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Abstract

In this paper, we consider a bilevel polynomial optimization problem where the objective and the
constraint functions of both the upper and the lower level problems are polynomials. We present
methods for finding its global minimizers and global minimum using a sequence of semidefinite
programming (SDP) relaxations and provide convergence results for the methods. Our scheme for
problems with a convex lower-level problem involves solving a transformed equivalent single-level
problem by a sequence of SDP relaxations; whereas our approach for general problems involving
a non-convex polynomial lower-level problem solves a sequence of approximation problems via
another sequence of SDP relaxations.

Key words: Bilevel programming, global optimization, polynomial optimization, semidefinite
programming hierarchies.

1 Introduction

Consider the bilevel polynomial optimization problem

b
(P) _min_ f(.)

subject to  gi(z,y) <0, i=1,...,s,
y € Y(z) := argmin,cgm{G(z,w) : hj(w) <0,j =1,...,7},
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where f: R" x R™ = R, g; : R" xR™ - R, G: R" x R™ — R and h; : R™ — R are all polynomials
with real coefficients, and we make the blanket assumption that the feasible set of (P) is nonempty,
that is, {(z,y) € R" x R™ : g;(x,y) <0,i=1,...,s, y € Y(x)} #0.

Bilevel optimization provides mathematical models for hierarchical decision making processes where
the follower’s decision depends on the leader’s decision. More precisely, if x and y are the decision
variables of the leader and the follower respectively then the problem (P) represents the so-called
optimistic approach to the leader and follower’s game in which the follower is assumed to be co-
operative and so, the leader can choose the solution with the lowest cost. We note that, there is another
approach, called pessimistic approach, which assumes that the follower may not be co-operative and
hence the leader will need to prepare for the worst cost (see for example [111, [44]).

The bilevel optimization problem (P) also requires that the constraints of the lower level problem
are independent of the upper level decision variable = (i.e. the functions h; do not depend on z).
This independence assumption guarantees that the optimal value function of the lower level problem
is automatically continuous, and so, plays an important role later in establishing convergence of our
proposed approximation schemes for finding global optimal solutions of (P). A discussion on this
assumption and its possible relaxation is given in Remark in Section 4 of the paper.

As noted in [31], the models of the form (P) cover the situations in which the leader can only observe
the outcome of the follower’s action but not the action itself, and so, has important applications in
economics such as the so-called moral hazard model of the principal-agent problem. In particular,
in the special case where g; depends only on z, the sets {x € R™ : g;(x) < 0} and {w € R™ :
hj(w) < 0} are both convex sets, problem (P) has been studied in [31] and a smoothing projected
gradient algorithm has been proposed to find a stationary point of problem (P). On the other hand,
the functions f,g;,G,h; of (P) in [31] are allowed to be continuously differentiable functions which
may not be polynomials in general. For applications and recent developments of solving more general
bilevel optimization problems, see [3], 9, 10} 11}, 43].

In this paper, in the interest of simplicity, we focus on the optimistic approach to the hierarchical
decision making process and develop methods for finding a global minimizer and global minimum of
(P). We make the following key contributions to bilevel optimization.

e A novel SDP hierarchy for bilevel polynomial problems. We propose general pur-
pose schemes for finding global solutions of the bilevel polynomial optimization problem (P)
by solving hierarchies of semidefinite programs and establish convergence of the schemes. Our
approach makes use of the known techniques of bilevel optimization and the recent develop-
ments of (single-level) polynomial optimization, such as the sums-of-squares decomposition and
semidefinite programming hierarchy, and does not use any discretization or branch-and-bound
techniques as in [17, [37, [44].

e Convex lower-level problems: Convergence to global solutions. We first transform the
bilevel polynomial optimization problem (P) with a convex lower-level problem into an equivalent
single level nonconvex polynomial optimization problem. We show that the values of the standard
semidefinite programming relaxations of the transformed single level problem converge to the



global optimal value of the bilevel problem (P) under a technical assumption that is commonly
used in polynomial optimization (see [20] and other references therein).

e Non-convex lower-level problems: A new convergent approximation scheme. By ex-
amining a sequence of e-approximation (single-level) problems of the bilevel problem (P) with a
not necessarily convex lower level problem, we present another convergent sequence of SDP relax-
ations of (P) under suitable conditions. Our approach extends the sequential SDP relaxations,
introduced in [27] for parameterized single-level polynomial problems, to bilevel polynomial op-
timization problems.

It is important to note that local bilevel optimization techniques, studied extensively in the literature
[3, [10], apply to broad classes of nonlinear bilevel optimization problems. In the present work, we
employ some basic tools and techniques of semi-algebraic geometry to achieve convergence of our
semidefinite programming hierarchies of global nonlinear bilevel optimization problems, and so our
approaches are limited to studying the class of polynomial bilevel optimization problems.

Moreover, due to the limitation of the SDP programming solvers, our proposed scheme can be used
to solve problems with small or moderate size and it may not be able to compete with the ad-hoc
(but computationally tractable) techniques, such as branch-and-bound methods and discretization
schemes. For instance, underestimation and branch-and-bound techniques were used in [I], 17, B37]
and a generalized semi-infinite programming reformulation together with a discretization technique
was employed in [44]. See http://bilevel.org/ for other references of computational methods of bilevel
optimization.

However, it has recently been shown that, by exploiting sparsity and symmetry, large size problems
can be solved efficiently and various numerical packages have been built to solve real-life problems
such as the sensor network localization problem [24]. We leave the study of solving large size bilevel
problems for future research as it is beyond the scope of this paper.

The outline of the paper is as follows. Section 2 gives preliminary results on polynomials and conti-
nuity properties of the solution map of the lower-level problem of (P). Section 3 presents convergence
of our sequential SDP relaxation scheme for solving the problem (P) with a convex lower-level prob-
lem. Section 4 describes another sequential SDP relaxation scheme and its convergence for solving the
general problem (P) with a not necessarily convex lower-level problem. Section 5 reports results of
numerical implementations of the proposed methods for solving some bilevel optimization test prob-
lems. The appendix provides details of various technical results of semi-algebraic geometry used in
the paper and also proofs of certain technical results.

2 Preliminaries

We begin by fixing notation, definitions and preliminaries. Throughout this paper R™ denotes the
Euclidean space with dimension n. The inner product in R” is defined by (x, y) := 27y for all z,y € R".
The open (resp. closed) ball in R™ centered at x with radius p is denoted by B(z, p) (resp. B(z, p)).
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The non-negative orthant of R” is denoted by R’} and is defined by R} := {(z1,...,2,) € R" | 2; > 0}.
Denote by R[z] the ring of polynomials in = := (z1,x2, ..., z,) with real coefficients. For a polynomial
f with real coefficients, we use deg f to denote the degree of f. For a differentiable function f on R™,
Vf denotes its derivative. For a differentiable function g : R" x R™ — R, we use Vg (resp. Vyg)
to denote the derivative of g with respect to the first variable (resp. second variable). We also use N
(resp. Nsg) to denote all the nonnegative (resp. positive) integers. Moreover, for any integer ¢, let
Ny :={aeN": 3" «a; <t}. Foraset Ain R", we use cl(A4) and int(A4) to denote the closure and
interior of A. For a given point z, the distance from the point x to a set A is denoted by d(z, A) and
is defined by d(z, A) = inf{||lx — a|| : a € A}.

We say that a real polynomial f € R[z] is sum-of-squares (SOS) if there exist real polynomials
fj»g=1,...,r,such that f = Z;Zl ij. The set of all sum-of-squares real polynomials in x is denoted
by ¥2[x]. Moreover, the set of all sum-of-squares real polynomials in z with degree at most d is denoted
by £2[z]. We also recall some notions and results of semi-algebraic functions/sets, which can be found
in [6, 5]

Definition 2.1 (Semi-algebraic sets and functions) A subset of R™ is called semi-algebraic if it
is a finite union of sets of the form {x € R™ : fi(x) =0,i=1,...,k; fi(x) > 0,i = k+1,...,p}, where
all f; are real polynomials. If A C R™ and B C RP are semi-algebraic sets then the map f: A — B
is said to be semi-algebraic if its graph {(z,y) € Ax B : y = f(x)} is a semi-algebraic subset in
R™ x RP.

Semi-algebraic sets and functions are important classes of sets and functions and they have impor-
tant applications in nonsmooth optimization (for a recent development, see [7]). In particular, they
enjoy a number of remarkable properties. Some of these properties, which are used later in the paper,
have been summarized in the Appendix A for the convenience of the reader.

We now present a preliminary result on Holder continuity of the solution mapping of the lower level
problem. As a consequence, we provide an existence result of the solution of a bilevel polynomial
optimization problem (P).

Let F: R™ = R™ be a set-valued mapping and let y € F(z). Recall that F' is said to be Holder
continuous (calm) at (z,y) with exponent 7 € (0, 1] if there exist J, €,¢ > 0 such that

d(y,F(z)) <cllz — 2| for all y € F(z) NBgrm(y,€) and z € Brn(Z, ).

In the case when 7 = 1, this property is often refereed as calmness and has been well-studied in
nonsmooth analysis (see for example [8]). We first see that even in the case, where G is a continuously
differentiable function and the set {y € R™ : h;(y) < 0} is compact, the solution map Y : R” = R™
of the lower level problem Y (z) := argmin,cgm{G(z,y) : hj(y) < 0,5 = 1,...,7} is not necessarily
Hoélder continuous for any exponent 7 > 0.

Example 2.2 (Failure of Holder continuity for solution map of the lower level problem:



non-polynomial case) Let f: R — R be defined by

e i g0
Jw) { 0 if y=o0

Consider the solution mapping Y (r) = argmin, {G(x,y) : y? <1} for all x € [-1,1], where G(x,y) =
(x — f(y))?. Then, it can be verified that G is a continuously differentiable function (indeed it is a
C*° function) and

1 .
Y(z) = {£y/ =zt if 2€(0,1],
{0} if xe[-1,0].
We now see that the solution mapping Y is not Holder continuous at 0 with exponent 7 for any
7 € (0,1]. To see this, let 2, = e™* — 0 and y;, = \/% € Y(xg). Then, for any 7 € (0, 1],

T —71k L
onl” e VR

d(yr, Y (0)) \/g C etk

So, the solution mapping is not Holder continuous at 0 for any 7 € (0, 1].

The Holder continuity of the solution set of general parametric optimization problems has been
established under suitable regularity conditions, for example see [19, 41]. This property plays an
important role in establishing the existence of solutions for bilevel programming problems and equi-
librium problems (see for example [33] and Corollary . Next, we show that, the solution map of
a lower level problem of a bilevel polynomial optimization problem is always Holder continuous with
an explicit exponent which depends only on the degree of the polynomial involved and the dimension
of the underlying space. This result is based on our recent established Lojasiewicz inequality for

nonconvex polynomial systems in [30].

For m,d € N, denote
1 if d=1,

Rlm, d) = {d(3d —3)ym=l if d>2. (21)

Theorem 2.3 (Hélder continuity of solution maps in the lower level problem: poly-
nomial case) Let hj, j = 1,...,r and G be polynomials with real coefficients. Denote d :=
max{degh;,degG(x,-)}. Suppose that F := {y € R™ : hj(y) < 0} is compact. Then, the solution
map Y : R" = R™ in the lower level problem Y (x) := argmin cpm{G(x,y) : hj(y) <0, =1,...,7}
satisfies the following Hélder continuity property at each point £ € R™: for any 6 > 0, there is a
constant ¢ > 0 such that

Y(z) CY(Z)+c|r — || Brm(0,1) whenever ||z —z| <4, (2.2)

for some T € [10, 1] with 79 = max{ R )}. In particular, Y is Holder continuous at

1 2
m+r+1,d+1)’ R(m+r,2d
T with exponent 1y for any * € R™.



Proof. For any fixed € R", define ®(x) = minyerm {G(z,y) : hj(y) <0,5=1,...,r} and let

r

®o(y) ==Y [hi(y)], +®(x) - Gla,y)l.

i=1

Then, for all fixed z,

{y e R"| @u(y) =0} = Y(a)
= {yERm| hj(y) <0 as j=1,...,s, and @(m)—G(az,y)zO}.

Note that F' is compact. Now, the Lojasiewicz inequality for nonconvex polynomial systems [30)
Corollary 3.8] gives that there is a constant ¢y > 0 such that

d(y,Y (Z)) < co®z(y)” forally € F, (2.3)

for some 7 € [1p, 1] with 79 = max{ ol
that

m-i-r}&-l,d-&-l)’ R(m-QH:Qd)}' Further, there is a constant L > 0 such
G(z,y) — G(T,y)| < Lz — 7| (2.4)

1

for all y € F and for all z with ||z — Z|| < §. Denote ¢ := (2871L)™ with B := ¢, ” > 0. For any
y € Y(x) we select now 3 € Y (7) satisfying ||y — || = d(y,Y (Z)). To finish the proof, it suffices to
show that

ly =yl < cllz -] (2.5)

1
=

To see this, note that |®(Z) — G(T,y)| = Pz(y) > Bd(y,Y (@)™ = Blly — QH% Since § € Y (), it

follows that G(z,7) = ®(z) < G(Z,y), and hence
1 g _ . _ _
ly =3l < B7Y®0(@) - G(@,9)| = 87 (G(@,y) - G(=,7)). (2.6)
Furthermore, as y € Y (z), G(z,y) < G(z,7), and therefore (2.4) gives us that

G(Ev y) - G(E,@) = (G(fa y) - G<x7y)) + (G(l‘,y) - G(LU,
(G(fa y) - G(J:‘, y)) + (G(x,@) - G(fa
2L||x — || as y,y € F.

)

ININ
<o

This together with ([2.6]) yields
1 _ _ _ _ _
ly = gll* < 8~H(G(@,y) - Gx,7) <267 'Lz —7|.

Thus
d(y, Y () = ly —7ll < cllz —z|",

which verifies (2.5) and completes the proof of the theorem.

In general, our lower estimate of the exponent 7 will not be tight. We present a simple example to
illustrate this.



Example 2.4 Consider the solution mapping Y (z) = argmin,cg{(z—y?)? : y* < 1} forallz € [-1,1].
Clearly,

NG R R
Y(x)_{{()} if ze[-1,0).

So, the solution mapping is Holder continuous at 0 with exponent 1/2. On the other hand, our lower
estimate gives 79 = 1/84. So, the lower estimate is not tight.

Corollary 2.5 (Existence of global minimizer) For the bilevel polynomial optimization problem
(P), let K = {(z,y) € R" xR™ : gi(z,y) < 0} and F = {w € R™ : hj(w) < 0}. Suppose that
Ky ={z e R": (z,y) € K for somey € R™} and F are compact sets. Then, a global minimizer for
(P) exists.

Proof. Denote the optimal value of problem (P) by val(P). Let (zk,yr) be a minimizing sequence
for the bilevel polynomial optimization problem (P) in the sense that g;(xg,yx) < 0,71 = 1,...,s,
hi(ye) <0, 5 =1,...,7, yx € Y(xy) and f(xg, yr) — val(P). Clearly, (zx,yx) € K (and so, z;, € K1)
and yr € F. By passing to a subsequence, we may assume that (zp,yx) — (Z,9) € K1 x F. By
continuity, we have f(z,y) = val(P). To see the conclusion, it suffices to show that § € Y (z). Denote
€x = ||lxzx — Z|| — 0. Then, by Theorem there is ¢ > 0 such that

Y(x) CY(Z)+ cefBrm(0,1) forall keN.
As yj, € Y(xy), there exists y) € Y(z) such that
1y = Yll < 2cef, — 0. (2.7)

Note that Y (z) C F, Y(Z) is a closed set and F' is compact. It follows that Y (Z) is also a compact set.
Passing to the limit in (2.7, we see that g € Y (Z). So, a global minimizer for problem (P) exists.

The following lemma of Putinar ([39]), which provides a characterization for positivity of a polyno-
mial over a system of polynomial inequalities, can also be regarded as a polynomial analog of Farkas’
lemma [I4]. This lemma has been extensively used in polynomial optimization [26] and plays a key
role in the convergence analysis of our proposed method later on.

Lemma 2.6 (Putinar’s Positivstellensatz)[39] Let fo and f;, i =1,...,p be real polynomials in
w on RY. Suppose that there exist R > 0 and sums-of-squares polynomials &1, ...,0, € Y2 [w] such
that R — |lw|* = Go(w) + YF_, 5 fi(w) for all w € RY. If fo(w) > 0 over the set {w € RV : fi(w) >
0,i=1,...,p}, then there exist o; € ¥2[w], i = 0,1,...,p such that fo = oo + b oifi

The following assumption plays a key role throughout the paper.

Assumption 2.1: There exist Ry, R2 > 0 such that the quadratic polynomials (z,y) — Ry —
(2, y)||?> and y = R2 — ||y||? can be written as

Ry — [[(z,9)|” = o0(z,y) = > oi(w,y)gi(w,y) and Ry — |ly[I* = 60(y) — > 6;(n)h;(v),
i=1 Jj=1

7



for some sums-of-squares polynomials og,01,...,0, € Y?[r,y] and sums-of-squares polynomials
00,01,...,0p € ZQ[y].

We note that Assumption 2.1 implies that both K = {(z,y) € R" x R™ : g;(z,y) <0,i =1,...,s}
and F' = {y € R™ : hj(y) < 0,5 = 1,...,r} are compact sets [26]. Moreover, Assumption 2.1
can be easily satisfied when K and F are nonempty compact sets, and one knows the bounds Ny
for ||z|| on K and Nj for ||y|| on F. Indeed, in this case, it suffices to add redundant constraints
gs+1(z,y) = ||(z,y)||*> — (N2 + N32) and h,41(y) = ||ly||> — N2 to the definition of K and F respectively,
and Assumption 2.1 is satisfied with Ry = N12 + N22, Ry = NQQ, o;=0forall1 <¢<s,5; =0 for all
1<j<randosr =041 = 1. We also note that, under Assumption 2.1, a solution for problem (P)
exists by Corollary

3 Convex Lower Level Problems

In this section, we consider the convex polynomial bilevel programming problem (P) where the lower
level problem is convex in the sense that, for each € R", G(z,-) is a convex polynomial, h; are
polynomials, j = 1,...,7, and the feasible set of lower level problem F' := {w € R™ : hj(w) <0,j =
1,...,r} is a convex set. We note that, the representing polynomials h; which describes the convex
feasible set F' need not to be convex, in general.

We say that the lower level convex problem of (P) satisfies the nondegeneracy condition if for each
jg=1,...,7
y € F and hj(y) =0 = Vh;(y) #0.

Recall that the lower level convex problem of (P) is said to satisfy the Slater condition whenever there
exists yo € R™ such that hj(yo) < 0, j = 1,...,r. Note that, under the Slater condition, the lower
level problem automatically satisfies the nondegeneracy condition if each h;, j = 1,...,r is a convex
polynomial.

Let us recall a lemma which provides a link between a KKT point and a minimizer for a convex
optimization problem where the representing function of the convex feasible set is not necessarily
convex.

Lemma 3.1 ([28, Theorem 2.1]) Let ¢ be a convex function on R™ and F' := {w € R™ : hj(w) <
0,7 =1,...,7} be a convex set. Suppose that both the nondegeneracy condition and the Slater condition
hold. Then, a point y is a global minimizer of min{¢(w) : w € F'} if and only if y is a KKT point of
min{¢(w) : w € F'}, in the sense that, there exist \; >0, j =1,...,7 such that

Vo(y) + > NVhi(y) =0, \h(y) =0, hi(y) <0,j=1,...,7.
j=1

We see in the following proposition that a polynomial bilevel programming problem with convex
lower level problem can be equivalently rewritten as a single level polynomial optimization problem in



a higher dimension under the nondegeneracy condition and the Slater condition. In the special case
where all the representing polynomials h; are convex, this lemma has been established in [12].

Proposition 3.2 (Equivalent single-level problem) Consider problem (P) where the lower level
problem is convex. Suppose that the lower level problem satisfies both the nondegeneracy condition and
the Slater condition. Then, (z,y) € R" xR™ is a global solution of the bilevel polynomial optimization
problem (P) if and only if there exist Lagrange multz’plienﬂ A= (No,-- -, Ar) € R such that (z,y,)\) €
R” x R™ x R™! is a global solution of the following single level polynomial optimization problem:

5 .
(P) ey f(z,y)
subject to gi(r,y) <0, i=1,...,s, (3.8)
AoVyGlz,y) + > A Vhi(y) =0,

Jj=1

Ao >0, ) AT =1 Ajhi(y) =0, 45 20, hi(y) <0, j=1,....r
j=0

Proof. Fix any x € R™. The conclusion will follow if we show that y € Y (z) is equivalent to the
condition that there exist A\; > 0, j = 0,1,...,7 such that

MNVyG(z,y) + Y A Vhy(y) =0,
j=1

)\jhj(y) = 0, )\j Z 0, hj(y) S 0, j = 1,. N (39)

.
A >0, N =1
§=0

To see the equivalence, we first assume that y € Y (x). Under both the nondegeneracy condition and

the Slater condition, the preceding Lemma guarantees that there exist u; >0, j = 1,...,r, such that
T
VyG(,y) + Y 1 Vhi(y) =0, pihi(y) =0, p; >0, hi(y) <0, =1,...,. (3.10)
j=1

.9) hol ith \g = ————— = —H =1,
So, 1) olds with A mand Aj m,] R &

Conversely, let (z,y,\) satisfy . We now show that Ag # 0. Indeed, assume on the contrary
that Ao = 0. Then, 27_ A =1, 3% A\;VA;(y) = 0, A\jhj(y) =0, A > 0and hj(y) <0j=1,...,r
Let J ={j € {1,...,r} : A\; > 0} # 0. From the Slater condition, there exists yo € R™ such
that hj(yo) < 0, j = 1,...,r. Then, there exists p > 0 such that hj(w) < 0 for all w € R™ with

|w—yoll < p. As 22:1 AjVh;(y) = 0, we obtain

Z A Vh;(y)T (w —y) =0 for all w with [|w — yo|| < p. (3.11)
jeJ

Tndeed, as shown in the proof, Ao # 0 always holds under our assumptions. See Remark for a detailed discussion.

9



We now see that Vh;(y)T (w —y) < 0 for all w with |[w — yo|| < p and for all j € J. (Suppose on the
contrary that there exists wo with ||wg — yo|| < p and jo € J such that Vhj,(y)T (wy —y) > 0. By
continuity, for all small ¢, hj,(y + t(wo — y)) > 0, and hence y + t(wo — y) ¢ F. On the other hand,
from our choice of p, we see that hj(wg) < 0 for all j =1,...,7. So, wy € F. It then follows from the
convexity of F' that y + t(wp — y) € F for all small ¢. This is impossible.) This together with
and \j = 0 for all j ¢ J shows that

Vhi(y)T (w—y) = 0 for all w with |Jw — yo|| < p and j € J,

and so, Vh;(y) = 0 for all j € J. Note that y € F' and h;(y) = 0 for all j € J. This contradicts the
non-degeneracy condition, and so, A\g # 0. Thus, by dividing A\¢g on both sides of the first relation of
(3.9), we see that (3.10]) holds. This shows that y € Y (x) by the preceding lemma again.

Remark 3.3 (Importance of nondegeneracy and Slater’s conditions) In Proposition we
require that the nondegeneracy condition and the Slater condition hold. These assumptions provide
us a simple uniform bound for the multipliers g, ..., A, in the lower level problem which plays an
important role in our convergence analysis later in Theorem [3.5] Indeed, these assumptions ensure
that Ao # 0, and so, in particular, the equivalence of the following two systems:

AV, G(z,y) + Y A Vhi(y) =0, .
i=1 V,Glx,y) + Vh;(y) =0,
AOZOa )‘jhj( ):07 AjZOa h](y)SOaJ: yeeey T = Y ( y) ;Mj j(y)
L Jj=0 i
Note that the non-degeneracy condition is satisfied when the representing functions hj, j =1,...,r,

are convex polynomials and the Slater condition holds. Thus, in this special case, the Slater condition
alone is enough for transforming the polynomial bilevel problem with a convex lower level problem to
a single-level polynomial optimization problem.

The following simple example illustrates that the preceding Proposition can be applied to the case
where h;’s need not be convex polynomials.

Example 3.4 Consider the bilevel problem
EP, min —a8 4%+ y2
(EP) CRyCR? 11y
subject to  x? +yF +y3 <2
y € Y(x) := argmin, cpz2{zx(w; + w2) : 1 —wijws < 0,0 <w; <1,0 <wp <1}

Clearly, the lower level problem of (EP;) is convex but the polynomial (w;,ws) — 1 — wjws is not
convex. It can be verified that the non-degeneracy condition and Slater condition hold, and so, (EP;)

10



is equivalent to the following single level polynomial optimization problem

; 6 2 2
min —x + +
2€R,yER2, (Ao,...,\5) ERS 17
subject to z? + y% + y% <2

1=y <0,0<y; <1,0<y2 <1

Aoz + A (—y2) — A2+ A3 =0

AT+ A1(=y1) = A+ A5 =0

AM(1—=y1y2) =0, Aoy1 = 0, A3(1 —y1) =0
Ay2 =0, A5(1—y2) =0

5
Ajzo,jzo,l,...,aZAj?.:l,
7=0

Proposition [3.2]enables us to construct a sequence of semidefinite programming problems for solving
a polynomial bilevel programming problem with a convex lower level problem. To do this, we denote

R gp(z,y) p=1,...,s,
Gp(z,y,\) = ¢ hp—s(y) p=s+1,...,8+m,
—Ap—(s4r41) P=s+r+1...,s+2r+1,

and
.
Ahg(y), g=1,...,r
R )\OVyG(:E,y)—I—Z)\thj(y) , g=r+1,....r+m
HQ('xagﬁ )‘) = Jj=1 q—r
ZA?—L g=r+m-+1,
7=0

where ()\OVyG(JS, y)+ 25 )\thj(y)). is the ith coordinate of AoV, G(x,y) + 3> °5_; A\jVh;(y), i =
1,...,m. We also denote the degree of @p to be u, and the degree of ﬁq to be vy .

We now introduce a sequence of sums-of-squares relaxation problems as follows: for each k € N,

(Qr) maxyq, p (3.12)
s+2r+1 r+m—+1
s.t. f—pu=o00— Z opGp — Z pqH,
p=1 q=1

ap622[x,y,)\], p=0,1,...,s+2r +1,

degog < 2k, deg(o,Gp) <2k,p=1,...,5+2r +1,
b €R[z,y, N, g =1,...,r +m+1, deg(dgH,) <2k, q=1,...,7r +m+ 1.

It is known that each (Qy) can be reformulated as a semidefinite programming problem [26].
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Theorem 3.5 (Convex lower level problem: Convergence theorem) Consider the problem
(P) where the lower level problem is convex. Suppose that Assumption 2.1 holds and that the lower
level problem satisfies both the nondegeneracy condition and the Slater condition. Then, val(Qg) <
val(Qg+1) for all k € N and val(Qr) — val(P) as k — oo, where val(Qy) and val(P) denote the
optimal value of the problems (Qy) and (P) respectively.

Proof. From Corollary a global solution of (P) exists. Let (z,y) be a global solution of (P). From
Proposition , there exists A € R such that (x,y,\) is a solution of (P) and val(P) = val(P).

From the construction of (Qy), k € N, it can be easily verified that val(Qy) < val(Qry1) < val(P)
for all k € N. Let € > 0. Define f(x,y,\) = f(z,y) — (val(P) — €). Note that the feasible set U of (P)
can be written as
U={(z,y,\) e R" x R x R™ f@p(az,y,)\) >0, p=1,...,8s+2r+1,
—flq(af,y,/\) > O,ﬁq(x,y,)\) >0,qg=1,....,7+m+1}.

Then, we see that f > 0 over U. We now verify that the conditions in Putinar’s Positivstellensatz
(Lemma [2.6)) are satisfied. To see this, from Assumption 2.1, there exist Ry, R2 > 0 such that

Rr = o, )|? = oo(a,y) = Y o y)gilay) and Ry yl* =a0(y) = D o5(0)hs ()

for some sums-of-squares polynomials og,01,...,0, € Y?[z,y] and sums-of-squares polynomials
50,01, ..,0, € X2[y]. Letting A = (Ao, A1, .., A\r) € R™"! we obtain that

(14 Ri+ Ro) = (x4, M)|> = (o0(2,y) +d0(y Z% Zazxygzwy (1=> X%
= (oo(z,y) +00(y Zoy i,y N)

- Zal($7y)al($7y) - ﬁ?‘+m+1($7y> )‘)

So, applying Putinar’s Positivstellensatz (Lemma with w = (z,7,\) € R xR" x R"*! there exist
sums of squares polynomials o, € X%[z,y,A], p=0,1,...,5+ 2r + 1 and sums-of-squares polynomials
P19, P2q € X229, A, ¢ =1,...,7 +m+ 1 such that

s+2r+1 r+m+1 r4+m-+1

,]/t\:UO_ Z Up@p_ Z (blqﬁq‘i‘ Z ¢2qﬁq
p=1 q=1 q=1

Let ¢, € R[z,y, ] be a real polynomial defined by ¢y = ¢14 — ¢p2q, ¢ = 1,...,7r +m + 1. Then, we

have
s+2r+1 r+m-+1

f— (val(P) —€) = a9 — Z Upap - Z ‘bqﬁq
p=1 q=1

Thus, there exists k € N, val(Q) > val(P) — ¢ = val(P) — e. Note that, by the construction,
val(Qy) < val(P) = val(P) for all k € N. Therefore, val(Qy) — val(P) = val(P).
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Remark 3.6 (Convergence to a global minimizer) It is worth noting that, in addition to the
assumptions of Theorem 3.5, if we further assume that the equivalent problem (P) has a unique solution
say (Z,7), then we can also find the global minimizer (Z,y) with the help of the above sequential SDP
relaxation problems. In fact, as each (Qf) is a semidefinite programming problem, its corresponding

dual problem (see [26]) can be formulated as

(@) inf Ly (f)

ZeNp T

subject to My(z) = 0, zop =1,
My (Gpoz) = 0,p=1,...,s +2r +1
Mk_vq(flq,z)zo,qzl, r+m+1,

where @, (resp. Ug) is the largest integer which is smaller than <2 (resp. %), L, is the Riesz functional
defined by L,(f) = >, faza with f(z) = >, faz® and, for a polynomial f, M(f,z), t € N is the
so-called localization matrix defined by [M(f,2)], 5 = >_, fyza+p+y for all , 8 € NP+ 47 From
the weak duality, one has val(P) > val(Q;) > val(Qj). Thus, the preceding theorem together with
val(P) = val(P) implies that val(Q}) — val(P). Moreover, it was shown in [25, Theorem 4.2] that
if the feasible set of the polynomial optimization problem (P) has a non-empty interior, then there
exists a natural number Ny such that val(Q}) = val(Qy) for all & > Np.

Let z; be a solution of (Q}). Then, as k& — oo, we have (Lg, (X1),..., Lz (Xn)) — 7, and
(Lzy (Xn41)s - -+ Ly (Xy4m)) — ¥, where X; denotes the polynomial which maps each vector to its
ith coordinate, i = 1,...,n 4+ m. The conclusion follows from [40)].

The above theorem shows that one can use a sequence of semidefinite programming problems to
approximate the global optimal value of a bilevel polynomial optimization problem with convex lower
level problem. Moreover, under a sufficient rank condition (see [26, Theorem 5.5]), one can check
whether finite convergence has occurred, i.e., by testing whether val(Qg,) = val(P) for some ko € N.
This rank condition has been implemented in the software GloptiPoly 3 [18] along with a linear algebra

procedure to extract global minimizers of a polynomial optimization problem.

We now provide a simple example to illustrate how to use sequential SDP relaxations to solve the

bilevel polynomial optimization problems with convex lower level problem:

Example 3.7 (Solution by sequential SDP relaxations) Consider the following simple bilevel

polynomial optimization problem

: 5_,6
min  xy’ —
(z,y)eR? sy
2?4yt <2
y € Y(x) := argmin, cg{zw: -1 <w < 1}.
Direct verification shows that there are two global solutions (—1,1) and (1, —1) with global optimal
value 2. We note that the lower level problem is convex and it is equivalent to the following single
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level polynomial optimization problem
. 5 6
min Yy’ —
(%,y,20,A1,A2) ERS vy

2 + y2 <2

AT+ A — A =0

/\i 20,)\1(3/—1) :0,)\2(—1—y) :0,—1 §y§ 1

MNAN+A =1
Solving the converted single level polynomial optimization problem using GloptiPoly 3, the solver ex-

tracted two global solutions (x, y, Ao, A1, A2) = (—1.000, 1.000,0.7071,0.7071,0) and (x,y, Ao, A1, A2) =
(1.000,—1.000,0.7071,0,0.7071) with the true global optimal value —2.

Remark 3.8 (Single level polynomial problem) In the case where (P) is a single level problem,
Theorem yields the known convergence result of the sequential SDP relaxation scheme (often
referred to as the Lasserre hierarchy) for solving single level polynomial optimization problems [26].
Indeed, consider a (single level) polynomial optimization problem

(Po) ;IelIer}L{f(x) cgi(x) <0,i=1,...,s}.

Suppose that there exist R > 0 and sums of squares polynomial o; € ¥2[z] such that

R— \|95||2 = oo(z) — Zai(m)gi(x)'
i=1

~

Let f(z,y) = f(x), gi(z,y) = gi(x), i =1,...,s and G(z,y) =0 for all (z,y) € R™ x R. We note that
val(Py) equals the optimal value of the following bilevel polynomial optimization problem

~

et f(z,y)

subject to  gi(z,y) <0, i=1,...,s,
y € Y(z) := argmin,cgm {0 : w? < 1}

Then, Theorem yields that val(Py) = klim val(QY), where, for each k, the problems (QY) is given
—00
by

(Qg) ma'x,uf,gp lu‘
S
s.t. f—u=o00— Zapgp,
p=1

op € X2%[x], p=0,1,...,s, degog < 2k, deg(opgy) <2k, p=1,...,s.

4 Nonconvex Lower Level Problems

In this section, we examine how to solve a bilevel polynomial optimization problem with a nonconvex
lower level problem towards a global minimizer using semi-definite programming hierarchies.
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Consider an e-approximation of the general bilevel polynomial problem (P):

(Pe) min f(z,y)

(z,y)ER™ XR™

subject to  gi(x,y) <0, i=1,...,s,
hi(y) <0, j=1,...,m,
G(z,y) — min {G(z,w) : hj(w) <0,j=1,...,7} <e
weR™

The above e-approximation problem plays a key role in the so-called value function approach for finding
a stationary point of a bilevel programming problems, and has been studied and used widely in the liter-
ature (for example see [31],45]). The main idea of the value function approach is to further approximate
the (possibly nonsmooth and nonconvex) function  +— min,ecgm{G(z,w) : hj(w) < 0,5 =1,...,r}
using smooth functions, and asymptotically solve the problem by using smooth local optimization
techniques (such as projected gradient method (PG) and sequential quadratic programming prob-
lem (SQP) techniques). For instance, [31] use this approach together with the smoothing projected
gradient method to solve the bilevel optimization problem, in the case where g; depends on x only,
{r e R" : gj(x) <0} and {w € R™ : hj(w) < 0} are convex sets. The algorithm only converges to a
stationary point of the original problem (in a suitable sense).

We now introduce a general purpose scheme which enables us to solve (P.) towards global solutions
using SDP hierarchies. The proof techniques for the convergence of this scheme (Theorem 4.6) relies
on the joint-marginal method introduced in [27] to approximate a global solution of a parameterized
single level polynomial optimization problem. Here, following the approach in [27], we extend the
scheme and its convergence analysis to the bilevel polynomial optimization setting.

The following known simple lemma shows that the problem (P.) indeed approximates the original
bilevel polynomial optimization problem as e — 04. To do this, for €, > 0, recall that (z, g) is called
a d-global solution of (P.) if (z,7) is feasible for (P,) and f(&,y) < val(P.) + 6 where val(FP,) is the
optimal value of (P;).

Lemma 4.1 (Approximation lemma cf. [32]) Suppose that K := {(z,y) € R" x R™ : g;(z,y) <
0} and F = {w € R™ : hj(w) < 0} are compact. Let e, — 04 and 0, — 04 as k — oo. Let (Ty, Uy) be
an 0g-global solution for (P, ). Then, {(Zk, Yk) }ren i a bounded sequence and any of its cluster point
(Z,7) is a solution of the bilevel polynomial optimization problem (P).

The following lemma explains the analytic property of the function € — val(P.), and shows that
val(P.) converges to val(P) in the order of O(eé) as € — 04 for some ¢ € Ny := N\{0}. The proof
relies on some important properties and facts on semialgebraic functions/sets and we delay the proof
to the Appendix B.

Lemma 4.2 (Analytic property € approzimation quality) Suppose that Assumption 2.1 holds.

Let I C Ry :=[0,400) be a finite interval. For each € € I, denote the optimal value of (Pe) by val(P:).
Then,
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(i) the one-dimensional function € — val(P:) is a nonincreasing, lower semicontinuous, right-
continuous and semialgebraic function on I. In particular, the function e — val(P:) is continuous
over I except at finitely many points.

(i) There exist ¢ € N5, €9 > 0 and M > 0 such that for all e € [0, €)

val(P,) < val(P) < val(P.) + Mex.

Now, we present a simple example to illustrate the above lemma. It also implies that, in general,
the function e — val(P,) can be a discontinuous semialgebraic function.

Example 4.3 Consider the bilevel polynomial optimization problem

(EP) Hlin(ac,y)eR2 Yy
s.t. 2 < 1,

y € argmin, cp{z? +w? : w?(w? — 1)? < 0}.

Note that J(z) = mi]%{x2 +w? : w?(w? —1)% <0} = 2% Tts e-approximation problem is
we

EP, i
(EP.) G, v
s.t. 22 < 1,

V2(y? - 1)2<0, ® <e

It can be verified that
0, if0<e<1,

-1, ife>1.

val(EP,) = {

Therefore the function € — val(EP,) is nonincreasing, lower semicontinuous, right-continuous and
semialgebraic on [0, 4+00). Moreover, it is continuous on [0, €g] for any €y < 1 and it is discontinuous
at 1.

Solving e-approximation problems via sequential SDP relaxations

Here, we describe how to solve an e-approximation problem via a sequence of SDP relaxation problems.
One of the key steps is to construct a sequence of polynomials to approximate the optimal value
function of the lower level problem z +— min,cgrm{G(z,w) : hj(w) < 0,5 =1,...,r}. In general, the
optimal value function of the lower level problem is merely a continuous function. We now recall a
procedure introduced in [27] to approximate this optimal value function by a sequence of polynomials.

Recall that K = {z : gi(z,y) < 0, = 1,...,s}. We denote PriK = {z € R" : (x,y) €
K for some y € R™}. From Assumption 2.1, K is bounded, and so, Pri K is also bounded. Let
PriK C Q:={z € R": ||z]joc < M} for some M > 0. Let 0;(x) = 27 — M?, 1 =1,...,n. Then
Q={z:0,(x) <0,l=1,...,n}. Let v be a probability Borel measure supported on {2 with uniform
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distribution on X. We note that all the moments of ¢ over © denoted by v = (v3), € N", defined
by

g = /Q Pdp(a), B e N,

can be easily computed (see [27]).

o) € N Zal < 2k}

=1

For each k € N with k > kg := max{[deff] [degh 1}, set N§; = {(a, ..

and consider the following optimization problem

MAXN g, e D AV

BENG,
s.t. =Y g =oola,y) =D o y)hi(y) = Y ori(z, v)0i()
BeND, j=1 =1
oj € Xlz,y], j=0,1,...,r+n (4.1)

degog < 2k, deg(ojhj) <2k,j=1,...,r, deg(o, ;) <2k, l=1,...,n,

which can be reformulated as a semidefinite programming problem [27]. Then, for any feasible solution
(N, 00,01, ... ,0r4n), the polynomial x — Ji(z) := ZBeNgk )\53:/3 is of degree 2k and it satisfies, for all
reQ={z:0(x)<0,l=1,...,n}andy € F:={w: hj(w) <0,j=1,...,r},

G(x, Z Agm’g—aoxy Za]:z:y Zgr+l$y0l x) >
BENL,

So, for every k € N, Ji(z) < J(z) := minyerm{G(z,w) : hj(w) < 0} for all z € 2. Indeed, the next
theorem shows that .J; converges to the optimal value function J on €2, in the Li-norm sense.

Lemma 4.4 ([27]) Suppose that Assumption 2.1 holds. For each k € N, let py be the optimal value
of the semidefinite programming . Let €, — 0 and let (\,00,01,...,004n) be an eg-solution of
in the sense that ZﬁeNgk AgYg > pr — €. Define Ji, € Roylz] by Ji(z) = ZﬁeNgk Agxﬁ. Then,
we have Ji(x) < J(x) for all x € Q and

/Q\Jk(x) — J(2)|dp(z) — 0 as k — .

We now introduce a scheme to solve the e-approximation problem for arbitrary e > 0, using sequences
of semidefinite programming relaxations.

Algorithm 4.5 (general scheme)
Step 0: Fix e > 0. Set k = 1.

Step 1: Solve the semidefinite programming problem |D and obtain the %—solution ()\k‘,a;?) of
1) Define Jy(z) = Z,BeNgk /\gxﬁ.
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Step 2: Consider the following semialgebraic set
Sk = {(I’y) : gl(‘r)y) S 07 /L - 17 7Sahj(y) S 0) j = 1)' "7T7G(I?y) - Jk(x) S 6}‘
If S = (), then let k = k + 1 and return to Step 1. Otherwise, go to Step 3.
Step 3: Solve the following polynomial optimization problem
P* i
(PE) | min S
subject to  gi(x,y) <0, i=1,...,s,
hi(y) <0, j=1,...,r,
G(z,y) — Ji(z) < e

Step 4: Let v* = min;<;<j val(P!). Update k = k + 1. Go back to Step 1.

Before we establish the convergence of this procedure, let us comment that the feasibility problem of
the semialgebraic set in Step 2 can be tested by a sequence of SDP relaxations via the Positivstellensatz.
This was explained in [38] and was implemented in the matlab toolbox SOSTOOLS. As explained
before, Step 3 can also be accomplished by solving a sequence of SDP relaxations.

Let us show that there exists a finite number ko such that Sk, # 0, and so, Algorithm 4.5 is
well-defined.

Lemma 4.5 Let € > 0. Consider the problem (P.) and Algorithm 4.5. Let K = {(z,y) : gi(x,y) <
0,0 =1,...,5} and FF = {w : hj(w) < 0,j = 1,...,r}. Suppose that Assumption 2.1 holds and
cl(int(K N (R™ x F))) = KN (R" x F). Then, there exists a finite number ko such that Sy, # 0 in
Step 2 of Algorithm 4.5.

Proof. Note from Corollary that a global minimizer (z,y) of (P) exists. In particular, the set
Dy :={(z,y) € KN(R" x F) : G(x,y) — J(x) < €} is an nonempty set as (z,y) € Dp. Noting from
our assumption, we have cl(int(K N (R” x F))) = K N (R™ x F). This together with the fact that
{(z,y) : G(x,y) — J(z) < €} is an open set (as the optimal value function of the lower level problem
J(x) is continuous) gives us that

D :={(z,y) € int(K N (R" x F)) : G(z,y) — J(z) < €}

is a nonempty open set. Define D := Pr;D = {zx e R": (x,y) € D for some y € R™}. Then, D is
also a nonempty open set. Note from Lemma that .Jj, converges to J in L'(£2, ¢)-norm. Hence Jj,
converges to J almost everywhere on Q. As ¢(£2) < 400, the classical Egorov’s theoremﬂ implies that

2The Egorov’s theorem [I3, Theorem 2.2] states that: for a measure space (2, ), let fi be a sequence of functions
on . Suppose that Q is of finite p-measure and {fx} converges g-almost everywhere on Q to a limit function f. Then,
there exists a subsequence l; such that f;, converges to f almost uniformly in the sense that, for every € > 0, there exists
a measurable subset A of Q such that p(A) < ¢, and {fi, } converges to f uniformly on the relative complement 2\ A.
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there exists a subsequence [;, such that J;, converges to J -almost uniformly on ). So, there exists
a Borel set A with ¢(A) < 3 with 7 := ¢(D) > 0 such that

Ji,, — J uniformly over Q\ A.

We observe that (Q\A) N D # @ (Otherwise, as D C PriK C Q, we have D C A. This implies
that n = p(D) < ¢(A) = n/2 which is impossible as n > 0). Let 9 € (2\A) N D. Then, we have
Ji, (o) = J(zo) and there exists yg € R™ such that yo € F, G(zo,y0) — J(z0) < €. In particular, for
all k large, (zo,y0) € Si,. Therefore, S;, # 0 for all large k, and so, the conclusion follows.

Remark 4.6 The fact that Li-convergence implies the almost-uniform convergence can also be seen
by using Theorem 2.5.1 (L;-convergence implies convergence in measure) and Theorem 2.5.3 (conver-
gence in measure implies almost-uniform convergence for a subsequence) of [2, Page 92-93] without
requiring the measure of €2 to be finite.

We note that the condition “cl(int(K N (R" x F))) = KN (R" x F)” holds when C' := K N (R" x F)
is a finite union of closed convex sets C; with intC; # (). Moreover, if the set C' is of the form
{(z,y) € R" x R™ : G;(x,y) < 0,i =1,...,1} for some polynomials G;, i = 1,...,l and | € N, then
the above condition also holds if the commonly used Mangasarian-Fromovitz constraint qualification
[34] is satisfied for any (z,y) € C.

We are now ready to state the convergence theorem of the proposed Algorithm 4.5. The proof of it
is quite technical and so it is given later in Appendix C.

Theorem 4.7 (General bilevel problem (P): Convergence theorem) Let ¢ > 0 and consider
problem (P.). Let vF be generated by Algorithm 4.5. Let K = {(z,y) : gi(z,y) <0,i=1,...,s} and
F={w:hjw) <0,j=1,...,7}. Suppose that Assumption 2.1 holds and Cl(int(K N (R™ x F))) =
KN R"x F). Then,

(i) v* — v. as k — oo where val(P.) < v, < 6lim val(Ps). In particular, for almost every e,
—E€

vF — val(P.) in the sense that, for all finite intervals I C Ry, ve = val(P.) for all e € I except
at finitely many points.

(ii) There exists eg > 0 such that, for all € € (0,€g), v* — val(P.) as k — oo. Moreover, let 0y, | 0.
Let v¥ = minj<;<x val(P}) = val(Pi*) and let (xg,yx) be a d-solution of (P*). Then, {(xk,yx)}
is a bounded sequence and any cluster point (Z,y) of (xk,yx) is a global minimizer of (P.) for
all € € (0, €p).

We now illustrate how our general scheme can lead to solving a bilevel programming problem with
a nonconvex lower level problem towards a global solution. This is done by applying our scheme to a
known test problem of the bilevel programming literature.
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Example 4.8 (Illustration of our approximation scheme) Consider the following bilevel opti-
mization test problem (for example see [31] [37])

min(Ly)eRz r+y

2 3
subject to = € [-1,1],y € argminwe[flﬂ{% — %}
Let Y(x) := argminwe[_L”{I%2 — %3} Clearly, the lower level problem is nonconvex and all the

conditions in Theorem [4.7] are satisfied. The optimal value function of the lower level problem is given
by

J(x)= min {

wel-1,1]° 2 3 Z2—z, if zel-1, 2),

3

rw? Wl 0, if ;1:6[%,1],
oty
2 7 3

and the solution set of the lower level problem Y (z) can be formulated as
{0y, if we (31,
{1}, if =ze[-1,

wlinN

).
It is easy to check that the true (unique) global minimizer is (Z,7) = (—1,1)7 and the true global
optimal value is 0.

Now, for k = 3, using GloptiPoly 3, we obtain a degree 2k(= 6) polynomial approximation of J(x)
which is
Js(z) = —0.3338 + 0.5011 * 2 + 0.0098 * 2% — 0.0032 * 2> — 0.0696 * z* — 0.1012 * 5 — 0.0432 * 2°.

The following figure depicts the graph of the functions Js and J, where the red curve is the graph of
the function J and the blue curve is the graph of the degree 6 polynomial J3. From the graph, we
can see that Js3 < J over the interval [—1,1] and provides a reasonably good approximation of the
piecewise differentiable (and so, non-polynomial) function J(zx).

Figure 1: J(z) and its degree-6 underestimation in Example 4.8

04
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Setting € = 0.001 and solving the following polynomial optimization problem

ming yerz T +Y

subject to x € [-1,1],

3/6[715”7
2 3
Yy Y
L A <0.
5~ g~ Jalx) <0.00L,

with GloptiPoly 3, the solver returns the point (z,y) = (—1.0000,0.9996) with its associated function
value —4.1680e — 04, which is a reasonably good approximation of the true global minimizer and global
optimal value of the bilevel programming problem.

Remark 4.9 (Further extensions of the approach) Although we presented our approach for
a class of bilevel problems where the constraints of the lower-level problem are independent of the
upper-level decision variable x, our approach may be extended to solve the following more general
bilevel polynomial optimization problem:

GP i )

(GP) peaiin f(z,y)

subject to  gi(x,y) <0, i=1,...,s,
y € Y(z) := argmin,cgm{G(z,w) : hj(z,w) <0,j=1,...,7},

where the constraints of the lower level problem are allowed to depend on z. In this case, we can
construct a sequence of semidefinite programming relaxation for finding a global minimizer and a
global minimum of its e-approximation problem and similar convergence results of the scheme can
be achieved under an additional technical assumption that the optimal value function of the lower
level problem J(z) := minyerm{G(z,w) : hj(z,w) < 0,5 = 1,...,r} is continuous. However, we
wish to note that, for the problem (P) discussed in this paper (that is, h; are independent of z), this
condition is automatically satisfied. On the other hand, in general, this condition may fail for the
general problem (GP) even when n = m = 1. We provide a simple example to illustrate this. Consider
the following bilevel programming problem
min z? 4 o>
zeR,yeR
subject to 0<x <1,

y € Y(z) := argming g {(z — w)? : 2% — w? < 0,w(w — 1) < 0, —w(w — 1) < 0}.

It can be directly verified that the optimal value function of the lower level problem is given by

0 if x=0
J(z) := mi —w)? i —w? <0 —1)=0}= ’ ’
(2) = mip{(w —w)”: 2" —w” < 0, wlw—1) = 0} {(:c—l)?, if 2 e(0,1].

and is discontinuous at z = 0.
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5 Numerical Examples

In this Section, we apply our schemes to solve some bilevel optimization test problems available in the
literature and present their results. We conducted the numerical tests on a computer with a 2.8 GHz
Intel Core i7 and 8 GB RAM, equipped with Matlab 7.14 (R2012a). We solved bilevel polynomial
problems with convex as well as non-convex lower-level problems, where the lower level problems are
independent of the upper level decision variables.

We first present results for the following bilevel problems with a convex lower level problem. We
note that all the assumptions of Theorem are satisfied by these bilevel problems with a convex
lower level problem.

Example 5.1 Consider the following bilevel polynomial problem [16]

ming yer  (z —3)2 + (y — 2)?
s.t. —2x+y—1<0
r—2y+2<0
242 —14<0
0<x <8
0<y<10
y € argmin, cg{(w — 5)% : w € [0,10]}.

This problem has a unique global minimizer (z*,y*) = (3,5) and the optimal value f* =

Example 5.2 Consider the following bilevel polynomial problem [16]

ming yerg —(4x —3)y + 2z + 1)
s.t. 0<zrx<1
0<y<l1
y € argmin, p{—(1 —4z)w — (22 +2) : w € [0,1]}.

This problem has a unique global minimizer (z*,y*) = (0.25,0) and the optimal value f* = 1.5.

We first transformed the problems in Example [5.1] and Example into equivalent single-level non-
convex polynomial optimization problems as proposed in Section 3. Then, we used GloptiPoly 3 [1§]
and the SDP solver Sedumi [42] to solve the transformed polynomial optimization problems. For
these two problems, the second relaxation problem (that is, problem (Q3)) of the SDP approximation
scheme (3.12) returns a solution which agrees with the true solution.

The following table summarizes the results of bilevel problems with a convex lower level problem
where (2*,y*) and f* denote the true global minimizer and the true optimal value respectively, (z,y)
and f denote the computed minimizer and the computed optimal value respectively and CPU time
represents the CPU time (in seconds) used to solve the problems.

Table 1: Convex Lower-Level Problems
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Test Problems

Known optimal solutions

Computed solutions

Example

(", y") = (3,5)
fr=9

(z,y) = (3.0000, 5.0000)
£ = 9.0000
CPU time=0.2511

Example

(z,) = (0.2500,0.0000)
£ = 1.5000

CPU time=0.1957

We now solve the following bilevel problems with a non-convex lower level problem. Again, all
the assumptions in Theorem are satisfied by these bilevel problems with a nonconvex lower level
problem.

Example 5.3 Consider the following bilevel polynomial problem [36]

ming yer

s.t. —z+y <0
—-10<z<10
-1<y<1
y € argmin, cp{w?® : w € [-1,1]}.
This problem has a unique global minimizer (z*,y*) = (=1, —1) with the optimal value f* = —1.

Example 5.4 Consider the following bilevel polynomial problem [36]

mil’lm7yeR 2¢ +y
s.t. -1<z<1
-1<y<l1
1 1
y € argminweR{—iasw2 - 1104 cw € [—1,1]}.

This problem has two global minimizers (z7,y]) = (—1,0) and (x3,y5) = (—1/2,—1) with the optimal
value f* = —2.

Example 5.5 Consider the following bilevel polynomial problem [36]

minaz,yER Yy
s.t. 0.1 <x<1
-1<y<l1

3 1
y € argmin, g {z(16w* 4+ 2w + Sw? + W + 5) cw € [—1,1]}.

This problem has infinitely many global minimizers (z*,y*) = (a,0.5) for any a € [0.1,1] with the
optimal value f* = 0.5.

Example 5.6 Consider the following bilevel polynomial problem [36]

ming yer —T + TY + 10y?
s.t. -1<z<1
-1<y<l1
y € argmin, cp{—zw?® +w*/2:w € [-1,1]}.
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This problem has a unique global minimizer (z*,y*) = (0,0) with the optimal value f* = 0.

We solved these four problems by using the approximation scheme proposed in Section 4 imple-
mented via the software GloptiPoly 3 and the SDP solver Sedumi. For detailed illustration of how the
scheme is implemented, see Example The numerical results are summarized in the following table.
Note that deg denotes the maximum degree of the polynomial underestimation used in a subproblem
of our scheme.

Table 2: Non-Convex Lower-Level Problems

Test Problems Known optimal solutions Computed solutions
Example (z*,y*) = (—-1,-1) (z,y) = (—1.0000, —1.0000)
fFf=-1 f = —1.0000
CPU time=1.0746
deg=12
Example (x*,y*) = (-1,0) or (—1/2,-1) (z,y) = (—0.9991, —0.0020)
ff=-2 f=-2.0002
CPU time=5.1432
deg=14
Example (x*,y*) = (a,0.5) for all a € [0.1,1] (x,y) = (0.2299, 0.4990)
f*=05 f=0.4990
CPU time=6.8819
deg=12
Example [5.6] (z*,y*) = (0,0) (z,y) = (0.0034, —0.0002)
fr=0 f=-0.0034
CPU time= 0.8844
deg=10

6 Conclusion and Further Research

We established that a global minimizer and the global minimum of a bilevel polynomial optimization
problem can be found by way of solving a sequence of semidefinite programming relaxations. We
first considered a bilevel polynomial optimization problem where the lower level problem is a convex
problem. In this case, we proved that the values of the sequence of relaxation problems converge to
the global optimal value of the bilevel problem under a mild assumption. This shows that a global
solution can simply be found by first transforming the bilevel problem into an equivalent single-level
polynomial problem and then solving the resulting single-level problem by the standard sequential
SDP relaxations used in the polynomial optimization [26].

We then examined a general bilevel polynomial optimization problem with a not necessarily convex
lower-level problem. We established that the global optimal value in this case can be found by way of
solving a new sequential semidefinite programming relaxation problems based on the joint-marginal
approach proposed in [27]. This was done by using a sequence of semidefinite programming relaxations
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of its e-approximation problem under the standard Assumption 2.1 of polynomial optimization, where
€ > 0 is smaller than a positive threshold.

The convergence of the proposed semidefinite programming approximation scheme relies on As-
sumption 2.1 which requires that the feasible set of the bilevel problem is bounded. The proposed
scheme can also be extended to cover possible unbounded feasible sets by exploiting coercivity of the
objective function of the upper/lower level problem as in our recent papers [21, 22, 23] where the
convergence of the sequence of semidefinite programming relaxations was established for polynomial
optimization problems with unbounded feasible sets.

Our bilevel problem, in the present paper, represents the so-called optimistic approach to the leader
and follower’s game in which the follower is assumed to be co-operative and so, the leader can choose
the solution with the lowest cost. The pessimistic approach assumes that the follower may not be co-
operative and hence the leader will need to prepare for the worst cost. Mathematically, the following
bilevel problem represents the pessimistic approach:

min max f(x
rER? yeY (x) f( ,y)

subject to  g;(z) <0, i=1,...,s,

where Y (z) := argmin, cgm{G(z,w) : hj(w) < 0,5 = 1,...,r}. A possible method to solving this
bilevel problem is to construct a polynomial approximation for the optimal value of the problem z >
maxycy () f(,y) using the joint marginal approach of [27] and then design a semidefinite programming
approximation method that is similar to the scheme studied in the present paper. This would be an
interesting topic for future research.

Appendix A: Semi-algebraic functions and sets

In this appendix, we summarize some of the important properties of semi-algebraic functions which
are used in this paper (see [9]).

(i) Finite union (resp. intersection) of semi-algebraic sets is semi-algebraic. The Cartesian product
(resp. complement, closure) of semi-algebraic sets is semi-algebraic.

(ii) If f, g are semi-algebraic functions on R” and A € R, then f+g, fg and Af are all semi-algebraic
functions.

(iii) If f is a semi-algebraic function on R™ and A € R, then {z : f(z) < A} (resp. {z : f(x) < A},
{z: f(z) < A} and {z : f(x) = A} are all semi-algebraic sets.

(iv) A composition of semi-algebraic maps is a semi-algebraic map.

(v) The image and inverse image of a semi-algebraic set under a semi-algebraic map are semi-
algebraic sets. In particular, the projection of a semi-algebraic set is still a semi-algebraic set.

25



(vi) If S is a compact semi-algebraic set in R™ and f : R™ x R™ — R is a real polynomial, then the
function z — mﬂi{n {f(z,y) : y € S}, is also semi-algebraic.
yeR™

Remark 6.1 If A € R", B € R™ and S € R™ x R™ are semi-algebraic sets, then we see that U :=
{r € A : (z,y) € S,V y e B} is also a semi-algebraic set. To see this, from property (v), we see
that {xr € A : Jy € B,(x,y) € S} is semialgebraic. As the complement of U is the union of the
complement of A and the set {x € A : Jy € B, (z,y) & S}, it follows that the complement of U is
semi-algebraic by property (i). Thus, U is also semi-algebraic by property (i). In general, if we have a
finite collection of semi-algebraic sets, then any set obtained from them by a finite chain of quantifiers
is also semi-algebraic.

For a one-dimensional semi-algebraic function, we have further the following properties:

Lemma 6.2 (Monotonicity Theorem [15]) Let f be a semi-algebraic function f onR. Leta,b € R
with a < b. Then, there exists a finite subdivision a = tg < t1 < ... < tp = b such that, on each

interval (t;,ti+1), f is continuous and f either takes a constant value or is strictly monotone.

Lemma 6.3 (Growth Dichotomy Lemma [35]) Let ¢¢ > 0 and let f be a continuous semi-
algebraic function f on [0, €] with f(0) = 0. Then either f takes a constant value 0 over [0, €] or
there exist constants ¢ # 0 and p,q € N such that f(t) = cte +o(te) ast — 0.

Appendix B: Proof of Lemma 4.2

Proof. [Proof of (i)] From the definition of (P.), it is clear that if 0 < €; < ey, then val(P,) >
val(P,,). Using a similar method of proof as in Lemma 4.1, one can show that € — val(P) is a lower
semicontinuous function. Now, let ¢ — e4. Then, from the lower semicontinuity,

lim inf val( P, ) > val(FP%).

k—o0
This together with the fact that e — val(P:) is nonincreasing shows that limy_, val(P.,) = (P). So,

this function is right continuous.

Let J(z) := min,{G(z,w) : hj(w) < 0,5 = 1,...,7}. By property (vi), J is a semialgebraic
function. Let

X = {(e,z,y) €[0,400) X R" x R™ : gi(z,y) <0,i=1,...,s,
hi(y) <0,j=1,....rG(z,y) - J(z) < €}
and
Y = {(ez,y) € X: f(z,y) < f(a,b), V(e a,b) € X}.

We can verify that X and Y are semialgebraic sets by properties (ii), (iii) and Remark Further,
by definition, the graph of the function € — val(P) is given by {(¢, f(z,y)) : (¢,z,y) € Y}. Clearly,
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this set is the image of the set Y under the semialgebraic map (€, x,y) — (€, f(x,y)), and hence it is
a semialgebraic set by property (v). Thus, € — val(P) is a semi-algebraic function on [0, +00).

Fix a finite interval I C [0,400). As € — val(F) is a semialgebraic function, it follows from Lemma
that the function € — val(P,) is continuous over I except at finitely many points.

[Proof of (ii)] Fix a finite interval I C [0,+00). Denote the discontinuity points of € — val(P)
on I by {e1,...,¢} for some I € N. Clearly, infi<;<; ¢ > 0 as € — val(P) is right continuous. Let
€ = minj<;,<;{€}/2 > 0. Then, € — val(P) is continuous over [0,€]. Applying Lemma with f
replaced by € +— val(P.) — val(P) on [0, €], we see that there exist constants ¢ > 0, p,q¢ € N5 and
€0 € (0,1) with €y < € such that

val(P.) < val(P) + cer < val(P) + ceé, for all € € [0, €], (6.2)

where the last inequality holds as 0 < € < ¢g < 1. This, together with the nonincreasing property of
€ — val(P), yields the last assertion.

Appendix C: Proof of Theorem (Convergence of Algorithm 4.5)

Proof. [Proof of (i)] Recall from Lemma that Ji(z) < J(x) for all k € N and for all z € Q. So,
val(PF) > val(P,) for all k € N. This implies that v¥ > val(P.) for all k € N. As v¥ is a non-increasing
sequence which is bounded below, limg_, s, vf exists. Let ve = limg_,o vf. Then,

ve > val(P). (6.3)

Let 6 € (0,¢) and consider problem (P._5). By Assumption 2.1, K and F are compact sets. From
the nonsmooth Danskin Theorem (see [8, Page 86]), we see that the optimal value function of the
lower level problem J(z) := min,erm{G(z,w) : hj(w) < 0,5 =1,...,7} is locally Lipschitz (and so,
is continuous). Thus, a global minimizer of (P,_s) exists. Let (Z,7) be a global minimizer of (P._s).
The set Dy := {(z,y) € KN(R" x F): G(z,y) — J(z) <€, f(z,y) < f(Z,y)+ d} is a nonempty set
as (Z,y) € Dy. Moreover, from our assumption we have cl(int(K N (R™ x F))) = K N (R™ x F). This
together with the fact that {(z,y) : G(z,y) — J(z) <€, f(z,y) < f(Z,y) + I} is an open set gives us
that
D= {(z,y) € int(K N (R" x F)) : G(z,y) — J(z) < e and f(x,y) < f(Z,§) + I}

is a nonempty open set. So, D := PryD = {z eR": (z,y) € D for some y € R™} is also a nonempty
open set. Since .J; converges to J in L'(€,¢)-norm, .J; converges to J on Q almost everywhere.
Moreover, as ¢(£2) < 400, the classical Egorov’s theorem guarantees that there exists a subsequence
I, such that Jj, converges to J @-almost uniformly on €. So, there exists a Borel set A with ¢(A) < 2
with 7 := ¢(D) > 0 such that J;, — J uniformly over Q\A. As in the proof of Lemma we can
show that (Q\A)ND # 0. Let o € (Q\A)ND. Then, we have J;, (x9) — J(zo) and there exists yo € F
such that G(zo,y0) — J(x0) < € and f(zo,y0) < f(Z,y) + 0. So, for all large k, G(xo, yo) — Ji, (x0) < €.

Thus, for all large k, (g, o) is feasible for (P%*) and

ol < val(P) < f(0,30) < f(2,5) + 6 = val(Pr_g) + 6.
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Letting k — oo, we obtain that ve = limy_,o v%* < val(P._s) + d. Letting § — 0T, we see that

ve < lim val(Py). (6.4)

d—e~

Therefore, the inequality val(P.) < ve < 6lim val(Py) follows by combining 1) and lb To see
—€
the second assertion in (i), we only need to notice from Lemma [4.2{i) that € — val(P.) is continuous

except finitely many points over a finite interval 1.

[Proof of (ii)] From Lemmal[4.2](ii), we see that there exists €9 > 0 such that e — val(P) is continuous
over (0, ¢€p). Thus, from (i), we have v* — val(P.) for all € € (0,¢). Now, fix any € € (0, ¢g), Let oz . 0

as k — oo. Let v¥ = minj<;<p val(P?) = val(Pi*) and let (wx,yx) be a dg-solution of (P*). Then,
{(zk,y)} € KN(R" x F). As K and F are compact, we see that {(x,yx)} is a bounded sequence.
Let (Z,7) be a cluster point of {(z,yx)}. Clearly, (z,7) € KN (R™ x F). As Jp < J on Q for all
keN, x, € PriK C Q and (zg, yx) is feasible for (Pi*). Hence, for each k € N

G(zr, yr) — J(zk) < Gk, yr) — Ji (2) < €.

Passing to the limit and noting that J is continuous, we get that G(z,y) — J(Z) < e. So, (Z,y) is
feasible for (P.). Finally, since v* — val(P.), it follows that

F@5) = lim f(ag ) < lm (0f +6;) = val(Pe)
k—ro0 k—o0
and (Z,y) is a global minimizer of (FP).
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