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Graphs with many strong orientations
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Abstract

We establish mild conditions under which a possibly irregular, sparse graph G has “many”
strong orientations. Given a graph G on n vertices, orient each edge in either direction with proba-
bility 1/2 independently. We show that if G satisfies a minimum degree condition of (1+c1) log2 n
and has Cheeger constant at least c2

log2 log2 n

log2 n
, then the resulting randomly oriented directed graph

is strongly connected with high probability. This Cheeger constant bound can be replaced by an
analogous spectral condition via the Cheeger inequality. Additionally, we provide an explicit con-
struction to show our minimum degree condition is tight while the Cheeger constant bound is
tight up to a log2 log2 n factor.
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1 Introduction

Given an undirected graph, the classic Robbins’ theorem [15] provides a simple criterion to determine
whether there exists an orientation of its edges yielding a strongly connected digraph. Namely, graphs
admitting a strong orientation are 2-edge connected graphs. This theorem has since been extended
to multigraphs [3]; moreover, there are linear time algorithms which detect strong orientations and
construct them whenever possible [8]. While the existence and construction of strong orientations are
well-understood topics, the task of counting strong orientations is less straightforward.

Counting strong orientations has natural applications. One example comes from statistical me-
chanics, where the Eulerian orientations (i.e. strong orientations for which each vertex has equal
in and out-degree) of a 4-regular graph are the allowable configurations in two-dimensional ice-type
models used to study crystals with hydrogen bonds [13]. More generally, the problem of counting
the number of Eulerian orientations and strong orientations of a given graph G are special cases of
evaluating its Tutte polynomial, T (G;x, y). Specifically, the number of Eulerian orientations of a
given graph G is T (G; 0,−2) and number of strong orientations is T (G; 0, 2) [12].

Counting Eulerian and strong orientations has been shown to be #P -hard (see [14] and [16] respec-
tively). Instead of exact counting, researchers have approximated the number of strong orientations
for particular classes of graphs. In the case of α-dense graphs G (i.e. graphs with minimum degree
δ(G) > αn for 0 < α < 1), Alon, Frieze, and Welsh [1] developed a fully polynomial randomized
approximation scheme for counting strong orientations.

In this paper, we investigate a different type of question related to counting strong orientations: for
which possibly sparse and irregular graphs are “most” orientations strongly connected? In particular,
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we show that if a general graph G satisfies a mild isoperimetric condition and mild minimum degree
requirement, then a random orientation will be strongly connected with high probability. Our main
result is as follows:

Theorem 1. Given any α > 0 and ξ > 4, there exists an integer N0 = N0(α, ξ) such that for
n ≥ N0, if G is an n-vertex graph with minimum degree δ(G) ≥ (1 + α) log2 n and Cheeger constant

Φ(G) > ξ · log2 log2 n
log2 n

, then a random orientation of G is strongly connected with probability at least

1− 1 + 4α log2 n

αnα log2 n
.

Thus, a graphG satisfying the conditions of Theorem 1 has (1−o(1))2e(G) many strong orientations,
where e(G) denotes the number of edges of G. While we will provide a formal definition in Section 2,
we note that the Cheeger constant of a graph measures the fewest number of edges leaving a vertex
set relative to the “size” of that set. Beyond the bound on the Cheeger constant and the minimum
degree requirement, we do not assume the graph necessarily satisfies additional structural properties;
in particular, the graph is not assumed to be regular. Not assuming regularity increases the utility of
the result, but introduces additional subtleties in the proof, particularly with regard to enumerating
connected k sets of the graph.

As we will show in Section 3, the minimum degree requirement is tight while the bound on the
Cheeger constant is tight up to a log2 log2 n factor. Since the normalized Laplacian eigenvalues of
a general graph can be more efficiently computed than its Cheeger constant, it may be useful to
reformulate the second condition in Theorem 1 as a spectral condition via the Cheeger inequality.

Corollary 1. In Theorem 1, the condition Φ(G) > ξ · log2 log2 n
log2 n may be replaced with

λ1(G)

2
> ξ · log2 log2 n

log2 n
,

where λ1(G) denotes the second eigenvalue of the normalized Laplacian of G.

The paper is organized as follows: In Section 2, we establish our main tools and introduce relevant
notation. In Section 3 we briefly discuss the isoperimetric condition and minimum degree requirement
in Theorem 1. In Section 4, we present the proof of Theorem 1.

2 Main Tools and Notation

For a vertex subset X ⊆ V (G), vol(X) :=
∑

v∈X deg(v) and e(X,X) denotes the number of edges

between X and its complement X . The Cheeger ratio of X is

Φ(X) =
e(X,X)

min(vol(X), vol(X))
,

and the Cheeger constant of the graph G is Φ(G) = minX⊆V (G) Φ(X). When the graph G in question
is clear from context, we will simply denote its Cheeger constant Φ(G) as Φ and its minimum degree
δ(G) as δ.

The normalized Laplacian of a graph G is

L = I −D−1/2AD−1/2,

where A is the adjacency matrix and D is the diagonal degree matrix. The eigenvalues of L are labeled
in increasing order:

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2.
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Here, we emphasize that the spectral condition in Corollary 1 only pertains to the second eigenvalue
and thus makes no additional assumptions about the spectral gap, σ = maxi≥1 |1 − λi|, which is the
key parameter in controlling the discrepancy of a graph. Thus, while we assume a bound on |1− λ1|,
we do not assume an additional bound on the other end of the spectrum, |1−λn−1|, beyond the trivial
bound that holds for any graph, λn−1 ≤ 2.

The well-known Cheeger inequality describes the relationship between the normalized Laplacian
eigenvalues of a graph and its Cheeger constant:

Theorem 2 (Cheeger Inequality [7]). Let Φ be the Cheeger constant of a graph G and λ1 the second
eigenvalue of the normalized Laplacian. Then:

2Φ ≥ λ1 ≥ Φ2

2
.

A consequence of this, by which Corollary 1 follows immediately from Theorem 1, is that for any
set X ⊆ V (G) with vol(X) ≤ 1

2vol(G),

e(X,X) ≥ λ1

2
vol(X). (1)

As an aside, this uses only the bound 2Φ ≥ λ1, so we are not using the full strength of Cheeger’s
inequality. Indeed, on graphs the lower bound λ1 ≤ 2Φ is easily proven (for instance, see Lemma 2.1
in [7]). In the Riemannian manifold case, Cheeger’s inequality only refers to the lower bound on λ1

in terms of Φ – the upper bound on λ1 in terms of Φ is Buser’s inequality [6]. Nonetheless, we stick
with the convention in graph theory and refer to (1) as following from Cheeger’s inequality.

Finally, we will utilize standard asymptotic notation: we say a function f(n) = O(g(n)) if for all
sufficiently large values of n there exists a positive constant c such that |f(n)| ≤ c · |g(n)|; similarly,
we write f(n) = Ω(g(n)) if g(n) = O(f(n)), and f(n) = Θ(g(n)) if both f(n) = O(g(n)) and

f(n) = Ω(g(n)). Lastly, f(n) = o(g(n)) if limn→∞
f(n)
g(n) = 0.

3 Discussion of Theorem 1

Before we proceed with the proof of Theorem 1, we briefly discuss the minimum degree requirement
and Cheeger constant bound. First, we show that each of these conditions, taken on their own, do
not ensure that a random orientation of a graph yields a strongly connected directed graph with any
nonzero limiting probability. For instance, Figure 1 illustrates the so-called barbell graph on n vertices,
which has minimum degree a factor of n but possesses a bridge. Similarly, the graph obtained by
connecting a single vertex to exactly one vertex of Kn−1 has Cheeger constant always at least 1/2 but
again contains a bridge. Thus, neither condition in Theorem 1 is sufficient in ensuring the result.

Next, we show our minimum degree requirement is sharp while the bound on the Cheeger constant
is sharp up to a log2 log2 n factor. In order to do this, we will make use of the fact that if G is a
random d-regular graph, for d = c log2 n, then G has a Cheeger constant bounded away from zero.
Such results were known for fixed d dating to the work of Bollobás [4].

For non-constant degree, as in our case, the easiest approach to such a result is to appeal to the
spectra. The study of spectra of random regular graphs has a long history, culminating most famously
in Friedman’s proof of Alon’s second eigenvalue conjecture [10]: random regular graphs of fixed degree
d have second eigenvalue of the adjacency matrix 2

√
d− 1 + ǫ for any ǫ > 0, with high probability.

This, again unfortunately for our work, focuses on the case with constant degree. Fortunately for our
purposes, Broder, Frieze, Suen and Upfal [5] showed that the technique used by Kahn and Szemeredi
in [11] works in the case that d = o(n1/2), and shows that the second eigenvalue of the adjacency
matrix is O(

√
d) for such graphs. In terms of normalized Laplacian eigenvalues, this shows that

λ1 ≥ 1 − O(d−1/2) in this regime, and through Cheeger’s inequality random d-regular graphs have
Cheeger constant satisfying Φ > 1

4 with high probability so long as n is sufficiently large. We mention
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Figure 1: Two copies of Kn/2 connected by an edge.

that this problem is still attracting attention, as just recently, Cook, Goldstein and Johnson [9] proved
that the second adjacency eigenvalue for a random d-regular graph is still O(

√
d) for d = o(n2/3).

We now use the fact that a log2 n regular graph has Cheeger constant at least 1/4 with high
probability when considering the following example, which shows our minimum degree requirement is
sharp.

Example 1. Let G′ be a random t regular graph on N = 2t vertices.

Proposition 1. G′ has minimum degree log2 N and, with high probability, Cheeger constant at least
1
4 . However, a random orientation of G′ is disconnected with limiting probability at least 1− 1

e .

Proof. We show a random orientation of G′ is disconnected with limiting probability at least 1 − 1
e .

Since G′ is log2 N regular, the probability a vertex is a sink in a random orientation is 1
N . Assume

the vertices are labeled and let Bi denote the event that vertex i is a sink. For fixed k, define

S(k) =
∑

{i1,...,ik}∈(V (G′)
k )

P(Bi1 ∩ · · · ∩Bik).

By Brun’s sieve [2, Theorem 8.3.1], if we show that for every fixed k

lim
N→∞

S(k) =
1

k!
,

then the limiting probability there are no sinks in a random orientation of G′ is 1
e . Note that if

{i, j} ∈ E(G′), then P(Bi ∩Bj) = 0. Thus, we may rewrite the sum for S(k) as over all independent
sets with k vertices. Accordingly, since we need each of the t = log2 N edges for each of the k vertices

to be oriented so that each is a sink, P(Bi1 ∩ · · · ∩ Bik) =
(

1
2t

)k
= 1

Nk . At most, every k-subset of
V (G′) is an independent set, yielding the upper bound

S(k) ≤
(

N

k

)

1

Nk
∼ 1

k!
,

and at least, there are 1
k! ·N(N − log2 N) . . . (N − (k − 1) log2 N) ≥ (N−k log2 N)k

k!·Nk independent sets of
size k, yielding the lower bound

S(k) ≥ (1− k log2 N
N )k ·Nk

k! ·Nk
∼ 1

k!
.

Having shown that the minimum degree condition in Theorem 1 is sharp, we now use G′ to
construct a graph G to show the Cheeger constant condition in Theorem 1 is sharp up to a log2 log2 n
factor.
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Figure 2: The graph G in Example 2 with t = c = 2.

Example 2. For any integer c > 1, consider the graph G on n vertices obtained from G′ by appending
to each vertex in G′ vertex disjoint complete graphs on ct vertices. (Equivalently, G is constructed
by taking N vertex disjoint cliques on ct vertices, selecting from each of them a distinguished vertex,
and amongst the N distinguished vertices, placing a t regular random graph). See Figure 2 for one
example of this construction.

Proposition 2. G has minimum degree Ω(log2 n) and Cheeger constant Φ(G) = Ω(log−1
2 n). However,

a random orientation of G is disconnected with limiting probability at least 1− 1
e .

Proof. First, recalling that G is constructed by appending disjoint complete graphs to each vertex
in G′, Proposition 1 immediately implies a random orientation of G is disconnected with limiting
probability at least 1 − 1

e . Next, we examine examine the minimum degree and Cheeger constant of
G. Note that the graph G is on n = ctN vertices, and log2 n = t + log2(ct). For t large enough,

the minimum degree in the graph (which is ct − 1) is at least c log2 n
2 and the maximum degree is

(c+ 1)t− 1 < 2c log2 n. For any subset X ⊆ V (G) with vol(X) < vol(G)/2, we will show that

e(X, X̄)

vol(X)
= Ω(log−1

2 n).

Note that since every vertex has degree Θ(log2 n) it suffices to show that for all subsets of cardinality
at most n

2 ,

e(X, X̄)

|X | = Ω(1).

This is what we shall do. Let S ⊆ V (G) denote the vertices of G′ (contained as a subgraph of G.) Let
S1, . . . , SN denote the vertices contained (respectively) in each of the N cliques. Note |Si ∩S| = 1 for
all i, as there is a unique distinguished vertex per clique. Fix a set X ⊆ V (G). Define the sets

S′ = X ∩ S

T1 = {x ∈ X : x ∈ Si with (Si ∩ S′) 6= ∅ for some i ∈ [N ]}
T2 = {x ∈ X : x ∈ Si with (Si ∩ S′) = ∅ for some i ∈ [N ]}.

Note that S′ ⊆ T1 and T1 and T2 partition X . We observe that

e(X, X̄)

|X | =
e(T1, X̄) + e(T2, X̄)

|T1|+ |T2|
.

By the real number inequality
a+ b

c+ d
≥ min

{

a

c
,
b

d

}

,

valid for positive a, b, c, d, it suffices to show that both e(T1,X̄)
|T1|

and e(T2,X̄)
|T2|

are both Ω(1) (unless one

of them is 0
0 – note that both of them cannot be since X is non-empty).
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We begin by proving that e(T2,X̄)
|T2|

= Ω(1) so long as T2 is non-empty. Let ri = |Si ∩ T2|. Note

that ri ≤ ct− 1 for every i, as the distinguished vertices are not in T2. Further note that since Si is a
clique, the ri vertices in Si are adjacent to all remaining ct− ri vertices in the clique which are in X̄.
Thus

e(T2, X̄) =
∑

i

ri(ct− ri) ≥
∑

i

ri = |T2|,

so e(T2, X̄)/|T2| = Ω(1).

It is slightly more complicated to bound e(T1,X̄)
|T1|

. Similarly, we let ni = |Si∩T1|. Let m = |T1∩S|.
Then

e(T1, X̄) = e(T1 ∩ S, X̄ ∩ S) +
∑

i

ni(ct− ni).

Since G′ has Φ(G′) ≥ 1
4 ,

e(T1 ∩ S, X̄ ∩ S) ≥ 1

4
min{m,N −m} · log2 N.

If m ≤ 9N
10 this is sufficient to show e(T1,X̄)

|T1|
= Ω(1), since |T1| = O(m log2 N) and e(T1 ∩ S, X̄ ∩ S) =

Ω(m log2 N). Otherwise, if m > 9N
10 , without loss of generality n1, n2, . . . , nm are positive. Consider

the function:
f(n1, n2, n3, . . . , nm) =

∑

i

ni(ct− ni).

Note that if x ≥ y,

(x + 1)(ct− (x+ 1)) + (y − 1)(ct− (y − 1))− (x(ct− x) + y(ct− y)) = 2(y − x− 1) < 0.

Thus, for any two arguments of the function f , increasing the larger by 1 while decreasing the smaller
by 1 decreases the function. Since f is symmetric in its variables, we may relabel them so that
n1 ≥ · · · ≥ nm and repeatedly apply the above observation to yield:

f(n1, n2, . . . , nm) ≥ f(ct, ct, · · · , ct, ∗, 1, 1, . . . , 1, 1),
so that the arguments sum to

∑

ni and 1 ≤ ∗ ≤ ct. Since
∑

ni ≤ n
2 and m > 9N

10 , this means that

there are at least 4N
10 1’s, so

f(n1, n2, n3, . . . , nm) ≥ f(ct, ct, · · · , ct, ∗, 1, 1, . . . , 1, 1) ≥ 4N

10
· 1(ct− 1) = Ω(n).

This shows e(T1, X̄) = Ω(n), hence e(T1,X̄)
|T1|

= Ω(1). Thus we have shown Φ(G) = Ω(log−1
2 n).

4 Proof of Theorem 1

Our general approach to proving Theorem 1 is based on the observation that a directed graph is
strongly connected if and only if every nonempty proper subset X ( V (G) has an edge both entering
and leaving it. Namely, we bound the probability that every connected set X ⊆ V (G) with vol(X) ≤
vol(G)/2 has an edge both entering and leaving it.

Definition 1. For a subset X of vertices let BX be the event that vol(X) ≤ vol(G)/2, X is connected
in G and X has either no edges oriented into it or out of it. Note only the third property here is
random – if X does not have one of the first two properties, P(BX) = 0 deterministically. We further
define

Bk =
⋃

X⊆V (G)
|X|=k

BX .
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We estimate P(
⋃

k Bk) ≤
∑

k P(Bk) by dividing k into two regimes. First we prove that every small
subset (where |X | ≤ c log2 n) has an edge entering and leaving:

Regime 1: We claim
∑α/2 log2 n

k=1 P(Bk) <
4
nα .

Proof. We begin by noting that for a given set X of size k, there are at most
(

k
2

)

edges induced on

X and hence, recalling that δ denotes the minimum degree, there are at least δk −
(

k
2

)

edges leaving.

Note that in this regime, δk −
(

k
2

)

> 0 since k ≤ α
2 log2 n. For a given set X ,

P(BX) ≤ 2−δk+(k2)+1,

and this gives an estimate

P(Bk) ≤
(

n

k

)

2−δk+(k2)+1 =: bk.

We note that if k ≤ α
2 log2 n,

bk+1

bk
=

(

n
k+1

)

2−δ·(k+1)+(k+1
2 )+1

(

n
k

)

2−δk+(k2)+1

=
(n− k)2k

(k + 1)2δ

≤ 2k

nα
≤ 1

2
.

Then
α
2 log2 n
∑

k=1

P(Bk) ≤ 2P(B1) ≤ 2n21−(1+α) log2 n = 4n−α.

Regime 2: We claim
∑n

k≥α/2 log2 n P(Bk) ≤ 1
αnα log2 n .

Proof. For large sets, we must take greater care – the number of edges that could be induced in sets
is much larger, we utilize our lower bound on the Cheeger constant to ensure many edges leave each
set. Since the number of potential k sets grows large as well, we will restrict attention to counting
only connected sets so as to not over count.

To this end, we will enumerate connected k sets by considering rooted spanning trees in G, which
we will consider labeled. The shape of spanning trees, can of course, vary wildly. For the purposes of
this work we will enumerate them by their exposure sequence.

Definition 2. An exposure sequence π = (π1, π2, . . . , πk−1) of a labeled rooted spanning tree on k
vertices is determined as follows: newly label the vertices in breadth-first order, with ties broken by
the original labeling of the tree. Then, under this new labeling πi is the number of children of vertex
vi in the tree. See Figure 3 for an example.

Therefore, an exposure sequence of a rooted spanning tree on k vertices is an (ordered) list of

(k − 1) non-negative integers (π1, π2, . . . , πk−1) satisfying
∑

i≤j πi ≥ j and
∑k−1

i=1 πi = k − 1. A given
exposure sequence of k − 1 numbers uniquely determines the shape of the rooted, spanning tree on k
vertices. Since these vertices are labeled in breadth-first order, the kth vertex is necessarily a leaf of
the tree, so by convention we have πk = 0. We note that an exposure sequence for a rooted spanning
tree on k vertices can be thought of as a staircase walk on the square lattice from (0, 0) to (k−1, k−1)
which never crosses the diagonal. Namely, the staircase walk corresponding to exposure sequence π

7
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Figure 3: Left: a breadth-first vertex labeling of a rooted tree yielding exposure sequence π =
(1, 2, 0, 3, 0, 0, 1). Right: the staircase walk corresponding to exposure sequence π = (1, 2, 0, 3, 0, 0, 1).

is formed by taking πi steps east and 1 step north for i = 1, . . . , k − 1 (see Figure 3). Thus, counting
all possible exposure sequences is equivalent to counting all Dyck paths on the square lattice, which
is given by the Catalan numbers: ck−1 = 1

k

(

2(k−1)
k−1

)

.
We will enumerate all of the rooted subtrees in G on k vertices by their exposure sequence. Our

task now is to bound the following sum:

P(Bk) ≤
∑

π=(π1,π2...,πk−1)

∑

v1∈V (G)

∑

{v2,v3,...,v1+π1}

∈(N(v1)
π1

)
∑

{v2+π1 ,v3+π1 ,··· ,vπ1+π2+1}

∈(N(v2)
π2

)

· · ·
∑

{vk−πk−1+1,...,vk}

∈(N(vk−1)
πk−1

)

P(BX), (2)

where X = {v1, . . . , vk} and
(

N(vi)
πi

)

denotes the set of all sets of πi vertices adjacent to vi in the
original graph G. For any X which is connected in the original graph,

P(BX) =

{

0 if vol(X) > vol(G)
2

21−e(X,X̄) if vol(X) ≤ vol(G)
2

.

In the second case,

P(BX) ≤ 21−e(X,X̄) ≤ 21−Φvol(X) = 21−Φ
∑

vi∈X
deg(vi).

Since this bounds P(BX) above by a positive quantity (and P(BX) is otherwise zero), the inequality

P(BX) ≤ 21−Φ
∑

vi∈X deg(vi) (3)

holds for every X . We now use (3) to bound the right hand side of (2). We wish to collapse a term
of the form

∑

(N(vj)
πj

)

21−Φdeg(vj),

as (after having already bounded each of the summands for vi where i > j) we will have ensured that
the summand is independent of the πj vertices chosen. Thus,

∑

(N(vj)
πj

)

21−Φdeg(vj) =

(

deg(vj)

πj

)

21−Φdeg(vj).

8



We will give an upper bound of this term which is independent of vj , depending only on πj and δ,
and this will allow us to continue collapsing the sum (2). We find three different upper bounds for
this term for the cases when πj = 0, πj = 1, or πj > 1.

Case 1: πj = 0.
If vj is a leaf of the embedded spanning tree (which corresponds to πj = 0), we simply bound

21−Φdeg(vj) ≤ 21−Φ·(1+α) log2 n.

Case 2: πj > 1.

Since the terms we are interested in have the general form:
(

deg(vj)
πj

)

21−Φdeg(vj), we investigate the

associated sequence defined by fixing πj and varying deg(vj). In general, let

κs,t =

(

s

t

)

21−Φs,

so that the terms appearing above are κdeg(vj),πj
. Then for a fixed t and varying s, the sequence κs,t

is unimodal. We have that
κs,t

κs+1,t
=

(

1− t

s+ 1

)

2Φ.

Thus the maximum of κs,t, for a fixed t, is achieved by the smallest s such that κs+1,t < κs,t, yielding

t

s+ 1
< 1− 2−Φ,

or equivalently

(s+ 1) >
t

1− 2−Φ
.

Thus the maximum of κs,t occurs when

smax(t) =

⌊

t

1− 2−Φ

⌋

.

Indeed, extending the binomial coefficients to the reals in the usual way, the floor function can be
dropped. Recalling that Φ, s ≥ 0, for fixed t we have:

κs,t ≤
(

(1− 2−Φ)−1t

t

)

21−Φ·(1−2−Φ)−1t. (4)

Next, we use the entropy bound:

(

n

k

)

≤ nn

kk(n− k)n−k
= 2nH(k/n),

where H(q) = −q log2 q − (1 − q) log2(1 − q) is the binary entropy function.

Applying this bound to the binomial coefficient in (4) yields:

log2

(

(1− 2−Φ)−1t

t

)

≤ (1− 2−Φ)−1tH(1− 2−Φ)

= −(1− 2−Φ)−1t
[

(1− 2−Φ) log2(1 − 2−Φ) + 2−Φ log2(2
−Φ)

]

= t

[

− log2(1− 2−Φ) +
Φ

2Φ − 1

]

.
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Combining this upper bound with (4) and simplifying, we have that

κs,t ≤ 21+t(− log2(1−2−Φ)−Φ). (5)

We will now provide constant upper bounds on the terms involving Φ in the exponent of (5).
Setting f(x) = − log2(1− 2−x), we have f ′(x) = −1

2x−1 and so for x > 0,

f(x) = f(1) +

∫ x

1

f ′(t) dt = 1 +

∫ 1

x

1

2t − 1
dt.

Since 1 + x ln 2 ≤ ex ln 2 = 2x, we have that for x > 0,

f(x) ≤ 1 +

∫ 1

x

1

t ln 2
dt = 1− log2(x).

We may use this to bound (5), yielding

κs,t < 21−t log2(Φ)+t.

Although we will only apply this when πj > 1, this gives the general bound, good for any deg(vj), πj

that
(

deg(vj)

πj

)

21−Φdeg(vj) ≤ 21−πj log2(Φ)+πj .

Case 3: πj = 1.
In this case, the previous bound does not suffice for our purposes. Here, we improve the bound by

observing that our conditions imply that deg(vj) > smax(t). Indeed, our condition that Φ > ξ log2 log2 n
log2 n

implies that for n sufficiently large, (1+α) log2 n > (1−2−Φ)−1. Hence we are interested in κdeg(vj),πj

and by the unimodality of the κs,t for t fixed, we can derive the bound:

(

deg(vj)

πj

)

21−Φdeg(vj) <

(

(1 + α) log2 n

πj

)

21−Φ·(1+α) log2 n

< ((1 + α) log2 n)
πj21−Φ·(1+α) log2 n

= 21+πj[log2(1+α)+log2 log2 n]−Φ·(1+α) log2 n, (6)

which for πj = 1 simplifies to

(

deg(vj)

1

)

21−Φdeg(vj) < 21+[log2(1+α)+log2 log2 n]−Φ·(1+α) log2 n.

Collecting our results from Cases 1, 2, and 3, we have established the following:

∑

(N(vj)
πj

)

21−Φdeg(vj) =

(

deg(vj)

πj

)

21−Φdeg(vj)

≤











21−Φ·(1+α) log2 n if πj = 0

21+[log2(1+α)+log2 log2 n]−Φ·(1+α) log2 n if πj = 1

21+πj log2(1/Φ)+πj if πj > 1

. (7)

Before we collapse the sum (2) using (7), we make a few simple combinatorial observations concern-
ing exposure sequences of rooted spanning trees. Recalling that a degree of a vertex in the spanning
tree is π1 for v1, and πi + 1 for vi, we define the following:
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Definition 3. For an exposure sequence π = (π1, . . . , πk−1), let

ℓ(π) = 1 + |{j ≤ k − 1 : πj = 0}|

denote the number of leaves of the spanning tree described by the sequence and we let

p(π) = |{j ≤ k − 1 : πj = 1}|.

Lemma 1. For any exposure sequence π, we have

• p(π) + ℓ(π) ≥ k

2
,

•
∑

j:πj≥2

πj < k − p(π).

Proof. For the first observation, note that if p(π)+ ℓ(π) < k
2 , then there are at least k

2 terms in π that
are at least 2, yielding the contradiction:

k = (k/2) · 2 ≤
k−1
∑

i=1

πi = k − 1.

And, for the second observation:

k − 1 =
k−1
∑

i=1

πi =
∑

j:πj≥2

πj +
∑

j:πj=1

πj +
∑

j:πj=0

πj

=
∑

j:πj≥2

πj + p(π).

We now proceed to bound P(Bk) (2). We will take logarithm here for readability so that every
term would not appear in the exponent – this should be viewed most naturally by exponentiating
both sides. Iteratively applying (7), we obtain that for a fixed π = (π1, · · · , πk−1) and v1 ∈ V (G)

log2 P(Bk) ≤ log2















∑

{v2,v3,...,v1+π1}

∈(N(v1)
π1

)

∑

{v2+π1 ,v3+π1 ,··· ,vπ1+π2+1}

∈(N(v2)
π2

)

· · ·
∑

{vk−πk−1+1,...,vk}

∈(N(vk−1)
πk−1

)

P(BX)















≤





∑

j:πj≥2

1 + πj log2(1/Φ) + πj



+ p(π)[1 + log2(1 + α) + log2 log2 n]

− (p(π) + ℓ(π))Φ·(1 + α) log2 n+ ℓ(π)

=





∑

j:πj≥2

πj log2(1/Φ) + πj



+ p(π)[log2(1 + α) + log2 log2 n]

− (p(π) + ℓ(π))Φ·(1 + α) log2 n+ k.

Continuing, we apply Lemma 1 to yield




∑

j:πj≥2

πj log2(1/Φ) + πj



+ p(π)[log2(1 + α) + log2 log2 n]
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− (p(π) + ℓ(π))Φ·(1 + α) log2 n+ k

≤ (k − p(π)) (log2(1/Φ) + 1) + p(π)[log2(1 + α) + log2 log2 n]

− k

2
·Φ·(1 + α) log2 n+ k.

Next, using the fact that Φ > ξ log2 log2 n
log2 n for some (large) constant ξ, we obtain

(k − p(π)) (log2(1/Φ) + 1) + p(π)[log2(1 + α) + log2 log2 n]

− k

2
·Φ·(1 + α) log2 n+ k

< (k − p(π)) log2 log2 n+ (k − p(π)) + p(π) log2 (1 + α)

+ p(π) log2 log2 n− ξ
k

2
(1 + α) log2 log2 n+ k

≤ k

(

log2 log2 n

[

1− ξ

2
(1 + α)

]

+ (2 + log2(1 + α))

)

. (8)

Finally, for ξ > 4 and n sufficiently large we have:

k

(

log2 log2 n

[

1− ξ

2
(1 + α)

]

+ (2 + log2(1 + α))

)

≤ k (log2 log2 n [1− 2(1 + α)])

= −k·α log2 log2 n

2

(

2α−1 + 4
)

≤ −k(2α−1 + 4).

Therefore, by assuming n and ξ are large enough, for any fixed π and v1 ∈ V (G) we have that:

∑

{v2,v3,...,v1+π1}

∈(N(v1)
π1

)

∑

{v2+π1 ,v3+π1 ,··· ,vπ1+π2+1}

∈(N(v2)
π2

)

· · ·
∑

{vk−πk−1+1,...,vk}

∈(N(vk−1)
πk−1

)

P(BX)

≤ 2−(2α−1+4)k.

Using the above bound and recalling that there are ck−1 = k−1
(

2(k−1)
k−1

)

many exposure sequences,
we now bound all of (2) as:

P(Bk) ≤
∑

π=(π1,π2...,πk−1)

∑

v1∈V (G)

∑

{v2,v3,...,v1+π1}

∈(N(v1)
π1

)
∑

{v2+π1 ,v3+π1 ,··· ,vπ1+π2+1}

∈(N(v2)
π2

)

· · ·
∑

{vk−πk−1+1,...,vk}

∈(N(vk−1)
πk−1

)

P(BX)

≤
∑

π=(π1,π2...,πk−1)

∑

v1∈V (G)

2−(2α−1+4)k

≤ nk−1

(

2(k − 1)

k − 1

)

2−(2α−1+4)k

≤ nk−14k−12−(2α−1+4)k
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= 2log2 n−(log2 k+(2α−1+2)k+2)

≤ 2−(log2 k+2k+2),

where, in the last inequality, we used that k ≥ α
2 log2 n. Thus:

n
∑

k=α
2 log2 n

P(Bk) ≤
n
∑

k=α
2 log2 n

2−(log2 k+2k+2)

≤ 2 · 2−(log2(
α
2 log2 n)+α log2 n+2)

=
1

αnα log2 n
.

This completes our estimate for Regime 2.

Finally, combining the estimates we derived in each regime, we see that

P

(

n
⋃

k=1

Bk

)

≤
n
∑

k=1

P(Bk) ≤
1 + 4α log2 n

αnα log2 n
,

and thus with probability at least 1 − 1+4α log2 n
αnα log2 n = 1 − o(1), a random orientation of G is strongly

connected, completing our proof of Theorem 1.
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