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Existence of solutions of the master equation

in the smooth case

Ugo Bessi*

Abstract

We give a different proof of a theorem of W. Gangbo and A. Swiech on the short time existence of

solutions of the master equation.

Introduction

Mean Field Games are games with a continuum of players, each of which sees only the ”mean field”

generated by the other ones. They attracted the attention of a wider set of analysts after the lectures of P.

L. Lions at the Collège de France, which are available in video streaming (see also the written presentation

[11]). They can model a wide array of phenomena in physics and mathematical economics; we dwell a little

on one aspect of the latter. Actually, the idea of considering a continuum of players came up naturally in

mathematical economy, where it was used ([6], see also [14] for a more elementary presentation) to model the

formation of prices in a market with perfect concurrence. Quoting from [6], ”the essential idea of this notion

is that the economy under consideration has a ”very large” number of participants, and that the influence

of each participant is ”negligible””.

To be more precise, let us look at the situation of [15]: we have a probability measure µs on the d-

dimensional torus Td = R
d

Zd
which models the distribution of the players at time s; we fix an initial time

t < 0, an initial distribution µ̄ and we suppose that µs evolves according to the continuity equation, forward

in time,
{

∂sµs + div(Xµs) = 0 s > t

µt = µ̄
(1)

where the vector field X is a control which we are free to choose in the following.

Let us call P(Td) the space of the Borel probability measures on Td, and let us suppose that we are

given two potentials F ,U0:P(Td) → R. We would like the whole society to minimize the value function

V(t, µ̄): = inf

{∫ 0

t

ds

[∫

Td

1

2
|X2(s, x)|2dµs(x)−F(µs)

]

+ U0(µ0)

}

(2)
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where the inf is over all curves which satisfy (1) and all controls X . It turns out that under suitable

hypotheses on F and U0 the inf is a minimum: there is a vector field X minimizing in (2); by (1), we also

have a minimal trajectory µs.

In (2), we minimize the cost for the whole society, but what about its members? One possible notion

is that of Nash equilibrium: roughly, we are on a Nash equilibrium if no one can get a better deal by a

unilateral change of strategy. It happens that, in our case, the optimum for the whole society is a Nash

equilibrium. Actually, under suitable hypotheses on F and U0, we shall be able to define two functions

F (x, µ) and u0(x, µ) which, heuristically, are the ”mean field” potentials felt by the particle placed at x,

provided the other ones are distributed as µ. We shall see that the drift X in (1) optimal for the whole

group is also best for the single particle; namely, X(s, q) = −∂xv(s, q) where v solves the Hamilton-Jacobi

equation with time reversed







−∂tv(s, q) +
1

2
|∂qv(s, q)|

2 + F (q, µs) = 0 s ≤ 0

v(0, q) = u0(q, µ0).
(3)

Equivalently, the particle initially placed at q minimizes its cost:

∫ 0

t

1

2
[|q̇(s)|2 + F (q(s), µs)]ds+ u0(q(0), µ0)

if it follows the vector field X .

Since the value function V(t, µ) of (2) is defined on the metric space P(Td), this approach calls for a

study of the Hamilton-Jacobi equation in metric spaces; we refer the reader to [3], [16] and [20] for three

definitions of viscosity solutions of H-J in metric spaces.

In this framework, the task is to solve the coupled equations (1) and (3); it turns out that, formally,

these two equations are equivalent to the so-called master equation, i. e. formula (6) below. Heuristically,

the solution of the master equation is a value function both for the single particle and the whole community.

In [15] it is shown that, under suitable hypotheses on F and U , the master equation has a smooth solution

for t negative and small and that the master equation is equivalent (this time rigorously) to (1) and (3).

In this paper, we want to give a different proof of the results of [15]. Instead of working in P(Td), we

take up a suggestion of [11] (see also [18], [19]) and work in the space of L2 parametrizations of particles: a

parametrization for µ will be a function σ ∈ L2([0, 1)d,Rd) whose law, when projected on Td, is µ. In other

words, we are choosing [0, 1)d as parameter space.

We shall see that this approach is equivalent to that of [15]; as in [15], the implicit function theorem is

at the core of our proof, but we are going to use it in a way that is closer to the original approach of [10].

We set M = L2([0, 1)d,Rd) and denote by AC([a, b], X) the set of the absolutely continuous functions

from [a, b] to a space X ; throughout the paper, we shall denote by ∇, D and d the gradients of functions on

Td, M and P(Td) respectively.

We want to prove the following.
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Theorem 1. Let F̂ , Û0:M → R be respectively a potential and a final condition satisfying the hypotheses

of section 2 below. Then, the following points hold.

1) There is T > 0 such that, if t ∈ [−T, 0] and ψ ∈M , the minimum

Û(t, ψ): = min

{∫ 0

t

[
1

2
||σ̇s||

2
M − F̂(σs)]ds+ Û0(σ0) : σ ∈ AC([t, 0],M), σt = ψ

}

(4)

is attained on a unique curve σ(t,ψ) ∈ AC([t, 0],M).

2) The maps : (t, ψ) → σ(t,ψ) and : (t, ψ) → Û(t, ψ) are of class C2; moreover, they are L2
Z
and H-equivariant

in the last variable for the groups L2
Z
and H defined in section 1 below.

3) There are two functions of class C3

F̂ , û0:T
d ×M → R

such that, if we set

u(t, x, ψ) = min
{

∫ 0

t

[
1

2
|q̇(s)|2 − F̂ (q(s), σ(t,ψ)

s )]ds+ û0(q(0), σ
(t,ψ)
0 ) :

q ∈ AC([t, 0],Td), q(t) = x
}

(5)

then u is of class C2 in [−T, 0]×Td ×M and satisfies the master equation

−∂tu(t, q, ψ)+
1

2
|∇u(t, q, ψ)|2+F (q, ψ)+ 〈∇u(t, ψ(·), ψ), Du(t, q, ψ)〉M = 0 ∀(t, x, ψ) ∈ [−T, 0]×Td×M

(6)

where 〈·, ·〉M denotes the inner product in M . To districate the inner product above, we note that

Du(t, q, ψ) ∈ M because it is the gradient with respect to the M variable; moreover, :x → ∇u(t, ψ(x), ψ)

belongs to M since it is the C2 function u(t, ·, ψ) composed with ψ. The function u is Zd-equivariant in the

second variable and L2
Z
and H-equivariant in the last one.

4) Let the law of ψ be absolutely continuous with respect to the Lebesgue measure; then, for s ∈ [−T, 0] the

law of σ
(t,ψ)
s is absolutely continuous too.

5) For Ld a. e. x ∈ [0, 1)d we have that, for all s ∈ [−T, 0],

σ̇(t,x)
s (x) = −∇u(s, σ(t,x)

s (x), σ(t,x)
s ).

In other words, the orbit q(s) minimal in (5) coincides with σ
(t,ψ)
s (x) if they start at the same point of Td;

equivalently, : s→ σ
(t,ψ)
s (x) minimizes the one-particle problem (5) for Ld a. e. x ∈ [0, 1)d.

Recently the master equation has been studied extensively, expecially from the stochastic viewpoint; we

refer the reader to [7], [8], [9], [12] and [13].

The paper is organized as follows: section 1 contains the notation and a theorem of [11] about the

relationship between differentiability on parametrizations and on measures; section 2 recalls the hypotheses

used in [15] from section 6 onwards; in section 3 we recall the method of [10] for the minimum of (4), in

section 4 we deal with the master equation (6).
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§1

Preliminaries and notation

We denote by π:Rd → Td: = R
d

Zd
the natural projection, and by | · |Td the distance on Td given by

|x− y|Td = min{|x̃− ỹ| : π(x̃) = x, π(ỹ) = y}.

We let P(Td) be the space of Borel probability measures on Td; if µ1, µ2 ∈ P(Td), we denote by Γ(µ1, µ2)

the set of all the Borel probability measures on Td ×Td whose first and second marginals are, respectively,

µ1 and µ2. For λ ≥ 1 we define the λ-Wasserstein distance on P(Td) by

Wλ(µ1, µ2)
λ = min

γ∈Γ(µ1,µ2)

∫

Td×Td

|x− y|λ
Td

dγ(x, y). (1.1)

We refer the reader to [4] or [23] for the proof that the minimum is attained and that (P(Td),Wλ) is a

compact metric space.

When λ = 2 (which is the only case we consider in this paper) we denote by Γo(µ1, µ2) the set of the

minimizers in (1.1).

We want to parametrize µ ∈ P(Td) with a map σ ∈M : = L2([0, 1)d,Rd). To do this, we begin to define

P2(R
d) as the set of the Borel probability measures on Rd with finite second moment. Following [19], we

push forward µ ∈ P2(R
d) to µ̃: = π♯µ ∈ P(Td). By the definition of push-forward, this is tantamount to

∫

Td

f(x)dµ̃(x) =

∫

Rd

f(x)dµ(x) ∀f ∈ C(Td,R)

where we have identified f with its lift to a periodic function on Rd.

If π♯µ1 = π♯µ2 = µ̃, we say with [19] that µ1 and µ2 are two representatives of µ̃. By lemma 1.2 of

[19], it is possible to lift any couple of measures on Td to measures on Rd in such a way to preserve the 2-

Wasserstein distance. More precisely, if µ̃1, µ̃2 ∈ P(Td), then there are two representatives µ1, µ2 ∈ P2(R
d)

such that µ1 is supported in [0, 1]d, µ2 in [−1, 2]d and

W2(µ̃1, µ̃2)
2 =W2(µ1, µ2)

2: = min
γ∈Γ(µ1,µ2)

∫

Rd×Rd

|x− y|2dγ(x, y) (1.2)

where we have denoted by W2 the 2-Wasserstein distance on P2(R
d).

Let Ld denote the d-dimensional Lebesgue measure on [0, 1)d and let µ ∈ P2(R
d); it is standard ([4]

or [23]) that there is a map ψ ∈ M (actually, ψ is the gradient of a convex function) such that ψ♯Ld = µ.

The trivial converse is that, if ψ ∈ M , then ψ♯Ld ∈ P2(R
d). The map ψ is called the Brenier map, or the

parametrization of µ.

For completeness’ sake, we give a well-known extension of lemma 6.4 of [11].

Lemma 1.1. 1) Let µ1, µ2 ∈ P2(R
d), let ψ1, ψ2 ∈M be two parametrizations of µ1, µ2 respectively and

let γ ∈ Γ(µ1, µ2). Then, there is a sequence of invertible, measure-preserving maps hn: [0, 1)
d → [0, 1)d such
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that (ψ1 ◦ hn, ψ2)♯Ld converges weak∗ to γ. Moreover, for all functions f ∈ C(Td ×Rd,R) such that f(x,v)
1+|v|2

is bounded, we have that

∫

Rd×Rd

f(x, x− y)dγ(x, y) = lim
n→+∞

∫

[0,1)d
f(ψ1 ◦ hn(x), ψ2(x) − ψ1 ◦ hn(x))dx. (1.3)

2) Let µ̃1, µ̃2 ∈ P(Td) and let µ1, µ2 ∈ P2(R
d) be two representatives such that (1.2) holds. Let ψ1, ψ2 ∈M

be as in point 1). Then,

W2(µ̃1, µ̃2)
2 =W2(µ1, µ2)

2 = inf

∫

[0,1)d
|ψ1 ◦ h(x)− ψ2(x)|

2dx (1.4)

where the inf is over all invertible, measure-preserving maps h: [0, 1)d → [0, 1)d.

Proof. As for (1.4), the first equality comes from (1.2). For the second one, we note that, since (ψ1 ◦

h, ψ2)♯Ld ∈ Γ(µ1, µ2), we have that

W2(µ1, µ2)
2 ≤ inf

h

∫

[0,1)d
|ψ2(x) − ψ1 ◦ h(x)|

2dx.

The opposite inequality follows immediately from point 1), which we prove it in the steps below using a

variation of the technique of [11].

Step 1. We begin to suppose that µ1 and µ2 are supported in a common cube, say Q̃l = [−l, l)d. We

partition Q̃l into smaller cubes

Qk =
2kl

2n
+

1

2n
Q̃l

with k = (k1, . . . , kd) ∈ Zd such that −2n+1 ≤ ki ≤ 2n− 1. Next, we relabel the Qk to Qi, with i in a finite

set of N.

In the step 3, 4 and 5 below we are going to find maps hn such that

Ld[(ψ1 ◦ hn, ψ2)
−1(Qi ×Qj)] = γ(Qi ×Qj) for all i, j. (1.5)

Using the fact that the sides of Qi have length 2l
2n and that µ1 and µ2 are supported in Q̃l, the formula

above easily implies that (ψ1 ◦ hn, ψ2)♯Ld converges to γ in the weak∗ topology. Formula (1.3) now follows

because γ and (ψ1 ◦ hn, ψ2)♯L
d are supported in Q̃l × Q̃l, a compact set on which : (x, y) → f(x, y − x) is

continuous.

Step 2. Before showing (1.5) for the case with bounded support, let us show how it implies (1.3) in the

general case.

Let h: [0, 1)d → [0, 1)d be measure preserving. The equality below comes from the definition of push-

forward; in the inequality, Q̃l is the cube of step 1.

∣

∣

∣

∣

∣

∫

[0,1)d
f(ψ1 ◦ h(x), ψ2(x) − ψ1 ◦ h(x))dx −

∫

Rd×Rd

f(x, y − x)dγ(x, y)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Rd×Rd

f(x, y − x)d(ψ1 ◦ h, ψ2)♯L
d(x, y)−

∫

Rd×Rd

f(x, y − x)dγ(x, y)

∣

∣

∣

∣

≤
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∫

(Q̃l×Q̃l)c
|f(x, y − x)|d(ψ1 ◦ h, ψ2)♯L

d(x, y)+ (1.6)a

∫

(Q̃l×Q̃l)c
|f(x, y − x)|dγ(x, y)+ (1.6)b

∣

∣

∣

∣

∣

∫

(Q̃l×Q̃l)

f(x, y)d(ψ1 ◦ h, ψ2)♯L
p(x, y) −

∫

(Q̃l×Q̃l)

f(x, y − x)dγ(x, y)

∣

∣

∣

∣

∣

. (1.6)c

Let ǫ > 0; from the formula above we see that (1.3) follows if we prove that we can find l ∈ N such that

(1.6)a < ǫ

for all measure-preserving h,

(1.6)b ≤ ǫ

and that, once l is fixed in this way, we can find a measure-preserving h such that

(1.6)c ≤ ǫ.

The last formula comes immediately from step 1; (1.6)b < ǫ follows because the measure |f(x, y − x)|γ is

finite and ∩l(Q̃l × Q̃l)
c = ∅.

As for (1.6)a ≤ ǫ, it suffices to prove that |f(x, y − x)|(ψ1 ◦ h, ψ2)♯Ld is a tight set of measures as

h varies in the measure-preserving maps of [0, 1)d. By our hypotheses on f , this follows if we show that

(1+ |y−x|2)(ψ1 ◦h, ψ2)♯Ld is tight. This is equivalent to say that |ψ1 ◦ h−ψ2|2 is uniformly integrable as h

varies among the measure-preserving maps, which follows if we prove that |ψ1 ◦ h|2 is uniformly integrable;

we leave the easy proof of this to the reader.

Step 3. In this step, we define the pre-images of the cubes Qi, which the map hn of step 1 will permute in

a Rubik cube fashion. We set

Ai = ψ−1
1 (Qi) ⊂ [0, 1)d, Bi = ψ−1

2 (Qi) ⊂ [0, 1)d.

The equalities on the left in the two formulas below follow since γ ∈ Γ(µ1, µ2); those on the right come from

the fact that µj = (ψj)♯Ld for j = 1, 2.

γ(Qi × [−l, l)d) = µ1(Qi) = Ld(Ai), γ([−l, l)d ×Qi) = µ2(Qi) = Ld(Bi). (1.7)

In the next two steps, we shall settle the first row of cubes, say {Ai ×B1}i. The idea is to partition B1

into sets Bi,1 and to find sets Ai,1 ⊂ Ai such that Ld(Ai,1) = Ld(Bi,1) = γ(Qi × Q1); then, we shall send

Ai,1 into Bi,1 by a measure-preserving map. We shall see that this yields (1.5) for j = 1.

Step 4. We assert that we can find sets Ai,1 ⊂ Ai such that

Ld(Ai,1) = γ(Qi ×Q1) and
∑

i

Ld(Ai,1) = Ld(B1). (1.8)
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Note that the sets Ai,1 are disjoint since the Ai are disjoint. Moreover, we can find sets Bi,1 ⊂ B1 such that



















Ld(Bi,1) = Ld(Ai,1)
the Bi,1 are disjoint
Ld (B1 \

⋃

iBi,1) = 0
Bi,1 ⊃ Ai,1 ∩B1

Bi,1 ∩ Aj,1 = ∅ if j 6= i.

(1.9)

We begin to show that the first equality of (1.8) implies the second one: the first equality below follows since

the Qi partition [−l, l)d, the second one follows since γ has µ2 as the second marginal, the third one since

(ψ2)♯Ld = µ2 and the fourth one from the definition of B1.

∑

i

γ(Qi ×Q1) = γ([−l, l)d ×Q1) = µ2(Q1) = Ld(ψ−1
2 (Q1)) = Ld(B1).

Thus, we only have to find sets Ai,1 ⊂ Ai which satisfy the first formula of (1.8); since Ld is non-atomic and,

by (1.7),

Ld(Ai) = γ(Qi × [−l, l)d) ≥ γ(Qi ×Q1)

this is standard.

Now, we find the sets Bi,1 which satisfy (1.9). First of all we note that, by (1.8),

Ld(B1 \
⋃

i≥2

Ai,1) ≥ Ld(A1,1).

Since the Ai,1 are disjoint,we also have that B1 ∩ A1,1 does not intersect Ai,1 for i ≥ 2; moreover, Ld(B1 ∩

A1,1) ≤ Ld(A1,1). Thus, we can find B1,1 ⊂ B1 such that

a) B1,1 ⊃ A1,1 ∩B1,

b) Ld(B1,1) = Ld(A1,1),

c) B1,1 is disjoint from Ai,1 for i ≥ 2.

Point c) follows by the last formula: in B1 \
⋃

i≥2 Ai,1 there is enough space to accommodate a B1,1

satisfying b).

We show the next step of the induction, namely how to find B2,1. By (1.8) and the aforesaid,

Ld



B1 \



B1,1 ∪
⋃

i6=2

Ai,1







 ≥ Ld(A2,1).

Using this, we can find B2,1 ⊂ B1 such that

a′) B2,1 ⊃ A2,1 ∩B1,

b′) Ld(B2,1) = Ld(A2,1),

c′) B2,1 is disjoint from B1,1 and from Ai,1 for i 6= 2.

Iterating, we get the sets Bi,1; the first, second, fourth and fifth formulas of (1.9) follow by construction,

the third one by the first formula of (1.9), (1.8) and the fact that the Bi,1 are disjoint.
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Step 5. In this step, we define hn on the first row of cubes: we want to find an invertible, bi-measurable

map ĥ1 which preserve Lebesgue measure and such that, for all i,

{

ĥ1(x) = x if x 6∈
⋃

i(Ai,1 ∪Bi,1)

(ψ1 ◦ ĥ1, ψ2)
−1(Qi ×Q1) = Bi,1.

(1.10)

Before proving this, note that Ld(Bi,1) = γ(Qi × Q1) by (1.8) and (1.9); this and (1.10) proves that (1.5)

holds for the first row of cubes {Qi ×Q1}i. The other rows will follow by induction, as we shall see in step

6.

We prove (1.10). First of all, there are invertible maps φi:Bi,1 → Ai,1 which preserve Lebesgue measure

and which are the identity on Ai,1 ∩ Bi,1. This is easy to do: we set φi(x) = x on Ai,1 ∩Bi,1; then, we use

theorem 15.5.16 of [22] to get an invertible, measure-preserving map φi from Bi,1 \Ai,1 to Ai,1 \Bi,1; recall

that these sets have the same Lebesgue measure by the first one of (1.9).

Next, we glue together the maps φi in the following way:

ĥ1(x) =























x if x 6∈
⋃

i

(Ai,1 ∪Bi,1)

φi(x) if x ∈ Bi,1

φ−1
i (x) if x ∈ Ai,1.

The definition is well-posed: since by (1.9) the Bi,1 are disjoint, and since we saw above that the Ai,1 are

disjoint, the only possible conflict is when x ∈ Bi,1 ∩ Aj,1. But then by (1.9) j = i; now on Bi,1 ∩ Ai,1 φi

and φ−1
i coincide, since both are the identity on this set.

To check (1.10), we begin to note that its first formula comes straight from the definition of ĥ1. As for

the second one, if x ∈ (ψ1 ◦ ĥ1, ψ2)
−1(Qi ×Q1), then x ∈ ψ−1

2 (Q1) = B1 and ĥ1(x) ∈ ψ−1
1 (Qi) = Ai. Now

B1 is partitioned by the Bj,1 and the only Bj,1 which ĥ1 sends to Ai is Bi,1. Thus, x ∈ Bi,1, proving that

(ψ1 ◦ ĥ1, ψ2)
−1(Qi ×Q1) = Bi,1.

Step 6. We saw above that (1.5) follows if we show (1.10) for all the other rows; we do this by iteration.

By the last step, the pre-image of ∪i(Qi ×Q1) by (ψ1 ◦ ĥ1, ψ2) is B1. We want to adjust the second row of

cubes without touching B1. To do this, we restrict (ψ1 ◦ ĥ1, ψ2) to B
c
1; its image will fall in

⋃

j 6=1

(Qi ×Qj).

Now we apply the procedure of the first step to the second row, i. e. to {Qi×Q2}i and to (ψ1 ◦ ĥ1, ψ2). We

get a map ĥ2 from Bc1 to itself such that (ψ1 ◦ ĥ1 ◦ ĥ2, ψ2) satisfies (1.5) for j = 2. Now we extend ĥ2 to be

the identity on B1, and we get that (ψ1 ◦ ĥ1 ◦ ĥ2, ψ2) satisfies (1.5) for j = 1 too. To close, it suffices to call

hn the last step of the iteration, the one in which all the rows are settled.

\\\

We can look at W2 on P(Td) keeping track of the action of Rd on Td. Let us define

πTd :T
d ×Rd → Td
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as the projection on the first coordinate, and let us set

α:Td ×Rd → Td, α: (x, v) → x+ v.

Let µ̃1, µ̃2 ∈ P(Td); we say that γ ∈ P2(T
d ×Rd) belongs to Ψ(µ̃1, µ̃2) if (πTd)♯γ = µ̃1 and α♯γ = µ̃2; we

leave to the reader the simple proof that

W2
2 (µ̃1, µ̃2) = min

γ∈Ψ(µ̃1,µ̃2)

∫

Td×Rd

|v|2dγ(x, v). (1.11)

We denote by Ψo(µ̃1, µ̃2) the set of minimals.

In the following, we shall denote by L2
µ a space of L2 functions for the measure µ; we shall omit the µ

when it is the Lebesgue measure.

Let now G:P(Td) → R be a function; we say that G is differentiable at µ̃ ∈ P(Td) if there is a vector

field ξ ∈ L2
µ̃(T

d,Rd) such that

∣

∣

∣

∣

G(ν̃)−G(µ̃)−

∫

Td×Rd

〈ξ(x), v〉dγ(x, v)

∣

∣

∣

∣

= o(W2(µ̃, ν̃))

for all ν̃ ∈ P(Td) and all γ ∈ Ψo(µ̃, ν̃); we have denoted by 〈·, ·〉 the inner product in Rd.

Following [15], we say that G is strongly differentiable at µ̃ if there is k > 0 such that

∣

∣

∣

∣

G(ν̃)−G(µ̃)−

∫

Td×Rd

〈ξ(x), v〉dγ(x, v)

∣

∣

∣

∣

≤ k

∫

Td×Rd

|v|2dγ(x, v)

for all ν̃ ∈ P(Td) and all γ ∈ Ψ(µ̃, ν̃). Note that we don’t restrict the transfer plan γ to be in Ψo(µ̃, ν̃); it

is immediate that strong differentiability implies differentiability. Of course, there are parallel definitions of

differentiability and strong differentiability in P2(R
d), which we forego to state.

If G:P(Td) → R, we can define

Ḡ:P2(R
d) → R, Ḡ(µ) = G(π♯µ). (1.12)

Lemma 1.2. Let G:P(Td) → R be strongly differentiable at µ̃ and let Ḡ:P2(R
d) → R be defined as in

(1.12). Then, Ḡ is strongly differentiable at any µ ∈ P2(R
d) such that π♯µ = µ̃.

Conversely, if Ḡ:P2(R
d) → R quotients to a map G:P(Td) → R and is strongly differentiable at µ,

then G is strongly differentiable at µ̃ = π♯µ.

Proof. We begin with the direct statement. Let ξ̃ ∈ L2(Td, µ̃) be the derivative of G at µ̃; we define

ξ:Rd → Rd by ξ(y) = ξ̃(π(y)). We assert that ξ ∈ L2(Rd, µ); indeed, since π♯µ = µ̃ we get the equality

below, while the inequality comes from the fact that ξ̃ ∈ L2
µ̃.

∫

Rd

|ξ(x)|2dµ(x) =

∫

Td

|ξ̃(x)|2dµ̃(x) < +∞.

9



We prove that ξ is the derivative of Ḡ at µ. Let ν ∈ P2(R
d) project on ν̃ ∈ P(Td) and let γ ∈ Ψ(µ, ν);

if we define γ̃ = (π× id)♯γ we see easily that γ̃ ∈ Ψ(µ̃, ν̃). We disintegrate γ as µ⊗γx and γ̃ as µ̃⊗ γ̃q, where

γx and γ̃q are measures on Rd. An easy check shows that, if f ∈ C(Td ×Rd) with f(x,v)
1+|v|2 bounded, then

∫

Rd

dµ(x)

∫

Rd

f(x, y)dγx(y) =

∫

Td

dµ̃(q)

∫

Rd

f(q, y)dγ̃q(y).

The first equality below comes from (1.12) and the disintegration of γ; the second one comes from

the definition of ξ using the fact that µ̃ = π♯µ and the formula above. The third equality comes from the

disintegration of γ̃. The first inequality comes from the fact that G is strongly differentiable, while the last

equality is obvious.
∣

∣

∣

∣

Ḡ(ν)− Ḡ(µ)−

∫

Rd×Rd

〈ξ(x), v〉dγ(x, v)

∣

∣

∣

∣

=

∣

∣

∣

∣

G(ν̃)−G(µ̃)− 〈

∫

Rd

ξ(x)dµ(x),

∫

Rd

vdγx(v)〉

∣

∣

∣

∣

=

∣

∣

∣

∣

G(ν̃)−G(µ̃)− 〈

∫

Td

ξ̃(q)dµ̃(q),

∫

Rd

vdγ̃q(v)〉

∣

∣

∣

∣

=

∣

∣

∣

∣

G(ν̃)−G(µ̃)−

∫

Td×Rd

〈ξ̃(q), v〉dγ̃(q, v)

∣

∣

∣

∣

≤

k

∫

Td×Rd

|v|2dγ̃(x, v) = k

∫

Rd×Rd

|v|2dγ(x, v).

Since this is the definition of strong differentiability in P2(R
d), we are done.

We prove the converse.

Step 1. Let µ̃, ν̃ ∈ P(Td), let µ ∈ P2(R
d) be such that π♯µ = µ̃ and let γ̃ ∈ Ψ(µ̃, ν̃). Recall that we have

defined a map α: (x, v) → x+ v. We assert that we can find γ ∈ P2(R
d ×Rd) and ν ∈ P2(R

d) such that

a) the first marginal of γ is µ,

b) (π × id)♯γ = γ̃ and

c) α♯γ = ν and π♯ν = ν̃; in particular, γ ∈ Ψ(µ, ν).

To find γ, we disintegrate µ as µ = βq⊗ µ̃, with βq a probability measure on the fiber {q+Zd}; in other

words, βq(z) ≥ 0 and
∑

z∈Zd

βq(z) = 1.

Then, we can define γ by

∫

Rd×Rd

f(x, v)dγ(x, v) =

∫

Td×Rd





∑

z∈Zd

βq(z)f(q + z, v)



dγ̃(q, v)

for all continuous functions f :Rd ×Rd → R such that f(x,v)
1+|v|2 is bounded. Setting ν = α♯γ we easily check

that γ and ν satisfy a), b) and c).

Step 2. Let ξ be the derivative of Ḡ at µ; we assert that ξ = ξ̃ ◦ π, where ξ̃ is a vector field on Td. This

is easy to see: for instance, taking a vector field η supported in a small ball B(x0, r) of Rd, considering

10



γǫ,z = µ ⊗ (id + ǫη(· + z))♯Ld for z ∈ Zd, setting νǫ,z = α♯γǫ,z and noting that Ḡ(νǫ,z), which quotients on

P(Td), depends on z only through µ(B(z0, r)).

End of the proof. The two steps above yield the first equality below, while the inequality comes from the

fact that Ḡ is strongly differentiable at µ.
∣

∣

∣

∣

G(ν̃)−G(µ̃)−

∫

Td×Rd

〈ξ̃(q), v〉dγ̃(q, v)

∣

∣

∣

∣

=

∣

∣

∣

∣

Ḡ(ν)− Ḡ(µ)−

∫

Rd×Rd

〈ξ(x), v〉dγ(x, v)

∣

∣

∣

∣

≤ k

∫

Rd×Rd

|v|2dγ(x, v) = k

∫

Td×Rd

|v|2dγ̃(q, v).

\\\

We shall denote by H the group of all bi-measurable maps h: [0, 1)d → [0, 1)d which preserve Lebesgue

measure; we also set L2
Z
: = L2([0, 1)d,Zd), which is a group under addition.

Given G:P(Td) → R, we can define a function

Ĝ:M → R, Ĝ(ψ) = G(π♯ ◦ ψ♯L
d). (1.13)

Clearly, the map Ĝ defined above is H and L2
Z
-equivariant, i. e.

Ĝ(ψ ◦ h+ z) = Ĝ(ψ) ∀(ψ, h, z) ∈M ×H × L2
Z
. (1.14)

Going in the opposite direction, if Ĝ:M → R is a continuous map such that (1.14) holds, we can define

Ḡ:P2(R
d) → R, Ḡ(µ) = Ĝ(ψ) (1.15)

where ψ ∈ M is such that ψ♯Lp = µ. We prove that Ḡ is well-defined on P2(R
d): actually, we are going to

see that Ḡ quotients to a function G on P(Td). Indeed, if ψ1, ψ2 ∈M are such that π♯(ψi)♯Lp = µ̃ ∈ P(Td)

for i = 1, 2, then it is standard (lemma 6.4 of [11] or lemma 1.1 above) that there are hn ∈ H and zn ∈ L2
Z

such that

||ψ1 − ψ2 ◦ hn − zn||M → 0 as n→ +∞.

The equality below comes from (1.14), while the limit comes from the formula above and the continuity of

Ĝ.

Ĝ(ψ1)− Ĝ(ψ2) = Ĝ(ψ1)− Ĝ(ψ2 ◦ hn + zn) → 0.

This proves that Ĝ is well defined; as for the differentiability of Ĝ, we recall theorems 6.2 and 6.5 of [11].

Proposition 1.3. Let Ĝ:M → R be continuous and let it satisfy (1.14). Then, the following happens.

1) If Ĝ is differentiable at ψ, then Ĝ is differentiable at η for all η ∈ M such that η♯Ld = ψ♯Ld. Moreover,

the law of DĜ(ψ) does not depend on the choice of η.

2) Let us suppose that Ĝ is of class C1 and let µ ∈ P2(R
d). Then, there is ξ ∈ L2

µ(R
d,Rd) such that, for all

ψ satisfying ψ♯Ld = µ, we have

DĜ(ψ)(x) = ξ ◦ ψ(x) for Lp a. e. x.

11



3) Let Ĝ ∈ C2(M,R) with a bounded second derivative and let it satisfy (1.14); then, the function

Ḡ:P2(R
d) → R defined by (1.15) is strongly differentiable. By lemma 1.2 this implies that its quotient

G on P(Td) is strongly differentiable.

Proof. Point 1) is theorem 6.2 of [11], point 2 theorem 6.5. We prove the easy consequence 3).

We want to show that Ḡ is strongly differentiable at any µ ∈ P2(R
d). Thus, let ν ∈ P2(R

d) and

let ψ, η ∈ M be such that ψ♯Lp = µ, η♯Lp = ν; let λ ∈ Ψ(µ, ν) and let ξ be as in point 2) above. Let

β: (x, v) → (x, x+ v); since λ ∈ Ψ(µ, ν) it is easy to check that γ: = β♯λ belongs to Γ(µ, ν). By formula (1.3)

of lemma 1.1 we can find hn ∈ H such that

∫

[0,1)d
|ψ(x)− η ◦ hn(x)|

2dx→

∫

Rd×Rd

|q − q′|2dγ(q, q′)

or equivalently, setting λn: = (ψ, η ◦ hn − ψ)♯Ld,

∫

Rd×Rd

|v|2dλn(x, v) →

∫

Rd×Rd

|v|2dλ(x, v). (1.16)

We assert that
∫

Rd×Rd

〈ξ(x), v〉dλn(x, v) →

∫

Rd×Rd

〈ξ(x), v〉dλ(x, v). (1.17)

Indeed, if ξ were continuous, this would follow from (1.3). In the general case, we can find a continuous

vector field ξ′ such that ||ξ − ξ′||L2
µ
< ǫ; the first inequalities in the two formulas below are Hölder while the

second ones come from (1.16).

∣

∣

∣

∣

∫

Rd×Rd

〈ξ − ξ′, v〉dλn(x, v)

∣

∣

∣

∣

≤ ||ξ − ξ′||L2
µ

[∫

Rd×Rd

|v|2dλn(x, v)

]
1
2

≤M ||ξ − ξ′||L2
µ
≤Mǫ,

∣

∣

∣

∣

∫

Rd×Rd

〈ξ − ξ′, v〉dλ(x, v)

∣

∣

∣

∣

≤ ||ξ − ξ′||L2
µ

[∫

Rd×Rd

|v|2dλ(x, v)

]
1
2

≤M ||ξ − ξ′||L2
µ
≤Mǫ.

These two formulas imply the second inequality below; the third one follows from (1.3) taking n large enough.

∣

∣

∣

∣

∫

Rd×Rd

〈ξ(x), v〉d(λn − λ)(x, v)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Rd×Rd

〈ξ − ξ′, v〉d(λn − λ)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Rd×Rd

〈ξ′, v〉d(λn − λ)

∣

∣

∣

∣

≤

2ǫM +

∣

∣

∣

∣

∫

Rd×Rd

〈ξ′, v〉d(λn − λ)

∣

∣

∣

∣

≤ 2ǫM + ǫ.

This proves (1.17). By (1.17), there is ǫn → 0 such that the first inequality below holds. The second one

follows if we take k to be the sup of 1
2 ||D

2Ĝ||, which is finite by hypothesis. The last inequality follows from

(1.16).
∣

∣

∣

∣

Ḡ(ν)− Ḡ(µ)−

∫

Rd×Rd

〈ξ(x), v〉dλ(x, v)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

Ĝ(η ◦ hn)− Ĝ(ψ)−

∫

[0,1)d
〈ξ(ψ(x)), η ◦ hn(x)− ψ(x)〉dx

∣

∣

∣

∣

∣

+ ǫn ≤

12



k

∫

[0,1)d
|η ◦ hn(x) − ψ(x)|2dx+ ǫn ≤ k

∫

Td×Rd

|v|2dλ(x, v) + 2ǫn.

Letting n→ +∞, we recover the definition of strong differentiability at µ.

\\\

In the opposite direction, we have the following.

Lemma 1.4. Let G:P(Td) → R be a function and let Ĝ:M → R be defined as in (1.13). Let us suppose

that G is strongly differentiable at µ̃ ∈ P(Td), let µ ∈ P2(R
d) be a representative of µ̃ and let ψ ∈M such

that ψ♯Ld = µ. Then, Ĝ is differentiable at ψ ◦ h+ z for all (h, z) ∈ H × L2
Z
, and

DĜ(u ◦ h+ z) = DĜ(u) ◦ h. (1.18)

Proof. We define Ḡ:P2(R
d) → R as in (1.12); by lemma 1.2, Ḡ is strongly differentiable at any represen-

tative µ of µ̃.

Let ξ be the derivative of Ḡ at µ and let ψ ∈ M be such that (ψ)♯Lp = µ. Let η ∈ M and let us set

ν = η♯Lp. If we define λ = (ψ, η−ψ)♯Lp, we get the first equality below. Now λ ∈ Ψ(µ, ν) and G is strongly

differentiable at µ with differential ξ; for some k > 0 this implies the inequality below, while the last equality

comes from the definitions of Ĝ and λ.

k

∫

[0,1)d
|ψ(x) − η(x)|2dx = k

∫

Tp×Rd

|v|2dλ(x, v) ≥

∣

∣

∣

∣

Ḡ(ν)− Ḡ(µ)−

∫

Rd×Rd

〈ξ(q), v〉dλ(q, v)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Ĝ(η) − Ĝ(ψ)−

∫

[0,1)d
〈ξ ◦ ψ(x), η(x) − ψ(x)〉dx

∣

∣

∣

∣

∣

.

The last formula implies that Ĝ is differentiable at ψ.

As for point 2), this is a general property of equivariant functions: if Th is a set of bounded linear

operators from M to M having the group property

Th1 ◦ Th2 = Th1h2

then it is standard that

DĜ(Thu) = [T Th−1DĜ(u)]

where AT denotes the adjoint operator of A. Setting Thu: = u ◦ h and substituting, we get (1.18).

\\\

§2
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Assumptions on the potential and the final condition

We recall the assumptions used in [15] from section 6 onward.

We begin to suppose that we are given U0, U1, φ ∈ C3(Td) such that the lifts of φ and U1 to Rd are

even.

Our potential is the function F :P(Td) → R defined by

F(µ) =
1

2

∫

Td

(φ ∗ µ)(z)dµ(z) =
1

2

∫

Td×Td

φ(z − z′)dµ(z)dµ(z′)

where the symbol ∗ denotes, as usual, convolution. The final condition is the function U0:P(Td) → R given

by

U0(µ) =

∫

Td

[U0(z) +
1

2
(U1 ∗ µ)(z)]dµ(z) =

∫

Td×Td

[U0(z) +
1

2
U1(z − z′)]dµ(z)dµ(z′).

It is shown in [15] that F and U are strongly differentiable.

We recall from the introduction that we denote by d the differential of functions on P(Td), by D and

∇ that of functions on M and on Rd respectively.

Always by [15], we have that

dF(µ) = ∇F (q, µ) and dU0(µ) = ∇u0(q, µ)

where

F (q, µ) = (φ ∗ µ)(q) and u0(q, µ) = U0(q) + (U1 ∗ µ)(q).

By (1.13), F and U induce functions F̂ and Û0 onM ; by the definition of push-forward we see that, if σ ∈M ,

F̂(σ) =
1

2

∫

[0,1)d×[0,1)d
φ[σ(x) − σ(y)]dxdy, (2.1)a

Û0(σ) =

∫

[0,1)d×[0,1)d
{U0(σ(x)) +

1

2
U1[σ(x) − σ(y)]}dxdy. (2.1)b

Also the functions F and u0 extend to parametrizations:

F̂ :Rd ×M → Rd, F̂ (q, σ) =

∫

[0,1)d
φ[q − σ(x)]dx, (2.2)a

û0:R
d ×M → Rd, û0(q, σ) = U0(q) +

∫

[0,1)d
U1[q − σ(x)]dx. (2.2)b

We forego the proof of the following lemma, which follows from our hypotheses on φ, U0, U1 and

standard facts about the Nemitsky operators (see for instance [2]).

Lemma 2.1. Let F̂ , Û0:M → R be defined as in (2.1), let F̂ , û0 be as in (2.2). Then, F̂ and Û0 are

functions of class C3 on M . Denoting by 〈·, ·〉 and by 〈·, ·〉M the inner products in Rd and in M respectively,

we have that

DF̂(σ)ψ =

∫

[0,1)d×[0,1)d
〈∇φ[σ(x) − σ(y)], ψ(x)〉dxdy = 〈∇F̂ (σ(·), σ), ψ〉M
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and

DÛ0(σ)ψ =

∫

[0,1)d×[0,1)d
〈∇U0(σ(x)) +∇U1[σ(x) − σ(y)], ψ(x)〉dxdy = 〈∇û0(σ(·), σ), ψ〉M .

In other words,DF̂(σ) is represented by the function ∇F̂ (σ(·), σ) ∈M , DÛ0(σ) by the funtion∇û0(σ(·), σ) ∈

M . The functions F̂ and û0 are of class C
3 in both variables, with bounded first, second and third derivatives.

Moreover, F̂ and û0 are Z
d-equivariant in the first variable; they are also L2

Z
and H-equivariant in the second

one.

§3

Minima on short time intervals

In lemmas 3.2-3.5 below, we recall the method of [10] for the minimals of the value function; in lemma

3.1, we prove that the value functions on measures and on parametrizations coincide.

Definitions. Let µ: (t, 0) → P(Td) be a curve of measures satisfying, in the weak sense (the precise definition

is in the proof of lemma 3.1 below), the continuity equation

∂sµs + div(Xµs) = 0 (3.1)

for a drift X ∈ L2((t, 0)×Td,L1 ⊗ µt). We define the augmented action of (µs, X) as

A(t, µs, X) =

∫ 0

t

[
1

2
||X(s, ·)||2L2

µs
−F(µs)]ds+ U0(µ0).

The value function on P(Td) is defined by

U : (−∞, 0]× P(Td) → R, U(t, µ̄) = inf A(t, µs, X) (3.2)

where the inf is over all paths (µs, X) which satisfy (3.1) and such that µt = µ̄. We are not going to need

this, but the inf is actually a minimum.

Augmented action and value function lift in a natural way to the space M . Given t ≤ 0 and a curve

σ ∈ AC((t, 0),M), we can define

Â(t, σ) =

∫ 0

t

[
1

2
||σ̇s||

2
M − F̂(σs)]ds+ Û0(σ0).

For t ≤ 0 and ψ ∈M , we set

Û(t, ψ) = inf{Â(t, σ) : σ ∈ AC((t, 0),M) and σt = ψ}.

Lemma 3.1. Let U and Û be defined as above. Then, the following holds.

1) The function Û is continuous. Moreover, it is H and L2
Z
-equivariant, i. e.

Û(t, ψ) = Û(t, ψ ◦ h+ z) ∀(t, ψ, h, z) ∈ (−∞, 0]×M ×H × L2
Z
.
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2) Let µ̃ ∈ P(Td) and let ψ ∈M be such that (π ◦ ψ)♯Ld = µ̃. Then,

U(t, µ̃) = Û(t, ψ).

Proof. Point 1) is easy to dispatch, since continuity is standard; we follow [18] for equivariance. If σs is an

AC curve with σt = ψ, h ∈ H and z ∈ L2
Z
, then σ̃s = σs ◦ h+ z is AC and satisfies σ̃t = ψ ◦ h+ z; moreover,

since the Lagrangian and Û0 are L2
Z
and H-equivariant, we see immediately that

A(t, σ) = A(t, σ̃).

Clearly, this implies that Û(t, ψ ◦ h+ z) ≤ Û(t, ψ); the opposite inequality is similar.

As for point 2), we begin to prove that

Û(t, ψ) ≤ U(t, µ̃). (3.3)

We assert that this follows if we show that, for any curve (µs, X) satisfying (3.1) with µt = µ̃ we can find

σ ∈ AC([t, 0],M) such that

i) (π ◦ σt)♯Ld = (π ◦ ψ)♯Ld = µ̃,

ii) A(t, µs, X) = Â(t, σ).

Indeed, we saw after formula (1.15) that i) together with point 1) of this lemma implies that Û(t, σ0) =

Û(t, ψ); since ii) implies that Û(t, σ0) ≤ U(t, µ̃) , formula (3.3) follows.

Thus, let (µs, X) be a weak solution of (3.1) with µt = µ̃. By proposition 4.21 of [5] (or theorem 8.2.1

of [4]) there is a measure Ξ on C([t, 0],Td) such that, denoting by ηs:C([t, 0],T
d) → Td the evaluation map

ηs: γ → γs, we have

(ηs)♯Ξ = µs for all s ∈ [t, 0]. (3.4)

Moreover, Ξ concentrates on absolutely continuous curves and

∫

C([a,b],Td)

dΞ(γ)

∫ 0

t

|γ̇(s)|2ds =

∫ 0

t

||X(s, x)||2L2
µs
ds. (3.5)

It is standard (see for instance theorem 15.5.16 of [22]) that there is a Borel map B: [0, 1)d → C([t, 0],Td)

such that Ξ = B♯Ld. We set

σs(x) = B(x)(s) = ηs ◦B(x).

Now point i) follows from (3.4), since (σt)♯Ld = (ηt ◦B)♯Ld = (ηt)♯Ξ = µt. We prove point ii).

The first equality below is the definition of A, the second one is implied by (3.4) and (3.5) while the

third one follows because Ξ = B♯Ld and (η0)♯Ξ = µ0 = (σ0)♯Ld. The last equality is the definition of Â.

A(t, µs, X) =

∫ 0

t

[

1

2
||X(s, ·)||2L2

µs
−

1

2

∫

Td×Td

φ(q − q′)dµs(q)dµs(q
′)

]

ds+ U0(µ0) =

∫ 0

t

ds

[

∫

C([a,b],Td)

1

2
|γ̇(s)|2dΞ(γ)−

1

2

∫

C([a,b],Td)×C([a,b],Td)

φ(γ(s)− γ′(s))dΞ(γ)dΞ(γ′)

]

+
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+U0((η0)♯Ξ) =

∫ 0

t

[

1

2
||σ̇s||

2
Mds−

∫ 0

t

F̂(σs)ds

]

+ Û0(σ0) = Â(t, σ).

To prove the inequality opposite to (3.3), we let σ ∈ AC((t, 0),M) with σ0 = ψ and we define

µs = (π ◦ σs)♯L
d for s ∈ (t, 0). (3.6)

We want to show

a) that µ satisfies (3.1) for a suitable drift X and

b) that the augmented action of (µs, X) isn’t larger than the augmented action of σ.

Clearly, a) and b) imply the inequality opposite to (3.3), from which the thesis follows. We begin with

a): the idea is that X(s, q) is the average of the velocities σ̇s(x) of the curves which satisfy σs(x) = q.

The measure L1 ⊗ (π ◦ σs, σ̇s)♯Ld on [t, 0]×Td ×Rd has marginal L1 ⊗ (π ◦ σs)♯Ld on [t, 0]×Td; we

disintegrate L1 ⊗ (π ◦ σs, σ̇s)♯Ld = L1 ⊗ (π ◦ σs)♯Ld ⊗ νs,q where νs,q is a measure on Rd, depending in a

Borel way on (s, q) ∈ [t, 0] × Td. In other words, if f ∈ C(Td ×Rd) is such that |f(x,v)|
1+|v|2 is bounded, then

the first equality below holds for L1 a. e. s ∈ [a, b]; the second equality comes from (3.6).

∫

[0,1)d
f(σs(x), σ̇s(x))dx =

∫

[0,1)d
dx

∫

Rd

f(σs(x), v)dνs,σs(x)(v) =

∫

Td

dµs(q)

∫

Rd

f(q, v)dνs,q(v). (3.7)

We set

X(s, q) =

∫

Rd

vdνs,q(v)

Let now φ ∈ C∞
c ((t, 0)×Td); the first equality below comes from (3.6), the second one from the definition

of X and the third one from (3.7). The last equality follows since φ has compact support in (t, 0)×Td.

∫ 0

t

ds

∫

Td

[∂sφ(s, q) + 〈∇φ(s, q), X(s, q)〉]dµs(q) =

∫ 0

t

ds

∫

[0,1)d
[∂sφ(s, σs(x)) + 〈∇φ(s, σs(x)), X(s, σs(x))〉]dx =

∫ 0

t

ds

∫

[0,1)d

[

∂sφ(s, σs(x)) + 〈∇φ(s, σs(x)),

∫

Rd

vdνs,σs(x)(v)〉

]

dx =

∫ 0

t

ds

∫

[0,1)d
[∂sφ(s, σs(x)) + 〈∇φ(s, σs(x)), σ̇s(x)〉]dx =

∫ 0

t

[

d

ds

∫

[0,1)d
φ(s, σs(x))dx

]

ds = 0.

This means that (µs, X) is a weak solution of (3.1), i. e. point a) holds.

As for b), it is the same calculation, up to the use of Jensen’s inequality:

∫ 0

t

[

1

2

∫

Td

|X(s, q)|2dµs(q)−F(µs)

]

ds+ U0(µ0) ≤

∫ 0

t

[

1

2

∫

Rd

|v|2dνs,q(v) − F̂(σs)

]

ds+ Û(σ0) =

∫ 0

t

[

1

2
||σ̇s||

2
M − F̂(σs)

]

ds+ Û(σ0).
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Secured by the last lemma, from now on we shall concentrate on Â and Û .

Definition. By H1
M (t, 0) we denote the space of the maps σ ∈ AC((t, 0),M) such that

||σ||2H1
M
: = ||σt||

2
M +

∫ 0

t

||σ̇s||
2
Mds < +∞.

It is standard ([1]) that this is a Hilbert space for the inner product

〈σ, η〉H1
M
: = 〈σt, ηt〉M +

∫ 0

t

〈σ̇s, η̇s〉ds.

We recall the Poincaré-Wirtinger inequality

sup
s∈(t,0)

||σs||M ≤ ||σt||M + |t|
1
2 · ||σ||H1

M
.

Lemma 3.2. For t < 0, let us consider the functional

I:H1
M (t, 0) → R, I:σ → Â(t, σ)

where the augmented action Â has been defined at the beginning of this section. Then, the following points

hold.

1) The functional I is of class C1 on H1
M (t, 0). For F̂ and û0 defined as in (2.2), we have

I ′(σ)(h) =

∫ 0

t

[〈σ̇s, ḣs〉M − 〈∇F̂ (σs(·), σs), hs〉M ]ds+ 〈∇û(σ0(·), σ0)), h0〉M =

∫ 0

t

〈σ̇s, ḣs〉Mds−

∫ 0

t

ds

∫

[0,1)d×[0,1)d
〈∇φ(σs(x) − σs(y)), hs(x)〉dxdy+

∫

[0,1)d×[0,1)d
〈∇U0(σ0(x)) +∇U1(σ0(x)− σ0(y)), h0(x)〉dxdy. (3.8)

To explain the notation, we recall that∇F̂ (·, σs) is a C2 function from Td to Rd and thus ∇F̂ (σs(·), σs) ∈M .

2) Let σ ∈ H1
M (t, 0) be minimal in the definition of Û(t, ψ); then, σ solves



















σ̈s(x) = −(∇φ ∗ µs)(σs(x)) = −∇F̂ (σs(x), σs) for s ∈ (t, 0)

σt(x) = ψ(x)

σ̇0(x) = −∇U0(σ0(x))− (∇U1 ∗ µ0)(σ0(x)) = −∇û0(σ0(x), σ0)

(3.9)

where we have set µs = (σs)♯Lp. The equalities are in the space M , i. e. they hold for a. e. x ∈ [0, 1)d.

Proof. Since the potential F̂ and the final condition Û are defined by (2.1), the proof of (3.8) is classical

(see for instance [2]) and we forego it.
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We recall the proof of point 2), which again is classical. Since I is of class C1 by point 1), if σ minimizes

I under the constraint σt = ψ, then we must have that

I ′(σ)(h) = 0 for all h ∈ H1
M (t, 0) with ht = 0.

Integrating by parts in (3.8), this implies that

∫ 0

t

〈−σ̈s − (∇F̂ (σs(·), σs), hs〉Mds+ 〈σ̇0, h0〉M + 〈∇û0(σ0(·), σ0), h0〉M = 0

for all h ∈ H1
M (t, 0) with ht = 0. Clearly, this implies the first and third formulas of (3.9), while the second

one comes from the boundary conditions on the minimal σ.

\\\

Finding minima of I is a delicate proposition (see for instance [21]) because Tonelli’s theorem does not

apply to the infinite-dimensional space M . However, in our case the implicit function theorem comes to the

rescue: in the next three lemmas we recall the approach of [10] in our situation. In the next lemma, we

denote by BX(ψ, r) the ball in X of radius r and centered in ψ.

Lemma 3.3. There are T, r > 0 such that the following holds. Let t ∈ [−T, 0], and let ψ ∈ M ; we shall

denote by ψ both the element of M and the function of H1
M (t, 0) constantly equal to ψ.

1) There is a unique function σ(t,ψ) ∈ C1([−T, 0],M) such that

i) σ
(t,ψ)
s ∈ BM (ψ, r) for s ∈ [−T, 0], and

ii) σ(t,ψ) satisfies (3.9).

By the Poincaré-Wirtinger inequality, this implies that (3.9) has a unique solution in BH1
M

(−T,0)(ψ, r
′)

for some r′ > 0.

2) The map

Φ: [−T, 0]×M → H1
M (−T, 0), Φ: (t, ψ) → σ(t,ψ)

is of class C2 and equivariant, i. e. σ(t,ψ◦h+z) = σ(t,ψ) ◦ h+ z for all h ∈ H and z ∈ L2
Z
.

Proof. Let us consider the map

Σ: [−T, 0]×M →M, Σ: (s, ψ̃) → σs

where σs solves the Cauchy problem



















σ̈s(x) = −∇F̂ (σs(x), σs)

σ0 = ψ̃

σ̇0(x) = −∇û0(σ0(x), σ0) = −∇û0(ψ̃(x), ψ)

(3.10)

for the functions F̂ and û which have been defined in (2.2). Since these two functions are of class C3 by

lemma 2.1, their gradients are in C2 and the map Σ is of class C2 by the continuous dependence theorem.
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Step 1. We assert that points 1) and 2) follow if we show that there is a C2 function ψ̃: [−T, 0]×M →M

which is, for all ψ ∈M , the unique solution in B(ψ, r) of

Σ(t, ψ̃(t, ψ)) = ψ. (3.11)

Indeed, if this holds we can set

σ(t,ψ)
s = Σ(s, ψ̃(t, ψ)) (3.12)

and (3.11) immediately implies that

σ
(t,ψ)
t = ψ

i. e. σ(t,ψ) satisfies the second equation of (3.9).

Moreover, the map : (t, ψ, s) → σ
(t,ψ)
s is of class C2 because of (3.12) and the fact that Σ and ψ̃ are

of class C2; in particular, σ(t,ψ) ∈ H1
M (−T, 0). The map σ(t,ψ) solves the first equation of (3.9) because

: s → Σ(s, ψ̃(t, ψ)) solves it by the definition of Σ. Finally, σ(t,ψ) satisfies the third equation of (3.9) simply

because it satisfies the third equation of (3.10). Uniqueness follows because, if (3.9) had two different

solutions in BM (ψ, r), then also (3.11) would have two different solutions in BM (ψ, r), and we are supposing

that this is not the case.

We prove the last assertion of the lemma, equivariance. Recall that F̂ and û0 are H and L2
Z
-equivariant;

in particular, if σ(t,ψ) satisfies (3.9) and (h, z) ∈ H ×L2
Z
, then also σ(t,ψ) ◦ h+ z satisfies (3.9) for the initial

condition ψ ◦h+ z. By the uniqueness of point 1), this implies that σ(t,ψ◦h+z) = σ(t,ψ)+ z for all h ∈ H and

z ∈ L2
Z
.

Step 2. In this step and in the following ones, we check that we can apply the implicit function theorem to

solve for ψ in (3.11).

First of all, we saw above that the map Σ is C2. By definition, Σ(0, ψ) = ψ for all ψ ∈M , which implies

that

DΣ(0, ψ0) = Id ∀ψ0 ∈M.

Thus, the implicit function theorem yields the existence of a C2 function ψ̃(t, ψ) defined in [−T0, 0]×

BM (ψ0, r) which solves (3.1).

In step 3 below, we shall see that T0 and r do not depend on ψ0; in step 4, we shall use the monodromy

theorem to glue the local solutions into a solution defined globally on [−T0, 0]×M .

Step 3. We prove that we can choose T0 and r independent on ψ0.

If we look at the proof of the implicit function theorem, we see that T0, r > 0 must be chosen in order

that the Lipschitz constant of :ψ → Σ(t, ψ)−ψ is smaller than, say, 1
2 in [−T0, 0]×B(ψ0, r); by the Lagrange

theorem, this follows if ||DΣ(t, ψ) − Id|| ≤ 1
2 in [−T0, 0]× B(ψ0, r). This follows by a Taylor development,

since we saw above that DΣ(0, ψ)− Id = 0 for all ψ and that ||∂tDΣ(t, ψ)|| is bounded in [−1, 0]×M .

Step 4. By the last step, in each neighbourhood [−T0, 0]×B(ψ0, r) we can define a function ψ̃ which satisfies

(3.12); since M is simply connected, we can use the monodromy theorem (see for instance theorem 1.8 of

chapter 3 of [2]) to define globally a function ψ̃: [−T0, 0]×M →M satisfying (3.11).
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Definition. From now on, σ
(t,ψ)
s will be defined as in the last lemma.

Since the map : (t, ψ) → σ(t,ψ) is of class C2, the next lemma reduces to a classical computation ([10])

which we are only going to sketch; we continue in our practice of denoting by D the derivative in the M

variable.

Lemma 3.4. We set

V̂(t, ψ) =

∫ 0

t

[
1

2
||σ̇(t,ψ)

s ||2M − F̂(σ(t,ψ)
s )]ds+ Û0(σ

(t,ψ)
0 ). (3.13)

Then, V̂ ∈ C2([−T, 0]×M) and we have







−∂tV̂(t, ψ) +
1

2
||DV̂(t, ψ)||2M + F̂(ψ) = 0 for (t, ψ) ∈ [−T, 0]×M

V̂(0, ψ) = Û0(ψ).
(3.14)

Moreover,

σ̇(t,ψ)
s = −DV̂(s, σ(t,ψ)

s ) for all s, t ∈ [−T, 0]. (3.15)

Proof. First of all, V̂ ∈ C2([−T, 0]×M) by point 2) of lemma 3.3. Next, we differentiate with respect to

ψ both terms of (3.13); after using (3.8) and (3.9) we get that

σ̇
(t,ψ)
t = −DV̂(t, σ

(t,ψ)
t ) = −DV̂(t, ψ). (3.16)

Now we differentiate in (3.13) with respect to t; after an integration by parts, we get that

∂tV̂(t, ψ) = −
1

2
||σ̇

(t,ψ)
t ||2M + F̂(σ

(t,ψ)
t )+

∫ 0

t

〈−σ̈(t,ψ)
s −DF̂(σ(t,ψ)

s ), ∂tσ
(s,ψ)
t 〉Mds+

〈σ̇(t,ψ)
s , ∂tσ

(t,ψ)
s 〉M |s=0

s=t + 〈DÛ(σ
(t,ψ)
0 ), ∂tσ

(t,ψ)
0 〉M .

We note that the integral term is zero by the first equation of (3.9). Since σ
(t,ψ)
t = ψ for all t, differentiating

we get that

∂tσ
(t,ψ)
s |s=t = −σ̇

(t,ψ)
t .

Together with the last equation of (3.9), the last two equations imply that

∂tV̂(t, ψ) =
1

2
||σ̇

(t,ψ)
t ||2M + F̂(σ

(t,ψ)
t ).

Bt (3.16), this implies (3.14).
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Next, we assert that (3.15) follows from (3.16) if we show that, for all t, s, τ ∈ [−T, 0], we have that

σ(t,ψ)
τ = σ

(s,σ(t,ψ)
s )

τ . (3.17)

To show the assertion, we denote by the dot the derivative in the τ variable; now (3.17) implies the first

equality below, (3.16) the second one.

σ̇(t,ψ)
τ |τ=s = σ̇

(s,σ(t,ψ)
s )

τ |τ=s = −DV̂(s, σ(t,ψ)
s ).

To show (3.17), by the uniqueness of lemma 3.3 it suffices to show that : τ → σ
(t,ψ)
τ satisfies



















σ̈(t,ψ)
τ (x) = −∇F̂ (σ(t,ψ)

τ (x), σ(t,ψ)
τ )

σ(t,ψ)
s (x) = σ(t,ψ)

s (x)

σ̇
(t,ψ)
0 (x) = −∇û0(σ

(t,ψ)
0 (x), σ

(t,ψ)
0 )

which is obvious since σ(t,ψ) satisfies (3.9).

\\\

Lemma 3.5. Let t ∈ [−T, 0] and let ψ ∈M . Then,

1) for all s ∈ [−T, 0], σ(t,ψ) is the unique minimal in the definition of Û(s, σ
(t,ψ)
s ).

2) Û(t, ψ) = V̂(t, ψ) for (t, ψ) ∈ [−T, 0]×M .

Proof. Point 2) follows immediately from point 1) and the definitions of Û and V̂; we recall the classical

proof of [10] for point 1). Let V̂ be as in the last lemma and let us consider the functional

Js:H
1
M (t, 0) → R,

Js:σ →

∫ 0

s

[
1

2
||σ̇τ ||

2
M −F(στ ) + ∂τ V̂(τ, στ ) + 〈DV̂(τ, στ ), σ̇τ 〉M ]dτ. (3.18)

Since V̂ is of class C2 by lemma 3.4, we get the first equality below, while the second one follows from the

second formula of (3.14) and the definition of Â at the beginning of this section.

Js(σ) =

∫ 0

s

[
1

2
||σ̇τ ||

2
M −F(στ )]dτ + V̂(0, σ0)− V̂(s, σs) =

Â(s, σ)− V̂(s, σs). (3.19)

Thus, if we restrict to the curves σ ∈ H1
M (s, 0) with σs = σ

(t,ψ)
s , minimizing Js is the same as minimizing

Â(s, σ): the thesis follows if we check that σ(t,ψ) is minimal for Js. Actually, we are going to show that the

integrand of Js is constantly equal to its minimum along (τ, σ
(t,ψ)
τ , σ̇

(t,ψ)
τ ).

Clearly, for all (τ, η) ∈ [−T, 0]×M the minimum of the Lagrangian of Js

Bτ,η:M → R
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Bτ,η: λ̇→
1

2
||λ̇||2M −F(η) + ∂τ V̂(τ, η) + 〈DηV̂(τ, η), λ̇〉M

is attained at λ̇ = −DηV̂(τ, η); substituting this value into the expression for Bτ,η we get the inequality

below, while the equality is the first formula of (3.14).

Bτ,η(λ̇) ≥ −
1

2
||DηV̂(τ, η)||

2
M −F(η) + ∂τ V̂(τ, η) = 0 ∀λ̇ ∈M. (3.20)

On the other side, (3.15) implies the second equality below, (3.14) the third one.

B
τ,σ̇

(t,ψ)
τ

(σ̇(t,ψ)
τ ) =

1

2
||σ̇(t,ψ)

τ ||2M −F(σ(t,ψ)
τ ) + ∂τ V̂(τ, σ

(t,ψ)
τ ) + 〈DV̂(τ, σ(t,ψ)

τ ), σ̇(t,ψ)
τ 〉M =

−
1

2
||DV̂(τ, σ(t,ψ)

τ )||2M −F(σ(t,ψ)
τ ) + ∂τ V̂(τ, σ

(t,ψ)
τ ) = 0.

The last two formulas imply that : τ → σ
(t,ψ)
τ minimizes Js, as we wanted.

We prove uniqueness: by the aforesaid, if στ minimizes, then the integrand of Js must be zero along

στ . By (3.20), this implies that σ̇τ = −DV(τ, στ ). By (3.15) this implies that στ and σ
(t,ψ)
τ satisfy the same

differential equation; we recall from lemma 3.4 that −DV̂(t, ψ) is Lipschitz. Since σs = σ
(t,ψ)
s by hypothesis,

we get that στ = σ
(t,ψ)
τ for τ ∈ [−T, 0] by the existence and uniqueness theorem.

\\\

§4

The master equation

In this section, we are going to define the value function for the single particle; we shall see that it

determines the movement of the whole pack and that it satisfies the master equation.

Definition. We define

v: [−T, 0]×Td × [−T, 0]×M → R,

v(s, q|t, ψ) = min

{∫ 0

s

[
1

2
|ẏ(τ)|2 − F̂ (y(τ), σ(t,ψ)

τ )]dτ + û0(y(0), σ
(t,ψ)
0 )

}

(4.1)

where the minimum (whose existence is guaranteed by Tonelli’s theorem) is over all y ∈ AC((s, 0),Tp) such

that y(s) = q. In the notation for v we have inaugurated the practice of placing the ”parameters”, in this

case (t, ψ), after the vertical slash. In other words, we are interested in the equation solved by v in the first

two variables. If we freeze (t, ψ), then v(s, q|t, ψ) is the value function of the particle q, given that the whole

pack moves like σ(t,ψ). Thus, v solves, in its first two variables, the Hamilton-Jacobi equation.

Lemma 4.1. Up to reducing T , the following holds.

1) For s, t ∈ [−T, 0], the minimum in the definition of v(s, q|t, ψ) is attained on a unique function

: τ → y(τ |s, q, t, ψ).
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Again, the parameters of the orbit (i. e. the initial conditions of the single particle and of the whole pack)

are on the right of the vertical slash.

2) The map

: (τ, s, q, t, ψ) → y(τ |s, q, t, ψ)

is of class C2.

3) The value function

: (s, q, t, ψ) → v(s, q|t, ψ)

is of class C2 with bounded first and second derivatives. It is Zd-equivariant in the second variable, H and

L2
Z
-equivariant in the fourth one. For all (t, ψ) ∈ [−T, 0]×M it satisfies the Hamilton-Jacobi equation with

time reversed







−∂sv(s, q|t, ψ) +
1

2
|∇v(s, q|t, ψ)|2 + F̂ (q, σ(t,ψ)

s ) = 0 (s, q) ∈ [−T, 0]×Td

v(0, q|t, ψ) = û0(q, σ
(t,ψ)
0 )

(4.2)

in the classical sense. Recall that we denote the gradient in the Tp variable by ∇, in the M variable by D.

4) We have that, for Lp a. e. x ∈ [0, 1)d and all t, s, τ ∈ [−T, 0],

ẏ(τ |s, σ(t,ψ)
s (x), t, ψ) = σ̇(t,ψ)

τ (x) = −∇v(τ, y(τ |s, σ(t,ψ)
s (x), t, ψ)|t, ψ) = −DV̂(τ, σ(t,ψ)

τ )(x).

5) Let us define the function S as the flow of −∇v, i. e. as

S(s, q, τ |t, ψ) = y(τ)

where y solves
{

ẏ(τ) = −∇v(τ, y(τ)|t, ψ)

y(s) = q.
(4.3)

Then, up to reducing T , there is D2 > 0 independent of (s, q, τ, t, ψ) ∈ [−T, 0]×Td× [−T, 0]2×M such that

1

D2
≤ det

∂S(s, q, τ |t, ψ)

∂q
≤ D2.

Proof. We fix (t, ψ) as the initial condition of the whole pack; we consider the time dependent Lagrangian

L(s, q, q̇) =
1

2
|q̇|2 − F̂ (q, σ(t,ψ)

s )

and the final condition

: q → û0(q, σ
(t,ψ)
0 ).

Note that, by lemma 2.1, L is C3 in (s, q, q̇); it depends in a C2 way on the parameters (t, ψ) by lemma 3.3.

Analogously, û0 is C3 in the variable q and C2 in (t, ψ). Now points 1), 2) and 3) follow by the argument of

[10], which we have seen in lemmas 3.3, 3.4 and 3.5 above.
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As for point 4), formula (3.15) gives that, for all τ ∈ [−T, 0],

σ̇(t,ψ)
τ (x) = −DV̂(τ, σ(t,ψ)

τ )(x) for Lp a. e. x ∈ [0, 1)d.

On the other side, with exactly the same proof we used for formula (3.15) we see that

ẏ(τ |s, σ(t,ψ)
s (x), t, ψ) = −∇v(τ, y(τ |s, σ(t,ψ)

s (x), t, ψ)|t, ψ) for t, s, τ ∈ [−T, 0].

Thus, it suffices to show the first equality of point 4). Classical Hamilton-Jacobi theory (which we recalled

above in lemmas 3.3 to 3.5) implies that the minimizer

: τ → y(τ |s, q, t, ψ)

satisfies


















d2

dτ2
y(τ |s, q, t, ψ) = −∇F̂ (y(τ |s, q, t, ψ), σ(t,ψ)

τ )

y(s|s, q, t, ψ) = q

ẏ(0|s, q, t, ψ) = −∇û0(y(0|s, q, t, ψ), σ
(t,ψ)
0 ).

If q = σ
(t,ψ)
s (x) then, by (3.9), this is the same equation that is satisfied by : τ → σ

(t,ψ)
τ (x) for Ld a. e.

x ∈ [0, 1)d; by the uniqueness of lemma 3.3 this implies the first equality of point 4).

We prove point 5). Since S(s, q, s|t, ψ) = q by definition, we see that ∂qS(s, q, s|t, ψ) = Id; thus, point 5)

follows if we show that the map : τ → ∂qS(s, q, τ |t, ψ) is Lipschitz uniformly in (s, q, τ, t, ψ); in other words,

we have to show that the norm of ∂2qτS(s, q, τ |t, ψ) is bounded. This follows easily by (4.3), the differentiable

dependence theorem and point 3) of this lemma, which implies

|∂2q,qv(s, q|t, ψ)| ≤M ∀(s, q, t, ψ) ∈ [−T, 0]×Td × [−T, 0]×M.

\\\

We can apply to the value function v(s, q|t, ψ) a change of coordinates: namely, instead of seeing it as

a function of σ
(t,ψ)
t = ψ, we can see it as a function of σ

(t,ψ)
s . In other words, we can define a function u as

u(s, q|σ(t,ψ)
s ): = v(s, q|t, ψ).

Equivalently, by (3.17) we get that, for ψ ∈ M , ψ = σ
(s,σ(t,ψ)

s )
t ; setting η = σ

(t,ψ)
s and substituting in the

formula above, we get that

u(s, q|η) = v(s, q|t, σ
(s,η)
t ) for all t ∈ [−T, 0], η ∈M (4.4)

which incidentally proves that the definition of u is well posed. The first equality below comes from (4.4),

since σ
(s,ψ)
s = ψ; the second one is (4.1).

u(s, q|ψ) = v(s, q|s, ψ) =
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min
{

∫ 0

s

[
1

2
|ẏ(τ)|2 − F̂ (y(τ), σ(s,ψ)

τ )]dτ + û0(y(0), σ
(s,ψ)
0 ) : y ∈ AC((s, 0),Tp), y(s) = q

}

. (4.5)

Lemma 4.2. Let

u: [−T, 0]×Td ×M → R

be defined as in (4.4) or as in (4.5), which is the same. Then, u is of class C2 in all its variables and satisfies

the master equation

−∂tu(t, q|ψ) +
1

2
|∇u(t, q|ψ)|2 + F (q, ψ) + 〈∇u(t, ψ(·)|ψ), Du(t, q|ψ)〉M = 0.

Proof. By (4.4), lemma 4.1 and the chain rule we get that u is of class C2 in all its variables. Since

σ
(t,ψ)
t = ψ for all t, differentiating we get that

∂

∂s
σ
(s,ψ)
t |s=t = −σ̇

(t,ψ)
t . (4.6)

The first equality of (4.5) implies the equalities below.

Du(t, q|ψ) = Dv(t, q|t, ψ), ∇u(t, q|ψ) = ∇v(t, q|t, ψ). (4.7)

The first equality below is point 4) of lemma 4.1, the second one comes from (4.7).

σ̇
(t,ψ)
t (x) = −∇v(t, ψ(x)|t, ψ) = −∇u(t, ψ(x)|ψ). (4.8)

If we differentiate (4.4) in s, we get the first equality below; the second one comes from (4.2) and (4.6); the

last one comes from (4.7) and (4.8).

∂su(s, q|ψ)|s=t = ∂sv(s, q|t, σ
(s,ψ)
t )|s=t + 〈Dv(s, q|t, σ

(s,ψ)
t ),

∂

∂s
σ
(s,ψ)
t 〉

M
|s=t =

1

2
|∇v(t, q|t, ψ)|2 + F̂ (q, ψ)− 〈Dv(t, q|t, ψ), σ̇

(t,ψ)
t 〉M =

1

2
|∇u(t, q|ψ)|2 + F̂ (q, ψ) + 〈Du(t, q|ψ),∇u(t, ψ(·)|ψ)〉M .

\\\

End of the proof of theorem 1. Point 1) follows from lemma 3.5; point 2) is point 2) of lemma 3.3; point

3) is lemma 4.2; point 4) follows from point 5) of lemma 4.1; point 5) is point 4) of lemma 4.1 and (4.7).

\\\

Remark. By the results of section 1, u(t, q|ψ) quotients to a function on measures which is strongly

differentiable, with continuous derivative; it satisfies the master equation in the classical sense, i. e. taking

derivatives at their face value.
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[4] L. Ambrosio, N. Gigli, G. Savaré, Gradient Flows, Birkhaeuser, Basel, 2005.
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