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A NEW SELECTION OPERATOR FOR THE DISCRETE
EMPIRICAL INTERPOLATION METHOD - IMPROVED A PRIORI
ERROR BOUND AND EXTENSIONS

ZLATKO DRMAC* AND SERKAN GUGERCINT

Abstract. This paper introduces a new framework for constructing the Discrete Empirical
Interpolation Method (DEIM) projection operator. The interpolation node selection procedure is
formulated using the QR factorization with column pivoting, and it enjoys a sharper error bound for
the DEIM projection error. Furthermore, for a subspace U given as the range of an orthonormal U,
the DEIM projection does not change if U is replaced by U2 with arbitrary unitary matrix Q. In a
large-scale setting, the new approach allows modifications that use only randomly sampled rows of
U, but with the potential of producing good approximations with corresponding probabilistic error
bounds. Another salient feature of the new framework is that robust and efficient software imple-
mentation is easily developed, based on readily available high performance linear algebra packages.
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1. Introduction. Direct numerical simulation of dynamical systems plays a cru-
cial role in studying a great variety of complex physical phenomena in areas ranging
from neuron modeling to microchip design. The ever-increasing demand for accu-
racy leads to dynamical systems of ever-larger scale and complexity. Simulation in
such large-scale settings can make overwhelming demands on computational resources;
thus creating a need for model reduction to create smaller, faster approximations to
complex dynamical systems that still guarantee high fidelity.

1.1. Model Reduction by Galerkin Projection. Consider the following non-
linear dynamical system of ordinary differential equations (ODE)

Ei(t) = Ax(t) + £(z(t)) + Bg(t), t>0, (1.1)

where B, A € R™" B e R f:R" > R"and g: [0,00) — R”. In (L.1)), 2(t) € R"
is the state and g(t) is the external forcing term (input); thus has n degrees of
freedom and v inputs.

Systems of the form with very large state-space dimension (n ~ O(10°) or
higher) arise in many disciplines and typically originate from discretization of partial
differential equation models. The goal of model reduction is to replace with a
reduced surrogate dynamical system having much lower state space dimension, r < n.
The reduced model will then have the structure

E.in(t) = Arz,(t) + £ (2-(1)) + By g(t), (1.2)

where FE,, A, € R"™*" B, € R, and f, : R" — R".

We will use a Galerkin projection to construct the reduced model (L.2): Let V,
be an r-dimensional subspace spanned by the columns of V' € R"*". Then, we ap-
proximate the full-state z(¢) using the ansatz x(t) =~ Vz,(t) and enforce the Galerkin
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orthogonality condition EV#,(t) — AV, (t) — £(Vz,(t)) — Bg(t) L V, to obtain the
reduced model ([1.2)) with the reduced model quantities given by

E.=VTEV, A, =VTAV, B, =V'B, and f.(z,(t)) = VIf(Vz,()).  (1.3)

1.2. Galerkin Projection using Proper Orthogonal Decomposition. For
linear dynamical systems, i.e., when f = 0 in , a plethora of methods exist
to perform model reduction: These include gramian based methods such as Balanced
Truncation [37, B6] and Optimal Hankel Norm Approximation [24] or rational interpo-
lation based methods such Iterative Rational Krylov Algorithm [27]. These methods
rely on the concept of transfer function and perform model reduction independent
of the input g(t). These ideas have been recently extended to systems with bilin-
ear [, [6l 23] and quadratic nonlinearities [20] [7]. For general nonlinearities, Proper
Orthogonal Decomposition (POD) is the most-commonly used method. POD [35] 0]
obtains the model reduction basis V from a truncated SVD approximation to a matrix
of “snapshots”, a numerically computed trajectory of the full model. It is related to
methods (and known by other names) such as Principal Component Analysis (PCA)
in statistical analysis [29] and Karhunen-Loéve expansion [34] in stochastic analysis.

To construct the model reduction basis V' via POD, one performs a numerical
simulation of for an input g(t) and initial condition xg. Let xg,x1,...,2N_1
denote the snapshots resulting from this numerical simulation; i.e, z; = z(t;) € R
for i =0,1,..., N — 1. Construct the POD snapshot matriz

Xz[xo,xl,xg,...,xN_l]ER"XN (1.4)

and compute its thin SVD

X=2z%y7T, (1.5)
where Z € RN 2 € RV*N and YV € RV*N with Z7Z = Y'Y = Iy, and
Y = diag(o1,02,...,0n,), with 01 > 02 > ... > oy > 0. Then model reduction

by POD chooses V as the leading r left singular vectors of X corresponding to the r
largest singular values. Using MATLAB notation, this corresponds to V = Z(:;1: 7).
This basis selection by POD minimizes Y1 ||z — ®®T ;|2 over all ® € R™*" with
orthonormal columns. Since the objective function does not change if ® is post-
multiplied by an arbitrary r x r orthogonal matrix, this procedure actually seeks an
r—dimensional subspace that optimally captures the snapshots in the least squares
sense. For more details on POD, we refer the reader to [28] [32].

1.3. The lifting bottleneck. Even though the state z,.(¢) of the reduced model
lives in an r-dimensional subspace, definition of the reduced nonlinear term
£.(z.(t) = VIE(Va,(t)) in requires lifting x,(t) back to the full n-dimensional
subspace in order to evaluate the nonlinear term; this is known as the lifting bottleneck
and degrades the performance of reduced models for nonlinear systems. Various
approaches exist to tackle this issue; see, e.g., [21], Bl Bl 39, [[4]. In this paper, we
focus on the Discrete Empirical Interpolation Method (DEIM) [39], a discrete variant
of the Empirical Interpolation Method introduced in [5].

As explained in the original source [39], DEIM can be used to approximate and
efficiently evaluate a general nonlinear function f, which is not necessarily tied to the
model reduction set-up we discussed above. For example, f(7) could be a vector-
valued function of possibly multidimensional parameter 7. Therefore, following [39],
we will present the DEIM construction and our analysis for a generic nonlinear vector
valued function f(7), yet will point out the implications for nonlinear model reduction.
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1.4. DEIM. Given a nonlinear function f : 7 — R" with 7 C R? and a matrix
U € R"*™ of rank m, DEIM approximation of f is defined by [39, Definition 3.1]

f(r) = USTU)'sTE(r), (1.6)

where S is n X m matrix obtained by selecting certain columns of the n x n identity
matrix I. With the DEIM approximation to f defined as in (1.6)), the nonlinear term
in the reduced model (|1.2)) is now approximated by

£, (2, (t)=VTUSTU)ISTE(V,(t)). (1.7)

An effective numerical implementation of f,.(x,(t)) is different than its analytical for-
mula in and allows computing f,.(z,(t)) without lifting x,.(¢) to the full dimension
n and by only selecting a certain rows of Vi, (t). We skip those details and refer the
reader to [39] §3.4].

Computation of the DEIM basis U. In an application, the matrix U can be com-
puted as follows. For a finite grid 7m C 7, the function is sampled at 7; € Tg and, as
done for state z(t) in POD for model reduction, the function values, nonlinear snap-
shots, are collected in a matrix F, i.e., F = [f(m1),f(72),...,f(7.)]. If £(7) is n1 X na
matrix valued, the vec(-) operator is used to map its range to R™ ™2, Then, an or-
thogonal projection Q = UUT, of low rank m, onto the range U« = R(U) is constructed
so that |F — QF||r is minimal. Typically, m < n. Therefore, U can be considered
as the POD basis for the nonlinear snapshots. The hope is that the range of U will
capture the values of f over the entire parameter space, i.e., ||f(1) — UUTf(7)||2 will
be sufficiently small at any 7 € T.

The role of S, which we will call selection operator, is to strategically pick coor-
dinate indices in R at which the approximant interpolates f. (Note that STf(7) =
STf(7).) The DEIM algorithm, proposed in [39], forces the selection operator S to seek
m linearly independent rows of U such that the local growth of the spectral norm of
(STU)~! is limited via a greedy search, as implemented in Algorithm This objective
is founded in the following theoretical basis of DEIM [39] Lemma 3.2]:

LEMMA 1.1. Let U € R™ ™ be orthonormal (U*U =1,,,, m < n) and let

F=usTu)"1sTf (1.8)
be the DEIM projection of an arbitrary f € R™, with S computed by Algorithm[l] Then
1f = Flla < e (@= VU flla, = [(STU) ", (1.9)

where

c < M < vn(l+ \/ﬁ)m—l,

T lwllse

Hence, we can focus on a pure matrix theoretical problemﬂ Given orthonormal
U e C™m (U*U = 1,,) find a row selection matriz S with ||(STU)71||2 as small as
possible. If R(U) captures the behavior of f well over the given parameter space, and
if S results in a moderate value of ¢ in , the DEIM approximation will succeed.

The error bound in Lemmais rather pessimistic and the DEIM projection
usually performs substantially better in practice, see [39] for several illustrations of

L1From now on, we consider the problem over the complex field.
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Algorithm 1 DEIM (Discrete Empirical Interpolation Method) [39, Algorithm 1]
: Input: uq,...,u, linearly independent.
: Output: Selection operator S = S, (implicitly by @,,).
- p1r = argmax;(|ui(i)]) ; Ur = [ua]; St = [ep,] 5 o1 = [p1]
for j=2:mdo
Solve §jT71Uj_1z = Sijluj for z ; .
v =y — Uy 12 ;s py — argmas, (ir; (3)]) ;
Uj = Ui, 0505 S5 = [Sj-1,60,] 5 905 = (05-1,p5) 5
: end for

P DG w

superior performance of DEIM. Hence, this is an interesting theoretical question: can
the upper bound can be improved, and what selection operator S will have a sharper a
priori error bound, perhaps only mildly dependent on n?.

Note that S computed in Algorithm [I] depends on a particular basis for U; just
reordering the basis vectors may result in different S. If, for example, U consists of
the left singular vectors of the m dominant singular values of the data samples matrix
F, and if some of those singular values are multiple or tightly clustered, then some
singular vectors (columns of U) are non-unique or are numerically badly determined
by the data and the computed U could be algorithm dependent. But the subspace they
span is well-determined. Therefore, from both the theoretical and practical points of
view, it is important to ask whether we can efficiently construct S with an a priori
assurance that ¢ will be moderate and independent of the choice of an orthonormal
basis U of U.

Our interest for studying DEIM in more detail was triggered by the above the-
oretical questions from a numerical linear algebra point of view, and by a practical
question of efficient implementation of DEIM as mathematical software on high per-
formance computing machinery. In the complexity of Algorithm [I]is estimated
to be O(m?n) + O(m3). Unfortunately, it has unfavorable flop per memory reference
ratio (level 2 BLAS) which precludes efficient software implementation. It would be
advantageous to have an algorithm based on BLAS 3 building blocks, with potential
for parallel implementations. Furthermore, we may ask whether the contribution of
the factor n in the overall complexity can be reduced or even removed (e.g. using
only a subset of the rows of U) without substantial loss in the quality of the computed
selection operator.

Fortunately, an affirmative answer to all the questions above is surprisingly simple
and effective: QR factorization with column pivoting of U*. Our new implementation
of DEIM, designated as Q-DEIM, computes S independent of a particular orthonor-
mal basis U, enjoys a better upper bound for the condition number ¢ of the DEIM
projection, and in practice computes S with usually smaller value of ||(STU)~!||; than
the original DEIM algorithm. A further advantage of Q-DEIM is that it is based on
numerically robust high performance procedures, already available in software pack-
ages such as LAPACK, ScaLAPACK, MATLAB, so no additional effort is needed for
tuning high performance DEIM. The details and a theoretical foundation of Q-DEIM
are given in In particular, in §2.I] we provide a selection procedure and theoretical
analysis showing that the DEIM projection is almost as good as the orthogonal pro-
jection onto the range of U. Numerical experiments that illustrate the performance
of Q-DEIM in the context of nonlinear model reduction are presented in In
we show that accurate DEIM projection is possible even with using only a small por-
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tion of the rows of U, and we introduce Q-DEIMr, a restricted and randomized DEIM
selection that combines the technique used in Q-DEIM with the ideas of randomized
sampling. Further developments and applications are outlined in

2. A new DEIM framework. A key observation leading to a selection strategy
presented in this section is based on a solution to a similar problem in [19], arising
in the proof of global convergence of a block version of the Jacobi algorithm for
diagonalization of Hermitian matrices. There, a row permutation is needed such that
the (1,1) diagonal block of a family of 2 x 2 block partitioned unitary matrices has
a uniform lower bound for its smallest singular value, independent of the family and
only depending on the parameters of the partition (block dimensions).

It is clear that the selection of well conditioned submatrices is deeply connected
with rank revelation, and that in fact the most reliable rank revealing QR factoriza-
tions are indeed based on selecting certain well conditioned submatrices, see e.g. [15].
Note, however, that in our case here, the rank is not an issue, as our matrix U is
orthonormal.

We adapt the strategy from [19] and use it in §2.1| as a basis for introducing a
new framework for construction of the DEIM projection; the result is a new selection
method, called Q-DEIM, with an improved theoretical bound on ¢ and with the selec-
tion operator invariant under arbitrary changes of the orthonormal basis of the range
of U. We also use the seminal work of Goreinov, Tyrtyshnikov and Zamarshkin [25]
to show that DEIM projection is not only numerically but also theoretically almost as
good as the orthogonal projection, up to a factor of the dimension.

2.1. Q-DEIM- a new selection procedure. An answer to all practical ques-
tions raised in §1]is given in the following theorem. Its constructive proof is based on
[19], but we provide all the details for the reader’s convenience, and also because we
need them in the further developments in

THEOREM 2.1. Let U € C*™ U*U =1,,, m <n. Then :

e There exists an algorithm to compute a selection operator S with complexity
O(nm?), such that

_ V4m -1
70 < Vo T Y (2.1)
and for any f € C”
If = USTU)TIST fll < vnO@R™) || f — UU*£l2. (2.2)
If U is only full column rank, then the bound changes to
— 1 4/4m -1
(57U Yy < Yo LV S ] 2.3

Umin(U) 3

o There exists a selection operator Sy such that the DEIM projection error is
bounded by

If = USTU) ST flla < V1 +m(n —m) || f — UU* fll2. (2.4)

o The selection operators S, S, do not change if U is changed to U2, where §2
is arbitrary m X m unitary matrix, i.e., the selection of indices is assigned to
a point on the Stiefel manifold, represented by U.
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Proof. Let W = U* € C"™*", and let

* k k *k * k k
~ —~ 0 * % *x|* % x

WII = <W1 W2) =QR=Q 0 0 * *|* x = (2.5)
0 0 0 =x|x*x % =

be a column pivoted (rank revealing) QR factorization. We have at our disposal a
variety of pivoting strategies that reveal the numerical rank by constructing R in a way
to control the condition numbers (explicitly or implicitly) of its leading submatrices.

For instance, the Businger—Golub pivoting [13] at step i first determines a smallest
local index p; of the largest (in Euclidean norm) column in the submatrix (¢ : m,i : n)
and swaps globally the columns ¢ and p; = i—1+p; in the whole matrix. The following
scheme illustrates the case with n =7, m =4, i =2, po = 3, and py = 4:

) Di n ) Di n

*x Kx Kk Kk x K *x * x kKX K Kk *

) 0 e *x &® *x * x swap(i,pi) 1T 0 ® * e x %x x
syarQvi) (2.6)

0 e % ® *x *x * 0 ® *x e % *x %

m\0 e *x ® % x x m\0 ® x e *x % %

Then, the QR step maps the i—th column in the sub-matrix (i : m,i : n) to ¢;R;; and

keeps all the remaining column norms in the submatrix unchanged and bounded by
|Ri;|. (Here e; denotes i—th canonical vector of appropriate dimension.) The product
of all transpositions gives the permutation II.

We define the selection operator S as the one that collects the columns of W to
build Wl, this implies that STU = W* and we need to estimate ||W Y|z, Partition
R in as R = (T K) with m X m upper triangular T. Then W1 QT, and the
problem reduces to bounding || T~!||2. As a result of the pivoting (2.6]), the matrix T,
as the leading m x m submatrix of R, has a special diagonal dominance structure:

k
Tal? > Tl 1<i<k<my |Toml = max [Ruyl- (2.7)
— j=m:n
Jj=i
Further, since W = WII = QR and since WW* = U*U = QRR*Q* = I,,,, we conclude
that RR* = 1,,,, which implies that

n

=R, )2 = [Tom>+ D> [Rujl® < (0= m+1)[Tpm|?, (2.8)
j=m+1
and that
1
min [Ti;| = |Tom| > ———. 2.9
1:11171n| =1 | vn—m-+1 (29)

If we set D = diag(T;)7,, T = D~'T, then | T~ !y < v/ —m + 1||T~!||o. Further,
if we assume U to be just of rank m, not necessarily orthonormal, then

IR(m, )2 Omin(R)  omin(U)
‘Tmm|_\/n—m+1>\/n—m+1_\/n—m+17 (2.10)
Omin(T) > Tmin(V) ! (2.11)

Vin—m+ T[Ty
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Since STU = V/\\/i‘ = T*Q* it follows that [[(STU) ™|l = [|T~Y|2 = 1/0min(T). Hence,
to prove lb and it remains to estimate the norm of T—! = T~1D. This can be
done using an analyblb of Faddeev, Kublanovskaya and Faddeeva [22]7 that can also
be found in [33]. Systematic use of as in [33, Chapter 6] yields the following
useful inequalities

T le| <

2i—2 2i—3
< (273

where the absolute value and the inequality between vectors are understood element—
wise. For i = 1, trivially, we have T~ le; = e;(1/Ty1), and T le; = e;. For i =
2,...,m we use the relations T~ le; = T~ 1De; = T~ 1e; T;; to conclude

‘T ez| < (21 2 21 3

and thus (2.1)), (2.3 follow by (2.9), (2.10), (2.11)) and

T M2 < T~ lF < g(m), where g(m)

If U is changed to U2 with unitary €2, then the column pivoted QR is computed with
W = Q*U* = Q*W on input. The fact that the QR factorization of W or of W is
implicitly the Cholesky factorization of the Hermitian semidefinite H = W*W = W*W
extends to the pivoted factorizations as well. In the first step, obviously, looking for
the largest diagonal entry of H in the pivoted Cholesky factorization is equivalent to
looking for the column of W (or W) of largest Euclidean length. Hence, the pivoting
will select the same columns in both cases. After k steps of annihilations using
Householder reflectors with appropriate column interchanges, the intermediate result

R AR L (k) oy ()
is W) = 0w | and it is easily checked that (W[QQ]) W[QQ] equals the Schur
[22]

complement at the corresponding step in the pivoted Cholesky factorization of H.
Hence, the next step will have the same pivot selection in both processes.

The existence of S, is based on an elegant argument by Goreinov et al. [25],
who used the concept of matrix volume (the absolute value of the determinant). The
selection S, is defined to be the one that maximizes the volume of SfU over all
(TZ) = Wim), m X m submatrices of U. Then, by [25, Lemma 2.1],

1(STU) 2 < /1 +m(n—m). (2.12)

Since postmultiplying U by a unitary ) cannot change the volume of any m x m
submatrix of U, the same maximizing volume submatrix will be selected. (Here we
assume that a simple additional condition is imposed to assure unique selection in
the case of several maxima. For instance, among multiple choices, select the one with
smallest lexicographically ordered indiceb ) The error bounds (2.2)) and follow
by inserting the corresponding bounds and - for ¢ into (1.9). D

REMARK 2.2. According to [22], a shghtly better bound 4/(4™~1 + 2)/3 can be
used instead of g(m). It should be emphasized that the O(2™) upper bound is attained
only on a contrived example (the notorious Kahan matrix [31]) and in practice it can
be replaced by O(m). Also, in the application of DEIM, m is assumed small to modest,
so | T=1||2 can be estimated in O(m?2) or even O(m) time using a suitable condition
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number estimator; the factor v/n —m 4+ 1 can be replaced by the actually computed
and potentially smaller value 1/|T,,n|. The deployment of an incremental condition
estimator will be particularly important in a randomized sampling version of Q-DEIM
introduced in

More sophisticated rank revealing QR factorization can further reduce the upper
bound on ¢, but practical experience shows that the pivoting used in Theorem [2.]]
works very well. It has been conjectured in [25] that can be replaced with
[(STU)~t|2 < v/n, and proved that no bound smaller than y/n can exist in general.

REMARK 2.3. While the existence and superiority of S, are clear, its construction
is difficult. However, we can use its characterization to understand why the selection
operator S defined in Theorem (and the Businger-Golub pivoting in general) usu-
ally works very well in practice. The volume of the submatrix selected by S equals the
volume ], |T;| of the upper triangular T, which is the leading m x m submatrix
of the computed R factor. On the other hand, the pivoting, by design, at each step
tries to produce maximal possible |T;;|; thus it can be interpreted as a greedy volume
maximizing scheme. In fact, such an interpretation motivates post-processing to in-
crease the determinant, e.g. by replacing trailing submatrix T(m — 1:m,m — 1:m) of
T by better choices, obtained by inspecting the determinants of 2 x 2 submatrices of
R(m — 1:m,m + 1:n) and moving the corresponding columns upfront.

EXAMPLE 2.4. We illustrate the difference in the values of ¢ = |[(STU)"}2
computed by DEIM and Q-DEIM using 200 randomly generated orthonormal matrices
of size 10000 x 100. The Q-DEIM selection not only enjoys better upper bound, but
it also in most cases provides smaller actual value of ¢, as seen on Figure 2] It is
interesting to note that all Q-DEIM values of ||(STU)7!||2 are below 100, sustaining
the conjectured bound [|(STU)~!|l < /n for the volume maximizing scheme. On
the other hand, DEIM breaches the /n upper bound in most of the trials, indicating
less optimal selection with respect to the volume maximizing criterion. In the case
of matrices specially constructed to exhibit large pivot growth, the value of ¢ in both
methods may exceed /n, but not with a big factor. We also compare DEIM and
Q-DEIM using a 2048 x 100 basis for a FitzZHugh-Naguma system, analyzed in detail
in The value of ¢ for Q-DEIM is fixed at 2.6878¢ + 01 < /2048, independent
of the orthogonal changes of the basis.

2.1.1. Implementation details. In terms of the row selection from U, the
actual computation used in Theorem [2.1]is an LQ factorization of U with row pivoting.
The transposition and QR with column pivoting is used only for convenience and due
to the availability of software implementations. A Householder based QR factorization
of a fat m xn matrix runs with complexity O(m?n), similar to the complexity of DEIM.
LAPACK [I] based software tools use the optimized, BLAS 3 based and robust [20]
function xGEQP3. Other pivoting strategies are possible, such as in xGEQPX, xGEQPY in
[10], [I1]. On parallel computing machinery, our new approach uses the best available
QR code with column pivoting; e.g. PxGEQPF from ScaLAPACK [12].

As an illustration of the simplicity at which we get high performance computation
of a good selection operator, and to make a case for Q-DEIM, we briefly describe a
MATLAB implementation. Using the notation of Theorem we have

U=TI (;) Q*, STU=T*Q", and thus M = U(STU)" =TI (Kf$_*) . (2.13)

The computation T~'K = T=}(D~!K) by a triangular solver (e.g. the backslash
\ or linsolve() in MATLAB) is numerically stable as T is well conditioned and
8



Comparison of the constant ¢ = [|(STU |2

—e— DEIM
—#— Q-DEIM|

o 50 1

100
k (trial index)

Comparison of the constant ¢ = ||(s”U ||

70

50 200

65

—o—DEIM
| —#*—Q-DEIM

60 -

55
s0 [T
a5 o Tl
40 g
as |

30

25

o 50 100
k (trial index)

Fic. 2.1. (E:mmple Comparison of the value ¢ = ||[(STU)™Y||2 in DEIM and Q-DEIM.
The first row: The comparison using 200 random orthonormal matrices of size 10000 x 100. The
second row: 200 random changes of a DEIM orthonormal basis U of size 2048 x 100, computed
from simulation of the FitzHugh-Naguma system, see The basis changes are obtained by
post-multiplication by random 100 x 100 real orthogonal matrices (uniformly distributed in the Haar

measure).

max;; |(D7'K);;| < 1. The explicitly set identity matrix I, in (2.13) guarantees that
the selected entries of a vector f will be exactly interpolated when M is computed
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as in (2.13). If M is computed as M = computed(U/(STU)) (e.g. by MATLAB’s

slash) then ST™™ =1, + (€ij)mxm, with all €;; at roundoff level. If s1,..., s, are the
interpolation indices selected by S, then checking the interpolation for f € R™ yields

(S™™MSTf)i = fo,(L+ i) + D foyeijy i=1,...,m,

J#i
revealing an undesirable pollution of fs,, in particular if max;, s, |fs,| > |fs,].
function [ S, M ] = g-deim( U ) ;
% Input : U n—by-m with orthonormal columns
% Output : S selection of m row indices with guaranteed upper bound

o

norm (inv (U (S, :)))

oo e

o

<= sqgrt (n—m+1)

: M the matrix Uxinv(U(S,:));
The Q—DEIM projection of an n—-by—1 vector f is Mxf (S).
Coded by Zlatko Drmac, April 2015.

[n,m] = size(U) ;
if nargout ==
[,7,P] = gr(U','vector') ; S = P(l:m)
else
[Q,R,P] = gr(U', 'vector') ; S = P(l:m)
M = [eye(m) ; (R(:,1:m)\R(:,m+l:n))"]
Pinverse(P) =1 : n ; M = M(Pinverse,
end
end

)

’

’

* 0(27m) .



2.1.2. DEIM and LU with partial pivoting. It has been known, at least to
experts, that DEIM is a variation of Gaussian elimination; Sorensen [40, B8] called
it a pivoted LU without replacement Recently, [2] proposed to replace Step 7 of
Algorlthml Uj = (Uj—1 uj), by U] = (U] 1 7) (To make the distinction clear,
we denote the new variable by U and we use U to denote the matrix U( 1:7) at
the end of the jth step.). In other words, the basis Uj,l is updated by adding the
current residual vector. Assume that at step j, Gj,l = U;_1G;_1, where G;_; is
unit upper triangular and that both computations have the same selection S;_; (this
holds at j = 2). Then the residual 7 = u; — Oj,l(sf_lﬁj,l)—lgf_luj is easily shown
to be the same as r in Algorithm Hence, the updated S; will be the same, and

Uj = (Gj_l 7) = (Uj_l uj) G, with an updated unit upper triangular G;.

~ T ,~
Note that STU; = (S;-1 ep;) (Uj_y
upper triangular part of the last column of this product is SjT_l?, which is zero by the

definition of 7. Therefore, STU = STUG = Z with a lower trapezoidal Z and a unit
upper triangular G. Hence, DEIM (with replacement) is the same as a row pivoted LU
decomposition. This connection might help understanding why DEIM behaves much
better than the theoretical upper bound would suggest. Similar to the discussion in
Remark- 2.3] DEIM is applying a locally greedy search to maximize the volume of ST U:
Because U = UG with a unit upper triangular G, det(STU) det(U) = Hm: Z;;, and
the Z;;’s are results of a greedy search for maxima. ’

7) is lower triangular at each step: The

The modified update yielding U reduces the computational complexity of U(STU)*I
to O(nm?) down from O(nm?2)+ O(m®) because the LU decomposition of STU is no
longer necessary. However, the claim in [2] that Algorithmcontains O(m*) complex-
ity is misleading because a practical implementation of Step 5, Sijl Ujz = Sijluj, will
not compute the LU decomposition of SJT_lU j—1 from scratch in each step. Instead,
it will exploit the fact that, in the j step, SjT_lUj_l is changed by appending only a
new row and a column and will update the LU decomposition with complexity O(j2);
thus making the total complexity of Algorithm [1] of O(nm?)+ O(m3).

This connection also suggests using a rank revealing LU decomposition of U with
complete pivoting and taking the indices of the first m pivoted rows as the DEIM
indices. The bound on ¢ changes only by a factor originating from the inverse of
the unit upper triangular LU factor, which, as a consequence of complete pivoting, is
bounded by O(2™). On the other hand, in the case of partial pivoting like in DEIM,
the bound is rather pessimistic. However, as expected, DEIM behaves much better
in practice, as partial LU hardly exhibits the worst case growth scenario. It is an
interesting challenge to determine what orthonormal basis of the range of U is best
for the performances of DEIM.

2.2. Model Reduction Examples. In this section, we test the performance of
the new selection procedure on two model reduction benchmark problems.

2.2.1. The FitzHugh-Naguma (F-N) System. The F-N system, a simpli-
fied version of the Hodgkin—-Huxley model, arises in modeling the activation and
deactivation dynamics of a spiking neuron. This example is borrowed from [39] and
we follow their description of the model, including their notation and parameter se-
lection. Let v and w denote, respectively, the voltage and recovery of voltage. Also,
let 2 € [0, L] and ¢t > 0. Then, the underlying dynamics are described by the coupled
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nonlinear PDEs

evy(2,t) = v (2, ) + f(v(z, 1)) —w(z, t) + ¢ (2.14)
we(z,t) = bv(z,t) — yw(z,t) + ¢ (2.15)

with the nonlinearity appearing as f(v) = v(v — 0.1)(1 — v) and with the initial and
boundary conditions

where the model parameters are chosen as L =1, ¢ = 0.015, b= 0.5, v =2, ¢ = 0.05
and the stimulus ig(t) = 50000t3¢ =%, A finite difference discretization leads to a
system of the form with system dimension n = 2048. A time-domain simula-
tion with equally spaced points for ¢ = [0,8] leads to N = 100 state and nonlinear
snapshots. Following [39], we choose r = m = 5 and perform model reduction using
both DEIM selection procedures. We simulate both reduced models, collect reduced-
order snapshots Xpgw and Xqpgm. Then, to measure the error in model reduc-
tion, we lift these two snapshots back to the original dimension, i.e., we compute
VXpem and VXqpem where V' is the POD basis for model reduction, and measure
their distance (in the relative Frobenius-norm) from the original snapshot X. Let

X—VX X—VXq. .
€DEIM = W and eqpem = W denote the resulting errors. For

r =m = 5, we obtain epgy = 3.500673 x 10~2 and €Q-DEIM = 3.467286 x 10~2.
To illustrate that this is the usual behavior, i.e., the Q-DEIM selection performs
as well as the original DEIM selection, we test other r = m values as well:

m=4: eppm = 4291788 x 1072, eq.pem = 3.446203 x 102
m=06: epem = 3.300680 x 1072, €Q-DEIM = 3.260097 x 10~2
m="T: epem = 2.998979 x 1072, €Q-DEIM = 3.010827 x 1072,

S 0303
I

To better illustrate the comparison, we measure, in relative 2-norm, how accurately
each entry of x(t) is reconstructed with DEIM and Q-DEIM. Therefore, we measure
the relative 2-norm distance between the k'™ rows of the original snapshot matrix X
and those of the reconstructed ones VXpgm and VXqpgm. The results are shown in
Figure once more, illustrating that both procedures perform equally well.

2.2.2. Nonlinear RC Model. This is a model of nonlinear RC-ladder circuit
[16], 4, 7]E|, another benchmark example for model reduction. The nonlinearity results
from resistors that are in a parallel connection with diodes; the diode I-V character-
istics have the nonlinearity ip = €02 — 1 where ip is the current through the diode
and vp is the voltage across it. The input is the current source entering at node 1.

We take n = 1000, i.e., connect 1000 such ladders and excite the system using
the exponential forcing g(t) = e*. A numerical simulation over ¢ = [0, 7] seconds
results in 1425 POD snapshots z; and 1425 nonlinear (DEIM) snapshots f(z;). Decay
of the POD and DEIM singular values are shown in the left-hand side plot of Figure
[2:3] Based on this decay, we pick 7 = m = 10 and apply POD with both DEIM and
Q-DEIM selections. In this example, the voltage at node 1, i.e., the first component of
z(t) (denoted by &1(t)), is the quantity of interest and we measure how both reduced

2The model can be downloaded from Max Planck Institute Model Reduction Wiki page at
http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Nonlinear RC_Ladder.
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Error in the snapshot reconstruction

k= the row index of x(t)

FiG. 2.2. E:mmplem Comparison of the relative error in the snapshot reconstruction for
the F-N model for different r and m values. The horizontal azis variable k corresponds to the k™
row of x(t) for which the relative error is computed.

models approximate &1 (). As shown on Figure both methods perform extremely
well; the reduced-model quantities are virtually indistinguishable from the original.

As in the previous example, we compute the reconstruction errors due to DEIM
and Q-DEIM, and obtain epgm = 8.603826 x 10~ and eq.peim = 6.07172 x 10~3; once
again high accuracy for both models. The reconstruction errors in &;(¢) due to DEIM
and Q-DEIM are 1.28183 x 10~ and 7.783045 x 10~° respectively. Once we increase
r =m = 10 to r = m = 20, both reduced models become even more accurate with
epem = 1.970500 x 10~% and €qQ-nEm = 1.931018 x 10~%. The reconstruction errors
in & (t) are now 3.209967 x 10~ for DEIM and 3.238549 x 10~5 for Q-DEIM.

Decay of the POD and DEIM singular values Nonliear RC Network: Reconstruction of ‘g‘(t)

—e— POD singular values
—e— DEIM singular values

10 F 9 0.02

0.025,

—FOM
—6—DEIM
—*—Q-DEIM

107°F i 0.015

10°F 4 001

k time (sec)

Fic. 2.3. (Ezample The left-plot shows the decay of the POD and DEIM singular values.
The right-plot shows the reconstruction accuracy of £1(t) by both selection methods.
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To further illustrate the dependence of the error on the reduced dimension, we
test both DEIM and Q-DEIM for 1 < r =m < 20. The results depicted in Figure [2.4
below confirm the earlier observations.

Relative State Reconstruction Error

= DEIM error
—— Q-DEIM error

Relative Error
>
S

r=m

FiG. 2.4. (Ezample Relative errors epgim and eq.pemm for varying r and m values.

The two other excitation selections suggested for this model are g(t) = sin(2750¢)
and g(t) = sin(271000¢) [I7]. For these two inputs, for all the » and m combinations
we have tried, DEIM and Q-DEIM have returned exactly the same selection matrix S;
resulting in exactly same reduced model that is very accurate, with relative errors of
O(1073) even with r = m = 5. For brevity, we omit the resulting figures.

3. Using restricted /randomized basis information. The framework intro-
duced in §2)allows various modifications. Here we describe one, introducing Q-DEIMr,
a version of Q-DEIM that works only on a random selection of the rows of U. This
introduces the techniques of randomized sampling in the theory and practice of DEIM,
but it also provides a new approach to sampling from orthonormal matrices [30].

If the dimension n is large, it would be advantageous to determine a good selection
operator S in a way to reduce the O(m?n) factor in the complexity of the algorithm.
From the proof of Theorem it follows that, for the quality of the DEIM projection,
we only need to ensure that the upper triangular matrix T = R(1:m, 1:m) has small
inverse. But T is the pivoted QR triangular factor of certain columns of W, and our
initial task is to find their indices; we have no interest in the QR factorization as
such. This immediately suggests that we may attempt to find such indices using only
a small selection of the columns of W (i.e. of the rows of U)E|

The following scheme depicts the main idea: suppose we randomly sample &k > m
columns of W (marked by [) and assemble them in a local working m x k array L.

o A N S I S L

* * * * * * * * B3 * * * * * b3 *

* ok * * * K * * * * * ok % ok k%

* ok * * * K * * * * = k ok ok ok k%

* * * * * * * * * * * * * * * *
(3.1)

Then we attempt QR with column pivoting on L with a built-in Incremental Condition
Estimator (ICE) that at any step j very efficiently estimates the norm of the inverse
of the thus far constructed part of the triangular factor L(1:5,1:j )E|

3In another situation, e.g. in a case of gappy POD approximation, we may want to avoid some
rows of U because e.g. they correspond to spatial coordinates with corrupted or missing information.
4Here we assume that the triangular factor overwrites the corresponding part of the array L.
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This is done as follows: Suppose the first j — 1 steps have been successful and the
computed triangular factor (( ) in (3.2)) is well conditioned. The corresponding
global column indices (in W) that correspond to these columns in L are stored and
removed from the active set of indices from which random selection is made. All
Householder reflectors used are accumulated in a m x m matrix =.

In the jth step, a new pivot column is selected and swapped to be the jth one,
and the single Householder reflector is applied only to that column to annihilate its
positions j+1 to m, and to compute the (j, j)th position, (® in ) At this moment
we have all the ingredients to compute the value v; = [|L(1:4,1: )7 (marked
as (8 ; ;) in ) If ; is below given threshold, the factorization continues by
acceptirfé; the pivotal column, completing the jth step and looking for the next pivot.
If not, it means that the (j,7)th position, (® in ) is too small, and, due to
pivoting, that all entries in the active submatrix of L (® in ) are also small.
In that case, the columns j to k in L are useless for our purposes and we discard
them and draw new k — j + 1 columns from the active set of columns of W (T in
(3.1)). Before using newly selected columns as a part of L, we need to update them by
applying unitary matrix = which contains accumulated all previous transformations.
The resulting new columns in L (x in ) can now participate in pivoting.

X X X X S 1 *  * %
0 X X X X 0 * Kk X ok 0 * Kk ok

. AR s ~ (3.2)
0 0 ® © © O 0 0  * * % 0 0 * Kk K
00 0 & O © 0 0 * % * % 0 0 0 % *x %

At this point we may simply choose to continue with the factorization, search for the

next pivot column, swap it to the jth position, test ; against the threshold and accept
if it passes the test, as illustrated in . Another option is to discard all previous
pivoting and start a completely new one by determining the largest column for the
first position, and proceed with a completely new pivoting process on the updated
contents of L. The value of k is not necessarily fixed and may change dynamically
with a safety device to prevent failure. With proper data structure, one can develop a
detailed algorithm and an efficient software implementation. For the sake of brevity,
we omit the details. However, we provide one illustrative example.

ExAMPLE 3.1. Let f(t; ) = 10e#!(cos(4ut) + sin(4ut)), 1 <t < 6,0 < pu < 7.
Take 40 uniformly sampled values of ;1 and compute the snapshots over the discretized
t—domain at n = 10000 uniformly spaced nodes. The best low rank approximation of
the sampled 10000 x 40 returned U with m = 34 columns. This indicates that the
POD basis has captured the function’s behavior. We allowed Q-DEIMr to process only
k = m columns in the work array L, and set the upper bound for ¢ a vmyn—m+ 1.
Column index drawing is done simply: ¢ “random” indices are taken as the ¢ leading
indices of randomly permuted active set. We stress here that the purpose of this
example is to illustrate the idea and its potential, to motivate further study of the
randomized sampling approach to DEIM projection.

After processing 113 rows of U (out of 10000), Q-DEIMr selected a submatrix
with ¢ =~ 181.45; DEIM processed the whole matrix U and returned ¢ ~ 79.13. To
test how well the two methods approximate f, we compute its value at 200 points in
the p—interval: for each p; the function is evaluated over the t—grid giving f,,, € R".

5This ad hoc choice is motivated by the structure of the upper bound for c, as in the proof of
Theorem [2.1} Note that we use y/m instead of the worst case theoretical O(2") bound.
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The same is done with DEIM and Q-DEIM projections giving fPEM and ij’DE'M,
respectively. The results of a comparison are depicted in Figure|3.1] Since at this

f(t,u) evaluated at u=1.2787 computed errors in approximating f(t, )

25

—f ——DEIM eror
ol ——DEIM || 108} | ——Q-DEIMr error

——Q-DEIMr|

e,
3

Relative error
3

&S

e,

<,
@

1014l

time (s) I

Fic. 3.1. (Ezample Comparison of the approzimation errors of DEIM and Q-DEIMr
for £(t; u) = 10e~Ht(cos(4ut) + sin(4ut)). Left figure: The function evaluated at u = 1.2787. Right
figure: The relative errors ||f£f’M*fuj ll2/11 ;125 ||f5]fDE’M7fM ll2/[1fu;ll2 for 200 uniformly spaced
values of u; € [0, 7]. Q-DEIMr used 113 rows (at most 34 at the same time) of U to make a selection;
DEIM wused all 10000 rows.

computed errors in approximating f(t, 1) computed errors in approximating f(t, 1.)
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Fic. 3.2. (Ea:ample Comparison of the relative errors |‘f£].EIM_ij ||2/Hf#j ll2, ”fﬁ?,;DEIM_
Tuill2/ W fujll2 for £(t; 1) = 10e~Ht(cos(4ut) + sin(4ut)). Left figure: Upper bound in Q-DEIMr set
to my/n —m + 1; it used 53 rows with ¢ ~ 2532.9. Right figure: Upper bound in Q-DEIMr set to

vmy/n —m + 1/5; it used 220 rows with ¢ =~ 103.1. In both cases, DEIM used all 10000 rows of U
to make a selection, and Q-DEIMr was allowed to process at most 34 rows of U at the same time.

point no sophisticated sampling strategy is used, the results may vary, depending on
n, m, and the given upper bound for c. Figure [3.2] illustrates how the prescribed
upper bound for ¢ changes the execution and performance of Q-DEIMr. By visiting
only 220 rows, we fully recover the accuracy achieved by using all 10000 rows of U.
REMARK 3.2. The technical details of using ICE in the above procedure are
similar to the rank revealing method with windowed column pivoting [II]. However,
the overall procedure is substantially different in spirit. The difference is that our
objective is not to compute a rank revealing QR factorization (we know that W is of
full row rank, WW* = I,,,, and we do not even need its QR factorization), but just to
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find a well conditioned submatrix. This allows to touch only a selection of columns
of W and exit when a sufficiently well conditioned submatrix is determined.

REMARK 3.3. The quest for a well-conditioned submatrix of W can be obviously
parallelized, and many processors can independently work on different (not necessarily
disjoint) subsets of column indices, with no need whatsoever to engage in communi-
cation, until one finds suitable columns and sends a halt signal. If more than one
selection is found, the best one will be chosen.

The column selection procedure can be improved at a cost of one pass through the
array W to compute the column norms w; = |[W(:,4)||2. Such additional information
can be used e.g. in the following two ways:

e Select from the sorted columns in batches, as needed, starting from the largest
ones. The norms of the columns in the active set can also be down-dated, using the
procedure from column pivoted QR with numerically robust implementation [20].

e Define p; = W?/(E?:1 wjz), i =1,...,n. Then (p1,...,pn) is a probability
distribution that can be used to draw column samples. It prefers larger columns.
Each column is used only once, and the distribution is computed for the active set.

This opens a completely new aspect of DEIM and establishes its connection to
randomized numerical linear algebra, in particular with randomized sampling of rows
of orthonormal matrices [30]. In particular, one can view Q-DEIMr as a guided ran-
domized sampling algorithm for orthonormal matrices. Detailed analysis of blending
the two procedures is omitted here; it will be available in our subsequent work.

REMARK 3.4. Our experiments with randomized selection indicate that merely
picking m random interpolation indices will not work in general and sophisticated
strategies of DEIM, Q-DEIM, Q-DEIMr are necessary for a reliable and robust black-box
procedure. Indeed, this is already revealed in Example[3.I} the initial random selection
is not enough and Q-DEIMr brings in additional rows to process. Clearly, the results
depend on the function being approximated but just to illustrate the importance of the
selection principle of DEIM and Q-DEIMr, below we show the reconstruction accuracy
of DEIM and randomly selected indices (with few trials to select better rows, but
without the condition number control as in Q-DEIMr) for two nonlinear parametrized
functions. As the figures illustrate, the random selection without the techniques from
the DEIM procedures may perform very poorly.

computed errors in approximating f(t, ;1)

——Q-DEIM
—— Random
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—— Random
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Fic. 3.3. (Remark The reconstruction accuracy of a plain random selection of indices,
as compared to Q-DEIM and Q-DEIMr. The first plot uses the data generated by the function from
Example The function used for te second plot is f(x,pn) = sinh((p * cosh(p/x))), 0.1 <z < 6,
0< pu <7, and m =11 out of n = 2000 indices are selected.
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4. Conclusions and Future Work. Using the tools from QR factorization
with column pivoting, this paper has introduced a new DEIM index selection strategy,
that is invariant under orthogonal transformations, with a sharper error bound for
the DEIM projection error. The new approach, called Q-DEIM, is tested on several
numerical examples and it performs as well as the original DEIM selection procedure.
For the cases of large dimensions, a modification is proposed that uses only randomly
sampled rows of the data matrix yet still leading to high-fidelity approximations.

In addition to the nonlinear model reduction and parametrized function settings
we presented here, the new Q-DEIM selection is well suited for several important
applications that we are currently investigating for our subsequent work. One such
application is randomized sampling of rows of orthonormal matrices for solving the
least-squares problems effectively in the cases with huge row dimension. The sec-
ond one is the DEIM induced CUR factorization recently introduced by Sorensen and
Embree [4I]. A third application arises in nonlinear inversion and parametric model
reduction, see, e.g., [8, [I§], where an affine decomposition is needed for a parametric
matrix A(p) € R™*"™ for efficient online model reduction step. This is usually han-
dled by vectorizing A(p) which might lead to very large row dimension depending
on the sparsity pattern of A(p). We are currently testing Q-DEIM and Q-DEIMr in
these settings. Further, both DEIM and Q-DEIM (including Q-DEIMr) can adopt an
updating scheme when the nonlinear snapshot basis is obtained by the SVD: one can
enlarge m and U incrementally to yield better approximations. In Q-DEIM, increasing
m will require updating a rank-revealing QR-decomposition; thus finding an efficient
updating scheme for this incremental implementation will prove very useful.
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