Existence of solutions of the master equation in the smooth case

Ugo Bessi*

Abstract

We give a different proof of a theorem of W. Gangbo and A. Swiech on the short time existence of solutions of the master equation.

Introduction

Mean Field Games are games with a continuum of players, each of which sees only the "mean field" generated by the other ones. They attracted the attention of a wider set of analysts after the lectures of P . L. Lions at the Collège de France, which are available in video streaming (see also the written presentation [11]). They can model a wide array of phenomena in physics and mathematical economics; we dwell a little on one aspect of the latter. Actually, the idea of considering a continuum of players came up naturally in mathematical economy, where it was used ([6], see also [14] for a more elementary presentation) to model the formation of prices in a market with perfect concurrence. Quoting from [6], "the essential idea of this notion is that the economy under consideration has a "very large" number of participants, and that the influence of each participant is "negligible"".

To be more precise, let us look at the situation of [15]: we have a probability measure μ_{s} on the d dimensional torus $\mathbf{T}^{d}=\frac{\mathbf{R}^{d}}{\mathbf{Z}^{d}}$ which models the distribution of the players at time s; we fix an initial time $t<0$, an initial distribution $\bar{\mu}$ and we suppose that μ_{s} evolves according to the continuity equation, forward in time,

$$
\left\{\begin{align*}
\partial_{s} \mu_{s}+\operatorname{div}\left(X \mu_{s}\right) & =0 \quad s>t \tag{1}\\
\mu_{t} & =\bar{\mu}
\end{align*}\right.
$$

where the vector field X is a control which we are free to choose in the following.
Let us call $\mathcal{P}\left(\mathbf{T}^{d}\right)$ the space of the Borel probability measures on \mathbf{T}^{d}, and let us suppose that we are given two potentials $\mathcal{F}, \mathcal{U}_{0}: \mathcal{P}\left(\mathbf{T}^{d}\right) \rightarrow \mathbf{R}$. We would like the whole society to minimize the value function

$$
\begin{equation*}
\mathcal{V}(t, \bar{\mu}):=\inf \left\{\int_{t}^{0} \mathrm{~d} s\left[\int_{\mathbf{T}^{d}} \frac{1}{2}\left|X^{2}(s, x)\right|^{2} \mathrm{~d} \mu_{s}(x)-\mathcal{F}\left(\mu_{s}\right)\right]+\mathcal{U}_{0}\left(\mu_{0}\right)\right\} \tag{2}
\end{equation*}
$$

* Dipartimento di Matematica, Università Roma Tre, Largo S. Leonardo Murialdo, 00146 Roma, Italy.
email: bessi@matrm3.mat.uniroma3.it Work partially supported by the PRIN2009 grant "Critical Point Theory and Perturbative Methods for Nonlinear Differential Equations
where the inf is over all curves which satisfy (1) and all controls X. It turns out that under suitable hypotheses on \mathcal{F} and \mathcal{U}_{0} the inf is a minimum: there is a vector field X minimizing in (2); by (1), we also have a minimal trajectory μ_{s}.

In (2), we minimize the cost for the whole society, but what about its members? One possible notion is that of Nash equilibrium: roughly, we are on a Nash equilibrium if no one can get a better deal by a unilateral change of strategy. It happens that, in our case, the optimum for the whole society is a Nash equilibrium. Actually, under suitable hypotheses on \mathcal{F} and \mathcal{U}_{0}, we shall be able to define two functions $F(x, \mu)$ and $u_{0}(x, \mu)$ which, heuristically, are the "mean field" potentials felt by the particle placed at x, provided the other ones are distributed as μ. We shall see that the drift X in (1) optimal for the whole group is also best for the single particle; namely, $X(s, q)=-\partial_{x} v(s, q)$ where v solves the Hamilton-Jacobi equation with time reversed

$$
\left\{\begin{align*}
-\partial_{t} v(s, q)+\frac{1}{2}\left|\partial_{q} v(s, q)\right|^{2}+F\left(q, \mu_{s}\right) & =0 \quad s \leq 0 \tag{3}\\
v(0, q) & =u_{0}\left(q, \mu_{0}\right)
\end{align*}\right.
$$

Equivalently, the particle initially placed at q minimizes its cost:

$$
\int_{t}^{0} \frac{1}{2}\left[|\dot{q}(s)|^{2}+F\left(q(s), \mu_{s}\right)\right] \mathrm{d} s+u_{0}\left(q(0), \mu_{0}\right)
$$

if it follows the vector field X.
Since the value function $\mathcal{V}(t, \mu)$ of (2) is defined on the metric space $\mathcal{P}\left(\mathbf{T}^{d}\right)$, this approach calls for a study of the Hamilton-Jacobi equation in metric spaces; we refer the reader to [3], [16] and [20] for three definitions of viscosity solutions of H-J in metric spaces.

In this framework, the task is to solve the coupled equations (1) and (3); it turns out that, formally, these two equations are equivalent to the so-called master equation, i. e. formula (6) below. Heuristically, the solution of the master equation is a value function both for the single particle and the whole community. In [15] it is shown that, under suitable hypotheses on \mathcal{F} and \mathcal{U}, the master equation has a smooth solution for t negative and small and that the master equation is equivalent (this time rigorously) to (1) and (3).

In this paper, we want to give a different proof of the results of [15]. Instead of working in $\mathcal{P}\left(\mathbf{T}^{d}\right)$, we take up a suggestion of [11] (see also [18], [19]) and work in the space of L^{2} parametrizations of particles: a parametrization for μ will be a function $\sigma \in L^{2}\left([0,1)^{d}, \mathbf{R}^{d}\right)$ whose law, when projected on \mathbf{T}^{d}, is μ. In other words, we are choosing $[0,1)^{d}$ as parameter space.

We shall see that this approach is equivalent to that of [15]; as in [15], the implicit function theorem is at the core of our proof, but we are going to use it in a way that is closer to the original approach of [10].

We set $M=L^{2}\left([0,1)^{d}, \mathbf{R}^{d}\right)$ and denote by $A C([a, b], X)$ the set of the absolutely continuous functions from $[a, b]$ to a space X; throughout the paper, we shall denote by ∇, D and d the gradients of functions on \mathbf{T}^{d}, M and $\mathcal{P}\left(\mathbf{T}^{d}\right)$ respectively.

We want to prove the following.

Theorem 1. Let $\hat{\mathcal{F}}, \hat{\mathcal{U}}_{0}: M \rightarrow \mathbf{R}$ be respectively a potential and a final condition satisfying the hypotheses of section 2 below. Then, the following points hold.

1) There is $T>0$ such that, if $t \in[-T, 0]$ and $\psi \in M$, the minimum

$$
\begin{equation*}
\hat{\mathcal{U}}(t, \psi):=\min \left\{\int_{t}^{0}\left[\frac{1}{2}\left\|\dot{\sigma}_{s}\right\|_{M}^{2}-\hat{\mathcal{F}}\left(\sigma_{s}\right)\right] \mathrm{d} s+\hat{\mathcal{U}}_{0}\left(\sigma_{0}\right): \sigma \in A C([t, 0], M), \quad \sigma_{t}=\psi\right\} \tag{4}
\end{equation*}
$$

is attained on a unique curve $\sigma^{(t, \psi)} \in A C([t, 0], M)$.
2) The maps : $(t, \psi) \rightarrow \sigma^{(t, \psi)}$ and $:(t, \psi) \rightarrow \hat{\mathcal{U}}(t, \psi)$ are of class C^{2}; moreover, they are $L_{\mathbf{Z}}^{2}$ and H-equivariant in the last variable for the groups $L_{\mathbf{Z}}^{2}$ and H defined in section 1 below.
3) There are two functions of class C^{3}

$$
\hat{F}, \hat{u}_{0}: \mathbf{T}^{d} \times M \rightarrow \mathbf{R}
$$

such that, if we set

$$
\begin{gather*}
u(t, x, \psi)=\min \left\{\int_{t}^{0}\left[\frac{1}{2}|\dot{q}(s)|^{2}-\hat{F}\left(q(s), \sigma_{s}^{(t, \psi)}\right)\right] \mathrm{d} s+\hat{u}_{0}\left(q(0), \sigma_{0}^{(t, \psi)}\right):\right. \\
\left.q \in A C\left([t, 0], \mathbf{T}^{d}\right), \quad q(t)=x\right\} \tag{5}
\end{gather*}
$$

then u is of class C^{2} in $[-T, 0] \times \mathbf{T}^{d} \times M$ and satisfies the master equation
$-\partial_{t} u(t, q, \psi)+\frac{1}{2}|\nabla u(t, q, \psi)|^{2}+F(q, \psi)+\langle\nabla u(t, \psi(\cdot), \psi), D u(t, q, \psi)\rangle_{M}=0 \quad \forall(t, x, \psi) \in[-T, 0] \times \mathbf{T}^{d} \times M$
where $\langle\cdot, \cdot\rangle_{M}$ denotes the inner product in M. To districate the inner product above, we note that
$D u(t, q, \psi) \in M$ because it is the gradient with respect to the M variable; moreover, $: x \rightarrow \nabla u(t, \psi(x), \psi)$ belongs to M since it is the C^{2} function $u(t, \cdot, \psi)$ composed with ψ. The function u is \mathbf{Z}^{d}-equivariant in the second variable and $L_{\mathbf{Z}}^{2}$ and H-equivariant in the last one.
4) Let the law of ψ be absolutely continuous with respect to the Lebesgue measure; then, for $s \in[-T, 0]$ the law of $\sigma_{s}^{(t, \psi)}$ is absolutely continuous too.
5) For \mathcal{L}^{d} a. e. $x \in[0,1)^{d}$ we have that, for all $s \in[-T, 0]$,

$$
\dot{\sigma}_{s}^{(t, x)}(x)=-\nabla u\left(s, \sigma_{s}^{(t, x)}(x), \sigma_{s}^{(t, x)}\right)
$$

In other words, the orbit $q(s)$ minimal in (5) coincides with $\sigma_{s}^{(t, \psi)}(x)$ if they start at the same point of \mathbf{T}^{d}; equivalently, $: s \rightarrow \sigma_{s}^{(t, \psi)}(x)$ minimizes the one-particle problem (5) for \mathcal{L}^{d} a. e. $x \in[0,1)^{d}$.

Recently the master equation has been studied extensively, expecially from the stochastic viewpoint; we refer the reader to [7], [8], [9], [12] and [13].

The paper is organized as follows: section 1 contains the notation and a theorem of [11] about the relationship between differentiability on parametrizations and on measures; section 2 recalls the hypotheses used in [15] from section 6 onwards; in section 3 we recall the method of [10] for the minimum of (4), in section 4 we deal with the master equation (6).

Preliminaries and notation

We denote by $\pi: \mathbf{R}^{d} \rightarrow \mathbf{T}^{d}:=\frac{\mathbf{R}^{d}}{\mathbf{Z}^{d}}$ the natural projection, and by $|\cdot|_{\mathbf{T}^{d}}$ the distance on \mathbf{T}^{d} given by

$$
|x-y|_{\mathbf{T}^{d}}=\min \{|\tilde{x}-\tilde{y}|: \pi(\tilde{x})=x, \quad \pi(\tilde{y})=y\}
$$

We let $\mathcal{P}\left(\mathbf{T}^{d}\right)$ be the space of Borel probability measures on \mathbf{T}^{d}; if $\mu_{1}, \mu_{2} \in \mathcal{P}\left(\mathbf{T}^{d}\right)$, we denote by $\Gamma\left(\mu_{1}, \mu_{2}\right)$ the set of all the Borel probability measures on $\mathbf{T}^{d} \times \mathbf{T}^{d}$ whose first and second marginals are, respectively, μ_{1} and μ_{2}. For $\lambda \geq 1$ we define the λ-Wasserstein distance on $\mathcal{P}\left(\mathbf{T}^{d}\right)$ by

$$
\begin{equation*}
\mathcal{W}_{\lambda}\left(\mu_{1}, \mu_{2}\right)^{\lambda}=\min _{\gamma \in \Gamma\left(\mu_{1}, \mu_{2}\right)} \int_{\mathbf{T}^{d} \times \mathbf{T}^{d}}|x-y|_{\mathbf{T}^{d}}^{\lambda} \mathrm{d} \gamma(x, y) \tag{1.1}
\end{equation*}
$$

We refer the reader to [4] or [23] for the proof that the minimum is attained and that $\left(\mathcal{P}\left(\mathbf{T}^{d}\right), \mathcal{W}_{\lambda}\right)$ is a compact metric space.

When $\lambda=2$ (which is the only case we consider in this paper) we denote by $\Gamma_{o}\left(\mu_{1}, \mu_{2}\right)$ the set of the minimizers in (1.1).

We want to parametrize $\mu \in \mathcal{P}\left(\mathbf{T}^{d}\right)$ with a map $\sigma \in M:=L^{2}\left([0,1)^{d}, \mathbf{R}^{d}\right)$. To do this, we begin to define $\mathcal{P}_{2}\left(\mathbf{R}^{d}\right)$ as the set of the Borel probability measures on \mathbf{R}^{d} with finite second moment. Following [19], we push forward $\mu \in \mathcal{P}_{2}\left(\mathbf{R}^{d}\right)$ to $\tilde{\mu}:=\pi_{\sharp} \mu \in \mathcal{P}\left(\mathbf{T}^{d}\right)$. By the definition of push-forward, this is tantamount to

$$
\int_{\mathbf{T}^{d}} f(x) \mathrm{d} \tilde{\mu}(x)=\int_{\mathbf{R}^{d}} f(x) \mathrm{d} \mu(x) \quad \forall f \in C\left(\mathbf{T}^{d}, \mathbf{R}\right)
$$

where we have identified f with its lift to a periodic function on \mathbf{R}^{d}.
If $\pi_{\sharp} \mu_{1}=\pi_{\sharp} \mu_{2}=\tilde{\mu}$, we say with [19] that μ_{1} and μ_{2} are two representatives of $\tilde{\mu}$. By lemma 1.2 of [19], it is possible to lift any couple of measures on \mathbf{T}^{d} to measures on \mathbf{R}^{d} in such a way to preserve the 2Wasserstein distance. More precisely, if $\tilde{\mu}_{1}, \tilde{\mu}_{2} \in \mathcal{P}\left(\mathbf{T}^{d}\right)$, then there are two representatives $\mu_{1}, \mu_{2} \in \mathcal{P}_{2}\left(\mathbf{R}^{d}\right)$ such that μ_{1} is supported in $[0,1]^{d}, \mu_{2}$ in $[-1,2]^{d}$ and

$$
\begin{equation*}
\mathcal{W}_{2}\left(\tilde{\mu}_{1}, \tilde{\mu}_{2}\right)^{2}=W_{2}\left(\mu_{1}, \mu_{2}\right)^{2}:=\min _{\gamma \in \Gamma\left(\mu_{1}, \mu_{2}\right)} \int_{\mathbf{R}^{d} \times \mathbf{R}^{d}}|x-y|^{2} \mathrm{~d} \gamma(x, y) \tag{1.2}
\end{equation*}
$$

where we have denoted by W_{2} the 2 -Wasserstein distance on $\mathcal{P}_{2}\left(\mathbf{R}^{d}\right)$.
Let \mathcal{L}^{d} denote the d-dimensional Lebesgue measure on $[0,1)^{d}$ and let $\mu \in \mathcal{P}_{2}\left(\mathbf{R}^{d}\right)$; it is standard ([4] or [23]) that there is a map $\psi \in M$ (actually, ψ is the gradient of a convex function) such that $\psi_{\sharp} \mathcal{L}^{d}=\mu$. The trivial converse is that, if $\psi \in M$, then $\psi_{\sharp} \mathcal{L}^{d} \in \mathcal{P}_{2}\left(\mathbf{R}^{d}\right)$. The map ψ is called the Brenier map, or the parametrization of μ.

For completeness' sake, we give a well-known extension of lemma 6.4 of [11].

Lemma 1.1. 1) Let $\mu_{1}, \mu_{2} \in \mathcal{P}_{2}\left(\mathbf{R}^{d}\right)$, let $\psi_{1}, \psi_{2} \in M$ be two parametrizations of μ_{1}, μ_{2} respectively and let $\gamma \in \Gamma\left(\mu_{1}, \mu_{2}\right)$. Then, there is a sequence of invertible, measure-preserving maps $h_{n}:[0,1)^{d} \rightarrow[0,1)^{d}$ such
that $\left(\psi_{1} \circ h_{n}, \psi_{2}\right)_{\sharp} \mathcal{L}^{d}$ converges weak* to γ. Moreover, for all functions $f \in C\left(\mathbf{T}^{d} \times \mathbf{R}^{d}, \mathbf{R}\right)$ such that $\frac{f(x, v)}{1+|v|^{2}}$ is bounded, we have that

$$
\begin{equation*}
\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}} f(x, x-y) \mathrm{d} \gamma(x, y)=\lim _{n \rightarrow+\infty} \int_{[0,1)^{d}} f\left(\psi_{1} \circ h_{n}(x), \psi_{2}(x)-\psi_{1} \circ h_{n}(x)\right) \mathrm{d} x \tag{1.3}
\end{equation*}
$$

2) Let $\tilde{\mu}_{1}, \tilde{\mu}_{2} \in \mathcal{P}\left(\mathbf{T}^{d}\right)$ and let $\mu_{1}, \mu_{2} \in \mathcal{P}_{2}\left(\mathbf{R}^{d}\right)$ be two representatives such that (1.2) holds. Let $\psi_{1}, \psi_{2} \in M$ be as in point 1). Then,

$$
\begin{equation*}
\mathcal{W}_{2}\left(\tilde{\mu}_{1}, \tilde{\mu}_{2}\right)^{2}=W_{2}\left(\mu_{1}, \mu_{2}\right)^{2}=\inf \int_{[0,1)^{d}}\left|\psi_{1} \circ h(x)-\psi_{2}(x)\right|^{2} \mathrm{~d} x \tag{1.4}
\end{equation*}
$$

where the inf is over all invertible, measure-preserving maps $h:[0,1)^{d} \rightarrow[0,1)^{d}$.

Proof. As for (1.4), the first equality comes from (1.2). For the second one, we note that, since $\left(\psi_{1} \circ\right.$ $\left.h, \psi_{2}\right)_{\sharp} \mathcal{L}^{d} \in \Gamma\left(\mu_{1}, \mu_{2}\right)$, we have that

$$
W_{2}\left(\mu_{1}, \mu_{2}\right)^{2} \leq \inf _{h} \int_{[0,1)^{d}}\left|\psi_{2}(x)-\psi_{1} \circ h(x)\right|^{2} \mathrm{~d} x
$$

The opposite inequality follows immediately from point 1), which we prove it in the steps below using a variation of the technique of [11].
Step 1. We begin to suppose that μ_{1} and μ_{2} are supported in a common cube, say $\tilde{Q}^{l}=[-l, l)^{d}$. We partition \tilde{Q}^{l} into smaller cubes

$$
Q_{k}=\frac{2 k l}{2^{n}}+\frac{1}{2^{n}} \tilde{Q}^{l}
$$

with $k=\left(k_{1}, \ldots, k_{d}\right) \in \mathbf{Z}^{d}$ such that $-2^{n}+1 \leq k_{i} \leq 2^{n}-1$. Next, we relabel the Q_{k} to Q_{i}, with i in a finite set of \mathbf{N}.

In the step 3, 4 and 5 below we are going to find maps h_{n} such that

$$
\begin{equation*}
\mathcal{L}^{d}\left[\left(\psi_{1} \circ h_{n}, \psi_{2}\right)^{-1}\left(Q_{i} \times Q_{j}\right)\right]=\gamma\left(Q_{i} \times Q_{j}\right) \quad \text { for all } \quad i, j . \tag{1.5}
\end{equation*}
$$

Using the fact that the sides of Q_{i} have length $\frac{2 l}{2^{n}}$ and that μ_{1} and μ_{2} are supported in \tilde{Q}_{l}, the formula above easily implies that $\left(\psi_{1} \circ h_{n}, \psi_{2}\right)_{\sharp} \mathcal{L}^{d}$ converges to γ in the weak* topology. Formula (1.3) now follows because γ and $\left(\psi_{1} \circ h_{n}, \psi_{2}\right)_{\sharp} \mathcal{L}^{d}$ are supported in $\tilde{Q}^{l} \times \tilde{Q}^{l}$, a compact set on which : $(x, y) \rightarrow f(x, y-x)$ is continuous.
Step 2. Before showing (1.5) for the case with bounded support, let us show how it implies (1.3) in the general case.

Let $h:[0,1)^{d} \rightarrow[0,1)^{d}$ be measure preserving. The equality below comes from the definition of pushforward; in the inequality, \tilde{Q}^{l} is the cube of step 1 .

$$
\begin{aligned}
& \left|\int_{[0,1)^{d}} f\left(\psi_{1} \circ h(x), \psi_{2}(x)-\psi_{1} \circ h(x)\right) \mathrm{d} x-\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}} f(x, y-x) \mathrm{d} \gamma(x, y)\right|= \\
& \left|\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}} f(x, y-x) \mathrm{d}\left(\psi_{1} \circ h, \psi_{2}\right)_{\sharp} \mathcal{L}^{d}(x, y)-\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}} f(x, y-x) \mathrm{d} \gamma(x, y)\right| \leq
\end{aligned}
$$

$$
\begin{gather*}
\int_{\left(\tilde{Q}^{l} \times \tilde{Q}^{l}\right)^{c}}|f(x, y-x)| \mathrm{d}\left(\psi_{1} \circ h, \psi_{2}\right)_{\sharp} \mathcal{L}^{d}(x, y)+ \tag{1.6}\\
\int_{\left(\tilde{Q}^{l} \times \tilde{Q}^{l}\right)^{c}}|f(x, y-x)| \mathrm{d} \gamma(x, y)+ \tag{1.6}\\
\left|\int_{\left(\tilde{Q}^{l} \times \tilde{Q}^{l}\right)} f(x, y) \mathrm{d}\left(\psi_{1} \circ h, \psi_{2}\right)_{\sharp} \mathcal{L}^{p}(x, y)-\int_{\left(\tilde{Q}^{l} \times \tilde{Q}^{l}\right)} f(x, y-x) \mathrm{d} \gamma(x, y)\right| . \tag{1.6}
\end{gather*}
$$

Let $\epsilon>0$; from the formula above we see that (1.3) follows if we prove that we can find $l \in \mathbf{N}$ such that

$$
(1.6)_{a}<\epsilon
$$

for all measure-preserving h,

$$
(1.6)_{b} \leq \epsilon
$$

and that, once l is fixed in this way, we can find a measure-preserving h such that

$$
(1.6)_{c} \leq \epsilon
$$

The last formula comes immediately from step $1 ;(1.6)_{b}<\epsilon$ follows because the measure $|f(x, y-x)| \gamma$ is finite and $\cap_{l}\left(\tilde{Q}_{l} \times \tilde{Q}_{l}\right)^{c}=\emptyset$.

As for $(1.6)_{a} \leq \epsilon$, it suffices to prove that $|f(x, y-x)|\left(\psi_{1} \circ h, \psi_{2}\right)_{\sharp} \mathcal{L}^{d}$ is a tight set of measures as h varies in the measure-preserving maps of $[0,1)^{d}$. By our hypotheses on f, this follows if we show that $\left(1+|y-x|^{2}\right)\left(\psi_{1} \circ h, \psi_{2}\right)_{\sharp} \mathcal{L}^{d}$ is tight. This is equivalent to say that $\left|\psi_{1} \circ h-\psi_{2}\right|^{2}$ is uniformly integrable as h varies among the measure-preserving maps, which follows if we prove that $\left|\psi_{1} \circ h\right|^{2}$ is uniformly integrable; we leave the easy proof of this to the reader.
Step 3. In this step, we define the pre-images of the cubes Q_{i}, which the map h_{n} of step 1 will permute in a Rubik cube fashion. We set

$$
A_{i}=\psi_{1}^{-1}\left(Q_{i}\right) \subset[0,1)^{d}, \quad B_{i}=\psi_{2}^{-1}\left(Q_{i}\right) \subset[0,1)^{d} .
$$

The equalities on the left in the two formulas below follow since $\gamma \in \Gamma\left(\mu_{1}, \mu_{2}\right)$; those on the right come from the fact that $\mu_{j}=\left(\psi_{j}\right)_{\sharp} \mathcal{L}^{d}$ for $j=1,2$.

$$
\begin{equation*}
\gamma\left(Q_{i} \times[-l, l)^{d}\right)=\mu_{1}\left(Q_{i}\right)=\mathcal{L}^{d}\left(A_{i}\right), \quad \gamma\left([-l, l)^{d} \times Q_{i}\right)=\mu_{2}\left(Q_{i}\right)=\mathcal{L}^{d}\left(B_{i}\right) . \tag{1.7}
\end{equation*}
$$

In the next two steps, we shall settle the first row of cubes, say $\left\{A_{i} \times B_{1}\right\}_{i}$. The idea is to partition B_{1} into sets $B_{i, 1}$ and to find sets $A_{i, 1} \subset A_{i}$ such that $\mathcal{L}^{d}\left(A_{i, 1}\right)=\mathcal{L}^{d}\left(B_{i, 1}\right)=\gamma\left(Q_{i} \times Q_{1}\right)$; then, we shall send $A_{i, 1}$ into $B_{i, 1}$ by a measure-preserving map. We shall see that this yields (1.5) for $j=1$.
Step 4. We assert that we can find sets $A_{i, 1} \subset A_{i}$ such that

$$
\begin{equation*}
\mathcal{L}^{d}\left(A_{i, 1}\right)=\gamma\left(Q_{i} \times Q_{1}\right) \quad \text { and } \quad \sum_{i} \mathcal{L}^{d}\left(A_{i, 1}\right)=\mathcal{L}^{d}\left(B_{1}\right) . \tag{1.8}
\end{equation*}
$$

Note that the sets $A_{i, 1}$ are disjoint since the A_{i} are disjoint. Moreover, we can find sets $B_{i, 1} \subset B_{1}$ such that

$$
\left\{\begin{array}{c}
\mathcal{L}^{d}\left(B_{i, 1}\right)=\mathcal{L}^{d}\left(A_{i, 1}\right) \tag{1.9}\\
\text { the } B_{i, 1} \text { are disjoint } \\
\mathcal{L}^{d}\left(B_{1} \backslash \bigcup_{i} B_{i, 1}\right)=0 \\
B_{i, 1} \supset A_{i, 1} \cap B_{1} \\
B_{i, 1} \cap A_{j, 1}=\emptyset \quad \text { if } j \neq i
\end{array}\right.
$$

We begin to show that the first equality of (1.8) implies the second one: the first equality below follows since the Q_{i} partition $[-l, l)^{d}$, the second one follows since γ has μ_{2} as the second marginal, the third one since $\left(\psi_{2}\right)_{\sharp} \mathcal{L}^{d}=\mu_{2}$ and the fourth one from the definition of B_{1}.

$$
\sum_{i} \gamma\left(Q_{i} \times Q_{1}\right)=\gamma\left([-l, l)^{d} \times Q_{1}\right)=\mu_{2}\left(Q_{1}\right)=\mathcal{L}^{d}\left(\psi_{2}^{-1}\left(Q_{1}\right)\right)=\mathcal{L}^{d}\left(B_{1}\right)
$$

Thus, we only have to find sets $A_{i, 1} \subset A_{i}$ which satisfy the first formula of (1.8); since \mathcal{L}^{d} is non-atomic and, by (1.7),

$$
\mathcal{L}^{d}\left(A_{i}\right)=\gamma\left(Q_{i} \times[-l, l)^{d}\right) \geq \gamma\left(Q_{i} \times Q_{1}\right)
$$

this is standard.
Now, we find the sets $B_{i, 1}$ which satisfy (1.9). First of all we note that, by (1.8),

$$
\mathcal{L}^{d}\left(B_{1} \backslash \bigcup_{i \geq 2} A_{i, 1}\right) \geq \mathcal{L}^{d}\left(A_{1,1}\right)
$$

Since the $A_{i, 1}$ are disjoint, we also have that $B_{1} \cap A_{1,1}$ does not intersect $A_{i, 1}$ for $i \geq 2$; moreover, $\mathcal{L}^{d}\left(B_{1} \cap\right.$ $\left.A_{1,1}\right) \leq \mathcal{L}^{d}\left(A_{1,1}\right)$. Thus, we can find $B_{1,1} \subset B_{1}$ such that
a) $B_{1,1} \supset A_{1,1} \cap B_{1}$,
b) $\mathcal{L}^{d}\left(B_{1,1}\right)=\mathcal{L}^{d}\left(A_{1,1}\right)$,
c) $B_{1,1}$ is disjoint from $A_{i, 1}$ for $i \geq 2$.

Point c) follows by the last formula: in $B_{1} \backslash \bigcup_{i \geq 2} A_{i, 1}$ there is enough space to accommodate a $B_{1,1}$ satisfying b).

We show the next step of the induction, namely how to find $B_{2,1}$. By (1.8) and the aforesaid,

$$
\mathcal{L}^{d}\left(B_{1} \backslash\left(B_{1,1} \cup \bigcup_{i \neq 2} A_{i, 1}\right)\right) \geq \mathcal{L}^{d}\left(A_{2,1}\right)
$$

Using this, we can find $B_{2,1} \subset B_{1}$ such that
$\left.a^{\prime}\right) B_{2,1} \supset A_{2,1} \cap B_{1}$,
$\left.b^{\prime}\right) \mathcal{L}^{d}\left(B_{2,1}\right)=\mathcal{L}^{d}\left(A_{2,1}\right)$,
$\left.c^{\prime}\right) B_{2,1}$ is disjoint from $B_{1,1}$ and from $A_{i, 1}$ for $i \neq 2$.
Iterating, we get the sets $B_{i, 1}$; the first, second, fourth and fifth formulas of (1.9) follow by construction, the third one by the first formula of $(1.9),(1.8)$ and the fact that the $B_{i, 1}$ are disjoint.

Step 5. In this step, we define h_{n} on the first row of cubes: we want to find an invertible, bi-measurable map \hat{h}_{1} which preserve Lebesgue measure and such that, for all i,

$$
\left\{\begin{array}{c}
\hat{h}_{1}(x)=x \quad \text { if } \quad x \notin \bigcup_{i}\left(A_{i, 1} \cup B_{i, 1}\right) \tag{1.10}\\
\left(\psi_{1} \circ \hat{h}_{1}, \psi_{2}\right)^{-1}\left(Q_{i} \times Q_{1}\right)=B_{i, 1}
\end{array}\right.
$$

Before proving this, note that $\mathcal{L}^{d}\left(B_{i, 1}\right)=\gamma\left(Q_{i} \times Q_{1}\right)$ by (1.8) and (1.9); this and (1.10) proves that (1.5) holds for the first row of cubes $\left\{Q_{i} \times Q_{1}\right\}_{i}$. The other rows will follow by induction, as we shall see in step 6.

We prove (1.10). First of all, there are invertible maps $\phi_{i}: B_{i, 1} \rightarrow A_{i, 1}$ which preserve Lebesgue measure and which are the identity on $A_{i, 1} \cap B_{i, 1}$. This is easy to do: we set $\phi_{i}(x)=x$ on $A_{i, 1} \cap B_{i, 1}$; then, we use theorem 15.5 . 16 of [22] to get an invertible, measure-preserving map ϕ_{i} from $B_{i, 1} \backslash A_{i, 1}$ to $A_{i, 1} \backslash B_{i, 1}$; recall that these sets have the same Lebesgue measure by the first one of (1.9).

Next, we glue together the maps ϕ_{i} in the following way:

$$
\hat{h}_{1}(x)=\left\{\begin{array}{rll}
x & \text { if } & x \notin \bigcup_{i}\left(A_{i, 1} \cup B_{i, 1}\right) \\
\phi_{i}(x) & \text { if } & x \in B_{i, 1} \\
\phi_{i}^{-1}(x) & \text { if } & x \in A_{i, 1}
\end{array}\right.
$$

The definition is well-posed: since by (1.9) the $B_{i, 1}$ are disjoint, and since we saw above that the $A_{i, 1}$ are disjoint, the only possible conflict is when $x \in B_{i, 1} \cap A_{j, 1}$. But then by (1.9) $j=i$; now on $B_{i, 1} \cap A_{i, 1} \phi_{i}$ and ϕ_{i}^{-1} coincide, since both are the identity on this set.

To check (1.10), we begin to note that its first formula comes straight from the definition of \hat{h}_{1}. As for the second one, if $x \in\left(\psi_{1} \circ \hat{h}_{1}, \psi_{2}\right)^{-1}\left(Q_{i} \times Q_{1}\right)$, then $x \in \psi_{2}^{-1}\left(Q_{1}\right)=B_{1}$ and $\hat{h}_{1}(x) \in \psi_{1}^{-1}\left(Q_{i}\right)=A_{i}$. Now B_{1} is partitioned by the $B_{j, 1}$ and the only $B_{j, 1}$ which \hat{h}_{1} sends to A_{i} is $B_{i, 1}$. Thus, x $\in B_{i, 1}$, proving that $\left(\psi_{1} \circ \hat{h}_{1}, \psi_{2}\right)^{-1}\left(Q_{i} \times Q_{1}\right)=B_{i, 1}$.
Step 6. We saw above that (1.5) follows if we show (1.10) for all the other rows; we do this by iteration. By the last step, the pre-image of $\cup_{i}\left(Q_{i} \times Q_{1}\right)$ by $\left(\psi_{1} \circ \hat{h}_{1}, \psi_{2}\right)$ is B_{1}. We want to adjust the second row of cubes without touching B_{1}. To do this, we restrict $\left(\psi_{1} \circ \hat{h}_{1}, \psi_{2}\right)$ to B_{1}^{c}; its image will fall in

$$
\bigcup_{j \neq 1}\left(Q_{i} \times Q_{j}\right)
$$

Now we apply the procedure of the first step to the second row, i. e. to $\left\{Q_{i} \times Q_{2}\right\}_{i}$ and to $\left(\psi_{1} \circ \hat{h}_{1}, \psi_{2}\right)$. We get a map \hat{h}_{2} from B_{1}^{c} to itself such that $\left(\psi_{1} \circ \hat{h}_{1} \circ \hat{h}_{2}, \psi_{2}\right)$ satisfies (1.5) for $j=2$. Now we extend \hat{h}_{2} to be the identity on B_{1}, and we get that $\left(\psi_{1} \circ \hat{h}_{1} \circ \hat{h}_{2}, \psi_{2}\right)$ satisfies (1.5) for $j=1$ too. To close, it suffices to call h_{n} the last step of the iteration, the one in which all the rows are settled.

We can look at \mathcal{W}_{2} on $\mathcal{P}\left(\mathbf{T}^{d}\right)$ keeping track of the action of \mathbf{R}^{d} on \mathbf{T}^{d}. Let us define

$$
\pi_{\mathbf{T}^{d}}: \mathbf{T}^{d} \times \mathbf{R}^{d} \rightarrow \mathbf{T}^{d}
$$

as the projection on the first coordinate, and let us set

$$
\alpha: \mathbf{T}^{d} \times \mathbf{R}^{d} \rightarrow \mathbf{T}^{d}, \quad \alpha:(x, v) \rightarrow x+v
$$

Let $\tilde{\mu}_{1}, \tilde{\mu}_{2} \in \mathcal{P}\left(\mathbf{T}^{d}\right)$; we say that $\gamma \in \mathcal{P}_{2}\left(\mathbf{T}^{d} \times \mathbf{R}^{d}\right)$ belongs to $\Psi\left(\tilde{\mu}_{1}, \tilde{\mu}_{2}\right)$ if $\left(\pi_{\mathbf{T}^{d}}\right) \sharp \gamma=\tilde{\mu}_{1}$ and $\alpha_{\sharp} \gamma=\tilde{\mu}_{2}$; we leave to the reader the simple proof that

$$
\begin{equation*}
\mathcal{W}_{2}^{2}\left(\tilde{\mu}_{1}, \tilde{\mu}_{2}\right)=\min _{\gamma \in \Psi\left(\tilde{\mu}_{1}, \tilde{\mu}_{2}\right)} \int_{\mathbf{T}^{d} \times \mathbf{R}^{d}}|v|^{2} \mathrm{~d} \gamma(x, v) \tag{1.11}
\end{equation*}
$$

We denote by $\Psi_{o}\left(\tilde{\mu}_{1}, \tilde{\mu}_{2}\right)$ the set of minimals.
In the following, we shall denote by L_{μ}^{2} a space of L^{2} functions for the measure μ; we shall omit the μ when it is the Lebesgue measure.

Let now $G: \mathcal{P}\left(\mathbf{T}^{d}\right) \rightarrow \mathbf{R}$ be a function; we say that G is differentiable at $\tilde{\mu} \in \mathcal{P}\left(\mathbf{T}^{d}\right)$ if there is a vector field $\xi \in L_{\tilde{\mu}}^{2}\left(\mathbf{T}^{d}, \mathbf{R}^{d}\right)$ such that

$$
\left|G(\tilde{\nu})-G(\tilde{\mu})-\int_{\mathbf{T}^{d} \times \mathbf{R}^{d}}\langle\xi(x), v\rangle \mathrm{d} \gamma(x, v)\right|=o\left(\mathcal{W}_{2}(\tilde{\mu}, \tilde{\nu})\right)
$$

for all $\tilde{\nu} \in \mathcal{P}\left(\mathbf{T}^{d}\right)$ and all $\gamma \in \Psi_{o}(\tilde{\mu}, \tilde{\nu})$; we have denoted by $\langle\cdot, \cdot\rangle$ the inner product in \mathbf{R}^{d}.
Following [15], we say that G is strongly differentiable at $\tilde{\mu}$ if there is $k>0$ such that

$$
\left|G(\tilde{\nu})-G(\tilde{\mu})-\int_{\mathbf{T}^{d} \times \mathbf{R}^{d}}\langle\xi(x), v\rangle \mathrm{d} \gamma(x, v)\right| \leq k \int_{\mathbf{T}^{d} \times \mathbf{R}^{d}}|v|^{2} \mathrm{~d} \gamma(x, v)
$$

for all $\tilde{\nu} \in \mathcal{P}\left(\mathbf{T}^{d}\right)$ and all $\gamma \in \Psi(\tilde{\mu}, \tilde{\nu})$. Note that we don't restrict the transfer plan γ to be in $\Psi_{o}(\tilde{\mu}, \tilde{\nu})$; it is immediate that strong differentiability implies differentiability. Of course, there are parallel definitions of differentiability and strong differentiability in $\mathcal{P}_{2}\left(\mathbf{R}^{d}\right)$, which we forego to state.

If $G: \mathcal{P}\left(\mathbf{T}^{d}\right) \rightarrow \mathbf{R}$, we can define

$$
\begin{equation*}
\bar{G}: \mathcal{P}_{2}\left(\mathbf{R}^{d}\right) \rightarrow \mathbf{R}, \quad \bar{G}(\mu)=G\left(\pi_{\sharp} \mu\right) . \tag{1.12}
\end{equation*}
$$

Lemma 1.2. Let $G: \mathcal{P}\left(\mathbf{T}^{d}\right) \rightarrow \mathbf{R}$ be strongly differentiable at $\tilde{\mu}$ and let $\bar{G}: \mathcal{P}_{2}\left(\mathbf{R}^{d}\right) \rightarrow \mathbf{R}$ be defined as in (1.12). Then, \bar{G} is strongly differentiable at any $\mu \in \mathcal{P}_{2}\left(\mathbf{R}^{d}\right)$ such that $\pi_{\sharp} \mu=\tilde{\mu}$.

Conversely, if $\bar{G}: \mathcal{P}_{2}\left(\mathbf{R}^{d}\right) \rightarrow \mathbf{R}$ quotients to a map $G: \mathcal{P}\left(\mathbf{T}^{d}\right) \rightarrow \mathbf{R}$ and is strongly differentiable at μ, then G is strongly differentiable at $\tilde{\mu}=\pi_{\sharp} \mu$.

Proof. We begin with the direct statement. Let $\tilde{\xi} \in L^{2}\left(\mathbf{T}^{d}, \tilde{\mu}\right)$ be the derivative of G at $\tilde{\mu}$; we define $\xi: \mathbf{R}^{d} \rightarrow \mathbf{R}^{d}$ by $\xi(y)=\tilde{\xi}(\pi(y))$. We assert that $\xi \in L^{2}\left(\mathbf{R}^{d}, \mu\right)$; indeed, since $\pi_{\sharp} \mu=\tilde{\mu}$ we get the equality below, while the inequality comes from the fact that $\tilde{\xi} \in L_{\tilde{\mu}}^{2}$.

$$
\int_{\mathbf{R}^{d}}|\xi(x)|^{2} \mathrm{~d} \mu(x)=\int_{\mathbf{T}^{d}}|\tilde{\xi}(x)|^{2} \mathrm{~d} \tilde{\mu}(x)<+\infty
$$

We prove that ξ is the derivative of \bar{G} at μ. Let $\nu \in \mathcal{P}_{2}\left(\mathbf{R}^{d}\right)$ project on $\tilde{\nu} \in \mathcal{P}\left(\mathbf{T}^{d}\right)$ and let $\gamma \in \Psi(\mu, \nu)$; if we define $\tilde{\gamma}=(\pi \times i d)_{\sharp} \gamma$ we see easily that $\tilde{\gamma} \in \Psi(\tilde{\mu}, \tilde{\nu})$. We disintegrate γ as $\mu \otimes \gamma_{x}$ and $\tilde{\gamma}$ as $\tilde{\mu} \otimes \tilde{\gamma}_{q}$, where γ_{x} and $\tilde{\gamma}_{q}$ are measures on \mathbf{R}^{d}. An easy check shows that, if $f \in C\left(\mathbf{T}^{d} \times \mathbf{R}^{d}\right)$ with $\frac{f(x, v)}{1+|v|^{2}}$ bounded, then

$$
\int_{\mathbf{R}^{d}} \mathrm{~d} \mu(x) \int_{\mathbf{R}^{d}} f(x, y) \mathrm{d} \gamma_{x}(y)=\int_{\mathbf{T}^{d}} \mathrm{~d} \tilde{\mu}(q) \int_{\mathbf{R}^{d}} f(q, y) \mathrm{d} \tilde{\gamma}_{q}(y)
$$

The first equality below comes from (1.12) and the disintegration of γ; the second one comes from the definition of ξ using the fact that $\tilde{\mu}=\pi_{\sharp} \mu$ and the formula above. The third equality comes from the disintegration of $\tilde{\gamma}$. The first inequality comes from the fact that G is strongly differentiable, while the last equality is obvious.

$$
\begin{gathered}
\left|\bar{G}(\nu)-\bar{G}(\mu)-\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}}\langle\xi(x), v\rangle \mathrm{d} \gamma(x, v)\right|= \\
\left|G(\tilde{\nu})-G(\tilde{\mu})-\left\langle\int_{\mathbf{R}^{d}} \xi(x) \mathrm{d} \mu(x), \int_{\mathbf{R}^{d}} v \mathrm{~d} \gamma_{x}(v)\right\rangle\right|= \\
\left|G(\tilde{\nu})-G(\tilde{\mu})-\left\langle\int_{\mathbf{T}^{d}} \tilde{\xi}(q) \mathrm{d} \tilde{\mu}(q), \int_{\mathbf{R}^{d}} v \mathrm{~d} \tilde{\gamma}_{q}(v)\right\rangle\right|= \\
\left|G(\tilde{\nu})-G(\tilde{\mu})-\int_{\mathbf{T}^{d} \times \mathbf{R}^{d}}\langle\tilde{\xi}(q), v\rangle \mathrm{d} \tilde{\gamma}(q, v)\right| \leq \\
k \int_{\mathbf{T}^{d} \times \mathbf{R}^{d}}|v|^{2} \mathrm{~d} \tilde{\gamma}(x, v)=k \int_{\mathbf{R}^{d} \times \mathbf{R}^{d}}|v|^{2} \mathrm{~d} \gamma(x, v) .
\end{gathered}
$$

Since this is the definition of strong differentiability in $\mathcal{P}_{2}\left(\mathbf{R}^{d}\right)$, we are done.
We prove the converse.
Step 1. Let $\tilde{\mu}, \tilde{\nu} \in \mathcal{P}\left(\mathbf{T}^{d}\right)$, let $\mu \in \mathcal{P}_{2}\left(\mathbf{R}^{d}\right)$ be such that $\pi_{\sharp} \mu=\tilde{\mu}$ and let $\tilde{\gamma} \in \Psi(\tilde{\mu}, \tilde{\nu})$. Recall that we have defined a map $\alpha:(x, v) \rightarrow x+v$. We assert that we can find $\gamma \in \mathcal{P}_{2}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)$ and $\nu \in \mathcal{P}_{2}\left(\mathbf{R}^{d}\right)$ such that
a) the first marginal of γ is μ,
b) $(\pi \times i d)_{\sharp} \gamma=\tilde{\gamma}$ and
c) $\alpha_{\sharp} \gamma=\nu$ and $\pi_{\sharp} \nu=\tilde{\nu}$; in particular, $\gamma \in \Psi(\mu, \nu)$.

To find γ, we disintegrate μ as $\mu=\beta_{q} \otimes \tilde{\mu}$, with β_{q} a probability measure on the fiber $\left\{q+\mathbf{Z}^{d}\right\}$; in other words, $\beta_{q}(z) \geq 0$ and

$$
\sum_{z \in \mathbf{Z}^{d}} \beta_{q}(z)=1
$$

Then, we can define γ by

$$
\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}} f(x, v) \mathrm{d} \gamma(x, v)=\int_{\mathbf{T}^{d} \times \mathbf{R}^{d}}\left[\sum_{z \in \mathbf{Z}^{d}} \beta_{q}(z) f(q+z, v)\right] \mathrm{d} \tilde{\gamma}(q, v)
$$

for all continuous functions $f: \mathbf{R}^{d} \times \mathbf{R}^{d} \rightarrow \mathbf{R}$ such that $\frac{f(x, v)}{1+|v|^{2}}$ is bounded. Setting $\nu=\alpha_{\sharp} \gamma$ we easily check that γ and ν satisfy $a), b$) and c).
Step 2. Let ξ be the derivative of \bar{G} at μ; we assert that $\xi=\tilde{\xi} \circ \pi$, where $\tilde{\xi}$ is a vector field on \mathbf{T}^{d}. This is easy to see: for instance, taking a vector field η supported in a small ball $B\left(x_{0}, r\right)$ of \mathbf{R}^{d}, considering
$\gamma_{\epsilon, z}=\mu \otimes(i d+\epsilon \eta(\cdot+z))_{\sharp} \mathcal{L}^{d}$ for $z \in \mathbf{Z}^{d}$, setting $\nu_{\epsilon, z}=\alpha_{\sharp} \gamma_{\epsilon, z}$ and noting that $\bar{G}\left(\nu_{\epsilon, z}\right)$, which quotients on $\mathcal{P}\left(\mathbf{T}^{d}\right)$, depends on z only through $\mu\left(B\left(z_{0}, r\right)\right)$.
End of the proof. The two steps above yield the first equality below, while the inequality comes from the fact that \bar{G} is strongly differentiable at μ.

$$
\begin{gathered}
\left|G(\tilde{\nu})-G(\tilde{\mu})-\int_{\mathbf{T}^{d} \times \mathbf{R}^{d}}\langle\tilde{\xi}(q), v\rangle \mathrm{d} \tilde{\gamma}(q, v)\right|= \\
\left|\bar{G}(\nu)-\bar{G}(\mu)-\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}}\langle\xi(x), v\rangle \mathrm{d} \gamma(x, v)\right| \leq k \int_{\mathbf{R}^{d} \times \mathbf{R}^{d}}|v|^{2} \mathrm{~d} \gamma(x, v)=k \int_{\mathbf{T}^{d} \times \mathbf{R}^{d}}|v|^{2} \mathrm{~d} \tilde{\gamma}(q, v) .
\end{gathered}
$$

We shall denote by H the group of all bi-measurable maps $h:[0,1)^{d} \rightarrow[0,1)^{d}$ which preserve Lebesgue measure; we also set $L_{\mathbf{Z}}^{2}:=L^{2}\left([0,1)^{d}, \mathbf{Z}^{d}\right)$, which is a group under addition.

Given $G: \mathcal{P}\left(\mathbf{T}^{d}\right) \rightarrow \mathbf{R}$, we can define a function

$$
\begin{equation*}
\hat{G}: M \rightarrow \mathbf{R}, \quad \hat{G}(\psi)=G\left(\pi_{\sharp} \circ \psi_{\sharp} \mathcal{L}^{d}\right) . \tag{1.13}
\end{equation*}
$$

Clearly, the map \hat{G} defined above is H and $L_{\mathbf{Z}}^{2}$-equivariant, i. e.

$$
\begin{equation*}
\hat{G}(\psi \circ h+z)=\hat{G}(\psi) \quad \forall(\psi, h, z) \in M \times H \times L_{\mathbf{Z}}^{2} . \tag{1.14}
\end{equation*}
$$

Going in the opposite direction, if $\hat{G}: M \rightarrow \mathbf{R}$ is a continuous map such that (1.14) holds, we can define

$$
\begin{equation*}
\bar{G}: \mathcal{P}_{2}\left(\mathbf{R}^{d}\right) \rightarrow \mathbf{R}, \quad \bar{G}(\mu)=\hat{G}(\psi) \tag{1.15}
\end{equation*}
$$

where $\psi \in M$ is such that $\psi_{\sharp} \mathcal{L}^{p}=\mu$. We prove that \bar{G} is well-defined on $\mathcal{P}_{2}\left(\mathbf{R}^{d}\right)$: actually, we are going to see that \bar{G} quotients to a function G on $\mathcal{P}\left(\mathbf{T}^{d}\right)$. Indeed, if $\psi_{1}, \psi_{2} \in M$ are such that $\pi_{\sharp}\left(\psi_{i}\right)_{\sharp} \mathcal{L}^{p}=\tilde{\mu} \in \mathcal{P}\left(\mathbf{T}^{d}\right)$ for $i=1,2$, then it is standard (lemma 6.4 of [11] or lemma 1.1 above) that there are $h_{n} \in H$ and $z_{n} \in L_{\mathbf{Z}}^{2}$ such that

$$
\left\|\psi_{1}-\psi_{2} \circ h_{n}-z_{n}\right\|_{M} \rightarrow 0 \quad \text { as } \quad n \rightarrow+\infty .
$$

The equality below comes from (1.14), while the limit comes from the formula above and the continuity of \hat{G}.

$$
\hat{G}\left(\psi_{1}\right)-\hat{G}\left(\psi_{2}\right)=\hat{G}\left(\psi_{1}\right)-\hat{G}\left(\psi_{2} \circ h_{n}+z_{n}\right) \rightarrow 0 .
$$

This proves that \hat{G} is well defined; as for the differentiability of \hat{G}, we recall theorems 6.2 and 6.5 of [11].
Proposition 1.3. Let $\hat{G}: M \rightarrow \mathbf{R}$ be continuous and let it satisfy (1.14). Then, the following happens. 1) If \hat{G} is differentiable at ψ, then \hat{G} is differentiable at η for all $\eta \in M$ such that $\eta_{\sharp} \mathcal{L}^{d}=\psi_{\sharp} \mathcal{L}^{d}$. Moreover, the law of $D \hat{G}(\psi)$ does not depend on the choice of η.
2) Let us suppose that \hat{G} is of class C^{1} and let $\mu \in \mathcal{P}_{2}\left(\mathbf{R}^{d}\right)$. Then, there is $\xi \in L_{\mu}^{2}\left(\mathbf{R}^{d}, \mathbf{R}^{d}\right)$ such that, for all ψ satisfying $\psi_{\sharp} \mathcal{L}^{d}=\mu$, we have

$$
D \hat{G}(\psi)(x)=\xi \circ \psi(x) \quad \text { for } \mathcal{L}^{p} \text { a. e. } x .
$$

3) Let $\hat{G} \in C^{2}(M, \mathbf{R})$ with a bounded second derivative and let it satisfy (1.14); then, the function $\bar{G}: \mathcal{P}_{2}\left(\mathbf{R}^{d}\right) \rightarrow \mathbf{R}$ defined by (1.15) is strongly differentiable. By lemma 1.2 this implies that its quotient G on $\mathcal{P}\left(\mathbf{T}^{d}\right)$ is strongly differentiable.

Proof. Point 1) is theorem 6.2 of [11], point 2 theorem 6.5. We prove the easy consequence 3).
We want to show that \bar{G} is strongly differentiable at any $\mu \in \mathcal{P}_{2}\left(\mathbf{R}^{d}\right)$. Thus, let $\nu \in \mathcal{P}_{2}\left(\mathbf{R}^{d}\right)$ and let $\psi, \eta \in M$ be such that $\psi_{\sharp} \mathcal{L}^{p}=\mu, \eta_{\sharp} \mathcal{L}^{p}=\nu$; let $\lambda \in \Psi(\mu, \nu)$ and let ξ be as in point 2) above. Let $\beta:(x, v) \rightarrow(x, x+v)$; since $\lambda \in \Psi(\mu, \nu)$ it is easy to check that $\gamma:=\beta_{\sharp} \lambda$ belongs to $\Gamma(\mu, \nu)$. By formula (1.3) of lemma 1.1 we can find $h_{n} \in H$ such that

$$
\int_{[0,1)^{d}}\left|\psi(x)-\eta \circ h_{n}(x)\right|^{2} \mathrm{~d} x \rightarrow \int_{\mathbf{R}^{d} \times \mathbf{R}^{d}}\left|q-q^{\prime}\right|^{2} \mathrm{~d} \gamma\left(q, q^{\prime}\right)
$$

or equivalently, setting $\lambda_{n}:=\left(\psi, \eta \circ h_{n}-\psi\right)_{\sharp} \mathcal{L}^{d}$,

$$
\begin{equation*}
\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}}|v|^{2} \mathrm{~d} \lambda_{n}(x, v) \rightarrow \int_{\mathbf{R}^{d} \times \mathbf{R}^{d}}|v|^{2} \mathrm{~d} \lambda(x, v) \tag{1.16}
\end{equation*}
$$

We assert that

$$
\begin{equation*}
\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}}\langle\xi(x), v\rangle \mathrm{d} \lambda_{n}(x, v) \rightarrow \int_{\mathbf{R}^{d} \times \mathbf{R}^{d}}\langle\xi(x), v\rangle \mathrm{d} \lambda(x, v) . \tag{1.17}
\end{equation*}
$$

Indeed, if ξ were continuous, this would follow from (1.3). In the general case, we can find a continuous vector field ξ^{\prime} such that $\left\|\xi-\xi^{\prime}\right\|_{L_{\mu}^{2}}<\epsilon$; the first inequalities in the two formulas below are Hölder while the second ones come from (1.16).

$$
\begin{aligned}
& \left|\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}}\left\langle\xi-\xi^{\prime}, v\right\rangle \mathrm{d} \lambda_{n}(x, v)\right| \leq\left\|\xi-\xi^{\prime}\right\|_{L_{\mu}^{2}}\left[\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}}|v|^{2} \mathrm{~d} \lambda_{n}(x, v)\right]^{\frac{1}{2}} \leq M\left\|\xi-\xi^{\prime}\right\|_{L_{\mu}^{2}} \leq M \epsilon \\
& \left|\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}}\left\langle\xi-\xi^{\prime}, v\right\rangle \mathrm{d} \lambda(x, v)\right| \leq\left\|\xi-\xi^{\prime}\right\|_{L_{\mu}^{2}}\left[\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}}|v|^{2} \mathrm{~d} \lambda(x, v)\right]^{\frac{1}{2}} \leq M\left\|\xi-\xi^{\prime}\right\|_{L_{\mu}^{2}} \leq M \epsilon
\end{aligned}
$$

These two formulas imply the second inequality below; the third one follows from (1.3) taking n large enough.

$$
\begin{gathered}
\left|\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}}\langle\xi(x), v\rangle \mathrm{d}\left(\lambda_{n}-\lambda\right)(x, v)\right| \leq \\
\left|\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}}\left\langle\xi-\xi^{\prime}, v\right\rangle \mathrm{d}\left(\lambda_{n}-\lambda\right)\right|+\left|\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}}\left\langle\xi^{\prime}, v\right\rangle \mathrm{d}\left(\lambda_{n}-\lambda\right)\right| \leq \\
2 \epsilon M+\left|\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}}\left\langle\xi^{\prime}, v\right\rangle \mathrm{d}\left(\lambda_{n}-\lambda\right)\right| \leq 2 \epsilon M+\epsilon
\end{gathered}
$$

This proves (1.17). By (1.17), there is $\epsilon_{n} \rightarrow 0$ such that the first inequality below holds. The second one follows if we take k to be the sup of $\frac{1}{2}\left\|D^{2} \hat{G}\right\|$, which is finite by hypothesis. The last inequality follows from (1.16).

$$
\begin{gathered}
\left|\bar{G}(\nu)-\bar{G}(\mu)-\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}}\langle\xi(x), v\rangle \mathrm{d} \lambda(x, v)\right| \leq \\
\left|\hat{G}\left(\eta \circ h_{n}\right)-\hat{G}(\psi)-\int_{[0,1)^{d}}\left\langle\xi(\psi(x)), \eta \circ h_{n}(x)-\psi(x)\right\rangle \mathrm{d} x\right|+\epsilon_{n} \leq
\end{gathered}
$$

$$
k \int_{[0,1)^{d}}\left|\eta \circ h_{n}(x)-\psi(x)\right|^{2} \mathrm{~d} x+\epsilon_{n} \leq k \int_{\mathbf{T}^{d} \times \mathbf{R}^{d}}|v|^{2} \mathrm{~d} \lambda(x, v)+2 \epsilon_{n} .
$$

Letting $n \rightarrow+\infty$, we recover the definition of strong differentiability at μ.

In the opposite direction, we have the following.
Lemma 1.4. Let $G: \mathcal{P}\left(\mathbf{T}^{d}\right) \rightarrow \mathbf{R}$ be a function and let $\hat{G}: M \rightarrow \mathbf{R}$ be defined as in (1.13). Let us suppose that G is strongly differentiable at $\tilde{\mu} \in \mathcal{P}\left(\mathbf{T}^{d}\right)$, let $\mu \in \mathcal{P}_{2}\left(\mathbf{R}^{d}\right)$ be a representative of $\tilde{\mu}$ and let $\psi \in M$ such that $\psi_{\sharp} \mathcal{L}^{d}=\mu$. Then, \hat{G} is differentiable at $\psi \circ h+z$ for all $(h, z) \in H \times L_{\mathbf{Z}}^{2}$, and

$$
\begin{equation*}
D \hat{G}(u \circ h+z)=D \hat{G}(u) \circ h . \tag{1.18}
\end{equation*}
$$

Proof. We define $\bar{G}: \mathcal{P}_{2}\left(\mathbf{R}^{d}\right) \rightarrow \mathbf{R}$ as in (1.12); by lemma $1.2, \bar{G}$ is strongly differentiable at any representative μ of $\tilde{\mu}$.

Let ξ be the derivative of \bar{G} at μ and let $\psi \in M$ be such that $(\psi)_{\sharp} \mathcal{L}^{p}=\mu$. Let $\eta \in M$ and let us set $\nu=\eta_{\sharp} \mathcal{L}^{p}$. If we define $\lambda=(\psi, \eta-\psi)_{\sharp} \mathcal{L}^{p}$, we get the first equality below. Now $\lambda \in \Psi(\mu, \nu)$ and G is strongly differentiable at μ with differential ξ; for some $k>0$ this implies the inequality below, while the last equality comes from the definitions of \hat{G} and λ.

$$
\begin{gathered}
k \int_{[0,1)^{d}}|\psi(x)-\eta(x)|^{2} \mathrm{~d} x=k \int_{\mathbf{T}^{p} \times \mathbf{R}^{d}}|v|^{2} \mathrm{~d} \lambda(x, v) \geq \\
\left|\bar{G}(\nu)-\bar{G}(\mu)-\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}}\langle\xi(q), v\rangle \mathrm{d} \lambda(q, v)\right|= \\
\left|\hat{G}(\eta)-\hat{G}(\psi)-\int_{[0,1)^{d}}\langle\xi \circ \psi(x), \eta(x)-\psi(x)\rangle \mathrm{d} x\right| .
\end{gathered}
$$

The last formula implies that \hat{G} is differentiable at ψ.
As for point 2), this is a general property of equivariant functions: if T_{h} is a set of bounded linear operators from M to M having the group property

$$
T_{h_{1}} \circ T_{h_{2}}=T_{h_{1} h_{2}}
$$

then it is standard that

$$
D \hat{G}\left(T_{h} u\right)=\left[T_{h^{-1}}^{T} D \hat{G}(u)\right]
$$

where A^{T} denotes the adjoint operator of A. Setting $T_{h} u:=u \circ h$ and substituting, we get (1.18).

Assumptions on the potential and the final condition

We recall the assumptions used in [15] from section 6 onward.
We begin to suppose that we are given $U^{0}, U^{1}, \phi \in C^{3}\left(\mathbf{T}^{d}\right)$ such that the lifts of ϕ and U^{1} to \mathbf{R}^{d} are even.

Our potential is the function $\mathcal{F}: \mathcal{P}\left(\mathbf{T}^{d}\right) \rightarrow \mathbf{R}$ defined by

$$
\mathcal{F}(\mu)=\frac{1}{2} \int_{\mathbf{T}^{d}}(\phi * \mu)(z) \mathrm{d} \mu(z)=\frac{1}{2} \int_{\mathbf{T}^{d} \times \mathbf{T}^{d}} \phi\left(z-z^{\prime}\right) \mathrm{d} \mu(z) \mathrm{d} \mu\left(z^{\prime}\right)
$$

where the symbol $*$ denotes, as usual, convolution. The final condition is the function $\mathcal{U}_{0}: \mathcal{P}\left(\mathbf{T}^{d}\right) \rightarrow \mathbf{R}$ given by

$$
\begin{gathered}
\mathcal{U}_{0}(\mu)=\int_{\mathbf{T}^{d}}\left[U^{0}(z)+\frac{1}{2}\left(U^{1} * \mu\right)(z)\right] \mathrm{d} \mu(z)= \\
\int_{\mathbf{T}^{d} \times \mathbf{T}^{d}}\left[U^{0}(z)+\frac{1}{2} U^{1}\left(z-z^{\prime}\right)\right] \mathrm{d} \mu(z) \mathrm{d} \mu\left(z^{\prime}\right) .
\end{gathered}
$$

It is shown in [15] that \mathcal{F} and \mathcal{U} are strongly differentiable.
We recall from the introduction that we denote by d the differential of functions on $\mathcal{P}\left(\mathbf{T}^{d}\right)$, by D and ∇ that of functions on M and on \mathbf{R}^{d} respectively.

Always by [15], we have that

$$
\mathrm{d} \mathcal{F}(\mu)=\nabla F(q, \mu) \quad \text { and } \quad \mathrm{d} \mathcal{U}_{0}(\mu)=\nabla u_{0}(q, \mu)
$$

where

$$
F(q, \mu)=(\phi * \mu)(q) \quad \text { and } \quad u_{0}(q, \mu)=U^{0}(q)+\left(U^{1} * \mu\right)(q) .
$$

By (1.13), \mathcal{F} and \mathcal{U} induce functions $\hat{\mathcal{F}}$ and $\hat{\mathcal{U}}_{0}$ on M; by the definition of push-forward we see that, if $\sigma \in M$,

$$
\begin{gather*}
\hat{\mathcal{F}}(\sigma)=\frac{1}{2} \int_{[0,1)^{d} \times[0,1)^{d}} \phi[\sigma(x)-\sigma(y)] \mathrm{d} x \mathrm{~d} y, \tag{2.1}\\
\hat{\mathcal{U}}_{0}(\sigma)=\int_{[0,1)^{d} \times[0,1)^{d}}\left\{U^{0}(\sigma(x))+\frac{1}{2} U^{1}[\sigma(x)-\sigma(y)]\right\} \mathrm{d} x \mathrm{~d} y . \tag{2.1}
\end{gather*}
$$

Also the functions F and u_{0} extend to parametrizations:

$$
\begin{gather*}
\hat{F}: \mathbf{R}^{d} \times M \rightarrow \mathbf{R}^{d}, \quad \hat{F}(q, \sigma)=\int_{[0,1)^{d}} \phi[q-\sigma(x)] \mathrm{d} x, \tag{2.2}\\
\hat{u}_{0}: \mathbf{R}^{d} \times M \rightarrow \mathbf{R}^{d}, \quad \hat{u}_{0}(q, \sigma)=U^{0}(q)+\int_{[0,1)^{d}} U^{1}[q-\sigma(x)] \mathrm{d} x . \tag{2.2}
\end{gather*}
$$

We forego the proof of the following lemma, which follows from our hypotheses on ϕ, U^{0}, U^{1} and standard facts about the Nemitsky operators (see for instance [2]).

Lemma 2.1. Let $\hat{\mathcal{F}}, \hat{\mathcal{U}}_{0}: M \rightarrow \mathbf{R}$ be defined as in (2.1), let \hat{F}, \hat{u}_{0} be as in (2.2). Then, $\hat{\mathcal{F}}$ and $\hat{\mathcal{U}}_{0}$ are functions of class C^{3} on M. Denoting by $\langle\cdot, \cdot\rangle$ and by $\langle\cdot, \cdot\rangle_{M}$ the inner products in \mathbf{R}^{d} and in M respectively, we have that

$$
D \hat{\mathcal{F}}(\sigma) \psi=\int_{[0,1)^{d} \times[0,1)^{d}}\langle\nabla \phi[\sigma(x)-\sigma(y)], \psi(x)\rangle \mathrm{d} x \mathrm{~d} y=\langle\nabla \hat{F}(\sigma(\cdot), \sigma), \psi\rangle_{M}
$$

and

$$
D \hat{\mathcal{U}}_{0}(\sigma) \psi=\int_{[0,1)^{d} \times[0,1)^{d}}\left\langle\nabla U^{0}(\sigma(x))+\nabla U^{1}[\sigma(x)-\sigma(y)], \psi(x)\right\rangle \mathrm{d} x \mathrm{~d} y=\left\langle\nabla \hat{u}_{0}(\sigma(\cdot), \sigma), \psi\right\rangle_{M} .
$$

In other words, $D \hat{\mathcal{F}}(\sigma)$ is represented by the function $\nabla \hat{F}(\sigma(\cdot), \sigma) \in M, D \hat{\mathcal{U}}_{0}(\sigma)$ by the funtion $\nabla \hat{u}_{0}(\sigma(\cdot), \sigma) \in$ M. The functions \hat{F} and \hat{u}_{0} are of class C^{3} in both variables, with bounded first, second and third derivatives. Moreover, \hat{F} and \hat{u}_{0} are \mathbf{Z}^{d}-equivariant in the first variable; they are also $L_{\mathbf{Z}}^{2}$ and H-equivariant in the second one.

Minima on short time intervals

In lemmas 3.2-3.5 below, we recall the method of [10] for the minimals of the value function; in lemma 3.1, we prove that the value functions on measures and on parametrizations coincide.

Definitions. Let $\mu:(t, 0) \rightarrow \mathcal{P}\left(\mathbf{T}^{d}\right)$ be a curve of measures satisfying, in the weak sense (the precise definition is in the proof of lemma 3.1 below), the continuity equation

$$
\begin{equation*}
\partial_{s} \mu_{s}+\operatorname{div}\left(X \mu_{s}\right)=0 \tag{3.1}
\end{equation*}
$$

for a drift $X \in L^{2}\left((t, 0) \times \mathbf{T}^{d}, \mathcal{L}^{1} \otimes \mu_{t}\right)$. We define the augmented action of $\left(\mu_{s}, X\right)$ as

$$
\mathcal{A}\left(t, \mu_{s}, X\right)=\int_{t}^{0}\left[\frac{1}{2}\|X(s, \cdot)\|_{L_{\mu_{s}}^{2}}^{2}-\mathcal{F}\left(\mu_{s}\right)\right] \mathrm{d} s+\mathcal{U}_{0}\left(\mu_{0}\right)
$$

The value function on $\mathcal{P}\left(\mathbf{T}^{d}\right)$ is defined by

$$
\begin{equation*}
\mathcal{U}:(-\infty, 0] \times \mathcal{P}\left(\mathbf{T}^{d}\right) \rightarrow \mathbf{R}, \quad \mathcal{U}(t, \bar{\mu})=\inf \mathcal{A}\left(t, \mu_{s}, X\right) \tag{3.2}
\end{equation*}
$$

where the inf is over all paths $\left(\mu_{s}, X\right)$ which satisfy (3.1) and such that $\mu_{t}=\bar{\mu}$. We are not going to need this, but the inf is actually a minimum.

Augmented action and value function lift in a natural way to the space M. Given $t \leq 0$ and a curve $\sigma \in A C((t, 0), M)$, we can define

$$
\hat{\mathcal{A}}(t, \sigma)=\int_{t}^{0}\left[\frac{1}{2}\left\|\dot{\sigma}_{s}\right\|_{M}^{2}-\hat{\mathcal{F}}\left(\sigma_{s}\right)\right] \mathrm{d} s+\hat{\mathcal{U}}_{0}\left(\sigma_{0}\right)
$$

For $t \leq 0$ and $\psi \in M$, we set

$$
\hat{\mathcal{U}}(t, \psi)=\inf \left\{\hat{\mathcal{A}}(t, \sigma): \sigma \in A C((t, 0), M) \quad \text { and } \quad \sigma_{t}=\psi\right\} .
$$

Lemma 3.1. Let \mathcal{U} and $\hat{\mathcal{U}}$ be defined as above. Then, the following holds.

1) The function $\hat{\mathcal{U}}$ is continuous. Moreover, it is H and $L_{\mathbf{Z}}^{2}$-equivariant, i. e.

$$
\hat{\mathcal{U}}(t, \psi)=\hat{\mathcal{U}}(t, \psi \circ h+z) \quad \forall(t, \psi, h, z) \in(-\infty, 0] \times M \times H \times L_{\mathbf{Z}}^{2}
$$

2) Let $\tilde{\mu} \in \mathcal{P}\left(\mathbf{T}^{d}\right)$ and let $\psi \in M$ be such that $(\pi \circ \psi)_{\sharp} \mathcal{L}^{d}=\tilde{\mu}$. Then,

$$
\mathcal{U}(t, \tilde{\mu})=\hat{\mathcal{U}}(t, \psi)
$$

Proof. Point 1) is easy to dispatch, since continuity is standard; we follow [18] for equivariance. If σ_{s} is an AC curve with $\sigma_{t}=\psi, h \in H$ and $z \in L_{\mathbf{Z}}^{2}$, then $\tilde{\sigma}_{s}=\sigma_{s} \circ h+z$ is AC and satisfies $\tilde{\sigma}_{t}=\psi \circ h+z$; moreover, since the Lagrangian and $\hat{\mathcal{U}}_{0}$ are $L_{\mathbf{Z}}^{2}$ and H-equivariant, we see immediately that

$$
\mathcal{A}(t, \sigma)=\mathcal{A}(t, \tilde{\sigma})
$$

Clearly, this implies that $\hat{\mathcal{U}}(t, \psi \circ h+z) \leq \hat{\mathcal{U}}(t, \psi)$; the opposite inequality is similar.
As for point 2), we begin to prove that

$$
\begin{equation*}
\hat{\mathcal{U}}(t, \psi) \leq \mathcal{U}(t, \tilde{\mu}) \tag{3.3}
\end{equation*}
$$

We assert that this follows if we show that, for any curve (μ_{s}, X) satisfying (3.1) with $\mu_{t}=\tilde{\mu}$ we can find $\sigma \in A C([t, 0], M)$ such that
i) $\left(\pi \circ \sigma_{t}\right)_{\sharp} \mathcal{L}^{d}=(\pi \circ \psi)_{\sharp} \mathcal{L}^{d}=\tilde{\mu}$,
ii) $\mathcal{A}\left(t, \mu_{s}, X\right)=\hat{\mathcal{A}}(t, \sigma)$.

Indeed, we saw after formula (1.15) that i) together with point 1) of this lemma implies that $\hat{\mathcal{U}}\left(t, \sigma_{0}\right)=$ $\hat{\mathcal{U}}(t, \psi)$; since $i i$) implies that $\hat{\mathcal{U}}\left(t, \sigma_{0}\right) \leq \mathcal{U}(t, \tilde{\mu})$, formula (3.3) follows.

Thus, let $\left(\mu_{s}, X\right)$ be a weak solution of (3.1) with $\mu_{t}=\tilde{\mu}$. By proposition 4.21 of [5] (or theorem 8.2.1 of [4]) there is a measure Ξ on $C\left([t, 0], \mathbf{T}^{d}\right)$ such that, denoting by $\eta_{s}: C\left([t, 0], \mathbf{T}^{d}\right) \rightarrow \mathbf{T}^{d}$ the evaluation map $\eta_{s}: \gamma \rightarrow \gamma_{s}$, we have

$$
\begin{equation*}
\left(\eta_{s}\right)_{\sharp} \Xi=\mu_{s} \quad \text { for all } \quad s \in[t, 0] . \tag{3.4}
\end{equation*}
$$

Moreover, Ξ concentrates on absolutely continuous curves and

$$
\begin{equation*}
\int_{C\left([a, b], \mathbf{T}^{d}\right)} \mathrm{d} \Xi(\gamma) \int_{t}^{0}|\dot{\gamma}(s)|^{2} \mathrm{~d} s=\int_{t}^{0}\|X(s, x)\|_{L_{\mu_{s}}^{2}}^{2} \mathrm{~d} s \tag{3.5}
\end{equation*}
$$

It is standard (see for instance theorem 15.5.16 of [22]) that there is a Borel map $B:[0,1)^{d} \rightarrow C\left([t, 0], \mathbf{T}^{d}\right)$ such that $\Xi=B_{\sharp} \mathcal{L}^{d}$. We set

$$
\sigma_{s}(x)=B(x)(s)=\eta_{s} \circ B(x)
$$

Now point i) follows from (3.4), since $\left(\sigma_{t}\right)_{\sharp} \mathcal{L}^{d}=\left(\eta_{t} \circ B\right)_{\sharp} \mathcal{L}^{d}=\left(\eta_{t}\right)_{\sharp} \Xi=\mu_{t}$. We prove point $\left.i i\right)$.
The first equality below is the definition of \mathcal{A}, the second one is implied by (3.4) and (3.5) while the third one follows because $\Xi=B_{\sharp} \mathcal{L}^{d}$ and $\left(\eta_{0}\right)_{\sharp} \Xi=\mu_{0}=\left(\sigma_{0}\right)_{\sharp} \mathcal{L}^{d}$. The last equality is the definition of $\hat{\mathcal{A}}$.

$$
\begin{gathered}
\mathcal{A}\left(t, \mu_{s}, X\right)=\int_{t}^{0}\left[\frac{1}{2}\|X(s, \cdot)\|_{L_{\mu_{s}}^{2}}^{2}-\frac{1}{2} \int_{\mathbf{T}^{d} \times \mathbf{T}^{d}} \phi\left(q-q^{\prime}\right) \mathrm{d} \mu_{s}(q) \mathrm{d} \mu_{s}\left(q^{\prime}\right)\right] \mathrm{d} s+\mathcal{U}_{0}\left(\mu_{0}\right)= \\
\int_{t}^{0} \mathrm{~d} s\left[\int_{C\left([a, b], \mathbf{T}^{d}\right)} \frac{1}{2}|\dot{\gamma}(s)|^{2} \mathrm{~d} \Xi(\gamma)-\frac{1}{2} \int_{C\left([a, b], \mathbf{T}^{d}\right) \times C\left([a, b], \mathbf{T}^{d}\right)} \phi\left(\gamma(s)-\gamma^{\prime}(s)\right) \mathrm{d} \Xi(\gamma) \mathrm{d} \Xi\left(\gamma^{\prime}\right)\right]+
\end{gathered}
$$

$$
+\mathcal{U}_{0}\left(\left(\eta_{0}\right)_{\sharp} \Xi\right)=\int_{t}^{0}\left[\frac{1}{2}\left\|\dot{\sigma}_{s}\right\|_{M}^{2} \mathrm{~d} s-\int_{t}^{0} \hat{\mathcal{F}}\left(\sigma_{s}\right) \mathrm{d} s\right]+\hat{\mathcal{U}}_{0}\left(\sigma_{0}\right)=\hat{\mathcal{A}}(t, \sigma) .
$$

To prove the inequality opposite to (3.3), we let $\sigma \in A C((t, 0), M)$ with $\sigma_{0}=\psi$ and we define

$$
\begin{equation*}
\mu_{s}=\left(\pi \circ \sigma_{s}\right)_{\sharp} \mathcal{L}^{d} \quad \text { for } \quad s \in(t, 0) . \tag{3.6}
\end{equation*}
$$

We want to show
a) that μ satisfies (3.1) for a suitable drift X and
b) that the augmented action of $\left(\mu_{s}, X\right)$ isn't larger than the augmented action of σ.

Clearly, a) and b) imply the inequality opposite to (3.3), from which the thesis follows. We begin with a): the idea is that $X(s, q)$ is the average of the velocities $\dot{\sigma}_{s}(x)$ of the curves which satisfy $\sigma_{s}(x)=q$.

The measure $\mathcal{L}^{1} \otimes\left(\pi \circ \sigma_{s}, \dot{\sigma}_{s}\right)_{\sharp} \mathcal{L}^{d}$ on $[t, 0] \times \mathbf{T}^{d} \times \mathbf{R}^{d}$ has marginal $\mathcal{L}^{1} \otimes\left(\pi \circ \sigma_{s}\right)_{\sharp} \mathcal{L}^{d}$ on $[t, 0] \times \mathbf{T}^{d}$; we disintegrate $\mathcal{L}^{1} \otimes\left(\pi \circ \sigma_{s}, \dot{\sigma}_{s}\right)_{\sharp} \mathcal{L}^{d}=\mathcal{L}^{1} \otimes\left(\pi \circ \sigma_{s}\right)_{\sharp} \mathcal{L}^{d} \otimes \nu_{s, q}$ where $\nu_{s, q}$ is a measure on \mathbf{R}^{d}, depending in a Borel way on $(s, q) \in[t, 0] \times \mathbf{T}^{d}$. In other words, if $f \in C\left(\mathbf{T}^{d} \times \mathbf{R}^{d}\right)$ is such that $\frac{|f(x, v)|}{1+|v|^{2}}$ is bounded, then the first equality below holds for \mathcal{L}^{1} a. e. $s \in[a, b]$; the second equality comes from (3.6).

$$
\begin{equation*}
\int_{[0,1)^{d}} f\left(\sigma_{s}(x), \dot{\sigma}_{s}(x)\right) \mathrm{d} x=\int_{[0,1)^{d}} \mathrm{~d} x \int_{\mathbf{R}^{d}} f\left(\sigma_{s}(x), v\right) \mathrm{d} \nu_{s, \sigma_{s}(x)}(v)=\int_{\mathbf{T}^{d}} \mathrm{~d} \mu_{s}(q) \int_{\mathbf{R}^{d}} f(q, v) \mathrm{d} \nu_{s, q}(v) \tag{3.7}
\end{equation*}
$$

We set

$$
X(s, q)=\int_{\mathbf{R}^{d}} v \mathrm{~d} \nu_{s, q}(v)
$$

Let now $\phi \in C_{c}^{\infty}\left((t, 0) \times \mathbf{T}^{d}\right)$; the first equality below comes from (3.6), the second one from the definition of X and the third one from (3.7). The last equality follows since ϕ has compact support in $(t, 0) \times \mathbf{T}^{d}$.

$$
\begin{gathered}
\int_{t}^{0} \mathrm{~d} s \int_{\mathbf{T}^{d}}\left[\partial_{s} \phi(s, q)+\langle\nabla \phi(s, q), X(s, q)\rangle\right] \mathrm{d} \mu_{s}(q)= \\
\int_{t}^{0} \mathrm{~d} s \int_{[0,1)^{d}}\left[\partial_{s} \phi\left(s, \sigma_{s}(x)\right)+\left\langle\nabla \phi\left(s, \sigma_{s}(x)\right), X\left(s, \sigma_{s}(x)\right)\right\rangle\right] \mathrm{d} x= \\
\int_{t}^{0} \mathrm{~d} s \int_{[0,1)^{d}}\left[\partial_{s} \phi\left(s, \sigma_{s}(x)\right)+\left\langle\nabla \phi\left(s, \sigma_{s}(x)\right), \int_{\mathbf{R}^{d}} v \mathrm{~d} \nu_{s, \sigma_{s}(x)}(v)\right\rangle\right] \mathrm{d} x= \\
\int_{t}^{0} \mathrm{~d} s \int_{[0,1)^{d}}\left[\partial_{s} \phi\left(s, \sigma_{s}(x)\right)+\left\langle\nabla \phi\left(s, \sigma_{s}(x)\right), \dot{\sigma}_{s}(x)\right\rangle\right] \mathrm{d} x= \\
\int_{t}^{0}\left[\frac{\mathrm{~d}}{\mathrm{~d} s} \int_{[0,1)^{d}} \phi\left(s, \sigma_{s}(x)\right) \mathrm{d} x\right] \mathrm{d} s=0 .
\end{gathered}
$$

This means that $\left(\mu_{s}, X\right)$ is a weak solution of (3.1), i. e. point a) holds.
As for b), it is the same calculation, up to the use of Jensen's inequality:

$$
\begin{gathered}
\int_{t}^{0}\left[\frac{1}{2} \int_{\mathbf{T}^{d}}|X(s, q)|^{2} \mathrm{~d} \mu_{s}(q)-\mathcal{F}\left(\mu_{s}\right)\right] \mathrm{d} s+\mathcal{U}_{0}\left(\mu_{0}\right) \leq \\
\int_{t}^{0}\left[\frac{1}{2} \int_{\mathbf{R}^{d}}|v|^{2} \mathrm{~d} \nu_{s, q}(v)-\hat{\mathcal{F}}\left(\sigma_{s}\right)\right] \mathrm{d} s+\hat{\mathcal{U}}\left(\sigma_{0}\right)=\int_{t}^{0}\left[\frac{1}{2}\left\|\dot{\sigma}_{s}\right\|_{M}^{2}-\hat{\mathcal{F}}\left(\sigma_{s}\right)\right] \mathrm{d} s+\hat{\mathcal{U}}\left(\sigma_{0}\right)
\end{gathered}
$$

Secured by the last lemma, from now on we shall concentrate on $\hat{\mathcal{A}}$ and $\hat{\mathcal{U}}$.

Definition. By $H_{M}^{1}(t, 0)$ we denote the space of the maps $\sigma \in A C((t, 0), M)$ such that

$$
\|\sigma\|_{H_{M}^{1}}^{2}:=\left\|\sigma_{t}\right\|_{M}^{2}+\int_{t}^{0}\left\|\dot{\sigma}_{s}\right\|_{M}^{2} \mathrm{~d} s<+\infty
$$

It is standard ([1]) that this is a Hilbert space for the inner product

$$
\langle\sigma, \eta\rangle_{H_{M}^{1}}:=\left\langle\sigma_{t}, \eta_{t}\right\rangle_{M}+\int_{t}^{0}\left\langle\dot{\sigma}_{s}, \dot{\eta}_{s}\right\rangle \mathrm{d} s
$$

We recall the Poincaré-Wirtinger inequality

$$
\sup _{s \in(t, 0)}\left\|\sigma_{s}\right\|_{M} \leq\left\|\sigma_{t}\right\|_{M}+|t|^{\frac{1}{2}} \cdot\|\sigma\|_{H_{M}^{1}}
$$

Lemma 3.2. For $t<0$, let us consider the functional

$$
I: H_{M}^{1}(t, 0) \rightarrow \mathbf{R}, \quad I: \sigma \rightarrow \hat{\mathcal{A}}(t, \sigma)
$$

where the augmented action $\hat{\mathcal{A}}$ has been defined at the beginning of this section. Then, the following points hold.

1) The functional I is of class C^{1} on $H_{M}^{1}(t, 0)$. For \hat{F} and \hat{u}_{0} defined as in (2.2), we have

$$
\begin{gather*}
\left.I^{\prime}(\sigma)(h)=\int_{t}^{0}\left[\left\langle\dot{\sigma}_{s}, \dot{h}_{s}\right\rangle_{M}-\left\langle\nabla \hat{F}\left(\sigma_{s}(\cdot), \sigma_{s}\right), h_{s}\right\rangle_{M}\right] \mathrm{d} s+\left\langle\nabla \hat{u}\left(\sigma_{0}(\cdot), \sigma_{0}\right)\right), h_{0}\right\rangle_{M}= \\
\int_{t}^{0}\left\langle\dot{\sigma}_{s}, \dot{h}_{s}\right\rangle_{M} \mathrm{~d} s-\int_{t}^{0} \mathrm{~d} s \int_{[0,1)^{d} \times[0,1)^{d}}\left\langle\nabla \phi\left(\sigma_{s}(x)-\sigma_{s}(y)\right), h_{s}(x)\right\rangle \mathrm{d} x \mathrm{~d} y+ \\
\int_{[0,1)^{d} \times[0,1)^{d}}\left\langle\nabla U^{0}\left(\sigma_{0}(x)\right)+\nabla U^{1}\left(\sigma_{0}(x)-\sigma_{0}(y)\right), h_{0}(x)\right\rangle \mathrm{d} x \mathrm{~d} y . \tag{3.8}
\end{gather*}
$$

To explain the notation, we recall that $\nabla \hat{F}\left(\cdot, \sigma_{s}\right)$ is a C^{2} function from \mathbf{T}^{d} to \mathbf{R}^{d} and thus $\nabla \hat{F}\left(\sigma_{s}(\cdot), \sigma_{s}\right) \in M$. 2) Let $\sigma \in H_{M}^{1}(t, 0)$ be minimal in the definition of $\hat{\mathcal{U}}(t, \psi)$; then, σ solves

$$
\left\{\begin{array}{l}
\ddot{\sigma}_{s}(x)=-\left(\nabla \phi * \mu_{s}\right)\left(\sigma_{s}(x)\right)=-\nabla \hat{F}\left(\sigma_{s}(x), \sigma_{s}\right) \quad \text { for } \quad s \in(t, 0) \tag{3.9}\\
\sigma_{t}(x)=\psi(x) \\
\dot{\sigma}_{0}(x)=-\nabla U^{0}\left(\sigma_{0}(x)\right)-\left(\nabla U^{1} * \mu_{0}\right)\left(\sigma_{0}(x)\right)=-\nabla \hat{u}_{0}\left(\sigma_{0}(x), \sigma_{0}\right)
\end{array}\right.
$$

where we have set $\mu_{s}=\left(\sigma_{s}\right)_{\sharp} \mathcal{L}^{p}$. The equalities are in the space M, i. e. they hold for a. e. $x \in[0,1)^{d}$.
Proof. Since the potential $\hat{\mathcal{F}}$ and the final condition $\hat{\mathcal{U}}$ are defined by (2.1), the proof of (3.8) is classical (see for instance [2]) and we forego it.

We recall the proof of point 2), which again is classical. Since I is of class C^{1} by point 1), if σ minimizes I under the constraint $\sigma_{t}=\psi$, then we must have that

$$
I^{\prime}(\sigma)(h)=0 \quad \text { for all } \quad h \in H_{M}^{1}(t, 0) \quad \text { with } \quad h_{t}=0 .
$$

Integrating by parts in (3.8), this implies that

$$
\int_{t}^{0}\left\langle-\ddot{\sigma}_{s}-\left(\nabla \hat{F}\left(\sigma_{s}(\cdot), \sigma_{s}\right), h_{s}\right\rangle_{M} \mathrm{~d} s+\left\langle\dot{\sigma}_{0}, h_{0}\right\rangle_{M}+\left\langle\nabla \hat{u}_{0}\left(\sigma_{0}(\cdot), \sigma_{0}\right), h_{0}\right\rangle_{M}=0\right.
$$

for all $h \in H_{M}^{1}(t, 0)$ with $h_{t}=0$. Clearly, this implies the first and third formulas of (3.9), while the second one comes from the boundary conditions on the minimal σ.

Finding minima of I is a delicate proposition (see for instance [21]) because Tonelli's theorem does not apply to the infinite-dimensional space M. However, in our case the implicit function theorem comes to the rescue: in the next three lemmas we recall the approach of [10] in our situation. In the next lemma, we denote by $B_{X}(\psi, r)$ the ball in X of radius r and centered in ψ.

Lemma 3.3. There are $T, r>0$ such that the following holds. Let $t \in[-T, 0]$, and let $\psi \in M$; we shall denote by ψ both the element of M and the function of $H_{M}^{1}(t, 0)$ constantly equal to ψ.

1) There is a unique function $\sigma^{(t, \psi)} \in C^{1}([-T, 0], M)$ such that
i) $\sigma_{s}^{(t, \psi)} \in B_{M}(\psi, r)$ for $s \in[-T, 0]$, and
ii) $\sigma^{(t, \psi)}$ satisfies (3.9).

By the Poincaré-Wirtinger inequality, this implies that (3.9) has a unique solution in $B_{H_{M}^{1}(-T, 0)}\left(\psi, r^{\prime}\right)$ for some $r^{\prime}>0$.
2) The map

$$
\Phi:[-T, 0] \times M \rightarrow H_{M}^{1}(-T, 0), \quad \Phi:(t, \psi) \rightarrow \sigma^{(t, \psi)}
$$

is of class C^{2} and equivariant, i. e. $\sigma^{(t, \psi \circ h+z)}=\sigma^{(t, \psi)} \circ h+z$ for all $h \in H$ and $z \in L_{\mathbf{Z}}^{2}$.

Proof. Let us consider the map

$$
\Sigma:[-T, 0] \times M \rightarrow M, \quad \Sigma:(s, \tilde{\psi}) \rightarrow \sigma_{s}
$$

where σ_{s} solves the Cauchy problem

$$
\left\{\begin{align*}
\ddot{\sigma}_{s}(x) & =-\nabla \hat{F}\left(\sigma_{s}(x), \sigma_{s}\right) \tag{3.10}\\
\sigma_{0} & =\tilde{\psi} \\
\dot{\sigma}_{0}(x) & =-\nabla \hat{u}_{0}\left(\sigma_{0}(x), \sigma_{0}\right)=-\nabla \hat{u}_{0}(\tilde{\psi}(x), \psi)
\end{align*}\right.
$$

for the functions \hat{F} and \hat{u} which have been defined in (2.2). Since these two functions are of class C^{3} by lemma 2.1, their gradients are in C^{2} and the map Σ is of class C^{2} by the continuous dependence theorem.

Step 1. We assert that points 1) and 2) follow if we show that there is a C^{2} function $\tilde{\psi}:[-T, 0] \times M \rightarrow M$ which is, for all $\psi \in M$, the unique solution in $B(\psi, r)$ of

$$
\begin{equation*}
\Sigma(t, \tilde{\psi}(t, \psi))=\psi \tag{3.11}
\end{equation*}
$$

Indeed, if this holds we can set

$$
\begin{equation*}
\sigma_{s}^{(t, \psi)}=\Sigma(s, \tilde{\psi}(t, \psi)) \tag{3.12}
\end{equation*}
$$

and (3.11) immediately implies that

$$
\sigma_{t}^{(t, \psi)}=\psi
$$

i. e. $\sigma^{(t, \psi)}$ satisfies the second equation of (3.9).

Moreover, the map $:(t, \psi, s) \rightarrow \sigma_{s}^{(t, \psi)}$ is of class C^{2} because of (3.12) and the fact that Σ and $\tilde{\psi}$ are of class C^{2}; in particular, $\sigma^{(t, \psi)} \in H_{M}^{1}(-T, 0)$. The map $\sigma^{(t, \psi)}$ solves the first equation of (3.9) because $: s \rightarrow \Sigma(s, \tilde{\psi}(t, \psi))$ solves it by the definition of Σ. Finally, $\sigma^{(t, \psi)}$ satisfies the third equation of (3.9) simply because it satisfies the third equation of (3.10). Uniqueness follows because, if (3.9) had two different solutions in $B_{M}(\psi, r)$, then also (3.11) would have two different solutions in $B_{M}(\psi, r)$, and we are supposing that this is not the case.

We prove the last assertion of the lemma, equivariance. Recall that \hat{F} and \hat{u}_{0} are H and $L_{\mathbf{Z}}^{2}$-equivariant; in particular, if $\sigma^{(t, \psi)}$ satisfies (3.9) and $(h, z) \in H \times L_{\mathbf{Z}}^{2}$, then also $\sigma^{(t, \psi)} \circ h+z$ satisfies (3.9) for the initial condition $\psi \circ h+z$. By the uniqueness of point 1), this implies that $\sigma^{(t, \psi \circ h+z)}=\sigma^{(t, \psi)}+z$ for all $h \in H$ and $z \in L_{\mathbf{Z}}^{2}$.
Step 2. In this step and in the following ones, we check that we can apply the implicit function theorem to solve for ψ in (3.11).

First of all, we saw above that the map Σ is C^{2}. By definition, $\Sigma(0, \psi)=\psi$ for all $\psi \in M$, which implies that

$$
D \Sigma\left(0, \psi_{0}\right)=I d \quad \forall \psi_{0} \in M
$$

Thus, the implicit function theorem yields the existence of a C^{2} function $\tilde{\psi}(t, \psi)$ defined in $\left[-T_{0}, 0\right] \times$ $B_{M}\left(\psi_{0}, r\right)$ which solves (3.1).

In step 3 below, we shall see that T_{0} and r do not depend on ψ_{0}; in step 4 , we shall use the monodromy theorem to glue the local solutions into a solution defined globally on $\left[-T_{0}, 0\right] \times M$.
Step 3. We prove that we can choose T_{0} and r independent on ψ_{0}.
If we look at the proof of the implicit function theorem, we see that $T_{0}, r>0$ must be chosen in order that the Lipschitz constant of : $\psi \rightarrow \Sigma(t, \psi)-\psi$ is smaller than, say, $\frac{1}{2}$ in $\left[-T_{0}, 0\right] \times B\left(\psi_{0}, r\right)$; by the Lagrange theorem, this follows if $\|D \Sigma(t, \psi)-I d\| \leq \frac{1}{2}$ in $\left[-T_{0}, 0\right] \times B\left(\psi_{0}, r\right)$. This follows by a Taylor development, since we saw above that $D \Sigma(0, \psi)-I d=0$ for all ψ and that $\left\|\partial_{t} D \Sigma(t, \psi)\right\|$ is bounded in $[-1,0] \times M$.
Step 4. By the last step, in each neighbourhood $\left[-T_{0}, 0\right] \times B\left(\psi_{0}, r\right)$ we can define a function $\tilde{\psi}$ which satisfies (3.12); since M is simply connected, we can use the monodromy theorem (see for instance theorem 1.8 of chapter 3 of [2]) to define globally a function $\tilde{\psi}:\left[-T_{0}, 0\right] \times M \rightarrow M$ satisfying (3.11).

Definition. From now on, $\sigma_{s}^{(t, \psi)}$ will be defined as in the last lemma.

Since the map : $(t, \psi) \rightarrow \sigma^{(t, \psi)}$ is of class C^{2}, the next lemma reduces to a classical computation ([10]) which we are only going to sketch; we continue in our practice of denoting by D the derivative in the M variable.

Lemma 3.4. We set

$$
\begin{equation*}
\hat{\mathcal{V}}(t, \psi)=\int_{t}^{0}\left[\frac{1}{2}\left\|\dot{\sigma}_{s}^{(t, \psi)}\right\|_{M}^{2}-\hat{\mathcal{F}}\left(\sigma_{s}^{(t, \psi)}\right)\right] \mathrm{d} s+\hat{\mathcal{U}}_{0}\left(\sigma_{0}^{(t, \psi)}\right) \tag{3.13}
\end{equation*}
$$

Then, $\hat{\mathcal{V}} \in C^{2}([-T, 0] \times M)$ and we have

$$
\left\{\begin{align*}
-\partial_{t} \hat{\mathcal{V}}(t, \psi)+\frac{1}{2}\|D \hat{\mathcal{V}}(t, \psi)\|_{M}^{2}+\hat{\mathcal{F}}(\psi) & =0 \quad \text { for } \quad(t, \psi) \in[-T, 0] \times M \tag{3.14}\\
\hat{\mathcal{V}}(0, \psi) & =\hat{\mathcal{U}}_{0}(\psi)
\end{align*}\right.
$$

Moreover,

$$
\begin{equation*}
\dot{\sigma}_{s}^{(t, \psi)}=-D \hat{\mathcal{V}}\left(s, \sigma_{s}^{(t, \psi)}\right) \quad \text { for all } \quad s, t \in[-T, 0] \tag{3.15}
\end{equation*}
$$

Proof. First of all, $\hat{\mathcal{V}} \in C^{2}([-T, 0] \times M)$ by point 2$)$ of lemma 3.3 . Next, we differentiate with respect to ψ both terms of (3.13); after using (3.8) and (3.9) we get that

$$
\begin{equation*}
\dot{\sigma}_{t}^{(t, \psi)}=-D \hat{\mathcal{V}}\left(t, \sigma_{t}^{(t, \psi)}\right)=-D \hat{\mathcal{V}}(t, \psi) \tag{3.16}
\end{equation*}
$$

Now we differentiate in (3.13) with respect to t; after an integration by parts, we get that

$$
\begin{gathered}
\partial_{t} \hat{\mathcal{V}}(t, \psi)=-\frac{1}{2}\left\|\dot{\sigma}_{t}^{(t, \psi)}\right\|_{M}^{2}+\hat{\mathcal{F}}\left(\sigma_{t}^{(t, \psi)}\right)+ \\
\int_{t}^{0}\left\langle-\ddot{\sigma}_{s}^{(t, \psi)}-D \hat{\mathcal{F}}\left(\sigma_{s}^{(t, \psi)}\right), \partial_{t} \sigma_{t}^{(s, \psi)}\right\rangle_{M} \mathrm{~d} s+ \\
\left.\left\langle\dot{\sigma}_{s}^{(t, \psi)}, \partial_{t} \sigma_{s}^{(t, \psi)}\right\rangle_{M}\right|_{s=t} ^{s=0}+\left\langle D \hat{\mathcal{U}}\left(\sigma_{0}^{(t, \psi)}\right), \partial_{t} \sigma_{0}^{(t, \psi)}\right\rangle_{M}
\end{gathered}
$$

We note that the integral term is zero by the first equation of (3.9). Since $\sigma_{t}^{(t, \psi)}=\psi$ for all t, differentiating we get that

$$
\left.\partial_{t} \sigma_{s}^{(t, \psi)}\right|_{s=t}=-\dot{\sigma}_{t}^{(t, \psi)}
$$

Together with the last equation of (3.9), the last two equations imply that

$$
\partial_{t} \hat{\mathcal{V}}(t, \psi)=\frac{1}{2}\left\|\dot{\sigma}_{t}^{(t, \psi)}\right\|_{M}^{2}+\hat{\mathcal{F}}\left(\sigma_{t}^{(t, \psi)}\right)
$$

Bt (3.16), this implies (3.14).

Next, we assert that (3.15) follows from (3.16) if we show that, for all $t, s, \tau \in[-T, 0]$, we have that

$$
\begin{equation*}
\sigma_{\tau}^{(t, \psi)}=\sigma_{\tau}^{\left(s, \sigma_{s}^{(t, \psi)}\right)} \tag{3.17}
\end{equation*}
$$

To show the assertion, we denote by the dot the derivative in the τ variable; now (3.17) implies the first equality below, (3.16) the second one.

$$
\left.\dot{\sigma}_{\tau}^{(t, \psi)}\right|_{\tau=s}=\left.\dot{\sigma}_{\tau}^{\left(s, \sigma_{s}^{(t, \psi)}\right)}\right|_{\tau=s}=-D \hat{\mathcal{V}}\left(s, \sigma_{s}^{(t, \psi)}\right)
$$

To show (3.17), by the uniqueness of lemma 3.3 it suffices to show that : $\tau \rightarrow \sigma_{\tau}^{(t, \psi)}$ satisfies

$$
\left\{\begin{array}{l}
\ddot{\sigma}_{\tau}^{(t, \psi)}(x)=-\nabla \hat{F}\left(\sigma_{\tau}^{(t, \psi)}(x), \sigma_{\tau}^{(t, \psi)}\right) \\
\sigma_{s}^{(t, \psi)}(x)=\sigma_{s}^{(t, \psi)}(x) \\
\dot{\sigma}_{0}^{(t, \psi)}(x)=-\nabla \hat{u}_{0}\left(\sigma_{0}^{(t, \psi)}(x), \sigma_{0}^{(t, \psi)}\right)
\end{array}\right.
$$

which is obvious since $\sigma^{(t, \psi)}$ satisfies (3.9).

Lemma 3.5. Let $t \in[-T, 0]$ and let $\psi \in M$. Then,

1) for all $s \in[-T, 0], \sigma^{(t, \psi)}$ is the unique minimal in the definition of $\hat{\mathcal{U}}\left(s, \sigma_{s}^{(t, \psi)}\right)$.
2) $\hat{\mathcal{U}}(t, \psi)=\hat{\mathcal{V}}(t, \psi)$ for $(t, \psi) \in[-T, 0] \times M$.

Proof. Point 2) follows immediately from point 1) and the definitions of $\hat{\mathcal{U}}$ and $\hat{\mathcal{V}}$; we recall the classical proof of [10] for point 1). Let $\hat{\mathcal{V}}$ be as in the last lemma and let us consider the functional

$$
\begin{gather*}
J_{s}: H_{M}^{1}(t, 0) \rightarrow \mathbf{R} \\
J_{s}: \sigma \rightarrow \int_{s}^{0}\left[\frac{1}{2}\left\|\dot{\sigma}_{\tau}\right\|_{M}^{2}-\mathcal{F}\left(\sigma_{\tau}\right)+\partial_{\tau} \hat{\mathcal{V}}\left(\tau, \sigma_{\tau}\right)+\left\langle D \hat{\mathcal{V}}\left(\tau, \sigma_{\tau}\right), \dot{\sigma}_{\tau}\right\rangle_{M}\right] \mathrm{d} \tau \tag{3.18}
\end{gather*}
$$

Since $\hat{\mathcal{V}}$ is of class C^{2} by lemma 3.4, we get the first equality below, while the second one follows from the second formula of (3.14) and the definition of $\hat{\mathcal{A}}$ at the beginning of this section.

$$
\begin{gather*}
J_{s}(\sigma)=\int_{s}^{0}\left[\frac{1}{2}\left\|\dot{\sigma}_{\tau}\right\|_{M}^{2}-\mathcal{F}\left(\sigma_{\tau}\right)\right] \mathrm{d} \tau+\hat{\mathcal{V}}\left(0, \sigma_{0}\right)-\hat{\mathcal{V}}\left(s, \sigma_{s}\right)= \\
\hat{\mathcal{A}}(s, \sigma)-\hat{\mathcal{V}}\left(s, \sigma_{s}\right) \tag{3.19}
\end{gather*}
$$

Thus, if we restrict to the curves $\sigma \in H_{M}^{1}(s, 0)$ with $\sigma_{s}=\sigma_{s}^{(t, \psi)}$, minimizing J_{s} is the same as minimizing $\hat{\mathcal{A}}(s, \sigma)$: the thesis follows if we check that $\sigma^{(t, \psi)}$ is minimal for J_{s}. Actually, we are going to show that the integrand of J_{s} is constantly equal to its minimum along $\left(\tau, \sigma_{\tau}^{(t, \psi)}, \dot{\sigma}_{\tau}^{(t, \psi)}\right)$.

Clearly, for all $(\tau, \eta) \in[-T, 0] \times M$ the minimum of the Lagrangian of J_{s}

$$
B_{\tau, \eta}: M \rightarrow \mathbf{R}
$$

$$
B_{\tau, \eta}: \dot{\lambda} \rightarrow \frac{1}{2}\|\dot{\lambda}\|_{M}^{2}-\mathcal{F}(\eta)+\partial_{\tau} \hat{\mathcal{V}}(\tau, \eta)+\left\langle D_{\eta} \hat{\mathcal{V}}(\tau, \eta), \dot{\lambda}\right\rangle_{M}
$$

is attained at $\dot{\lambda}=-D_{\eta} \hat{\mathcal{V}}(\tau, \eta)$; substituting this value into the expression for $B_{\tau, \eta}$ we get the inequality below, while the equality is the first formula of (3.14).

$$
\begin{equation*}
B_{\tau, \eta}(\dot{\lambda}) \geq-\frac{1}{2}\left\|D_{\eta} \hat{\mathcal{V}}(\tau, \eta)\right\|_{M}^{2}-\mathcal{F}(\eta)+\partial_{\tau} \hat{\mathcal{V}}(\tau, \eta)=0 \quad \forall \dot{\lambda} \in M \tag{3.20}
\end{equation*}
$$

On the other side, (3.15) implies the second equality below, (3.14) the third one.

$$
\begin{aligned}
B_{\tau, \dot{\sigma}_{\tau}^{(t, \psi)}}\left(\dot{\sigma}_{\tau}^{(t, \psi)}\right) & =\frac{1}{2}\left\|\dot{\sigma}_{\tau}^{(t, \psi)}\right\|_{M}^{2}-\mathcal{F}\left(\sigma_{\tau}^{(t, \psi)}\right)+\partial_{\tau} \hat{\mathcal{V}}\left(\tau, \sigma_{\tau}^{(t, \psi)}\right)+\left\langle D \hat{\mathcal{V}}\left(\tau, \sigma_{\tau}^{(t, \psi)}\right), \dot{\sigma}_{\tau}^{(t, \psi)}\right\rangle_{M}= \\
& -\frac{1}{2}\left\|D \hat{\mathcal{V}}\left(\tau, \sigma_{\tau}^{(t, \psi)}\right)\right\|_{M}^{2}-\mathcal{F}\left(\sigma_{\tau}^{(t, \psi)}\right)+\partial_{\tau} \hat{\mathcal{V}}\left(\tau, \sigma_{\tau}^{(t, \psi)}\right)=0
\end{aligned}
$$

The last two formulas imply that $: \tau \rightarrow \sigma_{\tau}^{(t, \psi)}$ minimizes J_{s}, as we wanted.
We prove uniqueness: by the aforesaid, if σ_{τ} minimizes, then the integrand of J_{s} must be zero along σ_{τ}. By (3.20), this implies that $\dot{\sigma}_{\tau}=-D \mathcal{V}\left(\tau, \sigma_{\tau}\right)$. By (3.15) this implies that σ_{τ} and $\sigma_{\tau}^{(t, \psi)}$ satisfy the same differential equation; we recall from lemma 3.4 that $-D \hat{\mathcal{V}}(t, \psi)$ is Lipschitz. Since $\sigma_{s}=\sigma_{s}^{(t, \psi)}$ by hypothesis, we get that $\sigma_{\tau}=\sigma_{\tau}^{(t, \psi)}$ for $\tau \in[-T, 0]$ by the existence and uniqueness theorem.
§4

The master equation

In this section, we are going to define the value function for the single particle; we shall see that it determines the movement of the whole pack and that it satisfies the master equation.

Definition. We define

$$
\begin{gather*}
v:[-T, 0] \times \mathbf{T}^{d} \times[-T, 0] \times M \rightarrow \mathbf{R} \\
v(s, q \mid t, \psi)=\min \left\{\int_{s}^{0}\left[\frac{1}{2}|\dot{y}(\tau)|^{2}-\hat{F}\left(y(\tau), \sigma_{\tau}^{(t, \psi)}\right)\right] \mathrm{d} \tau+\hat{u}_{0}\left(y(0), \sigma_{0}^{(t, \psi)}\right)\right\} \tag{4.1}
\end{gather*}
$$

where the minimum (whose existence is guaranteed by Tonelli's theorem) is over all $y \in A C\left((s, 0), \mathbf{T}^{p}\right)$ such that $y(s)=q$. In the notation for v we have inaugurated the practice of placing the "parameters", in this case (t, ψ), after the vertical slash. In other words, we are interested in the equation solved by v in the first two variables. If we freeze (t, ψ), then $v(s, q \mid t, \psi)$ is the value function of the particle q, given that the whole pack moves like $\sigma^{(t, \psi)}$. Thus, v solves, in its first two variables, the Hamilton-Jacobi equation.

Lemma 4.1. Up to reducing T, the following holds.

1) For $s, t \in[-T, 0]$, the minimum in the definition of $v(s, q \mid t, \psi)$ is attained on a unique function

$$
: \tau \rightarrow y(\tau \mid s, q, t, \psi)
$$

Again, the parameters of the orbit (i. e. the initial conditions of the single particle and of the whole pack) are on the right of the vertical slash.
2) The map

$$
:(\tau, s, q, t, \psi) \rightarrow y(\tau \mid s, q, t, \psi)
$$

is of class C^{2}.
3) The value function

$$
:(s, q, t, \psi) \rightarrow v(s, q \mid t, \psi)
$$

is of class C^{2} with bounded first and second derivatives. It is \mathbf{Z}^{d}-equivariant in the second variable, H and $L_{\mathbf{Z}}^{2}$-equivariant in the fourth one. For all $(t, \psi) \in[-T, 0] \times M$ it satisfies the Hamilton-Jacobi equation with time reversed

$$
\left\{\begin{align*}
-\partial_{s} v(s, q \mid t, \psi)+\frac{1}{2}|\nabla v(s, q \mid t, \psi)|^{2}+\hat{F}\left(q, \sigma_{s}^{(t, \psi)}\right) & =0 \quad(s, q) \in[-T, 0] \times \mathbf{T}^{d} \tag{4.2}\\
v(0, q \mid t, \psi) & =\hat{u}_{0}\left(q, \sigma_{0}^{(t, \psi)}\right)
\end{align*}\right.
$$

in the classical sense. Recall that we denote the gradient in the \mathbf{T}^{p} variable by ∇, in the M variable by D. 4) We have that, for \mathcal{L}^{p} a. e. $x \in[0,1)^{d}$ and all $t, s, \tau \in[-T, 0]$,

$$
\dot{y}\left(\tau \mid s, \sigma_{s}^{(t, \psi)}(x), t, \psi\right)=\dot{\sigma}_{\tau}^{(t, \psi)}(x)=-\nabla v\left(\tau, y\left(\tau \mid s, \sigma_{s}^{(t, \psi)}(x), t, \psi\right) \mid t, \psi\right)=-D \hat{\mathcal{V}}\left(\tau, \sigma_{\tau}^{(t, \psi)}\right)(x) .
$$

5) Let us define the function S as the flow of $-\nabla v$, i. e. as

$$
S(s, q, \tau \mid t, \psi)=y(\tau)
$$

where y solves

$$
\left\{\begin{array}{l}
\dot{y}(\tau)=-\nabla v(\tau, y(\tau) \mid t, \psi) \tag{4.3}\\
y(s)=q .
\end{array}\right.
$$

Then, up to reducing T, there is $D_{2}>0$ independent of $(s, q, \tau, t, \psi) \in[-T, 0] \times \mathbf{T}^{d} \times[-T, 0]^{2} \times M$ such that

$$
\frac{1}{D_{2}} \leq \operatorname{det} \frac{\partial S(s, q, \tau \mid t, \psi)}{\partial q} \leq D_{2} .
$$

Proof. We fix (t, ψ) as the initial condition of the whole pack; we consider the time dependent Lagrangian

$$
\left.\mathcal{L}(s, q, \dot{q})=\frac{1}{2} \right\rvert\, \dot{q^{2}}-\hat{F}\left(q, \sigma_{s}^{(t, \psi)}\right)
$$

and the final condition

$$
: q \rightarrow \hat{u}_{0}\left(q, \sigma_{0}^{(t, \psi)}\right) .
$$

Note that, by lemma 2.1, \mathcal{L} is C^{3} in (s, q, \dot{q}); it depends in a C^{2} way on the parameters (t, ψ) by lemma 3.3. Analogously, \hat{u}_{0} is C^{3} in the variable q and C^{2} in (t, ψ). Now points 1), 2) and 3) follow by the argument of [10], which we have seen in lemmas 3.3, 3.4 and 3.5 above.

As for point 4), formula (3.15) gives that, for all $\tau \in[-T, 0]$,

$$
\dot{\sigma}_{\tau}^{(t, \psi)}(x)=-D \hat{\mathcal{V}}\left(\tau, \sigma_{\tau}^{(t, \psi)}\right)(x) \quad \text { for } \mathcal{L}^{p} \text { a. e. } \quad x \in[0,1)^{d}
$$

On the other side, with exactly the same proof we used for formula (3.15) we see that

$$
\dot{y}\left(\tau \mid s, \sigma_{s}^{(t, \psi)}(x), t, \psi\right)=-\nabla v\left(\tau, y\left(\tau \mid s, \sigma_{s}^{(t, \psi)}(x), t, \psi\right) \mid t, \psi\right) \quad \text { for } \quad t, s, \tau \in[-T, 0]
$$

Thus, it suffices to show the first equality of point 4). Classical Hamilton-Jacobi theory (which we recalled above in lemmas 3.3 to 3.5) implies that the minimizer

$$
: \tau \rightarrow y(\tau \mid s, q, t, \psi)
$$

satisfies

$$
\left\{\begin{aligned}
\frac{\mathrm{d}^{2}}{\mathrm{~d} \tau^{2}} y(\tau \mid s, q, t, \psi) & =-\nabla \hat{F}\left(y(\tau \mid s, q, t, \psi), \sigma_{\tau}^{(t, \psi)}\right) \\
y(s \mid s, q, t, \psi) & =q \\
\dot{y}(0 \mid s, q, t, \psi) & =-\nabla \hat{u}_{0}\left(y(0 \mid s, q, t, \psi), \sigma_{0}^{(t, \psi)}\right)
\end{aligned}\right.
$$

If $q=\sigma_{s}^{(t, \psi)}(x)$ then, by (3.9), this is the same equation that is satisfied by : $\tau \rightarrow \sigma_{\tau}^{(t, \psi)}(x)$ for \mathcal{L}^{d} a. e. $x \in[0,1)^{d}$; by the uniqueness of lemma 3.3 this implies the first equality of point 4).

We prove point 5). Since $S(s, q, s \mid t, \psi)=q$ by definition, we see that $\partial_{q} S(s, q, s \mid t, \psi)=I d$; thus, point 5) follows if we show that the map $: \tau \rightarrow \partial_{q} S(s, q, \tau \mid t, \psi)$ is Lipschitz uniformly in (s, q, τ, t, ψ); in other words, we have to show that the norm of $\partial_{q \tau}^{2} S(s, q, \tau \mid t, \psi)$ is bounded. This follows easily by (4.3), the differentiable dependence theorem and point 3) of this lemma, which implies

$$
\left|\partial_{q, q}^{2} v(s, q \mid t, \psi)\right| \leq M \quad \forall(s, q, t, \psi) \in[-T, 0] \times \mathbf{T}^{d} \times[-T, 0] \times M
$$

We can apply to the value function $v(s, q \mid t, \psi)$ a change of coordinates: namely, instead of seeing it as a function of $\sigma_{t}^{(t, \psi)}=\psi$, we can see it as a function of $\sigma_{s}^{(t, \psi)}$. In other words, we can define a function u as

$$
u\left(s, q \mid \sigma_{s}^{(t, \psi)}\right):=v(s, q \mid t, \psi)
$$

Equivalently, by (3.17) we get that, for $\psi \in M, \psi=\sigma_{t}^{\left(s, \sigma_{s}^{(t, \psi)}\right)}$; setting $\eta=\sigma_{s}^{(t, \psi)}$ and substituting in the formula above, we get that

$$
\begin{equation*}
u(s, q \mid \eta)=v\left(s, q \mid t, \sigma_{t}^{(s, \eta)}\right) \quad \text { for all } \quad t \in[-T, 0], \quad \eta \in M \tag{4.4}
\end{equation*}
$$

which incidentally proves that the definition of u is well posed. The first equality below comes from (4.4), since $\sigma_{s}^{(s, \psi)}=\psi$; the second one is (4.1).

$$
u(s, q \mid \psi)=v(s, q \mid s, \psi)=
$$

$$
\begin{equation*}
\min \left\{\int_{s}^{0}\left[\frac{1}{2}|\dot{y}(\tau)|^{2}-\hat{F}\left(y(\tau), \sigma_{\tau}^{(s, \psi)}\right)\right] \mathrm{d} \tau+\hat{u}_{0}\left(y(0), \sigma_{0}^{(s, \psi)}\right): y \in A C\left((s, 0), \mathbf{T}^{p}\right), \quad y(s)=q\right\} . \tag{4.5}
\end{equation*}
$$

Lemma 4.2. Let

$$
u:[-T, 0] \times \mathbf{T}^{d} \times M \rightarrow \mathbf{R}
$$

be defined as in (4.4) or as in (4.5), which is the same. Then, u is of class C^{2} in all its variables and satisfies the master equation

$$
-\partial_{t} u(t, q \mid \psi)+\frac{1}{2}|\nabla u(t, q \mid \psi)|^{2}+F(q, \psi)+\langle\nabla u(t, \psi(\cdot) \mid \psi), D u(t, q \mid \psi)\rangle_{M}=0 .
$$

Proof. By (4.4), lemma 4.1 and the chain rule we get that u is of class C^{2} in all its variables. Since $\sigma_{t}^{(t, \psi)}=\psi$ for all t, differentiating we get that

$$
\begin{equation*}
\left.\frac{\partial}{\partial s} \sigma_{t}^{(s, \psi)}\right|_{s=t}=-\dot{\sigma}_{t}^{(t, \psi)} \tag{4.6}
\end{equation*}
$$

The first equality of (4.5) implies the equalities below.

$$
\begin{equation*}
D u(t, q \mid \psi)=D v(t, q \mid t, \psi), \quad \nabla u(t, q \mid \psi)=\nabla v(t, q \mid t, \psi) . \tag{4.7}
\end{equation*}
$$

The first equality below is point 4) of lemma 4.1, the second one comes from (4.7).

$$
\begin{equation*}
\dot{\sigma}_{t}^{(t, \psi)}(x)=-\nabla v(t, \psi(x) \mid t, \psi)=-\nabla u(t, \psi(x) \mid \psi) . \tag{4.8}
\end{equation*}
$$

If we differentiate (4.4) in s, we get the first equality below; the second one comes from (4.2) and (4.6); the last one comes from (4.7) and (4.8).

$$
\begin{gathered}
\left.\partial_{s} u(s, q \mid \psi)\right|_{s=t}=\left.\partial_{s} v\left(s, q \mid t, \sigma_{t}^{(s, \psi)}\right)\right|_{s=t}+\left.\left\langle D v\left(s, q \mid t, \sigma_{t}^{(s, \psi)}\right), \frac{\partial}{\partial s} \sigma_{t}^{(s, \psi)}\right\rangle_{M}\right|_{s=t}= \\
\frac{1}{2}|\nabla v(t, q \mid t, \psi)|^{2}+\hat{F}(q, \psi)-\left\langle D v(t, q \mid t, \psi), \dot{\sigma}_{t}^{(t, \psi)}\right\rangle_{M}= \\
\frac{1}{2}|\nabla u(t, q \mid \psi)|^{2}+\hat{F}(q, \psi)+\langle D u(t, q \mid \psi), \nabla u(t, \psi(\cdot) \mid \psi)\rangle_{M} .
\end{gathered}
$$

End of the proof of theorem 1. Point 1) follows from lemma 3.5; point 2) is point 2) of lemma 3.3; point 3) is lemma 4.2 ; point 4) follows from point 5) of lemma 4.1 ; point 5) is point 4) of lemma 4.1 and (4.7).

Remark. By the results of section $1, u(t, q \mid \psi)$ quotients to a function on measures which is strongly differentiable, with continuous derivative; it satisfies the master equation in the classical sense, i. e. taking derivatives at their face value.

Bibliography

[1] R. Adams, J. J. F. Fournier, Sobolev spaces, Academic Press, Singapore, 2009.
[2] A. Ambrosetti, G. Prodi, A primer of nonlinear analysis, Cambridge University Press, Cambridge, 1995.
[3] L. Ambrosio, J. Feng, On a class of first order Hamilton-Jacobi equations in metric space, preprint.
[4] L. Ambrosio, N. Gigli, G. Savaré, Gradient Flows, Birkhaeuser, Basel, 2005.
[5] L. Ambrosio, N. Gigli, G. Savaré, Heat flow and calculus on metric measure spaces with Ricci curvature bounded below - the compact case. Analysis and numerics of Partial Differential Equations, $63-115$, Springer, Milano, 2013.
[6] R. J. Aumann, Markets with a continuum of traders, Econometrica, 32, 39-50, 1964.
[7] A. Bensoussan, J. Frehse, P. Yam, The Master Equation in Mean Field Theory, J. Math. Pures Appl., 103, 1441-1474, 2015.
[8] A. Bensoussan, J. Frehse, P. Yam, On the interpretation of the Master Equation, Arxiv:1503.07754.
[9] R. Buckdahn, J. Li, S. Peng, C. Rainer, Mean Field Stochastic Differential Equations and associated PDE's, Arxiv:1407:1215.
[10] C. Caratheodory, Calculus of variations and partial differential equations of the first order, Chelsea, N. Y., 1989.
[11] P. Cardaliaguet, Notes on mean field games, from P. L. Lions' lectures at Collège de France, mimeographed notes.
[12] R. Carmona, F. Delarue, The Master equation for large population equilibria, Stochastic analysis and applications, Springer proceedings in Mathematical Statistics, 100, 77-128, 2014.
[13] J-F Chassagneux, D. Crisan, F. Delarue, A probabilistic approach to classical solutions of the Master Equation for large population equilibria, ArXiv:1411.3009v2.
[14] I. Ekeland, Elements d'economie mathematique, Hermann, Paris, 1979.
[15] W. Gangbo, A. Swiech, Existence of a solution to an equation arising from the theory of mean field games, preprint 2014.
[16] W. Gangbo, A. Swiech, Metric viscosity solutions of Hamilton-Jacobi equations, preprint 2014.
[17] W. Gangbo, A. Swiech, Optimal transport and large number of particles, Discrete and Continuous Dynamical Systems, 34,4, 1387-1441, 2014.
[18] W. Gangbo, A. Tudorascu, Lagrangian dynamics on an infinite-dimensional torus; a weak KAM theorem, Adv. Math., 224, 260-292, 2010.
[19] W. Gangbo, A. Tudorascu, Weak KAM theory on the Wasserstein torus with multi-dimensional underlying space, Comm. Pure Appl. Math., 67-3, 408-463, 2014.
[20] Y. Giga, N. Hamamuki, A. Nakayasu, Eikonal equations in metric spaces, preprint.
[21] D. Gomes, L. Nurbekian, On the minimizers of variational problems in Hilbert spaces, Calc. Var., 52, 65-93, 2014.
[22] H. L. Royden, Real Analysis, China Machine Press, 2004.
[23] C. Villani, Topics in optimal transpotation, Providence, R. I., 2003.

