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Abstract

An outstanding open question posed by Guha and Indyk in 2006 asks to characterize metric
spaces in which distances can be estimated using efficient sketches. Specifically, we say that
a sketching algorithm is efficient if it achieves constant approximation using constant sketch
size. A well-known result of Indyk (J. ACM, 2006) implies that a metric that admits a constant-
distortion embedding into ℓp for p ∈ (0, 2] also admits an efficient sketching scheme. But is the
converse true, i.e., is embedding into ℓp the only way to achieve efficient sketching?

We address these questions for the important special case of normed spaces, by providing an
almost complete characterization of sketching in terms of embeddings. In particular, we prove
that a finite-dimensional normed space allows efficient sketches if and only if it embeds (linearly)
into ℓ1−ε with constant distortion. We further prove that for norms that are closed under
sum-product, efficient sketching is equivalent to embedding into ℓ1 with constant distortion.
Examples of such norms include the Earth Mover’s Distance (specifically its norm variant, called
Kantorovich–Rubinstein norm), and the trace norm (a.k.a. Schatten 1-norm or the nuclear
norm). Using known non-embeddability theorems for these norms by Naor and Schechtman
(SICOMP, 2007) and by Pisier (Compositio. Math., 1978), we then conclude that these spaces
do not admit efficient sketches either, making progress towards answering another open question
posed by Indyk in 2006.

Finally, we observe that resolving whether “sketching is equivalent to embedding into ℓ1 for
general norms” (i.e., without the above restriction) is equivalent to resolving a well-known open
problem in Functional Analysis posed by Kwapien in 1969.

1 Introduction

One of the most exciting notions in the modern algorithm design is that of sketching, where an in-

put is summarized into a small data structure. Perhaps the most prominent use of sketching is to

estimate distances between points, one of the workhorses of similarity search. For example, some

early uses of sketches have been designed for detecting duplicates and estimating resemblance

between documents [Bro97, BGMZ97, Cha02]. Another example is Nearest Neighbor Search,

where many algorithms rely heavily on sketches, under the labels of dimension reduction (like
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the Johnson-Lindenstrauss Lemma [JL84]) or Locality-Sensitive Hashing (see e.g. [IM98, KOR00,

AI08]). Sketches see widespread use in streaming algorithms, for instance when the input implicitly

defines a high-dimensional vector (via say frequencies of items in the stream), and a sketch is used

to estimate the vector’s ℓp norm. The situation is similar in compressive sensing, where acquisition

of a signal can be viewed as sketching. Sketching—especially of distances such as ℓp norms—was

even used to achieve improvements for classical computational tasks: see e.g. recent progress on nu-

merical linear algebra algorithms [Woo14], or dynamic graph algorithms [AGM12, KKM13]. Since

sketching is a crucial primitive that can lead to many algorithmic advances, it is important to

understand its power and limitations.

A primary use of sketches is for distance estimation between points in a metric space (X, dX ),

such as the Hamming space. The basic setup here asks to design a sketching function sk : X →
{0, 1}s, so that the distance dX(x, y) can be estimated given only the sketches sk(x), sk(y). In the

decision version of this problem, the goal is to determine whether the inputs x and y are “close” or

“far”, as formalized by the Distance Threshold Estimation Problem [SS02], denoted DTEPr(X,D),

where, for a threshold r > 0 and approximation D ≥ 1 given as parameters in advance, the goal

is to decide whether dX(x, y) ≤ r or dX(x, y) > Dr. Throughout, it will be convenient to omit

r from the subscript.1 Efficient sketches sk almost always need to be randomized, and hence we

allow randomization, requiring (say) 90% success probability.

The diversity of applications gives rise to a variety of natural and important metrics M for which

we want to solve DTEP: Hamming space, Euclidean space, other ℓp norms, the Earth Mover’s

Distance, edit distance, and so forth. Sketches for Hamming and Euclidean distances are now

classic and well-understood [IM98, KOR00]. In particular, both are “efficiently sketchable”: one

can achieve approximation D = O(1) using sketch size s = O(1) (most importantly, independent

of the dimension of X). Indyk [Ind06] extended these results to efficient sketches for every ℓp norm

for p ∈ (0, 2]. In contrast, for ℓp-spaces with p > 2, efficient sketching (constant D and s) was

proved impossible using information-theoretic arguments [SS02, BJKS04]. Extensive subsequent

work investigated sketching of other important metric spaces,2 or refined bounds (like a trade-off

between D and s) for “known” spaces.3

These efforts provided beautiful results and techniques for many specific settings. Seeking

a broader perspective, a foundational question has emerged [McG06, Question #5]:

Question 1.1. Characterize metric spaces which admit efficient sketching.

To focus the question, efficient sketching will mean constant D and s for us. Since its formulation

circa 2006, progress on this question has been limited. The only known characterization is by

[GIM08] for distances that are decomposable by coordinates, i.e., dX(x, y) =
∑n

i=1 ϕ(xi, yi) for

1When X is a normed space it suffices to consider r = 1 by simply scaling the inputs x, y.
2Other metric spaces include edit distance [BJKK04, BES06, OR07, AK10] and its variants [CPSV00, MS00,

CMS01, CM07, CK06, AIK09], the Earth Mover’s Distance in the plane or in hypercubes [Cha02, IT03, CLL04,
KN06, AIK08, ADIW09], cascaded norms of matrices [JW09], and the trace norm of matrices [LNW14a].

3These refinements include the Gap-Hamming-Distance problem [Woo04, JKS08, BC09, BCR+10, CR12, She12,
Vid12], and LSH in ℓ1 and ℓ2 spaces [MNP06, OWZ14].
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some ϕ. In particular, they show a number of general conditions on ϕ which imply an Ω(n)

sketching complexity for dX .

1.1 The embedding approach

To address DTEP in various metric spaces more systematically, researchers have undertaken the

approach of metric embeddings. A metric embedding of X is a map f : X → Y into another metric

space (Y, dY ). The distortion of f is the smallest D′ ≥ 1 for which there exists a scaling factor

t > 0 such that

∀x, y ∈ X, dY (f(x), f(y)) ≤ t · dX(x, y) ≤ D′ · dY (f(x), f(y)).

If the target metric Y admits sketching with parameters D and s, then X admits sketching

with parameters D · D′ and s, by the simple composition sk′ : x 7→ sk(f(x)). This approach

of “reducing” sketching to embedding has been very successful, including for variants of the

Earth Mover’s Distance [Cha02, IT03, CLL04, NS07, AIK08], and for variants of edit distance

[BES06, OR07, CK06, AIK09, CPSV00, MS00, CMS01, CM07]. The approach is obviously most

useful when Y itself is efficiently sketchable, which holds for all Y = ℓp, p ∈ (0, 2] [Ind06] (we note

that ℓp for 0 < p < 1 is not a metric space, but rather a quasimetric space; the above definitions of

embedding and distortion make sense even when Y is a quasimetric, and we will use this extended

definition liberally). In fact, the embeddings mentioned above are all into ℓ1, except for [AIK09]

which employs a more complicated target space. We remark that in many cases the distortion D′

achieved in the current literature is not constant and depends on the “dimension” of X.

Extensive research on embeddability into ℓ1 has resulted in several important distortion lower

bounds. Some address the aforementioned metrics [KN06, NS07, KR09, AK10], while others deal

with metric spaces arising in rather different contexts such as Functional Analysis [Pis78, CK10,

CKN11], or Approximation Algorithms [LLR94, AR98, KV05, KS09]. Nevertheless, obtaining

(optimal) distortion bounds for ℓ1-embeddability of several metric spaces of interest, are still well-

known open questions [MN11].

Yet sketching is a more general notion, and one may hope to achieve better approximation

by bypassing embeddings into ℓ1. As mentioned above, some limited success in bypassing an

ℓ1-embedding has been obtained for a variant of edit distance [AIK09], albeit with a sketch size

depending mildly on the dimension of X. Our results disparage these hopes, at least for the case

of normed spaces.

1.2 Our results

Our main contribution is to show that efficient sketchability of norms is equivalent to embeddability

into ℓ1−ε with constant distortion. Below we only assert the “sketching =⇒ embedding” direction,

as the reverse direction follows from [Ind06], as discussed above.
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Theorem 1.2. Let X be a finite-dimensional normed space, and suppose that 0 < ε < 1/3. If X

admits a sketching algorithm for DTEP(X,D) for approximation D > 1 with sketch size s, then X

linearly embeds into ℓ1−ε with distortion D′ = O(sD/ε).

One can ask whether it is possible to improve Theorem 1.2 by showing that X, in fact, em-

beds into ℓ1. Since many non-embeddability theorems are proved for ℓ1, such a statement would

“upgrade” such results to lower bounds for sketches. Indeed, we show results in this direction too.

First of all, the above theorem also yields the following statement.

Theorem 1.3. Under the conditions of Theorem 1.2, X linearly embeds into ℓ1 with distortion

O(sD · log(dimX)).

Ideally, we would like an even stronger statement: efficient sketchability for norms is equivalent

to embeddability into ℓ1 with constant distortion (i.e., independent of the dimension of X as above).

Such a stronger statement in fact requires the resolution of an open problem posed by Kwapien in

1969 (see [Kal85, BL00]). To be precise, Kwapien asks whether every finite-dimensional normed

space X that embeds into ℓ1−ε for 0 < ε < 1 with distortion D0 ≥ 1 must also embed into ℓ1 with

distortion D1 that depends only on D0 and ε but not on the dimension of X (this is a reformulation

of the finite-dimensional version of the original Kwapien’s question). In fact, by Theorem 1.2, the

“efficient sketching =⇒ embedding into ℓ1 with constant distortion” statement is equivalent to a

positive resolution of the Kwapien’s problem. Indeed, for the other direction, consider a potential

counter-example to the Kwapien’s problem, i.e., a normed space X that embeds into ℓ1−ε with a

constant distortion D0 ≥ 1, but every embedding of X into ℓ1 incurs a distortion D1 = ω(1), where

the asymptotics is with the dimension of X (it is really a sequence of normed spaces). Hence, X

admits an efficient sketch obtained by combining the embedding into ℓ1−ε with the sketch of [Ind06],

but does not embed into ℓ1 with constant distortion. Thus, if the answer to Kwapien’s question is

negative, then our desired stronger statement is false.

To bypass the resolution of the Kwapien’s problem, we prove the following variant of the theo-

rem using a result of Kalton [Kal85]: efficient sketchability is equivalent to ℓ1-embeddability with

constant distortion for norms that are “closed” under sum-products. A sum-product of two normed

spaces X and Y , denoted X ⊕ℓ1
Y , is the normed space X × Y endowed with ‖(x, y)‖ = ‖x‖ + ‖y‖.

It is easy to verify that ℓ1, the Earth Mover’s Distance, and the trace norm are all closed under

taking sum-products (potentially with an increase in the dimension). Again, we only need to show

the “sketching =⇒ embedding” direction, as the reverse direction follows from the arguments

above — if a normed space X embed into ℓ1 with constant distortion, we can combine it with the

ℓ1 sketch of [Ind06] and obtain an efficient sketch for X. We discuss the application of this theorem

to the Earth Mover’s Distance in Section 1.3.

Theorem 1.4. Let (Xn)∞
n=1 be a sequence of finite-dimensional normed spaces. Suppose that for

every i1, i2 ≥ 1 there exists m = m(i1, i2) ≥ 1 such that Xi1 ⊕ℓ1
Xi2 embeds isometrically into Xm.

Assume that every Xn admits a sketching algorithm for DTEP(Xn,D) for fixed approximation
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D > 1 with fixed sketch size s (both independent of n). Then, every Xn linearly embeds into ℓ1 with

bounded distortion (independent of n).

Overall, we almost completely characterize the norms that are efficiently sketchable, thereby

making a significant progress on Question 1.1. In particular, our results suggest that the embed-

ding approach (embed into ℓp for some p ∈ (0, 2], and use the sketch from [Ind06]) is essentially

unavoidable for norms. It is interesting to note that for general metrics (not norms) the implication

“efficient sketching =⇒ embedding into ℓ1 with constant distortion” is false: for example the Heisen-

berg group embeds into ℓ2-squared (with bounded distortion) and hence is efficiently sketchable,

but it is not embeddable into ℓ1 [LN06, CK10, CKN11] (another example of this sort is provided

by Khot and Vishnoi [KV05]). At the same time, we are not aware of any counter-example to the

generalization of Theorem 1.2 to general metrics.

1.3 Applications

To demonstrate the applicability of our results to concrete questions of interest, we consider two

well-known families of normed spaces, for which we obtain the first non-trivial lower bounds on the

sketching complexity.

Trace norm. Let Tn be the vector space R
n×n (all real square n × n matrices) equipped with

the trace norm (also known as the nuclear norm and Schatten 1-norm), which is defined to be

the sum of singular values. It is well-known that Tn embeds into ℓ2 (and thus also into ℓ1) with

distortion
√
n (observe that the trace norm is within

√
n from the Frobenius norm, which embeds

isometrically into ℓ2). Pisier [Pis78] proved a matching lower bound of Ω(
√
n) for the distortion of

any embedding of Tn into ℓ1.

This non-embeddability result, combined with our Theorem 1.3, implies a sketching lower bound

for the trace norm. Before, only lower bounds for specific types of sketches (linear and bilinear)

were known [LNW14a].

Corollary 1.5. For any sketching algorithm for DTEP(Tn,D) with sketch size s the following

bound must hold:

sD = Ω

( √
n

log n

)
.

Earth Mover’s Distance. The (planar) Earth Mover’s Distance (also known as the transportation

distance, Wasserstein-1 distance, and Monge-Kantorovich distance) is the vector space EMDn =

{p ∈ R
[n]2 :

∑
i pi = 0} endowed with the norm ‖p‖EMD defined as the minimum cost needed to

transport the “positive part” of p to the “negative part” of p, where the transportation cost per

unit between two points in the grid [n]2 is their ℓ1-distance (for a formal definition see [NS07]). It

is known that this norm embeds into ℓ1 with distortion O(log n) [IT03, Cha02, NS07], and that any

ℓ1-embedding requires distortion Ω(
√

log n) [NS07].

We obtain the first sketching lower bound for EMDn, which in particular addresses a well-known

open question [McG06, Question #7]. Its proof is a direct application of Theorem 1.4 (which we
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can apply, since EMDn is obviously closed under taking sum-products), to essentially “upgrade”

the known non-embeddability into ℓ1 [NS07] to non-sketchability.

Corollary 1.6. No sketching algorithm for DTEP(EMDn,D) can achieve approximation D and

sketch size s that are constant (independent of n).

The reason we can not apply Theorem 1.3 and get a clean quantitative lower bound for sketches

of EMDn is the factor log(dimX) in Theorem 1.3. Indeed, the lower bound on the distortion of

an embedding of EMDn into ℓ1 proved in [NS07] is Ω(
√

log n), which is smaller than log(dimX) =

Θ(log n).

We note that EMDn is a (slight) generalization of the EMD metric version commonly used

in computer science applications. In the latter, given two weighted sets A,B ⊂ [n]2 of the same

total weight, one has to solve, using only their sketches sk(A), sk(B), the DTEP(EMD,D) problem

where the EMD distance is the min-cost matching between A and B. Observe that the weights used

in the sets A,B ⊂ [n]2 are all positive. The slight difference is that in DTEP (EMDn,D), which

asks analogously to estimate ‖p − q‖EMD, each of p, q ∈ R
[n]2 has both “positive” and “negative”

parts. Nevertheless, we show in Appendix A that efficient sketching of EMD on weighted sets

implies efficient sketching of the EMDn norm. Hence, the non-sketchability of EMDn norm applies

to EMD on weighted sets as well.

1.4 Other related work

Another direction for “characterizing tractable metrics” is in the context of streaming algorithms,

where the input is an implicit vector x ∈ R
n given in the form of updates (i, δ), with the semantics

that coordinate i has to be increased by δ ∈ R.

There are two known results in this vein. First, [BO10] characterized the streaming complexity

of computing the sum
∑

i ϕ(xi), for some fixed ϕ (e.g., ϕ(x) = x2 for ℓ2 norm), when the updates

are positive. They gave a precise property of ϕ that determines whether the complexity of the

problem is small. Second, [LNW14b] showed that, in certain settings, streaming algorithms may

as well be linear, i.e., maintain a sketch f(x) = Ax for a matrix A, and the size of the sketch is

increased by a factor logarithmic in the dimension of x.

Furthermore, after the appearance of the conference version of the current article, there has

been another characterization result that significantly generalizes and extends [BO10]. Specifically,

for every symmetric norm ‖ · ‖X , it is proved in [BBC+17] that the sketching (and streaming) com-

plexity of computing ‖x‖X is characterized by the norm’s (maximum) modulus of concentration, up

to polylogarithmic factors in the dimension of X. Finally, we mention a related work [ANRW17],

where an efficient data structure for the Approximate Nearest Neighbor search (ANN) is constructed

for every symmetric norm. It is known [IM98, KOR00] that efficient sketches imply good data struc-

tures for ANN, however, the result of [ANRW17] shows that having efficient ANN data structure

is a way more general property of an underlying norm.
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1.5 Proof overview

Following common practice, we think of sketching as a communication protocol. In fact, our results

hold for protocols with an arbitrary number of rounds (and access to public randomness).

Our proof of Theorem 1.2 can be divided into two parts: information-theoretic and analytic.

First, we use information-theoretic tools to convert an efficient protocol for DTEP(X,D) into a so-

called threshold map from X to a Hilbert space. Our notion of a threshold map can be viewed as

a very weak definition of embeddability (see Definition 4.5 for details). Second, we use techniques

from nonlinear functional analysis to convert a threshold map to a linear map into ℓ1−ε.

Information-theoretic part. To get a threshold map from a protocol for DTEP(X,D), we pro-

ceed in three steps. First, using the fact thatX is a normed space, we are able to give a good protocol

for DTEP(ℓk∞(X),Dk) (Lemma 4.3). The space ℓk∞(X) is a product of k copies of X equipped with

the norm ‖(x1, . . . , xk)‖ = maxi ‖xi‖. Then, invoking the main result from [AJP10], we conclude

non-existence of certain Poincaré-type inequalities for X (Theorem 4.4, in the contrapositive).

Finally, we use convex duality together with a compactness argument to conclude the existence

of a desired threshold map from X to a Hilbert space (Lemma 4.6, again in the contrapositive).

Analytic part. We proceed from a threshold map by upgrading it to a uniform embedding

(see Definition 2.1) of X into a Hilbert space (Theorem 4.12). For this we adapt arguments

from [JR06, Ran06]. We use two tools from nonlinear functional analysis: an extension theo-

rem for 1/2-Hölder maps from a (general) metric space to a Hilbert space [Min70] (Theorem 4.16),

and a symmetrization lemma for maps from metric abelian groups to Hilbert spaces [AMM85]

(Lemma 4.14).

Then we convert a uniform embedding of X into a Hilbert space to a linear embedding into ℓ1−ε

by applying the result of Aharoni, Maurey and Mityagin [AMM85] together with the result of

Nikishin [Nik72]. A similar argument has been used in [NS07].

To prove a quantitative version of this step, we examine the proofs from [AMM85] and [Nik72],

and obtain explicit bounds on the distortion of the resulting map. We accomplish this in Section 5.

Embeddings into ℓ1. To prove Theorem 1.3 (which has dependence on the dimension of X), we

note that it is a simple corollary of Theorem 1.2 and a result of Zvavitch [Zva00], which gives a

dimension reduction for subspaces of ℓ1−ε.

Norms closed under sum-product. Finally, we prove Theorem 1.4 — embeddability into ℓ1

for norms closed under sum-product — by proving and using a finitary version of the theorem of

Kalton [Kal85] (Lemma 6.1), instead of invoking Nikishin’s theorem as above. We prove the finitary

version by reducing it to the original statement of Kalton’s theorem via a compactness argument.

Let us point out that Naor and Schechtman [NS07] showed how to use (the original) Kalton’s

theorem to upgrade a uniform embedding of EMDn into a Hilbert space to a linear embedding

into ℓ1 (they used this reduction to exclude uniform embeddability of EMDn). Their proof used

certain specifics of EMD. In contrast, to get Theorem 1.4 for general norms, we seem to need

a finitary version of Kalton’s theorem.
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We also note that in Theorems 1.2, 1.3 and 1.4, we can conclude embeddability into ℓd1−ε and

ℓd1 respectively, where d is near-linear in the dimension of the original space. This conclusion uses

the known dimension reduction theorems for subspaces from [Tal90, Zva00].

2 Preliminaries on functional analysis

We remind a few definitions and standard facts from functional analysis that will be useful for

our proofs. A central notion in our proofs is the notion of uniform embeddings, which is a weaker

version of embeddability.

Definition 2.1. For two metric spaces X and Y , we say that a map f : X → Y is a uniform

embedding, if there exist two non-decreasing functions L,U : R+ → R+ such that for every x1, x2 ∈
X one has L(dX(x1, x2)) ≤ dY (f(x1), f(x2)) ≤ U(dX(x1, x2)), U(t) → 0 as t → 0 and L(t) > 0 for

every t > 0. The functions L(·) and U(·) are called moduli of the embedding.

Definition 2.2. An inner-product space is a real vector space X together with an inner product

〈·, ·〉 : X × X → R, which is a symmetric positive-definite bilinear form. A Hilbert space is an

inner-product space X that is complete as a metric space.

Every inner-product space is a normed space: we can set ‖x‖ =
√

〈x, x〉. For a normed space

X we denote by BX its closed unit ball. The main example of a Hilbert space is ℓ2, the space of

all real sequences {xn} with
∑

i x
2
i < ∞, where the inner product is defined as

〈x, y〉 =
∑

i

xiyi.

Definition 2.3. For a set S, a function K : S × S → R is called a kernel if K(s1, s2) = K(s2, s1)

for every s1, s2 ∈ S. We say that the kernel K is positive-definite if for every α1, α2, . . . , αn ∈ R

and s1, s2, . . . , sn ∈ S, one has
n∑

i,j=1

αiαjK(si, sj) ≥ 0.

We say that K is negative-definite if for every α1, . . . , αn ∈ R with α1 + α2 + . . . + αn = 0 and

s1, s2, . . . , sn ∈ S, one has
n∑

i,j=1

αiαjK(si, sj) ≤ 0.

The following are standard facts about positive- and negative-definite kernels.

Fact 2.4 ([Sch35]). For a kernel K : S ×S → R, there exists an embedding f : S → H, where H is

a Hilbert space, such that K(s1, s2) = 〈f(s1), f(s2)〉H for every s1, s2 ∈ S, iff K is positive-definite.

Fact 2.5 ([Sch38]). For a kernel K : S × S → R, there exists an embedding f : S → H, where H

is a Hilbert space, such that K(s1, s2) = ‖f(s1) − f(s2)‖2
H for every s1, s2 ∈ S, iff K(s, s) = 0 for

every s ∈ S and K is negative-definite.
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Definition 2.6. For an abelian group G, we say that a function f : G → R is positive-definite if

a kernel K(g1, g2) = f(g1 − g2) is positive-definite. Similarly, f is said to be negative-definite if

K(g1, g2) = f(g1 − g2) is negative-definite.

The following lemma essentially says that an embedding of an abelian group G into a Hilbert

space can be made translation-invariant.

Lemma 2.7 (see the proof of Lemma 3.5 in [AMM85]). Suppose that f is a map from an abelian

group G to a Hilbert space such that for every g ∈ G we have supg1−g2=g〈f(g1), f(g2)〉 < +∞. Then,

there exists a map f ′ from G to a Hilbert space such that 〈f ′(g1), f ′(g2)〉 depends only on g1 − g2

and for every g1, g2 ∈ G we have

inf
g′

1−g′
2=g1−g2

〈f(g′
1), f(g′

2)〉 ≤ 〈f ′(g1), f ′(g2)〉 ≤ sup
g′

1−g′
2=g1−g2

〈f(g′
1), f(g′

2)〉.

Finally, let dimX denote the dimension of a finite-dimensional vector space X.

3 Preliminaries on communication complexity

Let X be a metric space, on which we would like to solve DTEPr(X,D) defined as follows for some

r > 0 and D ≥ 1. Alice has a point x ∈ X, Bob has a point y ∈ X, and they would like to decide

between the two cases: dX(x, y) ≤ r and dX(x, y) > Dr. To accomplish this goal, Alice and Bob

exchange at most s bits of communication.

There are several types of communication protocols that we consider, depending on the ran-

domness used, which we present below in the order of their power. Our main result applies to the

most powerful type. We will later show some connections between the protocols of different types.

• Deterministic protocols. This is a simple two-way communication protocol with no ran-

domness. First, Alice sends a bit to Bob that depends only on x. Then, Bob sends a bit to

Alice that depends on Alice’s first communication bit and on y. Then, Alice sends a bit to

Bob that depends on x and the two previous communication bits, etc. Finally, whoever sends

the s-th bit must decide the answer to the DTEP problem. We define a transcript Πx,y to be

the sequence of s bits sent by the two parties for a given pair of inputs x and y.

• Private-coin protocols with bounded number of coins. This is a randomized version

of the previous definition. Alice and Bob each have access to an independent random string,

denoted a ∈ {0, 1}R and b ∈ {0, 1}R, respectively. Communication bits sent by Alice are

allowed to depend on a, and those sent by Bob may depend on b. We require that for every

pair of inputs, the probability (over the random coins a, b) of the answer being correct is at

least, say, 2/3. Whenever we allow randomness, the transcript Πx,y becomes a random variable

(depending on x and y). For fixed a, b ∈ {0, 1}R, we denote by Πx,y(a, b) the (deterministic)

transcript for inputs x and y when the random strings are set to be a and b, respectively.
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• Public-coin protocols with finitely many coins. This is a variant of the previous defini-

tion, where Alice and Bob have access to a common random string sampled uniformly from

{0, 1}R, and the bits sent by both Alice and Bob can depend on this random string. Again,

we require the probability (over the public coins) of the answer being correct to be at least,

say, 2/3 for every pair of inputs. Also, we denote by Πx,y(u) the deterministic transcript for

fixed inputs and public coins u.

Clearly, a public-coin protocol with 2R public coins can emulate a private-coin protocol with

R random bits for each of Alice and Bob.

• Public-coin protocols with countably many coins. The protocols defined above are

standard in the communication complexity literature. However, we need a definition that is

stronger: we allow countably many public coins. The reason to consider the stronger notion

is that the known protocols for DTEP based on [Ind06] fall into this category. Since we allow

infinitely many coins, we need to be careful when defining a class of allowed protocols. A

sequence of coin tosses u can be identified with a point in the Cantor space Ω = {0, 1}ω

equipped with the standard Lebesgue measure. We require that for every pair of inputs

x, y ∈ X, the function u 7→ Πx,y(u) is measurable. This restriction allows us to consider

probabilities of the form Pr[Πx,y ∈ A], where A ⊆ {0, 1}s is an arbitrary set of possible

transcripts. In particular, the probability of success is well-defined, and we require it, as

before, to be at least 2/3.

The results in this paper apply to the most general protocols: public-coin protocols with count-

ably many coins.

We now show some connections between these notions. A crucial tool in our result is a theorem

of [AJP10], which is itself based on the tools from [BJKS02]. The latter shows a lower bound

for private-coin protocols with finitely many coins. We show next how the lower bounds from

[AJP10, BJKS02] extend to the most general type, public-coin protocols with countably many

coins.

3.1 Information complexity: private-coins vs public-coins

In general, a lower bound for private-coins protocols does not imply a lower bound for public-

coins protocols (without a loss in the parameters). However, such an implication does hold for

the particular lower bound technique that we are employing. In particular, we use and exploit the

notion of information complexity from [BJKS02], defined as follows. Let (x, y, λ) be distributed

according to a distribution D over X × X × Λ, where Λ is an auxiliary set. We will assume that

the support of D is finite. Then, we can define the information complexity with respect to D,

denoted ICD(DTEPr(X,D)), to be the infimum of I(x, y : Πx,y | λ) over all private-coin protocols

for DTEPr(X,D), which succeed on every valid input with probability at least 2/3, where I(· : · | ·)
is the (conditional) mutual information.
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It is a standard fact that ICD(DTEPr(X,D)) is a lower bound on the communication complexity

of DTEPr(X,D) with private-coin protocols since

I(x, y : Πx,y | λ) ≤ sup
x,y,a,b

|Πx,y(a, b)|.

However, we are interested in using the information complexity (as defined above) to lower

bound the communication complexity of DTEPr(X,D) for public-coin protocols with finite number

of coins. It turns out that ICD(DTEPr(X,D)) is a valid lower bound for this case as well, as argued

in the claim below.

Lemma 3.1. The communication complexity of DTEPr(X,D) for public-coin protocols with finite

number of coins is at least ICD(DTEPr(X,D)).

Proof. Consider any protocol with public randomness, denoted Πx,y(u), where x, y are the two

inputs and u is the public random string. Then

sup
x,y,u

|Πx,y(u))| ≥ H(Πx,y(u) | λ, u) ≥ I(x, y : Πx,y(u) | λ, u).

Now consider the following private-coins protocol Π′
x,y(a, b), where a, b are the two private

random strings of Alice and Bob, respectively. In the first round, Alice sends a to Bob to be used

as public randomness u = a. Then they run Πx,y(u). In other words, the transcript of Π′
x,y(a, b) is

〈a,Πx,y(a)〉. We claim that

I(x, y : Π′
x,y(a, b) | λ) = I(x, y : Πx,y(u) | λ, u).

Indeed, by definition of Π′,

I(x, y : Π′
x,y(a, b) | λ) = I(x, y : a,Πx,y(a) | λ),

and using the chain rule for mutual information,

I(x, y : a,Πx,y(a) | λ) = I(x, y : a | λ) + I(x, y : Πx,y(a) | λ, a).

The first term is exactly zero since x, y and a are independent (conditioned on λ). The remaining

term gives the equality we are looking for, and proves the lemma. In particular, we see that the

length of a public-coin protocol is at least the information complexity I(x, y : Π′
x,y(a, b) | λ) of any

private-coin protocol Π′.

3.2 From countable to finite number of coins

We now observe that if we focus only on a finite number of possible inputs to our DTEP problem,

then the existence of a protocol with countably-many coins implies the existence of a protocol

with bounded number of coins. This claim will be sufficient to generalize our theorem to the most
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general type of protocols—public-coin protocols with countably many coins: see the remark after

Theorem 4.4.

Claim 3.2. Fix a public-coin protocol with countably many coins and s bits of communication.

Let (x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N)) be N fixed pairs of inputs for the DTEP problem, and let

ε > 0 be a positive parameter. Then there exists a public-coin protocol with R = R(s,N, ε) < ∞
coins and s bits of communication, such that for every 1 ≤ i ≤ N , the success probabilities of the

original and the new protocols on (x(i), y(i)) differ by at most ε.

Proof. Since we care about the correctness of the protocol only on the inputs (x(i), y(i)), we can think

of the protocol as a distribution over a bounded (as a function of s and N) number of deterministic

protocols (there’s only a finite number of distinct protocol transcripts). Then, we can approximate

this distribution within a statistical distance ε using a bounded number of public coins.

4 From sketches to uniform embeddings

Our main technical result shows that, for a finite-dimensional normed space X, good sketches for

DTEP(X,D) imply a good uniform embedding of X into a Hilbert space (Definition 2.1). Below

is the formal statement.

Theorem 4.1. Suppose a finite-dimensional normed space X admits a public-coin randomized

communication protocol for DTEP(X,D) of size s for approximation D > 1. Then, there exists a

map f : X → H to a Hilbert space such that for all x1, x2 ∈ X,

min

{
1,

‖x1 − x2‖X

s ·D

}
≤ ‖f(x1) − f(x2)‖H ≤ K · ‖x1 − x2‖1/2

X ,

where K > 1 is an absolute constant.

Theorem 4.1 implies a qualitative version of Theorem 1.2 using the results of Aharoni, Maurey,

and Mityagin [AMM85] and Nikishin [Nik72] (see Theorem 4.2).

Theorem 4.2 ([AMM85, Nik72]). For every fixed 0 < ε < 1, any finite-dimensional normed space

X that is uniformly embeddable into a Hilbert space is linearly embeddable into ℓ1−ε with a distortion

that depends only on ε and the moduli of the assumed uniform embedding.

To prove the full (quantitative) versions of Theorems 1.2 and 1.3, we adapt the proofs from [AMM85,

Nik72] in Section 5 to get an explicit bound on the distortion.

In the rest of this section, we prove Theorem 4.1 according to the outline in Section 1.5, putting

the pieces together in Section 4.4.

4.1 Sketching implies the absence of Poincaré inequalities

Sketching is often viewed from the perspective of a two-party communication complexity. Alice

receives input x, Bob receives y, and they need to communicate to solve the DTEP problem. In
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particular, a sketch of size s implies a communication protocol that transmits s bits: Alice just

sends her sketch sk(x) to Bob, who computes the output of DTEP (based on that message and his

sketch sk(y)). We assume here a public-coins model, i.e., Alice and Bob have access to a common

(public) random string that determines the sketch function sk.

To characterize sketching protocols, we build on results of Andoni, Jayram and Pǎtraşcu [AJP10,

Sections 3 and 4]. This works in two steps: first, we show that a protocol for DTEP(X,D) implies

a sketching algorithm for DTEP(ℓk∞(X), kD), with a loss of factor k in approximation (Lemma 4.3,

see the proof in the end of the section). As usual, ℓk∞(X) is a normed space derived from X by

taking the vector space Xk and letting the norm of a vector (x1, . . . xk) ∈ Xk be the maximum of

the norms of its k components. The second step is to apply a result from [AJP10] (Theorem 4.4),

which asserts that sketching for ℓk∞(X) precludes certain Poincaré inequalities for the space X.

Lemma 4.3. Let X be a finite-dimensional normed space that for some D ≥ 1 admits a commu-

nication protocol for DTEP(X,D) of size s. Then for every integer k, the space ℓk∞(X) admits

sketching with approximation kD and sketch size s′ = O(s).

Proof. Fix a threshold t > 0, and recall that we defined the success probability of sketching to be

0.9. By our assumption, there is a sketching function sk for X that achieves approximation D and

sketch size s for threshold kt. Now define a “sketching” function sk′ for ℓk∞(X) by choosing random

signs ε1, . . . , εk ∈ {±1}, letting sk′ : x 7→ sk(
∑k

i=1 εixi), and using the same decision procedure

used by sk (for X).

Now to examine the performance of sk′, consider x, y ∈ ℓk∞(X). If their distance is at most t,

then we always have that ‖∑k
i=1 εixi −∑k

i=1 εiyi‖ ≤ ∑k
i=1‖xi − yi‖ ≤ kt (i.e., for every realization

of the random signs). Thus with probability at least 0.9 the sketch will declare that x, y are “close”.

If the distance between x, y is greater than kD · t, then for some coordinate, say i = 1, we have

‖x1−y1‖ > kD·t. Letting z =
∑

i≥2 εi(xi−yi), we can write ‖∑k
i=1 εixi−

∑k
i=1 εiyi‖ = ‖ε1(x1−y1)+

z‖ = ‖(x1−y1)+ε1z‖. The last term must be at least ‖x1−y1‖ under at least one of the two possible

realizations of ε1, because by the triangle inequality 2‖x1 − y1‖ ≤ ‖(x1 − y1) + z‖ + ‖(x1 − y1) − z‖.

We see that with probability 1/2 we have ‖∑k
i=1 εixi−

∑k
i=1 εiyi‖ ≥ ‖x1−y1‖ > D ·kt, and thus with

probability at least 1/2 · 0.9 = 0.45 the sketch will declare that x, y are “far”. This last guarantee

is not sufficient for sk′ to be called a sketch, but it can easily be amplified.

The final sketch sk′′ for ℓk∞(X) is obtained by O(1) independent repetitions of sk′, and returning

“far” if at least 0.3-fraction of the repetitions come up with this decision. These repetitions amplify

the success probability to 0.9, while increasing the sketch size to O(s).

We now state a slight modification of the theorem from [AJP10]. We will actually use its

contrapositive, to conclude the absence of Poincaré inequalities.

Theorem 4.4 (modification of [AJP10]). Let X be a metric space, and fix r > 0, D ≥ 1. Suppose

there are α > 0, β ≥ 0, and two symmetric probability measures µ1, µ2 on X ×X such that

• The support of µ1 is finite and is only on pairs with distance at most r;
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• The support of µ2 is finite and is only on pairs with distance greater than Dr; and

• For every f : X → Bℓ2
(where Bℓ2

is the unit ball of ℓ2),

E
(x,y)∼µ1

‖f(x) − f(y)‖2 ≥ α · E
(x,y)∼µ2

‖f(x) − f(y)‖2 − β.

Then for every integer k, the communication complexity of DTEP(ℓk∞(X),D) for protocols with

countably many public coins (see Section 3 for precise definitions) and with probability of error

δ0 > 0 is at least Ω(k) · (α(1 − 2
√
δ0) − β

)
.

In [AJP10], almost the same theorem is proved with only one difference: the protocols for

DTEP(ℓk∞(X),D) are only allowed to use finitely many private coins. Here we use Claims 3.1

and 3.2 to generalize their theorem to Theorem 4.4.

Indeed, because the “hard distributions” µ1 and µ2 are finitely-supported, an inspection of

the proofs from [AJP10] shows that there is a finite set of inputs I such that any private-coin

protocol for DTEP(ℓk∞(X),D) that is correct on I with probability at least 1 − δ0 must have

information complexity at least Ω(k) · (α(1 − 2
√
δ0) − β

)
. But by Claim 3.1, we get that any

protocol with bounded number of public coins correct on I must have communication complexity

at least Ω(k) ·(α(1 − 2
√
δ0) − β

)
. Finally, Claim 3.2 implies that the same is true for protocols with

countably many public coins that are correct on all valid inputs with probability at least 1 − δ0.

4.2 The absence of Poincaré inequalities implies threshold maps

We proceed to prove that non-existence of Poincaré inequalities implies the existence a “threshold

map”, as formalized in Lemma 4.6 below. The proof is similar to duality arguments that one often

encounters in embedding theory: for instance, see Proposition 15.5.2 in [Mat02]. First we define

the notion of threshold maps.

Definition 4.5. A map f : X → Y between metric spaces (X, dX) and (Y, dY ) is called an

(s1, s2, τ1, τ2, τ3)-threshold map for 0 < s1 < s2, 0 < τ1 < τ2 < τ3, if for all x1, x2 ∈ X:

• if dX(x1, x2) ≤ s1, then dY (f(x1), f(x2)) ≤ τ1;

• if dX(x1, x2) ≥ s2, then dY (f(x1), f(x2)) ≥ τ2; and

• dY (f(x1), f(x2)) ≤ τ3.

We now provide the main lemma of this section, stated in the contrapositive: the non-existence

of threshold maps implies a Poincaré inequality.

Lemma 4.6. Suppose X is a metric space that does not allow an (s1, s2, τ1, τ2,+∞)-threshold map

to a Hilbert space. Then, for every δ > 0 there exist two symmetric probability measures µ1, µ2 on

X ×X such that

• The support of µ1 is finite and is only on pairs with distance at most s1;
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• The support of µ2 is finite and is only on pairs with distance at least s2; and

• For every f : X → Bℓ2
,

E
(x,y)∼µ1

‖f(x) − f(y)‖2 ≥
(
τ1

τ2

)2

· E
(x,y)∼µ2

‖f(x) − f(y)‖2 − δ. (1)

We prove Lemma 4.6 via the following three claims. The first one uses standard arguments about

embeddability of finite subsets (see, e.g., Proposition 8.12 in [BL00], or Lemma 1.1 from [Bal92]).

We note that this claim requires a finite value for τ3, as opposed to τ3 = +∞, which is the only

reason the definition of a threshold embedding (Definition 4.5) needs the parameter τ3. In the

following claims, we denote by
(X

2

)
the set of all unordered pairs {x, y} with x, y ∈ X, x 6= y.

Claim 4.7. For every metric space X and every 0 < s1 < s2, 0 < τ1 < τ2 < τ3 there exists an

(s1, s2, τ1, τ2, τ3)-threshold map of X to a Hilbert space iff the same is true for every finite subset

of X.

The proof of Claim 4.7 uses standard definitions and facts from general topology: product

topology, Tychonoff’s theorem, as well as convergence and accumulation points along nets. These

definitions can be found in a general topology textbook (see, e.g., [Mun00]).

Proof. The “only if” direction is obvious, so let us turn to the “if” part. Consider the topological

space

U =
∏

{x,y}∈(X

2 )

[−τ2
3 , τ

2
3 ].

By Tychonoff’s theorem U is compact. For every finite X ′ ⊂ X there exists an (s1, s2, τ1, τ2, τ3)-

threshold map fX′ from X ′ to a Hilbert space. It gives rise to a point uX′ ∈ U whose coordinates

are given by

(uX′)x,y =





‖fX′(x) − fX′(y)‖2, if x, y ∈ X ′;

0, otherwise.

Since U is compact, uX′ has an accumulation point u∗ ∈ U along the net of finite subsets of X. Let

us reformulate what it means.

Claim 4.8. For every {x1, y1}, {x2, y2}, . . . , {xk, yk} ∈ (X
2

)
and every ε > 0, there exists a finite

set A ⊂ X such that for all 1 ≤ i ≤ k, both xi, yi ∈ A and
∣∣(u∗)xi,yi

− ‖fA(xi) − fA(yi)‖2
∣∣ < ε .

Now we define a kernel K : X ×X → R, given by (recall Definition 2.3):

K(x, y) =





0, if x = y;

(u∗)x,y, otherwise.

Claim 4.9. The kernel K(·, ·) is negative-definite.
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Proof. Suppose that K is not negative-definite. It means that there exist α1, α2, . . . , αn ∈ R with
∑

i αi = 0, and t1, t2, . . . , tn ∈ X such that

n∑

i,j=1

αiαjK(ti, tj) = γ > 0.

There exists ε > 0 such that for every (aij)n
i,j=1 with |aij −K(ti, tj)| < ε one has

n∑

i,j=1

αiαjaij ≥ γ/2 > 0. (2)

Now apply Claim 4.8 to get a finite set A ⊂ X that contains all si’s such that ‖fA(ti) − fA(tj)‖2 is

within ε from K(ti, tj) for every i, j. But by (2), it means that

n∑

i,j=1

αiαj‖fA(ti) − fA(tj)‖2 ≥ γ/2 > 0,

which contradicts Fact 2.5. This proves Claim 4.9.

Thus, by Fact 2.5, there exists a map f : X → H to a Hilbert space H such that for every

x, y ∈ X one has ‖f(x) − f(y)‖2 = K(x, y). The final step is to verify that f is indeed a required

(s1, s2, τ1, τ2, τ3)-map (according to Definition 4.5). This can be done exactly the same way as in

the proof of Claim 4.9. This completes the proof of Claim 4.7.

Claim 4.10. Suppose that (X, dX ) is a finite metric space and 0 < s1 < s2, 0 < τ1 < τ2 < τ3.

Assume that there is no (s1, s2, τ1, τ2, τ3)-threshold map of X to ℓ2. Then, there exist two symmetric

probability measures µ1, µ2 on X ×X such that

• µ1 is supported only on pairs with distance at most s1, while µ2 is supported only on pairs

with distance at least s2; and

• for every f : X → ℓ2,

E
(x,y)∼µ1

‖f(x) − f(y)‖2 ≥
(
τ1

τ2

)2

· E
(x,y)∼µ2

‖f(x) − f(y)‖2 −
(

2τ1

τ3

)2

· sup
x∈X

‖f(x)‖2. (3)

Proof. Let L2 ⊂ R
(X

2 ) be the cone of squared Euclidean metrics (also known as negative-type

distances) on X. Let K ⊂ R
(X

2 ) be the polytope of non-negative functions l :
(X

2

) → R+ such that

for every x, y ∈ X we have

• l({x, y}) ≤ τ2
3 ;

• if dX(x, y) ≤ s1, then l({x, y}) ≤ τ2
1 ;

• if dX(x, y) ≥ s2, then l({x, y}) ≥ τ2
2 .
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Notice that L2 ∩ K = ∅, as otherwise X allows an (s1, s2, τ1, τ2, τ3)-threshold map to ℓ2. We

will need the following claim, which is just a variant of the Hyperplane Separation Theorem.

Claim 4.11. There exists a ∈ R(X

2 ) such that

∀l ∈ L2, 〈a, l〉 ≤ 0; (4)

∀l ∈ K, 〈a, l〉 > 0. (5)

Proof. Since both L2 and K are convex and closed, and, in addition, K is compact, there exists a

separating (affine) hyperplane between L2 and K. Specifically, there is a non-zero a such that for

every l ∈ L2 one has 〈a, l〉 ≤ η, and for every l ∈ K one has 〈a, l〉 > η. Since L2 is a cone, one can

assume without loss of generality that η = 0. Indeed, the case η < 0 is impossible because 0 ∈ L2,

so suppose that η > 0. If for all l ∈ L2 we have 〈a, l〉 ≤ 0, then we are done. Otherwise, take any

l ∈ L2 such that 〈a, l〉 > 0, and scale it by sufficiently large C > 0 to get a point Cl ∈ L2 so that

〈a,Cl〉 = C〈a, l〉 > η, arriving to a contradiction.

We now continue the proof of Claim 4.10. We may assume without loss of generality that

∀ {x, y} ∈ (X2
)
, if dX(x, y) < s2 then a{x,y} ≤ 0. (6)

To see this, let us zero every such a{x,y} > 0, and denote the resulting point â. Then for every

l ∈ L2 (which clearly has non-negative coordinates), 〈â, l〉 ≤ 〈a, l〉 ≤ 0. And for every l ∈ K, let l̂

be equal to l except that we zero the same coordinates where we zero a (which in particular satisfy

dX(x, y) < s2); observe that also l̂ ∈ K, and thus 〈â, l〉 = 〈a, l̂〉 > 0. We get that â separates K and

L2 and also satisfies (6).

Now we define non-negative functions µ̃1, µ̃2, µ̃3 :
(X

2

) → R+ as follows:

µ̃1({x, y}) = −a({x, y}) 1{dX (x,y)≤s1};

µ̃2({x, y}) = a({x, y}) 1{dX (x,y)≥s2 and ax,y≥0};

µ̃3({x, y}) = −a({x, y}) 1{dX (x,y)>s1 and ax,y<0}.

By (6), these µ̃i “cover” all cases, i.e.,

∀ {x, y} ∈ (X2
)
, a({x, y}) = −µ̃1({x, y}) + µ̃2({x, y}) − µ̃3({x, y}).

For i ∈ {1, 2, 3} define λi =
∑

{x,y} µ̃i({x, y}) and µi({x, y}) = µ̃i({x, y})/λi. We argue that µ1 and

µ2 are as required by Claim 4.10, and indeed the only non-trivial property to check is the second
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item. From the condition that 〈a, l〉 ≤ 0 for every l ∈ L2 we get that for every map f : X → ℓ2,

0 ≥
∑

{x,y}

a({x, y}) · ‖f(x) − f(y)‖2

=
∑

{x,y}

[
− µ̃1({x, y}) + µ̃2({x, y}) − µ̃3({x, y})

]
· ‖f(x) − f(y)‖2,

which, in turn, implies

λ1 · E
(x,y)∼µ1

‖f(x) − f(y)‖2 ≥ λ2 · E
(x,y)∼µ2

‖f(x) − f(y)‖2 − 4λ3 · sup
x

‖f(x)‖2. (7)

Consider the point l ∈ K with value τ2
1 on supp(µ1), value τ2

2 on supp(µ2), value τ2
3 on supp(µ3),

and 0 otherwise; the condition 〈a, l〉 > 0 gives

−λ1τ
2
1 + λ2τ

2
2 − λ3τ

2
3 > 0,

which implies λ1 < λ2 · τ2
2 /τ

2
1 and λ3 < λ2 · τ2

2 /τ
2
3 (in particular, λ2 > 0). Plugging into (7), we get

the inequality required for Claim 4.10.

We are now ready to prove Lemma 4.6.

Proof of Lemma 4.6. We start with a metric space X that does not admit a (s1, s2, τ1, τ2,+∞)-

threshold map, and prove that this implies the Poincaré inequality (1).

Indeed, X has no (s1, s2, τ1, τ2, τ3)-threshold map to a Hilbert space for any finite value τ3. We

set τ3 > τ2 be sufficiently large so that (2τ1/τ3)2 < δ. Then, by Claim 4.7 there exists a finite

subset X ′ ⊂ X that has no (s1, s2, τ1, τ2, τ3)-threshold map to a Hilbert space (which without

loss of generality can be chosen to be ℓ2, since X ′ is finite). Now, using Claim 4.10, we obtain

finitely-supported probability measures µ1 and µ2, which satisfy (3). This concludes the proof of

Lemma 4.6, since its statement only considers f such that the image of f is the unit ball of ℓ2,

and, thus, supx∈X ‖f(x)‖2 ≤ 1. Note that the measures µ1, µ2 depend on the value of τ3 (and, as

a result, on δ).

4.3 Threshold maps imply uniform embeddings

We now prove that threshold embeddings imply uniform embeddings, formalized as follows.

Theorem 4.12. Suppose that X is a finite-dimensional normed space such that there exists a

(1,D, τ1, τ2,+∞)-threshold map to a Hilbert space for some D > 1 and for some 0 < τ1 < τ2 with

τ2 > 8τ1. Then there exists a map h of X into a Hilbert space such that for every x1, x2 ∈ X,

(τ
1/2
2 − (8τ1)1/2) · min

{
1,

‖x1 − x2‖
2D + 4

}
≤ ‖h(x1) − h(x2)‖ ≤ (2τ1‖x1 − x2‖)1/2. (8)
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In particular, h is a uniform embedding of X into a Hilbert space with moduli that depend only on

τ1, τ2 and D.

Let us point out that in [JR06, Ran06], Johnson and Randrianarivony prove that for a Banach

space coarse embeddability into a Hilbert space is equivalent to uniform embeddability. Our defi-

nition of a threshold map is weaker than that of a coarse embedding (for the latter see [JR06] say),

but we show that we can adapt the proof of [JR06, Ran06] to our setting as well (at least whenever

the gap between τ1 and τ2 is large enough). Since we only need one direction of the equivalence, we

present a part of the argument from [JR06] with one (seemingly new) addition: Claim 4.19. The

resulting proof is arguably simpler than the combination of [JR06] and [Ran06], and yields a clean

quantitative bound (8).

Intuition. Let us provide some very high-level intuition of the proof of Theorem 4.12. We start

with a threshold map f from X to a Hilbert space. First, we show that f is Lipschitz on pairs of

points that are sufficiently far. In particular, f , restricted on a sufficiently crude net N of X, is

Lipschitz. This allows us to use a certain extension theorem to extend the restriction of f on N to a

Lipschitz function on the whole X, while preserving the property that f does not contract too much

distances that are sufficiently large. Then, we get a required uniform embedding by performing a

certain symmetrization step.

The actual proof is different in a number of details; in particular, instead of being Lipschitz the

actual property we will be trying to preserve is different.

Useful facts. To prove Theorem 4.12, we need the following three results.

Lemma 4.13 ([Sch37]). For a set S and a map f from S to a Hilbert space, there exists a map g

from S to a Hilbert space such that ‖g(x1) − g(x2)‖ = ‖f(x1) − f(x2)‖1/2 for every x1, x2 ∈ S.

Lemma 4.14 (essentially Lemma 3.5 from [AMM85], see also Lemma 2.7 from the present paper).

Suppose that f is a map from an abelian group G to a Hilbert space such that for every g ∈ G we

have supg1−g2=g ‖f(g1)−f(g2)‖ < +∞. Then, there exists a map f ′ from G to a Hilbert space such

that ‖f ′(g1) − f ′(g2)‖ depends only on g1 − g2 and for every g1, g2 ∈ G we have

inf
g′

1−g′
2=g1−g2

‖f(g′
1) − f(g′

2)‖ ≤ ‖f ′(g1) − f ′(g2)‖ ≤ sup
g′

1−g′
2=g1−g2

‖f(g′
1) − f(g′

2)‖. (9)

Proof. This lemma is similar to Lemma 2.7 with one twist: in the statement, we now have distances

instead of dot products. The proof of Lemma 2.7 relies on the characterization from Fact 2.4. If

instead we use Fact 2.5, we can reuse the proof of Lemma 3.5 from [AMM85] verbatim to prove

the present lemma.

Let us sketch here the symmetrization procedure. Let B(G) be the vector space of bounded

functions h : G → R. Then, one can show that there exists a finitely additive invariant mean

M : B(G) → R: a linear functional such that

• for every h ∈ B(G) such that h ≥ 0 one has Mh ≥ 0;
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• for every h ∈ B(G) and g ∈ G one has Mh = M(x 7→ h(x+ g));

• M(x 7→ 1) = 1.

The existence of suchM is non-trivial and requires the axiom of choice (see Theorem 17.5 from [HR94]).

Let us now consider a map f from the statement of the lemma and consider the kernel

K(g1, g2) = ‖f(g1) − f(g2)‖2. Let us define a new function K ′(g1, g2) as follows:

K ′(g1, g2) = M(x 7→ K(x+ g1 − g2, x)).

Now we need to check that:

• K ′ is a kernel (that is, it is non-negative and symmetric) and K ′(g, g) = 0 for every g ∈ G;

• K ′ is negative-definite (see Definition 2.3), assuming that K is negative-definite (which is true

by Fact 2.5);

• for every g1, g2 ∈ G one has

inf
g′

1−g′
2=g1−g2

‖f(g′
1) − f(g′

2)‖2 ≤ K ′(g1, g2) ≤ sup
g′

1−g′
2=g1−g2

‖f(g′
1) − f(g′

2)‖2

assuming (9).

This can be done exactly the same way as in the proof of Lemma 3.5 from [AMM85]. Finally, we

observe that K ′(g1, g2) depends only on g1 − g2 and via Fact 2.5 gives a map f ′ from G to a Hilbert

space with the required properties.

Definition 4.15. We say that a map f : X → Y between metric spaces is 1/2-Hölder with constant

C, if for every x1, x2 ∈ X one has dY (f(x1), f(x2)) ≤ C · dX(x1, x2)1/2.

Theorem 4.16 ([Min70], see also Theorem 19.1 in [WW75]).). Let (X, dX ) be a metric space and

let H be a Hilbert space. Suppose that f : S → H, where S ⊂ X, is a 1/2-Hölder map with a

constant C > 0. Then there exists a map g : X → H that coincides with f on S and is 1/2-Hölder

with the constant C.

We are now ready to prove Theorem 4.12.

Proof of Theorem 4.12. We prove the theorem via the following sequence of claims. Suppose that

X is a finite-dimensional normed space. Let f be a (1,D, τ1, τ2,+∞)-threshold map to a Hilbert

space.

The first claim is well-known and is a variant of Proposition 1.11 from [BL00].

Claim 4.17. For every x1, x2 ∈ X we have ‖f(x1) − f(x2)‖ ≤ max {1, 2 · ‖x1 − x2‖} · τ1.
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Proof. If ‖x1 − x2‖ ≤ 1, then ‖f(x1) − f(x2)‖ ≤ τ1, and we are done. Otherwise, let us take

y0, y1, . . . , yl ∈ X such that y0 = x1, yl = x2, ‖yi − yi+1‖ ≤ 1 for every i, and l = ⌈‖x1 − x2‖⌉. In

particular, we can take yi = x1 + i · x1−x2

‖x1−x2‖ for i = 0, 1, . . . l − 1, and yl = x2. We have

‖f(x1) − f(x2)‖ ≤
l−1∑

i=0

‖f(yi) − f(yi+1)‖ ≤ lτ1 = ⌈‖x1 − x2‖⌉ · τ1 ≤ 2‖x1 − x2‖ · τ1,

where the first step is by the triangle inequality, the second step follows from ‖yi − yi+1‖ ≤ 1, and

the last step follows from ‖x1 − x2‖ ≥ 1.

The proof of the next claim essentially appears in [JR06].

Claim 4.18. There exists a map g from X to a Hilbert space such that for every x1, x2 ∈ X,

• ‖g(x1) − g(x2)‖ ≤ (2τ1 · ‖x1 − x2‖)1/2;

• if ‖x1 − x2‖ ≥ D + 2, then ‖g(x1) − g(x2)‖ ≥ τ
1/2
2 − (8τ1)1/2;

Proof. From Claim 4.17 and Lemma 4.13 we can get a map g′ from X to a Hilbert space such that

for every x1, x2 ∈ X

• ‖g′(x1) − g′(x2)‖ ≤ max
{

1, (2‖x1 − x2‖)1/2
}

· τ1/2
1 ;

• if ‖x1 − x2‖ ≥ D, then ‖g′(x1) − g′(x2)‖ ≥ τ
1/2
2 .

Let N ⊂ X be a 1-net of X such that all the pairwise distances between points in N are more

than 1. The map g′ is 1/2-Hölder on N with a constant (2τ1)1/2, so we can apply Theorem 4.16

and get a map g that coincides with g′ on N and is 1/2-Hölder on the whole X with a constant

(2τ1)1/2. That is, for every x1, x2 ∈ X we have

• ‖g(x1) − g(x2)‖ ≤ (2τ1 · ‖x1 − x2‖)1/2;

• if x1 ∈ N , x2 ∈ N and ‖x1 − x2‖ ≥ D, then ‖g(x1) − g(x2)‖ ≥ τ
1/2
2 .

To conclude that g is as required, let us lower bound ‖g(x1)−g(x2)‖ whenever ‖x1−x2‖ ≥ D+2.

Suppose that x1, x2 ∈ X are such that ‖x1 − x2‖ ≥ D + 2. Let u1 ∈ N be the closest net point to

x1 and, similarly, let u2 ∈ N be the closest net point to x2. Observe that

‖u1 − u2‖ ≥ ‖x1 − x2‖ − ‖x1 − u1‖ − ‖x2 − u2‖ ≥ (D + 2) − 1 − 1 = D.

We have

‖g(x1) − g(x2)‖ ≥ ‖g(u1) − g(u2)‖ − ‖g(u1) − g(x1)‖ − ‖g(u2) − g(x2)‖ ≥ τ
1/2
2 − 2(2τ1)1/2,

as required, where the second step follows from the inequality ‖g(u1)−g(u2)‖ ≥ τ
1/2
2 , which is true,

since u1, u2 ∈ N , and that g is 1/2-Hölder with a constant (2τ1)1/2.
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The following claim completes the proof of Theorem 4.12.

Claim 4.19. There exists a map h from X to a Hilbert space such that for every x1, x2 ∈ X:

• ‖h(x1) − h(x2)‖ ≤ (2τ1 · ‖x1 − x2‖)1/2;

• ‖h(x1) − h(x2)‖ ≥ (τ
1/2
2 − (8τ1)1/2) · min {1, ‖x1 − x2‖/(2D + 4)}.

Proof. We take the map g from Claim 4.18 and apply Lemma 4.14 to it. Let us call the resulting

map h. The first desired condition for h follows from a similar condition for g and Lemma 4.14.

Let us prove the second one.

If x1 = x2, then there is nothing to prove. If ‖x1 − x2‖ ≥ D + 2, then by Claim 4.18 and

Lemma 4.14, ‖h(x1) −h(x2)‖ ≥ τ
1/2
2 − (8τ1)1/2, and we are done. Otherwise, let us consider points

y0, y1, . . . , yl ∈ X such that y0 = 0, yi − yi−1 = x1 − x2 for every i, and l =
⌈

D+2
‖x1−x2‖

⌉
. Since

‖yl − y0‖ = ‖l(x1 − x2)‖ = l‖x1 − x2‖ ≥ D + 2, we have

τ
1/2
2 − (8τ1)1/2 ≤ ‖h(yl) − h(y0)‖ ≤

l∑

i=1

‖h(yi) − h(yi−1)‖

= l · ‖h(x1) − h(x2)‖ ≤ 2D + 4

‖x1 − x2‖ · ‖h(x1) − h(x2)‖,

where the equality follows from the conclusion of Lemma 4.14.

Finally, observe that Theorem 4.12 is merely a reformulation of Claim 4.19.

4.4 Putting it all together

We now show that Theorem 4.1 follows by applying Lemma 4.3, Theorem 4.4, Lemma 4.6, and

Theorem 4.12, in this order, with an appropriate choice of parameters.

Proof of Theorem 4.1. Suppose DTEP(X,D) admits a protocol of size s. By setting k = Cs in

Lemma 4.3 (C is a large absolute constant, to be chosen later), we conclude that DTEP(ℓCs
∞ (X), CsD)

admits a protocol of size s′ = O(s).

Now choosing C large enough and applying Theorem 4.4 (in contrapositive), we conclude that

X has no Poincaré inequalities for distance scales 1 and CsD, with α = 0.01 and β = 0.001.

Applying Lemma 4.6 (in contrapositive) we conclude that X allows a (1, CsD, 1, 10,+∞)-

threshold map to a Hilbert space.

Using Theorem 4.12 it follows that there is a map h from X to a Hilbert space, such that for

all x1, x2 ∈ X,

min

{
1,

‖x1 − x2‖
s ·D

}
≤ ‖h(x1) − h(x2)‖ ≤ K · ‖x1 − x2‖1/2,

where K > 1 is an absolute constant, and this proves the theorem.
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Remark: Instead of applying Lemma 4.3 and Theorem 4.4, we could have attempted to apply the

reduction from [AK10] to get a threshold map from X to a Hilbert space directly. That approach

is much simpler technically, but has two fatal drawbacks. First, we end up with a threshold map

with a gap between τ1 and τ2 being arbitrarily close to 1, and thus, we are unable to invoke

Theorem 4.12, which requires the gap to be more than 8. Second, the parameters of the resulting

threshold map are exponential in the number of bits in the communication protocol, which is bad

for the quantitative bounds from Section 5.

5 Quantitative bounds

In this section we prove the quantitative version of our results, namely Theorem 1.2 and Theo-

rem 1.3, for which we will reuse Theorem 4.1. In particular, we prove the following theorem.

Theorem 5.1. For a finite-dimensional normed space X and ∆ > 1, assume we have a map

f : X → H to a Hilbert space H, such that, for an absolute constant K > 0 and for every x1, x2 ∈ X:

• ‖f(x1) − f(x2)‖H ≤ K · ‖x1 − x2‖1/2
X ; and

• if ‖x1 − x2‖X ≥ ∆, then ‖f(x1) − f(x2)‖H ≥ 1.

Then, for any ε ∈ (0, 1/3), the space X linearly embeds into ℓ1−ε with distortion O(∆/ǫ).

Note that Theorem 1.2 now follows from applying Theorem 4.1 together with Theorem 5.1 for

∆ = sD. We can further prove Theorem 1.3 by using the following result of Zvavitch from [Zva00].

Lemma 5.2 ([Zva00]). Every d-dimensional subspace of L1−ε embeds linearly into ℓ
d·poly(log d)
1−ε with

distortion O(1).

Indeed, applying Lemma 5.2 together with Theorem 5.1, we get that for every 0 < ε < 1/3 the

space X linearly embeds into ℓ
poly(dim X)
1−ε with distortion O(∆/ε). Thus, X is embeddable into ℓ1

with distortion

O
(
∆ · (dimX)O(ε)/ε

)
.

Setting ε = Θ(1/ log(dimX)), we obtain Theorem 1.3.

It remains to prove Theorem 5.1. Its proof proceeds by adjusting the arguments from [AMM85]

and [Nik72].

Proof of Theorem 5.1. Fix X, ∆ > 0, and the corresponding map f : X → H. We first prove the

following lemma.

Lemma 5.3. There exists a probability measure µ on R
dim X symmetric around the origin such that

its (real-valued) characteristic function ϕ : X → R has the following properties for every x ∈ X:

• ϕ(x) ≥ e−K̃·‖x‖X ; and

• if ‖x‖X ≥ ∆, then ϕ(x) ≤ 1/e.
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Here K̃ > 0 is an absolute constant.

Proof. It is known from [Sch38] that for a Hilbert space H the function g : h 7→ e−‖h‖2
H is positive-

definite. Thus, there exists a function g̃ : H → H̃ to a Hilbert space H̃ such that for every h1, h2 ∈ H

one has
〈
g̃(h1), g̃(h2)

〉
H̃

= e−‖h1−h2‖2
H . Setting f̃ = g̃ ◦ f , we get a function f̃ : X → H̃ to a Hilbert

space such that for an absolute constant K̃ > 0 for every x1, x2 ∈ X, we have:

•
∥∥∥f̃(x1)

∥∥∥
H̃

= 1;

•
〈
f̃(x1), f̃(x2)

〉

H̃
≥ e−K̃·‖x1−x2‖X ; and

• if ‖x1 − x2‖X ≥ ∆, then
〈
f̃(x1), f̃(x2)

〉

H̃
≤ 1/e.

Applying Lemma 2.7 and Lemma 2.4, we obtain a positive-definite function ϕ : X → R such

that:

• ϕ(0) = 1;

• for every x ∈ X one has ϕ(x) ≥ e−K̃·‖x‖X ; and

• if ‖x‖X ≥ ∆, then ϕ(x) ≤ 1/e.

We can now use Bochner’s theorem, which is the following characterization of continuous

positive-definite functions, via the Fourier transform.

Theorem 5.4 (Bochner’s theorem, see [Fel71]). If a function f : Rd → R is positive-definite,

continuous at zero, and f(0) = 1, then there exists a probability measure µ on R
d such that f is the

µ’s characteristic function. That is, for every x ∈ R
d,

f(x) =

∫

Rd
ei〈x,v〉 µ(dv).

In particular, note that we have that ϕ(0) = 1, ϕ is positive-definite and is continuous at zero.

Hence, by Bochner’s theorem, we get a probability measure µ over R
dim X whose characteristic

function equals to ϕ. That is, for every x ∈ X we get

ϕ(x) =

∫

Rdim X
ei〈x,v〉 µ(dv),

where 〈·, ·〉 is the standard dot product in R
dim X . Clearly, µ is symmetric around the origin, since

ϕ is real-valued. This completes the proof of Lemma 5.3.

Our next goal is to show that µ gives rise to a one-measurement linear sketch for X with ap-

proximation O(∆) and a certain additional property that will be useful to us. The following lemma

contains two standard facts about one-dimensional characteristic functions (see, e.g., [Pan08]). We

include the proof for completeness.
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Lemma 5.5. Let ν be a symmetric probability measure over the real line, and let

ψ(t) =

∫

R

eivt ν(dv)

be its characteristic function (which is real-valued due to the symmetry of ν). Then,

• if for some R > 0 and 0 < ε < 1 we have |ψ(R)| ≤ 1 − ε, then

ν
({
v ∈ R : |v| ≥ Ωε(1/R)

}) ≥ Ωε(1); (10)

• for every δ > 0 one has

ν
({
v ∈ R : |v| ≥ 1/δ

}) ≤ O(1/δ) ·
∫ δ

−δ

(
1 − ψ(t)

)
dt. (11)

Proof. Let us start with proving the first claim. We have for every α > 0

1 − ε ≥ |ψ(R)| ≥
∫

R

cos(vR) ν(dv) ≥ cosα · ν
(
{v ∈ R : |vR| ≤ α}

)
− ν

(
{v ∈ R : |vR| > α}

)

= (1 + cosα) · ν
(
{v ∈ R : |vR| ≤ α}

)
− 1,

where the second step uses the fact that ψ is real-valued. Thus, we have

ν
(
{v ∈ R : |vR| ≤ α}

)
≤ 2 − ε

1 + cosα
.

Setting α = Θ
(√
ε
)
, we get the desired bound.

Now let us prove the second claim. We have, for every δ > 0,

∫ δ

−δ

(
1 − ψ(t)

)
dt =

∫ δ

−δ

∫

R

(
1 − eivt) ν(dv) dt = 2δ ·

∫

R

(
1 − sin(δv)

δv

)
ν(dv)

≥ 2(1 − sin 1) · δ · ν
(
{v ∈ R : |δv| ≥ 1}

)
,

where we use that (1 − sin y/y) > (1 − sin 1) for every y such that |y| > 1.

Now we will show that the probability measure µ from Lemma 5.3 gives a good linear sketch

for X. To see this we use the conditioning on the characteristic function of µ, namely, we exploit

them using the above Lemma 5.5. In order to do this, we look at the one-dimensional projections

of µ as follows. Let x ∈ X be a fixed vector. For a measurable subset A ⊆ R we define

ν(A) = µ
({
v ∈ R

dim X : 〈x, v〉 ∈ A
})
.

It is immediate to check that the characteristic function ψ of ν is as follows: ψ(t) = ϕ(t · x) (recall

that ϕ is the characteristic function of µ). Next we apply Lemma 5.5 to ψ and use the properties
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of ϕ from the conclusion of Lemma 5.3. Namely, we get for every x ∈ X:

µ
({
v ∈ R

dim X : |〈x, v〉| ≥ Ω(‖x‖X/∆)
})

= Ω(1); (12)

and for every t > 0,

µ
({
v ∈ R

dim X : |〈x, v〉| ≥ t · ‖x‖X
}) ≤ O(1/t). (13)

Indeed, (12) follows from the bound ϕ(x) ≤ 1/e whenever ‖x‖X ≥ ∆ and (10). The inequal-

ity (13) follows from the estimate ϕ(x) ≥ e−K̃·‖x‖X and (11) (for 1/δ = t‖x‖X) that together

give

µ
({
v ∈ R

dim X : |〈x, v〉| ≥ t · ‖x‖X
})

= ν({r ∈ R : |r| ≥ t‖x‖X})

≤ O(t‖x‖X)

∫ 1/t‖x‖X

−1/t‖x‖X

(1 − e−K̃s‖x‖X ) ds,

as well as from the inequality

t

∫ 1/t

−1/t

(
1 − e−Cs) ds ≤ t

∫ 1/t

−1/t

(
1 − (1 − Cs)

)
ds = C/t.

Hence, µ gives rise to a one-measurement linear sketch of X with approximation O(∆), whose

“upper tail” is not too heavy.

Finally, we are ready to describe a desired linear embedding of X into L1−ε; we map X into

L1−ε(µ) as follows: x 7→ (v 7→ 〈x, v〉). The following Lemma states that the distortion of this

embedding is O(∆/ε), as required.

Lemma 5.6. For 0 < ε < 1/3 and every x ∈ X,

Ω
(‖x‖X/∆

) ≤ ‖v 7→ 〈x, v〉‖L1−ε(µ) ≤ O
(‖x‖X/ε

)
.

Proof. The lower bound is straightforward:

‖v 7→ 〈x, v〉‖1−ε
L1−ε(µ) =

∫

Rdim X

∣∣〈x, v〉
∣∣1−ε

µ(dv) ≥ Ω(1) · Ω(‖x‖X/∆)1−ε,

where the last step follows from (12).

For the upper bound, we have for every α > 0,

‖v 7→ 〈x, v〉‖1−ε
L1−ε(µ) =

∫

Rdim X

∣∣〈x, v〉
∣∣1−ε

µ(dv) =

∫ ∞

0
µ
(
{v ∈ R

dim X : |〈x, v〉|1−ε ≥ s}
)
ds

≤ α+O(1) · ‖x‖X ·
∫ ∞

α
s− 1

1−ε ds ≤ α+O(1) · ‖x‖X

ε
· α− ε

1−ε ,
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where the third step follows from (13). Choosing α = ‖x‖1−ε
X /ε1−ε, we get

‖v 7→ 〈x, v〉‖L1−ε(µ) ≤ O(1) · 2
1

1−ε · ‖x‖X

ε
.

This concludes the proof of Theorem 5.1.

6 Embedding into ℓ1 via sum-products

Finally, we prove Theorem 1.4: good sketches for norms closed under the sum-product imply

embeddings into ℓ1 with constant distortion. First we invoke Theorem 4.1 and get a sequence of

good uniform embeddings into a Hilbert space, whose moduli depend only on the sketch size and the

approximation. Then, we use the main result of this section: Lemma 6.1. Before stating the lemma,

let us remind a few notions. For a metric space X, recall that the metric space ℓk1(X) =
⊕k

ℓ1
Xn is

the direct sum of k copies of X, with the associated distance defined as a sum-product (ℓ1-product)

over the k copies. We define ℓ1(X) similarly. We also denote X ⊕ℓ1
Y the sum-product of X and

Y .

Lemma 6.1. Let (Xn)∞
n=1 be a sequence of finite-dimensional normed spaces. Suppose that for

every i1, i2 ≥ 1 there exists m = m(i1, i2) ≥ 1 such that Xi1 ⊕ℓ1
Xi2 is isometrically embeddable

into Xm. If every Xn admits a uniform embedding into a Hilbert space with moduli independent of

n, then every Xn is linearly embeddable into ℓ1 with distortion independent of n.

Note that Theorem 1.4 just follows from combining Lemma 6.1 with Theorem 4.1.

Before proving Lemma 6.1, we state the following two useful theorems. The first one (Theo-

rem 6.2) follows from the fact that uniform embeddability into a Hilbert space is determined by

embeddability of finite subsets [BL00]. The second one (Theorem 6.3) follows by composing results

of Aharoni, Maurey, and Mityagin [AMM85] and Kalton [Kal85].

Theorem 6.2 (Proposition 8.12 from [BL00]). Let A1 ⊂ A2 ⊂ . . . be metric spaces and let A =
⋃

i Ai. If every An is uniformly embeddable into a Hilbert space with moduli independent of n, then

the whole A is uniformly embeddable into a Hilbert space.

Theorem 6.3 ([AMM85, Kal85]). A Banach space X is linearly embeddable into L1 iff ℓ1(X) is

uniformly embeddable into a Hilbert space.

We are now ready to proceed with the proof of Lemma 6.1.

Proof of Lemma 6.1. Let X = X1 ⊕ℓ1
X2 ⊕ℓ1

. . .. More formally,

X =
{

(x1, x2, . . .) : xi ∈ Xi,
∑

i

‖xi‖ < ∞
}
,
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where the norm is defined as follows:

∥∥(x1, x2, . . .)
∥∥ =

∑

i

‖xi‖.

We claim that the space ℓ1(X) embeds uniformly into a Hilbert space. To see this, consider

Up = ℓp1(X1 ⊕ℓ1
X2 ⊕ℓ1

. . . ⊕ℓ1
Xp), which can be naturally seen as a subspace of ℓ1(X). Then,

U1 ⊂ U2 ⊂ . . . ⊂ Up ⊂ . . . ⊂ ℓ1(X) and
⋃

p Up is dense in ℓ1(X). By the assumption of the lemma,

Up is isometrically embeddable into Xm for some m, thus, Up is uniformly embeddable into a Hilbert

space with moduli independent of p. Now, by Theorem 6.2,
⋃

p Up is uniformly embeddable into a

Hilbert space. Since
⋃

p Up is dense in ℓ1(X), the same holds also for the whole ℓ1(X), as claimed.

Finally, since ℓ1(X) embeds uniformly into a Hilbert space, we can apply Theorem 6.3 and

conclude that X is linearly embeddable into L1. The lemma follows since X contains every Xi as

a subspace.
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A EMD Reduction

Recall that EMDn is a normed space on all signed measures on [n]2 (that sum up to zero). We also

take the view that a weighted set in [n]2 is in fact a measure on [n]2.

Lemma A.1. Suppose the EMD metric between non-negative measures (of the same total measure)

admits a sketching algorithm sk with approximation D > 1 and sketch size s. Then the normed

space EMDn admits a sketching algorithm sk′ with approximation D and sketch size O(s).
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Proof. The main idea is that if x, y are signed measures and we add a sufficiently large term M > 0

to all of their coordinates, then the resulting vectors x′ = x+M ·~1 and y′ = y+M ·~1 are measures

(all their coordinates are non-negative) of the same total mass, and ‖x − y‖EMD is equal to the

EMD distance between measures x′, y′. The trouble is in identifying a large enough M . We use

the values of x and y themselves to agree on M . Details follow.

Without loss of generality we can fix the DTEP threshold to be r = 1.

We design the sketch sk′ as follows. First choose a hash function h : N → {0, 1}9 (using public

randomness). Fix an input x ∈ R
n2

of total measure zero, i.e.,
∑

i xi = 0. Let m(x) = mini xi,

and let b(x) be the largest multiple of 2 that is smaller than m(x). Since x has total measure zero,

b(x) < m(x) ≤ 0. Now let b(1)(x) = b(x) and b(2)(x) = b(x) − 2, and then x(q) = x− b(q)(x) · ~1 for

q = 1, 2. Notice that in both cases x(q) > x ≥ 0 (component-wise). Now let the sketch sk′(x) be

the concatenation of sk(x(q)), h(b(q)(x)) for q = 1, 2.

The distinguisher works as follows, given two sketches sk′(x) = (sk(x(q)), h(b(q)(x)))q=1,2 and

sk′(y) = (sk(y(q)), h(b(q)(x)))q=1,2. If there are qx, qy ∈ {1, 2} whose hashes agree h(b(q)(x)) =

h(b(q)(y)) (breaking ties arbitrarily if there are multiple possible agreements), then output whatever

the EMD metric distinguisher would output on sk(x(qx)), sk(y(qy)). Otherwise output “far” (i.e.,

that ‖x− y‖EMD > D).

To analyze correctness, consider the case when ‖x − y‖EMD ≤ 1. Without loss of generality,

suppose m(x) ≥ m(y). Then m(x) −m(y) ≤ 1 (otherwise x, y are further away in EMD norm than

1). Hence either b(x) = b(y) or b(x) = b(y) + 2. Then there exists a corresponding q ∈ {1, 2} for

which the hashes agree h(b(1)(x)) = h(b(q)(y)). By properties of the hash function, with sufficiently

large constant probability the hashes match only when the b’s match, in which case the values qx, qy

used by the distinguisher satisfy b(qx)(x) = b(qy)(y). In this case, ‖x − y‖EMD = dEMD(x(qx), y(qy)),

and the correctness now depends on sk, and the distinguisher for the EMD metric.

Otherwise, if ‖x− y‖EMD > D, either the b-values coincide for some qx, qy and then the above

argument applies again, or with sufficiently large constant probability the hashes will not agree and

the distinguisher outputs (correctly) “far”.

There is a small loss in success probability due to use of the hash function, but that can be

amplified back by independent repetitions.

Notice that the above lemma assumes a sketching algorithm for the EMD metric between any

non-negative measures of the same total measure, and not only in the case where the total measure

is 1. The proof can be easily modified so that any non-negative measure being used always has a

fixed total measure (say 1, by simply scaling the inputs), which translates to scaling the threshold

r of the DTEP problem. This is acceptable because, under standard definitions, a metric space is

called sketchable if it admits a sketching scheme for every threshold r > 0.
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