Jλ(s, x)− u‖2 + λ(1− β)‖Aλ(s, x)‖
2 −

λ

4β
‖φ(s)‖2 .

As a consequence, Equation (4.2) can be replaced by

(5.6) ‖xn+1 − x⋆‖2 ≤ ‖xn − x⋆‖2 − λ2
n(1− 2β)‖Aλn

(ξn+1, xn)‖
2

− 2λnα(ξn+1)‖xn+1 − x⋆‖2 +
λ2
n

2β
‖φ(ξn+1)‖

2 − 2λn〈φ(ξn+1), xn − x⋆〉

where φ is a measurable selection of A( . , x⋆) such that
∫

φdµ = 0. In the sequel, we
shall simply set β = 1

2 . On the other hand, by straightforward algebra,

‖xn+1 − x⋆‖2 ≥ ‖xn − x⋆‖2 + 2〈xn+1 − xn, xn − x⋆〉

= ‖xn − x⋆‖2 − 2λn〈Aλn
(ξn+1, xn), xn − x⋆〉

≥ ‖xn − x⋆‖2 − λn‖Aλn
(ξn+1, xn)‖

2 − λn‖xn − x⋆‖2

and by plugging the above inequality into (5.6), using α( . ) ≤ 1 and recalling β = 1
2 ,

‖xn+1−x⋆‖2 ≤ (1+2λ2
n)‖xn−x⋆‖2−2λnα(ξn+1)‖xn−x⋆‖2+2λ2

n‖Aλn
(ξn+1, xn)‖

2

+ λ2
n‖φ(ξn+1)‖

2 − 2λn〈φ(ξn+1), xn − x⋆〉 .

Applying the conditional expectation En on both sides, and setting ᾱ =
∫

αdµ, and
Vn = 2En‖Aλn

(ξn+1, xn)‖2 +
∫

‖φ‖2dµ, we obtain

En(‖xn+1 − x⋆‖2) ≤ (1 + 2λ2
n)‖xn − x⋆‖2 − 2λnᾱ‖xn − x⋆‖2 + λ2

nVn .

By Proposition 1(ii) and the fact that (λn) ∈ ℓ2, one has
∑

n λ
2
nVn < ∞ a.s. Therefore,

by [33],

∑

n

λnᾱ‖xn − x⋆‖2 < ∞ a.s.

By the standing hypothesis, ᾱ > 0, thus
∑

n λn‖xn − x⋆‖2 < ∞ a.s. Since ‖xn − x⋆‖
converges a.s. by Proposition 1(i) and since (λn) /∈ ℓ1, it follows that ‖xn − x⋆‖ → 0.

6. Application to convex programming.
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6.1. Problem and Algorithm. Consider the context of Example 3. Let f : E×
H → (−∞,+∞] be a normal convex integrand. Denote by F (x) =

∫

f(s, x)dµ(x) the
corresponding integral functional. Identifying ∂f with the operator A of Section 3,
the resolvent Jλ coincides with the proximity operator (s, x) 7→ proxλf(s, . )(x) defined
in (1.2). The iterations (3.1) write

(6.1) xn+1 = proxλnf(ξn+1, . )(xn) .

The aim is to prove the almost sure weak convergence in average of (xn) to a minimizer
of F (assumed to exist). We denote by ∂f0(s, x) the element of ∂f(s, x) with smallest
norm. We denote by D the essential intersection of the sets Ds = dom(∂f(s, . )) for
s ∈ E.

Assumption 8.

(i) f : E ×H → (−∞,+∞] is a normal convex integrand.
(ii) F is proper and lower semicontinuous.
(iii) For all x ∈ H, ∂F (x) =

∫

∂f(s, x)dµ(s).
(iv) The set of minimizers of F is non-empty and included in Z∂f (2).

Assumption 8(iii) has been discussed in Example 3.

6.2. Case of a common domain.

Theorem 5. Let Assumptions 2 and 8 hold true. Assume that the domains Ds

coincide for all s outside a µ-negligible set. Assume that for any bounded set K ⊂ H,
the family (‖∂f0( . , x)‖ : x ∈ K ∩ D) is uniformly integrable. Consider the random
sequence (xn) given by (6.1) with weighted averaged sequence (xn). Then, almost
surely, (xn) converges weakly to a minimizer of F .

Proof. We prove that A = ∂f satisfies the conditions of Assumptions 1 and 3
and the conclusion follows from Corollary 1. Operator ∂f(s, . ) is maximal monotone
for any given s ∈ E, see e.g. [9, Theorem 21.2]. For a fixed x ∈ H, ∂f( . , x) is
measurable, see [36, Corollary 4.6] and [30, Theorem 3] in the infinite dimensional case.
The proximity operator Jλ( . , x) is E/B(H) measurable, see [35, Lemma 4] (combined
with [39, Proposition 2] in the infinite dimensional case). Therefore, A = ∂f satisfies
the conditions in Assumption 1.

Note that F is a convex function. By Assumption 8(ii) and [9, Theorem 21.2], ∂F
is maximal monotone. Using moreover Assumption 8(iii), the condition in Assump-
tion 3 is satisfied. Finally, Assumptions 1–5 are fulfilled and the conclusion follows
from Corollary 1.

6.3. Case of distinct domains. When domains Ds are possibly distinct, the
convergence result will follow from Theorem 3. We should therefore verify the con-
ditions under which the latter holds. Checking Assumptions 1–5 follows the same
lines as in Section 6.2 and is relatively easy. Assumption 6 will be kept as a stand-
ing assumption. The goal is therefore to provide a verifiable condition under which
Assumption 7 holds. This condition is given as follows.

Assumption 9. There exists p ∈ N
∗ and C ∈ L2(E,R+, µ) such that for all

s ∈ E µ-a.e. and all x ∈ dom(∂f(s, . )),

‖∂f0(s, x)‖ ≤ C(s)(1 + ‖x‖p)

and ZA(2p) 6= ∅. Moreover, dom(∂f(s, . )) is closed µ-a.e.
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In order to verify that the above condition is indeed sufficient to ensure that
Assumption 7 holds, we need the following lemma.

Lemma 6.1. Let g : H → (−∞,+∞] be a proper lower semicontinuous convex
function. Consider x ∈ H and λ > 0. Let π be the projection of x onto dom(g).
Assume that ∂g(π) 6= ∅. Then, ‖proxλg(x)− π‖ ≤ 2λ‖∂g0(π)‖ .

Proof. When x = π, the result is standard [9, Corollary 23.10] (and the factor 2
in the inequality can even be omitted). We assume in the sequel that x 6= π. Define
j = proxλg(x), ϕ = ∂g0(π) and

(6.2) q = argmin
y∈H

g(π) + 〈ϕ, y − π〉+
‖y − x‖2

2λ

where H is the half-space {y ∈ H : 〈y − π, x− π〉 ≤ 0}. By the Karush-Kuhn-Tucker
conditions, there exists α ≥ 0 such that λϕ = −q + x − α(x − π) along with the
complementary slackness condition α〈q − π, x − π〉 = 0. Now as ϕ ∈ ∂g(π) and
(x− j)/λ ∈ ∂g(j), it follows by monotonicity of ∂g that

0 ≤ 〈λϕ− x+ j, π − j〉

= 〈j − q, π − j〉+ α〈x− π, j − π〉.

As 〈x − π, j − π〉 ≤ 0, we have 0 ≤ 〈j − q, π − j〉 which in turn implies that ‖j −
π‖ ≤ ‖q − π‖. As q ∈ H , it is clear that ‖x − π‖ ≤ ‖q − x‖ and thus ‖q − π‖ ≤
‖q − x‖ + ‖x − π‖ ≤ 2‖q − x‖. Putting all pieces together, ‖j − π‖ ≤ 2‖q − x‖.
Recall the identity, q − x = −λϕ − α(x − π). If α = 0, the ‖q − x‖ = λ‖ϕ‖ and
the conclusion ‖j − π‖ ≤ 2λ‖ϕ‖ follows. If α > 0, the complementary slackness
condition yields 〈q − π, x − π〉 = 0. Replacing q by its expression as a function of α,
this allows to write α = 〈λϕ, π − x〉/‖x − π‖2. Hence, q − x = −λPϕ where P is an
orthogonal projection matrix. Therefore, ‖q − x‖ ≤ λ‖ϕ‖ and again, the conclusion
‖j − π‖ ≤ 2λ‖ϕ‖ follows.

Theorem 6. Let Assumptions 2, 6, 8, and 9 hold true. Suppose that λn/λn+1 →
1 as n → ∞. Consider the random sequence (xn) given by (6.1) with weighted averaged
sequence (xn). Then, almost surely, (xn) converges weakly to a minimizer of F .

Proof. When letting A = ∂f , the conditions in Assumptions 1–4 are fulfilled by
using the same arguments as in the proof of Theorem 5. Moreover, Assumption 9
implies that the uniform integrability condition of Assumption 5 holds. To apply
Theorem 3, it is sufficient to verify the condition of Assumption 7 replacing Jλ(s, . )
with proxλf(s, . ). By Lemma 6.1 and using Π(s, x) ∈ Ds, the following holds µ-a.e.

‖proxλf(s, . )(x)−Π(s, x)‖ ≤ 2λ‖∂f0(s,Π(s, x))‖

≤ 2λC(s)(1 + ‖Π(s, x)‖p) .

Let x∗ be an arbitrary point in D. One has ‖Π(s, x)‖ ≤ ‖x∗‖ + ‖Π(s, x) − Π(s, x∗)‖
where we used the fact that x∗ = Π(s, x∗) for all s µ-a.e. By non-expansiveness of
Π(s, . ), ‖Π(s, x)‖ ≤ ‖x∗‖+‖x−x∗‖. Finally, there exists a constant α depending only
on p and x∗ such that ‖proxλf(s, . )(x)−Π(s, x)‖ ≤ λαC(s)(1+ ‖x‖p). The conclusion
follows from Theorem 3.

6.4. A constrained programming problem. In this section, we provide an
application example to the case of constrained convex minimization over an finite
intersection of closed convex sets.
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Let (X1, . . . , Xm) be a collection of non-empty closed convex subsets of H = R
d

where d ∈ N
∗. We consider the problem

(6.3) min F (x) w.r.t. x ∈ X where X =

m
⋂

i=1

Xi

where F (x) =
∫

f(s, x)dµ(s) for all x ∈ H. Consider a random sequence (In) on
{0, 1, . . . ,m} independent of (ξn), with distribution pi = P(In = i) for every i ∈
{0, 1, . . . ,m}. Consider the iterations

(6.4) xn+1 =

{

proxλnf(ξn+1, . )(xn) if In+1 = 0

projXIn+1
(xn) otherwise.

Let us briefly discuss the algorithm. At each time n, the iteration either consists in
applying the proximity operator of f(ξn+1, . ) or a projection. The choice is random,
the former being applied when the r.v. In+1 is zero, the latter being applied otherwise.
The value p0 represents the probability that the proximity operator of f(ξn+1, . ) is
applied. On the opposite, when In+1 > 0, a certain set is further picked at random,
and projection onto that set is applied.

Remark 1. Instead of applying either the proximity operator of f(ξn+1, . ) or a
projection, one could think of applying both successively, in the flavor of Passty’s al-
gorithm [31]. Although it is out of the scope of this paper, the corresponding algorithm
may be analyzed using similar principles.

Assumption 10.
(i) The sets X1, . . . , Xm are boundedly linearly regular in the sense of (5.2) and

X = ∩Xi is non-empty.
(ii) f : E × H → R is a normal convex integrand and f( . , x) is integrable for

each x ∈ H.
(iii) A solution to (6.3) exists and any solution x⋆ satisfies |∂f( . , x⋆)| ∈ L2(E,R, µ).
(iv) There exists p ∈ N

∗ and a solution x⋆
p such that |∂f( . , x⋆

p)| ∈ L2p(E,R, µ).
(v) There exists C ∈ L2(E,R+, µ) such that for any x ∈ H, ‖∂f0(s, x)‖ ≤

C(s)(1 + ‖x‖p) µ-a.e.
Theorem 7. Let Assumptions 2 and 10 hold. Consider the iterates (xn) given

by (6.4) with weighted averaged sequence (xn) where the random sequence (In) is is
defined above. Assume that pi > 0 for all i ∈ {0, 1, . . . ,m} and let λn/λn+1 → 1 as
n → ∞. Then, almost surely, (xn) converges in average to a solution to (6.3).

Proof. We introduce the random sequence ξ̃n = (ξn, In) on the set Ẽ = E ×
{0, 1, . . . ,m} equipped with the corresponding product σ-algebra. We denote by ν =
µ⊗(

∑m
i=0 piδi) the probability distribution of ξ̃n where δi stands for the Dirac measure

at i. For all s̃ = (s, i) in Ẽ and x ∈ H, define

f̃(s̃, x) = f(s, x)χ{0}(i) +

m
∑

j=1

ιXj
(x)χ{j}(i)

where χC is the characteristic function of a set C (equal to 1 on that set and zero
outside) and ιC is the indicator function of a set C (equal to 0 on that set and +∞
outside). We use the convention 0× (+∞) = 0. The iterations (6.4) also write

xn+1 = proxλn f̃(ξ̃n+1, . )
(xn) .
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The rest of the proof consists once again in checking the conditions of application of
Theorem 3, when E, ξ, A are respectively replaced by Ẽ, ξ̃, ∂f̃ .

Checking Assumptions 1, 3 and 4. We first make the following observations.
(i) f̃ is a normal convex integrand on Ẽ ×H → R.
(ii) As f( . , x) is integrable for any x, it follows that F =

∫

f( . , x) is proper, convex

and continuous. Since pi > 0 for all i, the integral functional F̃ (x) =
∫

f̃( . , x)dν is
equal to

F̃ (x) = p0 F (x) + ιX(x)

where X =
⋂m

i=1 Xi. As X is a non-empty closed convex set and dom(F ) = H, it

follows that F̃ is proper and lower semicontinuous.
(iii) Let NC(x) denotes the normal cone of a closed convex set C at point x. By the
same argument,

∂F̃ (x) = p0∂F (x) +NX(x) .

Moreover, for any s̃ = (s, i),

(6.5) ∂f̃(s̃, x) = ∂f(s, x)χ{0}(i) +

m
∑

j=1

NXj
(x)χ{j}(i)

and it follows that
∫

∂f̃( . , x)dν = p0

∫

∂f( . , x)dµ+

m
∑

i=1

NXi
(x) .

By Assumption 10(i), the sets X1, . . . , Xm are linearly regular. By [8, Theorem
3.6], this implies that

∑m
i=1 NXi

(x) = NX(x). Moreover, as F is everywhere finite,
∫

∂f( . , x)dµ = ∂F (x) by [34]. We conclude that for every x ∈ H,

(6.6)

∫

∂f̃( . , x)dν = ∂F̃ (x) .

(iv) The minimizers of F̃ are the solutions to (6.3) and vice-versa. In particular,
F̃ admits minimizers. Let us prove that each minimizer x⋆ belongs to Z∂f̃ (2). By

Fermat’s rule, 0 ∈ ∂F̃ (x⋆). Using successively (6.6) and (6.5), there exists φ ∈ S∂f (x
⋆)

and (u1, . . . , um) ∈ NX1
(x⋆) × · · · × NXm

(x⋆) such that 0 = p0
∫

φdµ +
∑m

i=1 piui.

Define for any (s, i) ∈ Ẽ, φ̃(s, i) = φ(s)χ{0}(i) +
∑m

j=1 uj χ{j}(i). Clearly, φ̃(s, i) ∈

∂f̃((s, i), x⋆) and
∫

φ̃dν = 0. By Assumption 10(iii),
∫

‖φ̃‖2dν < +∞. Therefore,
x⋆ ∈ Z∂f̃ (2).

We have checked that the four conditions in Assumption 8 are fulfilled when f
and F are respectively replaced by f̃ and F̃ . Now set A = ∂f̃ . Using the same
arguments as in the proof of Theorem 5, the operator A satisfies the conditions in
Assumptions 1, 3 and 4.

Assumption 2 being granted, it remains to check that A = ∂f̃ fulfills Assump-
tions 5, 6 and 7.

Checking Assumptions 5 and 6. By Equation (6.5), ∂f0(s, x)χ{0}(i) ∈ ∂f̃(s̃, x).

Therefore, ‖∂f̃0(s, x)‖ ≤ ‖∂f0(s, x)‖. By Assumption 10(v), the uniform integra-
bility condition in Assumption 5 is fulfilled. Using the linear regularity of the sets
X1, . . . , Xm, Assumption 6 is satisfied when substituting Ds with dom(∂f̃(s, . )).
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Checking Assumption 7. We finally check that A = ∂f̃ fulfills Assumption 7.
Let p ∈ N

∗ and x⋆
p be defined as in Assumption 10(iv). Following the exact same

line as above, one can construct φ̃ such that φ̃(s, i) ∈ ∂f̃((s, i), x⋆
p),

∫

φ̃dν = 0 and
∫

‖φ̃‖2pdν < +∞. Therefore Z∂f̃ (2p) 6= ∅. Denote by J̃λ(s̃, x) = proxλf̃(s̃, . )(x) and

Π̃(s, x) the projection of x onto the domain of ∂f̃(s̃, . ). For any s̃ = (s, i), one has
J̃λ(s̃, x)− Π̃(s̃, x) = 0 if i ≥ 1. When i = 0, J̃λ(s̃, x) = proxλf(s, . )(x) and Π̃(s̃, x) = x.

Thus, 1
λ‖J̃λ(s̃, x) − Π̃(s̃, x)‖ ≤ ‖∂f0(s, x)‖ which is no larger that C(s)(1 + ‖x‖). As

C is square-integrable, we conclude that the operator A = ∂f̃ fulfills Assumption 7.

By Theorem 3, the iterates (6.4) almost surely converge weakly in average to a
zero of ∂F̃ . As zeroes of ∂F̃ coincide with solutions to (6.3), the proof is complete.

7. Conclusion. In this paper, we introduced a stochastic proximal point al-
gorithm for random maximal monotone operators and proved the almost sure weak
ergodic convergence of the algorithm toward a zero of the Aumann expectation of the
latter random operators. The paper suggests that, by using the concept of random
monotone operators, it is possible to easily derive stochastic versions of different fixed
point algorithms and to prove their almost sure convergence. This idea can be ex-
tended to provide stochastic counterparts of other algorithms: the forward-backward
algorithm which involves both implicit and explicit calls of the operators [9], Passty’s
algorithm [31] or the Douglas-Rachford algorithm [23]. Other important questions
include the derivation of convergence rates. Although a complexity analysis of the
stochastic proximal point algorithm (1.1) seems out of reach in the general setting,
it would be important to address such an analysis in the special case of convex pro-
gramming (1.3). The paper [28] follows such an approach, in the case where the
convex function are used explicitely. An interesting perspective would be to extend
the method to the case to the stochastic proximal point algorithm. An alternative
is to investigate asymptotic convergence rates, as in [41]. Finally, the relaxation of
the i.i.d. assumption over the random monotone operators would be an important
problem in future works.
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