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HOMOGENISATION OF A ROW OF DISLOCATION DIPOLES

FROM DISCRETE DISLOCATION DYNAMICS∗

STEPHEN JONATHAN CHAPMAN†, YANG XIANG‡ , AND YICHAO ZHU‡

Abstract. Conventional discrete-to-continuum approaches have seen their limitation in de-
scribing the collective behaviour of the multi-polar configurations of dislocations, which are widely
observed in crystalline materials. The reason is that dislocation dipoles, which play an important
role in determining the mechanical properties of crystals, often get smeared out when traditional
homogenisation methods are applied. To address such difficulties, the collective behaviour of a row
of dislocation dipoles is studied by using matched asymptotic techniques. The discrete-to-continuum
transition is facilitated by introducing two field variables respectively describing the dislocation pair
density potential and the dislocation pair width. It is found that the dislocation pair width evolves
much faster than the pair density. Such hierarchy in evolution time scales enables us to describe
the dislocation dynamics at the coarse-grained level by an evolution equation for the slowly varying
variable (the pair density) coupled with an equilibrium equation for the fast varying variable (the
pair width). The time-scale separation method adopted here paves a way for properly incorporating
dipole-like (zero net Burgers vector but non-vanishing) dislocation structures, known as the statis-
tically stored dislocations (SSDs) into macroscopic models of crystal plasticity in three dimensions.
Moreover, the natural transition between different equilibrium patterns found here may also shed
light on understanding the emergence of the persistent slip bands (PSBs) in fatigue metals induced
by cyclic loads.
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1. Introduction. It is well known that the plastic deformation of crystalline
materials is carried by a large number of atomistic line defects, i.e. dislocations.
Hence macroscopic models of crystal plasticity can be established by formulating the
dynamics of many dislocations. As an idealised (but also practically useful) case, the
dynamics of straight and mutually-parallel dislocations have been intensively studied.
These translationally invariant dislocations can be treated as “poles” on one of the
planes perpendicular to all dislocation lines. These straight dislocations, like electrical
charges, have signs depending on their line directions with respect to the slip direction,
known as the Burgers vector. Abundant experimental evidence suggests that a good
understanding of the collective behaviour of many straight dislocations is important
for controlling the mechanical properties of crystals. One example is found inside a
single-crystalline fatigued copper specimen induced by cyclic loads [14]. Before the
saturation point is reached, the inner configuration of the copper specimen takes a
“channel-vein” structure as shown in Fig. 1(a). A vein consists of many almost straight
and closely spaced edge dislocations and the veins are separated by channels where
the dislocation density is relatively low. Beyond the saturation point, a characteristic
ladder-shape structure (known as persistent slip bands (PSBs)) forms as shown in
Fig. 1(b). The walls of the ladders also consist of straight edge dislocations. The
mechanism governing the transition from the channel-vein to PSB structures is still
unclear, and a study of the collective behaviour of edge dipoles can be of great help

∗This work was partly supported by EPSRC through grant EP/D048400/1, and by the Hong
Kong Research Grants Council through General Research Fund 606313.

†Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory
Quarter, Woodstock Road, Oxford, OX2 6GG, UK. (chapman@maths.ox.ac.uk).

‡Department of Mathematics, the Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, China. (maxiang@ust.hk and mayczhu@ust.hk).

1

http://arxiv.org/abs/1501.07331v10
mailto:chapman@maths.ox.ac.uk
mailto:maxiang@ust.hk
mailto:mayczhu@ust.hk


2 HOMOGENISATION OF A ROW OF DISLOCATION DIPOLES

(a) Channel-vein structure (b) PSB structure

Fig. 1. Dislocation patterns in the early stage of metal fatigue induced by cyclic loads.

to its understanding.

One way to reveal the role played by these straight dislocations during the forma-
tion of PSBs, is by using two-dimensional (2D) discrete dislocation dynamical (DDD)
models, where all dislocations are tracked individually (e.g. [3]). Nevertheless, it is
still difficult to get a clear idea of the mechanism that governs dislocation pattern for-
mation in crystals from DDD simulations. Hence there is still a need to investigate the
dynamics of dislocations at the continuum level, where materials substructures are de-
scribed by a dislocation density distribution. In principle, a dislocation-density-based
continuum model should be obtained through a rigorous averaging of its underlying
2D DDD model. However, existing discrete-to-continuum approaches struggle to up-
scale multi-polar configurations of straight dislocations. The reason is as follows. At
room temperature, dislocations (of edge type) are in general constrained in their own
slip planes. As a result, a positively defined edge dislocation and a nearby negatively
defined edge dislocation which is not on the same slip plane tend to lock each other by
forming a pair of dipole rather than to annihilate each other. Since the locking stress
between the two components of a dislocation dipole scales with the intra-dipolar spac-
ing r by 1/r, a relatively large externally applied stress is needed in order to mobilise
the constituent dislocations of a dipole. Hence the presence of dislocation dipoles
may effectively increase the strength of a crystal. When traditional homogenisation
methods are applied, however, dipoles, despite being crucial in determining the ma-
terial mechanical properties, average to zero and they play no role in the continuum
approximation. Owing to this, traditional homogenisation techniques are only appli-
cable when investigating the collective behaviour of many dislocations of the same
sign, i.e. the geometrically necessary dislocations (GNDs) (e.g. [7, 16, 18]). The
collective behaviour of an arbitrary multipolar configuration of dislocations is only
considered in a phenomenological or statistical manner [4, 8, 9]. There have also been
works where each dipole pair is treated as one object so that the traditional homogeni-
sation method can be applied [10]. As shown by our analysis, this only works for the
case where the slip plane spacing is much smaller than the inter-dipolar spacing.

Capturing dipole-like structures at the continuum level is also a bottom neck prob-
lem for establishing a three-dimensional (3D) dislocation-density-based continuum
theory of plasticity. The density distribution of GNDs in 3D space, where disloca-
tions can be curved, is represented by the Nye’s dislocation density tensor [15], which
only accommodates the gradient of (macroscopic) plastic strains. One missing part is
the role played by statistically stored dislocations (SSDs), whose physical dimensions
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are too small to be distinguished from a dislocation-free state in the Nye’s dislocation
density tensor. Similar as dislocation dipoles discussed above, some SSD structures
also play a role in determining the (macroscopic) plastic properties of crystals. During
the past two decades, many valuable works have been done in order to improve the
framework based on the Nye’s dislocation density tensor (e.g. [1, 2, 5, 6, 11, 13, 17]),
but the formulation of SSDs at the continuum level is either phenomenological or
statistical up to date. There are other dislocation configurations that are not prop-
erly included in the framework based on the Nye’s dislocation density tensor, such
as dislocation interactions with other types of crystalline defects (e.g. Frank-Read
sources, grain boundaries). Therefore, a pivotal question to be answered for estab-
lishing a solid dislocation-density-based theory of plasticity is, “how should SSDs as
well as other structures missing in the framework for GNDs be properly formulated
on a coarse-grained scale?” Part of this question has been answered through the
establishment of a continuum model of plasticity, where a set of dislocation density
potential functions (DDPFs) are employed to represent the dislocation substructures
on a single slip plane [19, 20, 24] and in three-dimensional space [25]. The micro-scale
mechanisms that are well incorporated into the continuum model characterised by
DDPFs are the dislocation line tension effect [19], the grain boundary structures [21]
and the operation of dislocation sources of the Frank-Read type [24]. The hints of
how to rigorously incorporate SSDs at the continuum level can be found from the
analysis presented in the current paper.

Motivated by these issues, the collective behaviour of a row of dislocation dipoles
is studied here. The discrete-to-continuum transition is facilitated by the introduction
of two field variables respectively describing the dislocation pair density potential and
the dislocation pair width. By using asymptotic analysis, we derive coupled evolu-
tion equations for these two field variables. Actually we show that the time scales
associated with the evolution of the two field variables are different. The dislocation
pair width, which moves in response to the resolved shear stress at leading order,
varies on a time scale much shorter than that associated with the dislocation pair
density, which moves in response to the “stress gradient” (coming from the resolved
shear stress at the next order). Hence if viewed on the slower scale, fast-varying
mechanisms take place so quickly that only their steady (or equilibrium) states need
to be taken into account. As a result, the collective behaviour of a row of disloca-
tion dipoles at the continuum level can be described by an evolution equation for the
slowly varying dislocation pair density coupled with an equilibrium equation for the
dislocation pair width. Such discrete-to-continuum approaches asymptotically sepa-
rating active processes according to their associated time scales may pave a way for
the incorporation of SSDs at the continuum level. Moreover, a transition between
two distinct dipolar patterns due to instability, which was originally discovered in
periodically distributed dipoles [23], is also seen here, and the transition may have
some role to play in understanding the formation of PSBs.

The paper is arranged as follows. The governing equations for the DDD model,
which we take as our reference model, are written down in §2. After the introduction
of the variables needed for the discrete-to-continuum transition in §3, we derive for the
asymptotic expressions of the resolved stress field in §4. Then the governing equations
for equilibrium states and the dynamics at the continuum level are presented in §5. In
§6, the equilibrium states at the continuum level are further analysed and a natural
transition between different equilibrium patterns is found. In §7, the accuracy and
efficiency of the derived continuum model are studied. The article concludes with
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further discussion in §8.

Fig. 2. The x-y plane is one of the planes perpendicular to all dislocation lines ,and b is
the Burgers vector. The numbers of positive and negative dislocations are identically N + 1. All
positively oriented dislocations are located on one slip plane, which degenerates to the x-axis here,
and all negatively oriented dislocations are put on another slip plane at a distance of s from the x-axis
(given by y = s). The n-th dislocation pair consists of the n-th positive and negative dislocations,
whose locations are set to be at (pn, 0) and (qn, s), respectively. The x-coordinate for the center of
the n-th pair is denoted by xn given by Eq. (3.1). Here the length of the domain of interest L equals
1 after non-dimensionalisation.

2. Dynamics at the level of discrete dislocations. Here we consider the
case of a single slip system associated with the Burgers vector denoted by b, and all
dislocations here are straight, mutually parallel and of edge type. The problem is thus
reduced to one of the planes that are orthogonal to all dislocation tangents. Here the
plane of interest is set to be the x-y plane as shown in Fig. 2. If we choose b = (b, 0)
with b > 0, each dislocation can thus be treated as a signed point in x-y plane. Here
we set a dislocation with its line direction pointing outward the paper plane (see [12]
for details) to be a “positive dislocation” and denoted by “⊥”. A dislocation with its
line direction pointing inward the paper plane is set to be a “negative dislocation”
and denoted by “⊤”.

The configuration we consider is shown in Fig. 2. There are N + 1 positive
dislocations lying on the slip plane characterised by the x-axis, while N + 1 negative
dislocations are put on another slip plane at a distance of s from the x-axis. The n-th
dislocation pair is set to consist of the n-th positive and negative dislocations, which
are located at (pn, 0) and (qn, s), respectively.

Concerning dislocation motion, we employ a dislocation mobility law, which only
allows dislocations (of edge types) to glide within their slip plane at a speed propor-
tional to their on-site resolved shear stress. Under this rule, the motion of the n-th
positive dislocation is governed by

(2.1) v+n =
dpn
dt

= mgb(τint(pn, 0) + τext(pn, 0)),

where v+n denotes the speed of the n-th positive dislocation along x-direction; τint(x, y)
is the internal resolved shear stress field at (x, y) resulting from the dislocation-
dislocation interactions; τext(x, y) denotes the externally applied resolved shear stress
at (x, y); mg is the dislocation glide coefficient; b = |b|.

To facilitate further analysis, we consider the problem in a non-dimensional sense,
that is, all spatial variables are scaled with L; all stress components are scaled with
µNb/(2π(1− ν)L) and time t is scaled with 2π(1 − ν)L2/(µmgNb2), where µ and ν
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are the shear modulus and Poisson’s ratio, respectively. Hence the non-dimensional
version of Eq. (2.1) becomes

(2.2)
dpn
dt

= τint(pn, 0) + τext(pn, 0) = τtot(pn, 0),

where τtot denotes the (non-dimensional) total resolved shear stress field. Similarly,
the (non-dimensional) gliding speed of the n-th negative dislocation is governed by

(2.3)
dqn
dt

= −τint(qn, s)− τext(qn, s) = −τtot(qn, s).

A comparison between Eqs. (2.2) and (2.3) suggests that a positive and a negative
dislocation move in opposite directions under the same resolved shear stress field.

The (non-dimensional) internal resolved shear stress field τint is calculated by the
superposition of the resolved shear stresses due to all individual dislocations [12]:

(2.4) τint(pn, 0) =
1

N

N
∑

j=0
j 6=n

1

pn − pj
− 1

N

N
∑

j=0

(pn − qj)((pn − qj)
2 − s2)

((pn − qj)2 + s2)2

and

(2.5) τint(qn, s) =
1

N

N
∑

j=0

(qn − pj)((qn − pj)
2 − s2)

((qn − pj)2 + s2)2
− 1

N

N
∑

j=0
j 6=n

1

qn − qj
.

The dynamics at the level of discrete dislocations is thus given by Eqs. (2.2) - (2.5),
which form a closed system of ordinary differential equations for the 2(N+1) unknowns
{pn}Nn=0 and {qn}Nn=0.

3. Preparation for discrete-to-continuum transition. Usually the number
of dislocations in crystals is very large. Hence it is sensible to consider the collective
behaviour of the system governed by Eqs. (2.2) - (2.5). Mathematically, this can be
achieved by examining the asymptotic behaviour of the system as N → ∞. The
expected outcomes are the evolution equations of some continuously defined variables
that characterise the dislocation substructures. In this section, we will introduce the
field variables needed for the discrete-to-continuum transition.

Given a large N , the length scale associated with the discrete dislocation dy-
namical model given by Eqs. (2.2) to (2.5) is the spacing of neighbouring discrete
dislocations, i.e. O(1/N), so that individual dislocations can be observed. We now
want to describe the same dynamical relation by a model associated with an O(1)
length scale, where a continuous dislocation density distribution is considered rather
than isolated dislocations.

To facilitate such a transition, we first define xn to be the x coordinate for the
center of the n-th dislocation pair as shown in Fig 2

(3.1) xn =
pn + qn

2
.

Then we introduce a continuous function of (non-dimensional) time and space denoted
by ζ(t, x), such that

(3.2)
ζ(t, xn)

N
= qn − pn.
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Here ζ(t, x) is a field variable defined for x ∈ [0, 1], and its value at xn measures
the width of n-th dislocation pair scaled by N . Since the spacings of neighbouring
dislocations are O(1/N), ζ(t, x) ∼ O(1) as N → ∞. At the continuum level, ζ is
employed to characterise the local pattern of dislocation dipoles.

Throughout the paper, a subscript n or j affiliated with a field variable such as ζ
indicates that the field is evaluated at x = xn or at x = xj , respectively; for example,
ζn = ζ(t, xn). Here we consider the case where ζ ∈ [0, 1/2], and the properties for
ζ ∈ (−1/2, 0) can be studied likewise.

From Eqs. (3.1) and (3.2), pn and qn can be expressed in terms of xn and ζn
respectively by

(3.3) pn = xn − ζn
2N

, qn = xn +
ζn
2N

.

We now introduce another field variable, the dislocation pair density potential
φ(t, x), such that

(3.4) φn = φ(t, xn) =
n

N
;

this definition is by direct analogy with the dislocation density potential functions
defined in [19] or [25]. It can be shown by following the same argument presented
in [19] that the density distribution of the dislocation pairs denoted by ρ can be
calculated by ρ = ∂φ/∂x. Throughout this paper, the inputs (t, x) for φ and ζ are
omitted if no ambiguities are caused. Moveover, a dash is added to a variable to
denote its derivative with respect to x, for example ρ = φ′.

Here we only consider the case when s, the (non-dimensional) spacing between
the two slip planes, is O(1/N), as N → ∞. This implies that s can be rescaled by

(3.5) s =
S

N
,

where S ∼ O(1). When s ∼ O(1), the interaction between dislocations from different
slip planes become long-range, and the configurations can be studied by applying
conventional homogenisation approaches.

At the continuum level, the dislocation substructures are expected to be described
by the two field variables φ and ζ and the goal now is to look for their governing
equations by taking the asymptotic limit N → ∞ of Eqs. (2.2) - (2.5).

4. Asymptotic behaviour of the resolved shear stress field. To accom-
plish the discrete-to-continuum transition we use the following procedure. Given a
quantity defined in a discrete sense, we first asymptotically express the values at
(pn, 0) and (qn, s) by functions of xn, for any integer n ∈ [0, N ]. In this way the equa-
tions at the discrete level can be transformed into asymptotic equations for φ and ζ,
which only hold at every xn. Then by using the fact that xn is densely distributed
throughout the whole domain, we replace xn by x to turn the obtained equations to
corresponding integro-differential equations of φ and ζ, which hold for all x.

Following this strategy, we start by considering the asymptotic behaviour of the
internal resolved shear stress τint(pn, 0) and τint(qn, s), given by Eq. (2.4) and (2.5),
respectively as N → ∞. First, an interval Ωn

in is introduced to the n-th dislocation
pair, such that the x-coordinates of the centers of its 2K neighbouring pairs fall inside
Ωn

in as shown in Fig. 3. The number K here satisfies 1 ≪ K ≪ N . Throughout this
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Fig. 3. Given the n-th dislocation pair, the x-coordinates of the centers of its 2K neighbouring
pairs fall inside an interval, defined to be the inner region Ωn

in, whose size is O(K/N). Mathemat-
ically, this interval is given by Eq. (4.1). The outer region is defined to be the interval into which
the x-coordinates of the centers of all other dislocation pairs fall. Mathematically, it is given by
Eq. (4.2).

paper, Ωn
in defined in this way is termed as the “inner region”. Mathematically, Ωn

in

is represented by

(4.1) Ωn
in =

{

x

∣

∣

∣

∣

∣

∣

∣
φ(t, x) − n

N

∣

∣

∣
≤ K

N

}

.

It can be seen that the length of Ωn
in is O(K/N). Similarly we define the “outer

region” by

(4.2) Ωn
out =

{

x

∣

∣

∣

∣

∣

∣

∣
φ(t, x)− n

N

∣

∣

∣
>

K

N

}

,

which contains the x-coordinate of the centers of all other dislocation pairs. Then we
estimate τint(pn, 0) in Eq. (2.4) by decomposing it into two parts

(4.3) τint(pn, 0) = τ inint(pn, 0) + τoutint (pn, 0),

where τ inint(pn, 0) denotes the resolved shear stress due to all dislocations associated
with the inner region Ωn

in:

(4.4) τ inint(pn, 0) =
1

N

n+K
∑

j=n−K
j 6=n

1

pn − pj
− 1

N

n+K
∑

j=n−K

(pn − qj)((pn − qj)
2 − s2)

((pn − qj)2 + s2)2

and τoutint (pn, 0) denotes the resolved shear stress due to all dislocations associated with
Ωn

out:

(4.5) τoutint (pn, 0) =
1

N

∑

0≤j<n−K
n+K<j≤N

(

1

pn − pj
− (pn − qj)((pn − qj)

2 − s2)

((pn − qj)2 + s2)2

)

.

It is worth noting that the decomposition suggested by Eq. (4.3) only holds for dislo-
cation pairs that are not too close to the boundaries, i.e. K < n < N −K.

We will perform an inner and an outer region approximation to calculate the
asymptotic limit of τ inint(pn, 0) and τoutint (pn, 0) respectively, as N → ∞. Then we put
the results together to get an approximation to τint(pn, 0). The asymptotic behaviour
of τint(qn, 0) as N → ∞ will be studied likewise.
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4.1. Inner region approximation. In order to get an asymptotic expression
for τ inint(pn, 0) as N → ∞, we first look for the expansion of each term in the summa-
tion appearing in Eq. (4.4). Given a dislocation associated with the inner region, the
distance from its x-coordinate (for example, pj or qj), to xn, the x-coordinate of the
center of n-th dislocation pair is small compared to the length of the computational
domain (which equals to 1 after non-dimensionalisation). Hence we use Taylor ex-
pansion to asymptotically express pj and qj in terms of xn. This is accomplished in
two steps: first we relate pj and qj to xj and then we relate xj to xn. The first step
has been achieved by Eq. (3.3). For the second step, we re-write Eq. (3.4) by

(4.6) φ(t, xj) =
j

N
=

n

N
+

j − n

N
= φ(t, xn) +

j − n

N
.

Applying φ−1 to both sides of Eq. (4.6), noting that φ−1(j/N) = xj , gives

(4.7) xj = φ−1

(

φ(t, xn) +
j − n

N

)

.

Since | j−n
N

| ≤ K
N

≪ 1 for all xj ∈ Ωn
in, we expand Eq. (4.7) in terms of j−n

N
to obtain

(4.8)

xj ∼ xn +
j − n

N
· 1

φ′
n

− (j − n)2

N2
· φ′′

n

2(φ′
n)

3
+

(j − n)3

N3
· (3(φ

′′
n)

2 − φ′
nφ

′′′
n )

6(φ′
n)

5
+O

(

K4

N4

)

.

Recall that an index n on φ or ζ denotes that the evaluation is made at xn. Using
Eq. (4.8), we Taylor expand ζj about xn to give

(4.9) ζj = ζ(t, xj) ∼ ζn +
1

N
· (j − n)ζ′n

φ′
n

+
1

N2
· (j − n)2(ζ′′nφ

′
n − φ′′

nζ
′
n)

2(φ′
n)

3
+O

(

K3

N3

)

.

Combining Eqs. (3.3), (4.8) and (4.9), we asymptotically express pj near xn by
(4.10)

pj ∼ xn +
1

N
·
(

j − n

φ′
n

− ζn
2

)

− 1

2N2
·
(

(j − n)ζ′n
φ′
n

+
(j − n)2φ′′

n

(φ′
n)

3

)

+
(j − n)2

N3
·
(

ζ′nφ
′′
n

4(φ′
n)

3
+

(j − n)(φ′′
n)

2

2(φ′
n)

5
− ζ′′n

4(φ′
n)

2
− (j − n)φ′′′

n

6(φ′
n)

4

)

+O
(

K4

N4

)

.

Similarly we find
(4.11)

qj ∼ xn +
1

N
·
(

j − n

φ′
n

+
ζn
2

)

+
1

2N2
·
(

(j − n)ζ′n
φ′
n

− (j − n)2φ′′
n

(φ′
n)

3

)

− (j − n)2

N3
·
(

ζ′nφ
′′
n

4(φ′
n)

3
− (j − n)(φ′′

n)
2

2(φ′
n)

5
− ζ′′n

4(φ′
n)

2
+

(j − n)φ′′′
n

6(φ′
n)

4

)

+O
(

K4

N4

)

.

Then incorporating Eqs. (4.10) and (4.11) into (4.4), we obtain the expansion of
τ inint(pn, 0) as

(4.12)

τ inint(pn, 0) ∼ (πφ′
n) ·G0(2πζnφ

′
n, 2πSφ

′
n) +

2ζnφ
′
n

K
− ζnφ

′
n

K2

− φ′′
n

Nφ′
n

·G11(2πζnφ
′
n, 2πSφ

′
n)−

(ζnφ
′
n)

′

N
·G12(2πζnφ

′
n, 2πSφ

′
n)

− φ′
nζ

′
n

N
·G13(2πζnφ

′
n, 2πSφ

′
n) + o

(

1

N

)

,
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where

(4.13) G0(α, β) =
sinα

coshβ − cosα
− β sinα sinhβ

(cosα− coshβ)2
,

(4.14)

G11(α, β) = −1

2
− α sinα+ 2β sinhβ

2(cosα− coshβ)
+

5β2(1 − cosα coshβ)

4(cosα− coshβ)2
− 3αβ sinα sinhβ

2(cosα− coshβ)2

+
β3 sinhβ(1− cosα coshβ + sin2 α)

4(cosα− coshβ)3
+

αβ2 sinα(1 − cosα coshβ − sinh2 β)

2(cosα− coshβ)3
,

(4.15) G12(α, β) = −πα(1 − cosα coshβ)

2(cosα− coshβ)2
− παβ sinhβ(1 − cosα coshβ + sin2 α)

2(cosα− coshβ)3
.

and
(4.16)
G13(α, β) =

− π sinα

2

(

1

cosα− coshβ
+

3β sinhβ

(cosα− coshβ)2
− β2(1− cosα coshβ − sinh2 β)

(cosα− coshβ)3

)

.

The detailed derivation of Eq. (4.12) is given in the supplementary materials. We will
find that the internal resolved shear stress components accounting for the pair density
evolution arise at O(1/N). Thus, unless specified, the expansions to all resolved shear
stresses will be truncated at o(1/N). To ensure this accuracy, we further choose
K ∼

√
N .

4.2. Outer region approximation. For xj belonging to the outer region, the
expansion given by Eq. (4.8) no longer holds since (j − n)/N can grow as large as
O(1). However, according to Eq. (4.2), we have

(4.17)
K

N
< |φ(xn)− φ(xj)| = φ′(c0)|xn − xj |,

where c0 takes some value between xj and xn. Eq. (4.17) suggests that

(4.18) |xj − xn| ≫ 1/N,

for all xj ∈ Ωn
out. Eq. (4.18) implies that the distance between xn and the centre

of a dislocation pair associated with Ωn
out is much larger than the spacing between

neighbouring dislocation pairs. We obtain the expansion of the resolved shear stress
at (pn, 0) due to the j-th pair in two steps: first, we relate pj and qj to xj , and relate
pn and qn to xn by using Eq. (3.3); then we expand as N → ∞ using Eq. (4.18).

Following these two steps, we asymptotically expand the resolved shear stress at
(pn, 0) due to the j-th pair, i.e. the j-th term in the summation of Eq. (4.5), by

(4.19)

1

N
·
(

1

pn − pj
− (pn − qj)((pn − qj)

2 − (S/N)2)

((pn − qj)2 + (S/N)2)2

)

∼ − 1

N2
· ζj
(xn − xj)2

+
1

N3
· ζnζj − 3S2

(xn − xj)3
+

1

N4
· 3ζj(6S

2 − ζ2n) + 18S2ζn − ζj
4(xj − xn)4

+O
(

1

K5

)

.
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We see from Eq. (4.19) that the leading-order effect of the stress at (pn, 0) due to
the positive dislocation at (pj , 0) cancels with that due to its pair partner located at
(qn, s).

It is worth noting that, when the truncation is made, 1/|xj − xn| can be as
large as O(N/K). Besides, the summation made for outer region approximation
involves almost N terms. Therefore, to ensure an accuracy of o(1/N) for a resolved
stress component, the truncation made at each term in the summation should be at
o(1/N2). This is the reason that a truncation at O(1/K5) is made in Eq. (4.19), given
K ∼

√
N .

Incorporating Eq. (4.19) into (4.5) gives the expansion of τoutint (pn, 0):

(4.20)

τoutint (pn, 0) ∼ − 1

N2
·

∑

0≤j<n−K
n+K<j≤N

ζj
(xn − xj)2

+
1

N3
·

∑

0≤j<n−K
n+K<j≤N

ζnζj − 3S2

(xn − xj)3

+
1

N4
·

∑

0≤j<n−K
n+K<j≤N

3ζj(6S
2 − ζ2n) + 18S2ζn − ζj
4(xj − xn)4

+O
(

N

K5

)

To evaluate the summations appearing in Eq. (4.20), we make use of the Euler-
Maclaurin formula. The details are in the supplementary materials, and the result is

(4.21)

τoutint (pn, 0) ∼ − 2

K
· (ζnφ′

n) +
1

K2
· ζnφ′

n +
1

N
·
(

φ′
0ζ0

xn − x0
− φ′

NζN
xn − xN

)

+
1

N
−
∫ xN

x0

(φ′(a)ζ(a))′da

xn − a
+ o

(

1

N

)

,

where the integral is evaluated in the sense of principal value.

4.3. Total resolved shear stress. Now we put the results from the inner ex-
pansion by Eq. (4.12) and from the outer expansion by (4.21) together to obtain the
expansion of τint(pn, 0) as
(4.22)

τint(pn, 0) ∼ (πφ′
n) ·G0(2πφ

′
nζn, 2πSφ

′
n) +

1

N
·
(

φ′
0ζ0

xn − x0
− φ′

N ζN
xn − xN

)

+
1

N
−
∫ xN

x0

(φ′(a)ζ(a))′da

xn − a
− φ′′

n

Nφ′
n

·G11(2πφ
′
nζn, 2πSφ

′
n)

− (φ′
nζn)

′

N
·G12(2πφ

′
nζn, 2πSφ

′
n)−

φ′
nζ

′
n

N
·G13(2πφ

′
nζn, 2πSφ

′
n) + o

(

1

N

)

.

It is worth noting that the O(1/K) and O(1/K2) terms from the inner expansion
cancel with their counterparts from the outer expansion. As a result, no trace of the
intermediate parameter K is seen in Eq. (4.22).

The external stress τext at (pn, 0) can also be expanded near (xn, 0)

(4.23) τext(pn, 0) ∼ τ0ext(xn)−
ζn
2N

· ∂τ
0
ext(xn)

∂x
+O

(

1

N2

)

,

where for ease of notation we have written τ0ext(x) = τext(x, 0) and ∂τ0ext(x)/∂x =
∂τext(x, 0)/∂x. Similarly,

(4.24) τext(qn, s) ∼ τ0ext(xn) +
1

N

(

ζn
2

· ∂τ
0
ext(xn)

∂x
+ S · ∂τ

0
ext(xn)

∂y

)

+O
(

1

N2

)

,
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where ∂τ0ext(x)/∂y = ∂τext(x, 0)/∂y. Here ∂τ0ext/∂x and ∂τ0ext/∂y are the stress gra-
dients, which capture the difference in the externally applied stress field evaluated at
each component of a dipole pair.

Thus the (non-dimensional) total resolved shear stress at (pn, 0) is given by

(4.25)

τtot(pn, 0) ∼ (πφ′
n) ·G0(2πφ

′
nζn, 2πSφ

′
n) + τ0ext(xn)

+
1

N
·
(

φ′
0ζ0

xn − x0
− φ′

NζN
xn − xN

)

+
1

N
−
∫ xN

x0

(φ′(a)ζ(a))′da

xn − a

− φ′′
n

Nφ′
n

·G11(2πφ
′
nζn, 2πSφ

′
n)−

(φ′
nζn)

′

N
·G12(2πφ

′
nζn, 2πSφ

′
n)

− φ′
nζ

′
n

N
·G13(2πφ

′
nζn, 2πSφ

′
n)−

ζn
2N

∂τ0ext(xn)

∂x
+ o

(

1

N

)

,

where we recall that G0, G11, G12 and G13 are defined by Eqs. (4.13) - (4.16). Simi-
larly,
(4.26)

τtot(qn, s) ∼ (πφ′
n) ·G0(2πφ

′
nζn, 2πSφ

′
n) + τ0ext(xn)

+
1

N
·
(

φ′
0ζ0

xn − x0
− φ′

NζN
xn − xN

)

+
1

N
−
∫ xN

x0

(φ′(a)ζ(a))′da

xn − a

+
φ′′
n

Nφ′
n

·G11(2πφ
′
nζn, 2πSφ

′
n) +

(φ′
nζn)

′

N
·G12(2πφ

′
nζn, 2πSφ

′
n)

+
φ′
nζ

′
n

N
·G13(2πφ

′
nζn, 2πSφ

′
n) +

ζn
2N

· ∂τ
0
ext(xn)

∂x
+

S

N
· ∂τ

0
ext(xn)

∂y
+ o

(

1

N

)

.

5. Dislocation dynamical model at the continuum level. In this section,
we derive the governing equations for the two field variables φ and ζ at the continuum
level. We first consider the continuous description for the equilibrium states, where
the total resolved shear stress at each dislocation vanishes.

5.1. Governing equations for the equilibrium states. When all dipoles are
in equilibrium, the total resolved shear stress τtot(pn, 0) and τtot(qn, s) should be zero
for all n according to the laws of motion (2.2) and (2.3). It is worth noting that since
the resulting equations are established in an asymptotic sense, we also need to expand
φ and ζ as

(5.1) φ(t, x) ∼ φ(0)(t, x) +
φ(1)(t, x)

N
+ · · · .

and

(5.2) ζ(t, x) ∼ ζ(0)(t, x) +
ζ(1)(t, x)

N
+ · · · ,

respectively. Substituting the above expansions into Eqs. (4.25) and (4.26) gives

(5.3)

τtot(pn, 0) ∼
(

π(φ(0)
n )′

)

·G0(2π(φ
(0)
n )′ζ(0)n , 2πS(φ(0)

n )′) + τ0ext(xn)

+
1

N
·
(

τna − τnb − ζ
(0)
n

2
· ∂τ

0
ext(xn)

∂x

)

+ o

(

1

N

)
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and

(5.4)

τtot(qn, s) ∼
(

π(φ(0)
n )′

)

·G0(2π(φ
(0)
n )′ζ(0)n , 2πS(φ(0)

n )′) + τ0ext(xn)

+
1

N
·
(

τna + τnb +
ζ
(0)
n

2
· ∂τ

0
ext(xn)

∂x
+ S · ∂τ

0
ext(xn)

∂x

)

+ o

(

1

N

)

,

respectively, where
(5.5)

τna =
(φ

(0)
0 )′ζ

(0)
0

xn − x0
− (φ

(0)
N )′ζ

(0)
N

xn − xN

+−
∫ xN

x0

(φ′(a)ζ(a)(0))′dt

xn − t

+ ζ(1)n

∂G0(2π(φ
(0)
n )′ζ

(0)
n , 2πS(φ

(0)
n )′)

∂ζ
(0)
n

+ (φ(1)
n )′

∂G0(2π(φ
(0)
n )′ζ

(0)
n , 2πS(φ

(0)
n )′)

∂(φ
(0)
n )′

,

(5.6)

τnb =
(φ

(0)
n )′′

(φ
(0)
n )′

·G11(2π(φ
(0)
n )′ζ(0)n , 2πS(φ(0)

n )′)

+ ((φ(0)
n )′ζ(0)n )′ ·G12(2π(φ

(0)
n )′ζ(0)n , 2πS(φ(0)

n )′)

+ (φ(0)
n )′(ζ(0)n )′ ·G13(2π(φ

(0)
n )′ζ(0)n , 2πS(φ(0)

n )′).

Now letting the right hand side of Eqs. (5.3) and (5.4) vanish and equating coef-
ficients of the same powers of N , we obtain at leading order,

(5.7) π(φ(0)
n )′ ·G0(2π(φ

(0)
n )′ζ(0)n , 2πS(φ(0)

n )′) + τ0ext(xn) = 0.

There are N + 1 equations for the 2(N + 1) unknowns {φ(0)
n }Nn=0 and {ζ(0)n }Nn=0.

To close the system, we need to proceed to higher order in the expansion. At
O(1/N), we find

(5.8) τna − τnb − ζ
(0)
n

2
· ∂τ

0
ext(xn)

∂x
= 0

and

(5.9) τna + τnb +
ζ
(0)
n

2
· ∂τ

0
ext(xn)

∂x
+ S · ∂τ

0
ext(xn)

∂x
= 0.

Now there are 4(N +1) unknowns {φ(0)
n }Nn=0, {φ

(1)
n }Nn=0, {ζ

(0)
n }Nn=0 and {ζ(1)n }Nn=0 and

3(N + 1) equations. However, we subtract Eq. (5.8) from (5.9) to eliminate ζ
(1)
n and

φ
(1)
n , both of which only appear in τna , to give

(5.10) 2τnb + ζ(0)n · ∂τ
0
ext(xn)

∂x
+ S · ∂τ

0
ext(xn)

∂y
= 0.

Eqs. (5.7) and (5.10) form a system consisting of 2(N + 1) equations for 2(N +

1) unknowns ({φ(0)
n }Nn=0 and {ζ(0)n }Nn=0). Henceforth we drop the superscript “(0)”,

because only the leading-order effects are taken into account.
Since xn is densely distributed in the domain, we rewrite our equations valid at

every xn as equations valid for all x. Therefore, we drop the index n and re-write
Eqs. (5.7) and (5.10) as

(5.11a)
πφ′ sin(2πφ′ζ)

cosh(2πSφ′)− cos(2πφ′ζ)
·
(

1− 2πSφ′ sinh(2πSφ′)

cosh(2πSφ′)− cos(2πφ′ζ)

)

+ τ0ext = 0
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(5.11b)

0 =
2φ′′

φ′
·G11(2πφ

′ζ, 2πSφ′) + 2(φ′ζ)′ ·G12(2πφ
′ζ, 2πSφ′)

+ 2(φ′ζ′) ·G13(2πφ
′ζ, 2πSφ′) + ζ

∂τ0ext
∂x

+ S
∂τ0ext
∂y

,

respectively, where we recall that G11, G12 and G13 are defined by Eqs. (4.14) -
(4.16). Eqs. (5.11a) and (5.11b) are the two equations for the two field variables φ
and ζ derived at the continuum level when the row of dipoles rest in their equilibrium
states. It is worth noting that Eq. (5.11a) comes from the leading-order force balance
and Eq. (5.11b) comes from the difference in the force balance equations obtained at
the next order.

5.2. Governing equations for the dynamics. Now we consider reformulating
the discrete dislocation dynamics governed by Eqs. (2.2) to (2.5) at the continuum
level by looking for evolution equations for φ and ζ.

We know by definition that φ(t, xn(t)) = n/N at any time t. Taking the derivative
with respect to t on both sides gives

(5.12)
∂φn

∂t
+

dxn

dt
· ∂φn

∂x
= 0.

According to the definition of xn given by Eq. (3.1), we have

(5.13)
dxn

dt
=

τtot(pn, 0)− τtot(qn, s)

2

where the laws of motion (2.2) and (2.3) are employed. With the asymptotic expan-
sions for τtot(pn, 0) and τtot(qn, s) given by Eqs (4.25) and (4.26), respectively, we
incorporate Eq. (5.13) into (5.12) to get
(5.14)
∂φn

∂t
− 1

N

(

φ′′
n

φ′
n

G11(2πφ
′
nζn, 2πSφ

′
n) + (φ′

nζn)
′G12(2πφ

′
nζn, 2πSφ

′
n)

)

∂φn

∂x

− 1

N

(

(φ′
nζ

′
n)G13(2πφ

′
nζn, 2πSφ

′
n) +

ζ

2

∂τ0ext(xn)

∂x
+

S

2

∂τ0ext(xn)

∂y

)

∂φn

∂x
∼ o

(

1

N

)

.

Again we drop the subscript n to rewrite Eq. (5.14) as a differential equation valid
for all x by

(5.15)
∂φ

∂t
− 1

N

(

τb +
ζ

2
· ∂τ

0
ext

∂x
+

S

2
· ∂τ

0
ext

∂y

)

· ∂φ
∂x

∼ o

(

1

N

)

,

where

(5.16) τb =
φ′′

φ′
G11(2πφ

′ζ, 2πSφ′)+(φ′ζ)′G12(2πφ
′ζ, 2πSφ′)+φ′ζ′G13(2πφ

′ζ, 2πSφ′).

Eq. (5.15) can be considered as the evolution equation for φ.
It can be seen from Eq. (5.15) that the evolution speed of φ is as small as O(1/N).

This suggests that the natural time scale associated with the evolution of φ, the
dislocation pair density potential, is characterised by a slow-varying temporal variable
given by ts = Nt. Eq. (5.15) then gives at leading order

(5.17)
∂φ

∂ts
−
(

τb +
ζ

2
· ∂τ

0
ext

∂x
+

S

2
· ∂τ

0
ext

∂y

)

· ∂φ
∂x

= 0.
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On the other hand, according to the definition of ζ by Eq. (3.2), we have

(5.18)
∂ζn
∂t

+
dxn

dt
· ∂ζn
∂x

=
dζn(t, x(t))

dt
= N ·

(

dqn
dt

− dpn
dt

)

.

Combining Eqs. (2.2), (2.3), (4.25), (4.26), (5.13) and (5.18) then dropping the sub-
script n, we find
(5.19)
∂ζ

∂t
∼ 2Nπφ′ sin(2πφ′ζ)

cosh(2πSφ′)− cos(2πφ′ζ)

(

2πSφ′ sinh(2πSφ′)

cosh(2πSφ′)− cos(2πφ′ζ)
− 1

)

− 2Nτ0ext +O(1).

It is seen from Eq. (5.19) that ζ evolves as fast as O(N). This means ζ should be
studied at a fast temporal scale characterised by tf = t/N . Then the leading-order
equation for ζ is

(5.20)
∂ζ

∂tf
= − 2πφ′ sin(2πφ′ζ)

cosh(2πSφ′)− cos(2πφ′ζ)
·
(

1− 2πSφ′ sinh(2πSφ′)

cosh(2πSφ′)− cos(2πφ′ζ)

)

−2τ0ext.

A comparison between Eqs. (5.17) and (5.20) shows that the evolution of ζ is much
faster than that of φ. Hence ζ can be considered varying quasi-statically on the time
scale characterised by ts, on which φ naturally evolves, provided stable equilibria
exist for Eq. (5.20). In fact, Eq. (5.20) can be written by ∂ζ

∂tf
= −∂F

∂ζ
, where F is the

generalised free energy density with respect to ζ, given by

(5.21) F = log (cosh(2πSφ′)− cos(2πζφ′)) +
2πφ′S sinh(2πSφ′)

cosh(2πSφ′)− cos(2πζφ′)
+ 2ζτ0ext.

Since φ′ is assumed static on the fast scale, the stable equilibria of Eq. (5.20) are
identified wherever F attains its local minimum with respect to ζ. It will be shown
numerically later that given φ′ and S, stable equilibria exist for Eq. (5.20) when |τ0ext|
falls below some critical value.

Therefore, the dynamics of a row of dislocation dipoles at the continuum level
can be described by the following coupled equations:

(5.22a)
πφ′ sin(2πφ′ζ)

cosh(2πSφ′)− cos(2πφ′ζ)
·
(

1− 2πSφ′ sinh(2πSφ′)

cosh(2πSφ′)− cos(2πφ′ζ)

)

+ τ0ext = 0,

(5.22b)
∂φ

∂ts
−
(

τb +
ζ

2
· ∂τ

0
ext

∂x
+

S

2
· ∂τ

0
ext

∂y

)

· ∂φ
∂x

= 0,

where τb was defined by Eq. (5.16), provided the stable equilibria of Eq. (5.22a) exist.
Noted that Eq. (5.22a) is effectively the leading order force balance equation (5.11a).

6. Equilibria at the continuum level. In this section, we will analyse the
equilibrium states at the continuum level determined by Eqs. (5.11a) and (5.11b). We
will begin with the case where the externally applied stress vanishes on y = 0. In this
case, two types of possibly stable configurations are found as a result of the leading-
order force balance equation and a natural transition between different equilibrium
patterns due to instability is seen. At the next order, the detailed equations for φ and
ζ corresponding to various equilibrium states will be derived. The analytical results
will then be validated through comparison with the numerical solutions to the same
problem by using the DDD model. In the end of this section, we will analyse the
equilibrium under arbitrary externally-applied stresses.



S. J. CHAPMAN, Y. XIANG, AND Y. C. ZHU 15

6.1. Equilibria under an external stress field which vanishes on y = 0.
We now analyse Eq. (5.11a) and (5.11b) by starting with a simple case where the
externally applied resolved shear stress vanishes on y = 0, i.e. τ0ext = 0. Note that
the stress gradient ∂τ0ext/∂y need not vanish.

6.1.1. Implication from the leading-order force balance equation. When
τ0ext = 0, the leading-order force balance equation (5.11a) becomes

(6.1)
sin(2πφ′ζ)

cosh(2πSφ′)− cos(2πφ′ζ)
·
(

1− 2πSφ′ sinh(2πSφ′)

cosh(2πSφ′)− cos(2πφ′ζ)

)

= 0.

Eq. (6.1) can be regarded as an implicit relation between the two quantities φ′ζ and
φ′S. In fact, these two quantities are physically meaningful. Since the pair density φ′

can be approximated by the reciprocal of the spacing between two neighbouring pair
centers scaled by N , and S is the slip plane gap rescaled by N , φ′S captures the ratio
of slip plane gap to the inter-spacing of neighbouring pairs. Also since ζ/N measures
the pair width at x according to Eq. (3.2), φ′ζ measures the ratio of the pair width
to the spacing of neighbouring pairs.

From Eq. (6.1), there are three possible choices for ζ as a function of φ′ and other
parameters.

• Equilibrium Type I when ζ = 0. The dislocation substructure is shown
in Fig. 4(a). Within each dislocation pair, the positive and the negative
dislocations are vertically aligned.

• Equilibrium Type II when φ′ζ = 1/2. The dislocation substructure is shown
in Fig. 4(b). Since φ′ζ represents the ratio of pair width to pair center spacing,
φ′ζ = 1/2 suggests that every negative dislocation lies roughly in the middle
of its two neighbouring positive dislocations. We term the equilibrium of this
type as a “non-localised” structure, because each dislocation is “shared” by
its two neighbours.

• Equilibrium Type III when

(6.2) ζ =
1

2πφ′
cos−1 (cosh(2πSφ′)− 2πSφ′ sinh(2πSφ′)) .

The dislocation substructure is shown in Fig 4(c). A positive dislocation here
is bonded with a negative one to form a real dipole, and the equilibrium of
this type is named as a “localised structure”.
It is worth noting that Eq. (6.2) only holds when

(6.3) −1 ≤ cosh(2πSφ′)− 2πSφ′ sinh(2πSφ′) ≤ 1,

which numerically gives rise to a range for Sφ′:

(6.4) 0 ≤ Sφ′ ≤ 0.2465.

Hence the emergence of Equilibrium Type III is conditional.
If we set X = φ′ζ and Y = φ′S, the configuration is equivalent to a row of dipoles

periodic in X , which have been studied in [23]. Thus the conclusion regarding the
stability of the obtained three types of equilibria can be drawn by employing the same
arguments proposed by [23]:

• Equilibrium Type I (ζ = 0) is always unstable.
• Equilibrium Type II (φ′ζ = 1/2) is only stable when Equilibrium Type III
does not exist.



16 HOMOGENISATION OF A ROW OF DISLOCATION DIPOLES

(a) Type I (b) Type II (c) Type III

Fig. 4. Three types of equilibria: (a) ζ = 0; (b) ζφ′ = 1/2 with non-localised structures formed;
(c) ζ satisfies Eq. (6.2) and localised structures are formed.

• Equilibrium Type III (ζ satisfies Eq. (6.2)) is always stable as long as it exists.

Another way to investigate the stability of the obtained equilibrium states is to
look for the local minimum of the free energy density F with respect to ζ. When
τext = 0, F given by Eq. (5.21) are drawn against ζ for different φ′S as shown in
Fig. 5. It is seen from Fig. 5(a) that when condition (6.4) is not satisfied, there are
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(a) φ′S = 0.4
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(b) φ′S = 0.2

Fig. 5. A stable equilibrium state should correspond to a local minimum of the generalised free
energy density F given by Eq. (5.21) and τext = 0 with respect to ζ. (a) If φ′S is larger than 0.2465,
only two types of equilibria exist and Type II is the stable configuration. (b) If 0 < φ′S < 0.2465, a
transition in stability from Type II to Type III takes place.

two equilibrium states, and Equilibrium Type II is the stable one. When condition
(6.4) is met, we have three equilibrium states as shown in Fig. 5, and Equilibrium
Type III is the stable one.

Here a natural transition from a non-localised structure (Type II) to a localised
structure (Type III) takes place as the slip plane spacing gets narrower or equivalently,
as the pair density decreases. Such a transition may be indicative of the formation of
the persistent slip bands; further discussion on this issue will be made in §8.2.

6.1.2. First-order force balance equation for Equilibrium Type II. Based
on the solutions to the leading-order equation (5.11a), we now investigate the first-
order force balance equation (5.11b). Here only stable configurations, i.e. Equilibrium
Type II and III, are considered.

When φ′ζ = 1/2 (Type II), one can make use of the fact that (φ′ζ)′ = 0 and
sin(2πφ′ζ) = 0. This suggests that the terms associated with G12 and G13 in
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Eq. (5.11b) both vanish. Therefore, the equation for φ′ can be obtained as

(6.5)

0 =
2φ′′

φ′
·G11(π, 2πSφ

′) + S
∂τ0ext
∂y

= −φ′′

φ′
− 4πSφ′′ tanh(πSφ′) + 5π2S2φ′φ′′sech2(πSφ′)

− 2π3S3(φ′)2φ′′sech2(πSφ′) tanh(πSφ′) + S
∂τ0ext
∂y

.

Eq. (6.5) is a differential equation for φ′, the (non-dimensional) pair density. Its
solution describes the pair density distribution in equilibrium when all dipoles form
non-local structures as shown in Fig. 4(b).

To justify our results for φ′ and ζ calculated from the continuum model, we also
consider the equilibrium states obtained by the discrete dislocation dynamical model.
To do that, we simply put N + 1 pairs of dipoles in the domain [0, 1] and let the
system evolve to the steady state following Eqs. (2.2) - (2.5).

For all the simulation results presented in this paper, we lock one dislocation
at each end. For example, at the left boundary, we set p0 = 0. There is no strict
requirement for q0, except that q0 ≥ 0. Similarly at the right end, we let qN = 1 and
pN ≤ 1. By doing this, the total number of dislocation pairs are conserved during the
simulation. Correspondingly at the continuum level, this condition is translated by

(6.6)

∫ 1

0

φ′(t, x)dx = φ(t, 1)− φ(t, 0) = 1.

The temporal derivatives needed for DDD simulations are approximated by using
the Euler scheme with time step ∆tdis chosen by ∆tdis = 0.025/N .

Now we compare the results for Equilibrium Type II obtained from the continuum
and DDD models. For simplicity, we consider the case when ∂τ0ext/∂y is a constant.
Thus we integrate Eq. (6.5) on both sides to obtain

(6.7) log

(

cosh(πφ′S)

φ′

)

+

(

πφ′S

cosh(πφ′S)

)2

+ 3πφ′S tanh(πφ′S) = C − ∂τ0

∂y
· Sx,

where C is a constant to be determined by condition (6.6).
We begin with the case when no stress gradient is applied to the system, i.e.

∂τ0ext/∂y = 0. In this case, Eq. (6.7) suggests φ′ = 1 and we then obtain ζ = 1/2.
This means that in the absence of applied stress gradients, all dipoles are uniformly
distributed and the dipoles form non-localised structures suggested by the continuum
model. To see Equilibrium Type II from the DDD model, one needs S > 0.2465/φ′

and S is chosen to be 0.3 here.
Note that in the DDD model, the pair density is approximated by ρdis((pn +

qn)/2) = 1/(N(pn+1−pn)), and ζ is approximated by ζdis((pn+ qn)/2) = N(qn−pn).
A comparison of the values of φ′ and ζ from the discrete and the continuummodels

is shown in Fig. 6 and good agreement between the two models is seen except near
the boundaries. There is a boundary layer near each end, where the results from the
continuum model deviate from its DDD counterpart. This is because the symmetry
required for the setting up of the inner region Ωn

in given by Eq. (4.1) breaks down.
However, the goal of this paper is to formulate the collective behaviour of dislocation
dipoles in the (relatively vast) interior region. It is suggested by the numerical results
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Fig. 6. Comparison of the pair density and the pair width Equilibrium Type II with the results
from the discrete dislocation dynamical models in the absence of applied stresses or stress gradients.
When S = 0.3, dipoles form Equilibrium Type II. Here N = 50. The dipoles take a uniform
distribution within [0, 1].

shown below that the influence cast by the boundary layers over the accuracy of the
continuum approximation in the interior region is limited. Hence the incorporation
of boundary layers into the continuum framework will be discussed in future work.

With a non-vanishing stress-gradient, for example, ∂τ0ext/∂y = 1, one can again
calculate φ′ and ζ with reference to Eq. (6.7). The results from the two models are
compared in Fig. 7 and excellent agreement in the interior region is again seen away
from the two ends.
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Fig. 7. When the system is applied an stress gradient ∂τ0ext/∂y = 1, the dipoles of Equilibrium
Type II are seen piling-up against the left boundary. Here S = 0.3 and N = 50.

6.1.3. First-order force balance equation for Equilibrium Type III. Sim-
ilarly, we study the first-order equation (5.11b), when all dipoles are in Equilibrium
Type III, i.e. condition (6.4) is met. It is recalled that Equilibrium Type III only
appears for small φ′S, we consider the asymptotic behaviour of the above equation
as S → 0 for simplicity. Thus one can asymptotically solve Eq. (6.2) to get

(6.8) ζ ≈ S +
2(πφ′)2S3

3
.

Eq. (6.8) implies that in this case the pair width is almost the same as the slip
plane gap. When these two quantities are identical, we call the resulting dislocation
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structure a 45◦ dipole. In fact, a 45◦ dipole is the stable configuration of an isolated
pair of dipole. We see from Eq. (6.8) that when the two slip planes get close to
each other (as S → 0), the mutual interaction between the pair partners becomes
dominant over the stresses due to all other dislocations, and the dipoles behave as
isolated dipolar pairs. Incorporating Eq. (6.8) into the first-order equation (5.11b),
we asymptotically derive an equation for the pair density φ′ in the limit that S → 0
as

(6.9) 2π2S2φ′φ′′ + S · ∂τ
0
ext

∂y
= 0.

Eqs. (6.8) and (6.9) are valid only when S → 0. Now we compare their solutions to
DDD simulation results to show that they can be used as the governing equations for
many dipoles in equilibrium of Type III at the continuum level.

Here we still consider the case when ∂τ0ext/∂y is constant for simplicity. Hence
the pair density distribution φ′ can be solved from Eq. (6.9)

(6.10) φ′ =
1

πS

√

C − ∂τ0ext
∂y

· Sx,

where C is determined by boundary condition (6.6).

We first investigate the case with no applied stress gradient. From Eq. (6.10),
we obtain φ′ = 1 and ζ is calculated to be 0.1066 from Eq. (6.8). We then compare
these results with that from the DDD simulations in Fig. 8. Excellent agreement
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Fig. 8. Comparison of results from the continuum and the DDD models for the case where
there is no applied stress gradient. When S = 0.1, the continuum model suggests that the system
takes the equilibrium state of Type III with φ′ ≈ 1 and ζ ≈ 0.1066. Here N = 50.

between the two models is seen. Here we find again that in the absence of applied
stress gradient, the dipoles are uniformly distributed.

Now we consider a non-vanishing applied stress gradient set to be ∂τ0ext/∂y = 1.
By using Eqs. (6.8) and (6.9), we plot φ′ and ζ against x in Fig. 9 and they are shown
agreeing well with the outcomes from the underlying DDD model. The comparison
results shown above suggest that we can use Eqs. (6.8) and (6.9) to describe the
collective behaviour of a row of dislocation dipoles in equilibrium of Type III.

6.1.4. Equilibria of mixed types. According to Eq. (6.4), φ′S = 0.2465 char-
acterises the transition between Equilibrium Type II and III. Therefore, when the
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Fig. 9. Dipoles of Equilibrium Type III are found piling-up against an applied stress gradient
to the left boundary. Here S = 0.1, ∂τ0/∂y = 1 and N = 50.

value of φ′ − 0.2465/S changes its sign, there should be a change in equilibrium pat-
terns as suggested by the continuum model. This is actually observed in Fig. 10,
where S is set to be 0.24 and N is chosen to be 100. It is seen from Fig. 10 that the
dipoles take Equilibrium Type II near the left boundary, and a transition from Type
II to III is found taking place away from the left end. The continuum model suggests
that the transition should happen when φ′ = 0.2465/S ≈ 1.03, which gives rise to the
dashed line in Fig. 10. It can be checked that Equilibrium Type III roughly emerges
where φ′ drops below the dashed line. In Fig. 10, it can also be seen that the values
of the pair density agree well for both equilibrium types, while there is roughly a 10%
variance in ζ for Equilibrium Type II with the change of equilibrium type not so easily
determined. We will see later that increasing N will bring down the deviation in φ′

and ζ between the continuum and the DDD models.
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Fig. 10. When S = 0.24, Equilibrium Type II and III are found co-exist. Near the left boundary,
the dipoles take the equilibrium of Type II. A natural transition from Type II to III is seen roughly
where the pair density drops below the dashed line characterised by φ′ ≈ 1.03. Here N = 100.

6.1.5. Summary. To summarise, a row of dipoles may form two types of stable
equilibria if the applied stress vanishes on y = 0. When φ′S ≥ 0.2465, the resulting
equations at the continuum level of the pair density φ′ and (rescaled) pair width ζ
are derived to be Eq. (6.5) and ζ = 1/(2φ′). When 0 < φ′S < 0.2465, the collective
behaviour of a row of dipoles can be approximately described by Eqs. (6.8) and (6.9).
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6.2. Equilibria under arbitrary externally-applied stresses. Now we gen-
eralise our discussion to the case where the leading order of the external resolved
shear stress is non-vanishing, i.e. τ0ext ∼ O(1). In this case, Eq. (5.11a) may not be
solved explicitly. However, some analysis can still be done to understand the resulting
equilibrium configurations.

If we use the expression for G0 defined by Eq. (4.13), we rewrite Eq. (5.11a) as

(6.11) G0(2πφ
′ζ, 2πφ′S) +

τ0ext
πφ′

= 0.

Eq. (6.11) describes the inter-relation of three quantities, ζφ′, Sφ′ and τ0ext/φ
′ and we

define X = ζφ′, Y = Sφ′, and Υ = τ0ext/(πφ
′) to facilitate further analysis. As dis-

cussed in §6.1.1, X and Y measure respectively the pair width and the slip plane gap,
both scaled by the spacing between the neighbouring dipolar centers. Thus Eq. (6.11)
can be written as −G0(2πX, 2πY ) = Υ, which suggests that the inter-relation be-
tween X and Y for a given Υ can be visualised by the contours of −G0(2πX, 2πY ) as
shown in Fig. 11. It can be observed that on each contour, there exists a Y ∗ (attained

X

Y
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Fig. 11. Given any Υ = τ0ext/(πφ
′), a pair of (X, Y ), which satisfies Eq. (6.11) should sit on the

contour −G0(2πφ′ζ, 2πφ′S) with height Υ. For each Υ, there exists a Y ∗ (attained at X∗ say) such
that Y ≤ Y ∗. The locus of such (X∗, Y ∗) lies on the dashed curve. For any Y < Y ∗ (under a given
Υ), there are two possible values for X. Only those (X, Y ) falling in the shaded region correspond
to stable configurations.

at X∗ say) such that Y ≤ Y ∗, and the locus of such (X∗, Y ∗) sits on the dashed
curve in Fig. 11. This means the solution ζ to Eq. (6.11) conditionally exists. Given
Y = Sφ′, the solution for X = ζφ′ satisfying Eq. (6.11) exists for

(6.12) τ0ext = πφ′Υ ≤ πφ′ · |G0(2πX
∗, 2πY ∗)|.

The physical interpretation of Eq. (6.12) is that a dipole breaks down to two monopoles
when the external stress is large.

It is also observed from Fig. 11 that there exist two choices for X when Y < Y ∗.
One way to identify the stability of the candidate solutions is by investigating the
local minima of the generalised free energy density F by Eq. (5.21) with respect to ζ.
Here we find that the larger one gives rise to a stable equilibrium state after checking
with the numerical results to be shown later. Hence we conclude that only those
(X,Y ) falling into the shaded region in Fig. 11 correspond to stable configurations.
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It is worth noting that Υ > 0 is considered in the analysis presented above. When
Υ < 0, we simply let X < 0 and same conclusion will be drawn.

The above analysis provides us some insight to the equilibrium configurations
under an arbitrary externally-applied stress. Nevertheless, to find ζ and φ′ satisfying
Eq. (5.11a) and (5.11b), one has to turn to numerical methods.

7. Comparison of the continuum model with its underlying DDD model.

Now we compare the simulation results obtained by applying the continuum model
and the DDD model to same dynamical processes. For simulations at the discrete
level, the set-up and procedure is as in §6.1.2. To numerically implement the contin-
uum model, we discretise Eqs. (5.22a) and (5.22b) with step ∆x in space and ∆tcon in
time. At each time step, we use the following procedure to update the two variables
φ and ζ. With φ computed from the previous step, we (numerically) solve Eq. (5.22a)
to update the value for ζ at each spatial grid point. It is worth noting that following
the analysis in §6.2, we need to ensure the computed ζ is associated with a stable
equilibrium state. Then we use Eq. (5.22b) to update φ. For the simulation results
presented here, ∆tcon was chosen to be 1.25∆x2.

Our goal here is to check the accuracy and the efficiency of the continuum model
with reference to its underlying DDD model. To measure accuracy, we define

(7.1) Errφ′ = max
x∈I

φ′ − ρdis
ρdis

,

where ρdis denotes the density computed by the DDD simulations; we choose I =
[0.1, 0.9] to avoid the inherent difference between the two methods near the two
boundaries. Thus Errφ′ is used as a measurement of the relative error of the pair
density caused by the discrete-to-continuum transition. In a similar sense, we define
a measurement of the relative error of the pair width by

(7.2) Errζ = max
x∈I

ζ − ζdis
ζdis

.

The parameters chosen for the first set of numerical examples are S = 0.3, N = 50,
τ0ext = 0.5 and ∂τ0ext/∂y = 1. In Table. 1, Errφ′ and Errζ at various times are listed.
Note that the time t in Table 1 is measured in unit 2π(1 − ν)L2/(mgµb

2) with L

t 1 2 5 10 20 26.4
Errφ′ 0.0150 0.0117 0.0088 0.0077 0.0079 0.0079
Errζ 0.0797 0.0801 0.0810 0.0815 0.0818 0.0818

Table 1

Defined by Eq. (7.1), Errφ′ provides a measurement of the relative error of the pair density
caused by the discrete-to-continuum transition. Similarly Errζ given by Eq. (7.2) provides a mea-
surement of the relative error of the pair width ζ/N . Here S = 0.3, τ0ext = 0.5, ∂τ0ext/∂y = 1 and
N = 50. Here t is measured in unit 2π(1− ν)L2/(mgµb2). Simulations by the two models both stop
at t = 26.4, when the difference in the dislocation positions in DDD simulations between this and
the previous time step is no more than 10−5∆tdis. Errφ′ and Errζ are listed at various times.

recalled to be the computational domain size. The simulations based on both the
continuum and DDD models are stopped at t = 26.4, when the difference in the
dislocation positions in DDD simulations between this and the previous time step is
no more than 10−5∆tdis. We see that the relative error in the pair density at different
stages is no more than 1.5%, while the relative error in pair width is roughly 8%. In
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Fig. 12. Snap shots of the pair density obtained from the DDD and the continuum methods at
t = 0, 1, 2, 5, 10 and 26.4, where t is measured in unit 2π(1 − ν)L2/(mgµb2).

Fig. 12, snap shots of pair density by using the two methods at t = 0, 1, 2, 5, 10 and
26.4 are shown.

We also check the efficiency of the continuum model by keeping all other parame-
ters unchanged while increasing the total number of dislocations N . For this purpose,
we introduce two quantities Tcon and Tdis, which denote the wall-clock time it takes
a simulation to reach the steady state by using the continuum and DDD models,
respectively. Thus Tcon/Tdis becomes a measurement of the computational efficiency
of using the continuum model against its underlying DDD model. The smaller this
value is, the higher efficiency the continuum model displays.

The comparison between the two models for different N is shown in Fig. 13. In
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Fig. 13. (a) Tcon/Tdis provides a measurement to the computational efficiency exhibited by
the continuum model compared to its underlying DDD model. The smaller this value is, the more
efficient the continuum model is. (b) The upscaling errors of the pair density φ′ and the pair width
defined by Eqs. (7.1) and (7.2), respectively, as the systems attain their steady states with various
N .
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Fig. 13(a), Tcon/Tdis is found scaling with N at an exponent of roughly −3.25. When
the total number of dislocation pairs is increased to 500, the time it takes for the
continuum model to reach the steady state is roughly 1% of that needed for the DDD
model. This suggests that the continuum model becomes extremely efficient for a
large N compared to its DDD counterpart. The greater efficiency displayed by the
continuum model can be attributed to the fact that an increase in N only brings
up the computational intensity of performing the DDD simulations, as the governing
equations (5.22a) and (5.22b) for the continuum model are both independent of N .

To check the accuracy of the continuum model, we also plot Errφ′ and Errζ given
by Eqs. (7.1) and (7.2), respectively against N in Fig. 13(b). The coarse-graining
errors (in the interior region) for both quantities drop with an increasing N . When
N is 500, the coarse graining error of ζ in the interior region measured by Eq. (7.2)
becomes as good as no more than 1%. This is sensible since the continuum model
is obtained by taking the asymptotic limit as N → ∞. An increased N effectively
brings down the truncation errors.

When the rescaled slip plane gap S is small, the simulation can be speeded
up using the asymptotic solutions to Eq. (5.22a), rather than numerically solving
Eq. (5.22a) at each time step. In this scenario, the governing equations at the con-
tinuum level can be asymptotically simplified to

(7.3a) ζ = S − 2S2τ0ext +

(

2(τ0ext)
2 +

2(πφ′)2

3

)

S3

and

(7.3b)
∂φ

∂ts
−
(

π2S2φ′′φ′ +
ζ

2
· ∂τ

0
ext

∂x
+

S

2
· ∂τ

0
ext

∂y
· ∂φ
∂x

)

∂φ

∂x
= 0.

In Table 2, the coarse-graining errors for the pair density and the pair width are
shown with N = 50 and S = 0.1. The upscaling errors are found well controlled

t 5 10 20 50 100 200 250 300
Errφ′ 0.0060 0.0064 0.0068 0.0074 0.0130 0.0208 0.0221 0.0227
Errζ 0.0179 0.0181 0.0184 0.0189 0.0188 0.0185 0.0184 0.0184

Table 2

The coarse-graining errors of the pair density distribution and the pair width at various time
slots. Here S = 0.1, τ0 = 0.5, ∂τ0/∂y = 1, N = 50. Here t is measured in unit 2π(1−ν)L2/(mgµb2).

during the simulations.

8. Conclusion and further discussion.

8.1. Conclusion. In this paper, we have studied the collective behaviour of
a row of dislocation dipoles using matched asymptotic analysis. The discrete-to-
continuum transition is facilitated by the introduction of two field variables, the dis-
location pair density potential φ and the dislocation pair width ζ. The equilibrium
state at the continuum level is governed by Eqs. (5.11a) and (5.11b), while the dy-
namics at the continuum level is given by Eqs (5.22a) and (5.22b). The following
conclusions are drawn based on the analysis and the numerical implementation to the
continuum model.

Dislocation dipoles are found roughly uniformly distributed in the absence of
applied stress gradients, and to pile up against a lock when a stress gradient is applied.
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When the externally applied stress is zero on the primary slip plane y = 0, we
found three possible equilibrium patterns (as shown in Fig. 4), whose stability depends
on the value of φ′S, the ratio of the slip plane gap to the pair center spacing. If φ′S is
big (condition (6.4) breaks down), non-localised structures (Equilibrium Type II) are
the stable configurations. When φ′S falls below the critical value 0.2465, a localised
equilibrium structure (Equilibrium Type III) emerges. In this scenario, Equilibrium
Type II becomes unstable and a natural transition to Equilibrium Type III is observed.

If the externally applied shear stress τ0ext is non-negligible, two possible equilib-
rium patterns are found and the one with larger pair width value corresponds to the
stable configuration as suggested by the shaded region in Fig. 11.

In the continuum limit, the two field variables introduced evolve on different time
scales. On the faster scale, the dislocation pairs arrange themselves in local struc-
tures to satisfy the leading-order force balance. On the slower scale, the pair density
evolves driven by the stress gradient, which is a higher-order effect. Consequently,
the dipole dynamics, if viewed at the continuum level, can be modelled by an equi-
librium equation for ζ given by Eq. (5.22a) and an evolution equation for φ given by
Eq. (5.22b). All analytical results have been justified through comparison with the
underlying DDD simulation results.

8.2. Implication to the formation of PSBs. The finding of a natural tran-
sition between equilibrium configurations of dislocations in this paper may shed light
on understanding how localised persistent slip band structures emerge within a non-
localised channel-vein structure in cyclicly loaded crystals. The analytical results in
§ 6.1.1 suggest that such a transition takes place, when the slip plane spacings drop
to a certain value such that the quantity equivalent to φ′S falls below 0.2465. In a
cyclicly loaded crystal, it is widely recognised that the gaps between slip planes do
get narrower as a result of the cross-slip motion of the screw segments in the channels
shown in Fig. 1(a) (see [14, 22]). Nevertheless, the transition in equilibrium patterns
due to instability found here may not provide a full explanation to the formation of
PSBs, because the PSB walls consist more likely of several dislocation pairs rather
than a single pair as indicated by the Equilibrium Type III.

8.3. Implication to incorporating SSDs into continuum models of plas-

ticity. The approaches used here to separate physical processes according to their
associated time scales also provide us some hints towards incorporating statistically
stored dislocations into continuum models of plasticity consistent with the underlying
discrete dislocation dynamics. Given t the time scale associated with the continuum
model (termed as the continuum time scale), it has been shown that the mutual ad-
justment within dislocation pairs characterised by the evolution of ζ takes place so fast
that only its steady (equilibrium) state is observable at the continuum time scale. On
the other hand, the evolution of the pair density potential φ takes place so slowly that
it appears almost unchanged observed at the continuum time scale. Analogously, a
well-established continuum model of plasticity is expected to be hierarchic in time. It
should consist of a set of evolution equations for the geometrically necessary disloca-
tions (GNDs) changing at a normal speed accompanied by another set of quasi-static
equations describing the SSD structures in equilibrium.
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