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ACCELERATING STOCHASTIC COLLOCATION METHODS FOR PARTIAL

DIFFERENTIAL EQUATIONS WITH RANDOM INPUT DATA ∗

D. GALINDO† , P. JANTSCH‡ , C. G. WEBSTER§ , AND G. ZHANG¶

Abstract. This work proposes and analyzes a generalized acceleration technique for decreasing the computational
complexity of using stochastic collocation (SC) methods to solve partial differential equations (PDEs) with random
input data. The SC approaches considered in this effort consist of sequentially constructed multi-dimensional La-
grange interpolant in the random parametric domain, formulated by collocating on a set of points so that the resulting
approximation is defined in a hierarchical sequence of polynomial spaces of increasing fidelity. Our acceleration ap-
proach exploits the construction of the SC interpolant to accelerate the underlying ensemble of deterministic solutions.
Specifically, we predict the solution of the parametrized PDE at each collocation point on the current level of the SC
approximation by evaluating each sample with a previously assembled lower fidelity interpolant, and then use such
predictions to provide deterministic (linear or nonlinear) iterative solvers with improved initial approximations. As a
concrete example, we develop our approach in the context of SC approaches that employ sparse tensor products of
globally defined Lagrange polynomials on nested one-dimensional Clenshaw-Curtis abscissas. This work also provides
a rigorous computational complexity analysis of the resulting fully discrete sparse grid SC approximation, with and
without acceleration, which demonstrates the effectiveness of our proposed methodology in reducing the total num-
ber of iterations of a conjugate gradient solution of the finite element systems at each collocation point. Numerical
examples include both linear and nonlinear parametrized PDEs, which are used to illustrate the theoretical results
and the improved efficiency of this technique compared with several others.

Key words. stochastic and parametric PDEs, stochastic collocation, high-dimensional approximation, un-
certainty quantification, sparse grids, multivariate polynomial approximation, iterative solvers, conjugate gradient
method
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1. Introduction. Modern approaches for predicting the behavior of physical and engineering
problems, and assessing risk and informing decision making in manufacturing, economic forecasting,
public policy, and human welfare, rely on mathematical modeling followed by computer simulation.
Such predictions are obtained by constructing models whose solutions describe the phenomenon of
interest, and then using computational methods to approximate the outputs of the models. Thus,
the solution of a mathematical model can be viewed as a mapping from available input information
onto a desired output of interest; predictions obtained through computational simulations are merely
approximations of the images of the inputs, that is, of the output of interest. There are several causes
for possible discrepancies between observations and approximate solutions obtained via computer
simulations. The mathematical model may not, and usually does not, provide a totally faithful
description of the phenomenon being modeled. Additionally, when an application is considered,
the mathematical models need to be provided with input data, such as coefficients, forcing terms,
initial and boundary conditions, geometry, etc. This input data may be affected by a large amount
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of uncertainty due to intrinsic variability or the difficulty in accurately characterizing the physical
system.

Such uncertainties can be included in the mathematical model by adopting a probabilistic set-
ting, provided enough information is available for a complete statistical characterization of the
physical system. In this effort we assume our mathematical model is described by a partial differ-
ential equation (PDE) and the random input data are modeled as finite dimensional random fields,
parameterized by a vector y = (y1, · · · , yN) of dimension N , consisting of uncorrelated real-valued
random variables. Therefore, the goal of the mathematical and computational analysis becomes the
approximation of the solution map y 7→ u(y), or statistical moments (mean, variance, covariance,
etc.) of the solution or some quantity of interest (QoI) of the system, given the probability dis-
tribution of the input random data. A major challenge associated with developing approximation
techniques for such problems involves alleviating the curse of dimensionality, by which the compu-
tational complexity of any näıve polynomial approach will grow exponentially with the dimension
N of the parametric domain.

Monte Carlo (MC) methods (see, e.g., [17]) are the most popular approaches for approximating
high-dimensional integrals, based on independent realizations u(yk), k = 1, . . . ,M , of the parame-
terized PDE; approximations of the expectation or other QoIs are obtained by averaging over the
corresponding realizations of that quantity. The resulting numerical error is proportional to M−1/2,
thus achieving convergence rates independent of dimension N , but requiring a very large number
of samples to achieve reasonably small errors. Other ensemble-based methods, including quasi-MC
(QMC) and important sampling (see [24, 29, 39] and the references therein), have been devised to
produce increase convergence rates, e.g., proportional to M−1 log(M)r(N), however, the function
r(N) > 0 increases with dimension N . Moreover, since both MC and QMC are quadrature tech-
niques for QoIs, neither have the ability to simultaneously approximate the solution map y 7→ u(y),
required by a large class of applications.

In the last decade, two global polynomial approaches have been proposed that often feature much
faster convergence rates: intrusive stochastic Galerkin (SG) methods, constructed from pre-defined
orthogonal polynomials [19, 44], or best M -term and quasi-optimal approaches [6, 9, 12, 14], and
non-intrusive stochastic collocation (SC) methods, constructed from (sparse) Lagrange interpolating
polynomials [1, 30, 31], or discrete L2 projections [27, 28]. These methods exploit the underlying
regularity of the PDE solution map u(y) with respect to the parameters y, evident in a wide class
of high-dimensional applications, to construct an approximate solution, and differ only in the choice
of basis.

For both SG and SC approaches, the overall computational cost grows rapidly with increasing
dimension. A recent development for alleviating such complexity and accelerating the convergence
of parameterized PDE solutions is to utilize multilevel methods (see e.g., multilevel Monte Carlo
(MLMC) methods [4, 5, 11, 20, 40] and the multilevel stochastic collocation (MLSC) approach [41]).
The main ingredient to multilevel methods is the exploitation of a hierarchical sequence of spatial
approximations to the underlying PDE, which are then combined with discretizations in parameter
space in such a way as to minimize the overall computational cost. The approximation of the solution
u on the finest mesh is represented by the approximation on the coarsest mesh plus a sequence of
“correction” terms. The resulting decrease in complexity with the use of multilevel methods results
from the fact that the dominant behavior of the solution u can be captured with cheap simulations
on coarse meshes, so that the number of expensive simulations computed on fine meshes can be
considerably reduced.

Nonetheless, the dominant cost in applying any uncertainty quantification (UQ) approach lies
in the solution of the underlying parametrized linear/nonlinear PDEs, for a given value of the
random inputs. Such solutions are often computed using iterative solvers, e.g., conjugate gradient
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(CG) methods for symmetric positive-definite linear systems, generalized minimal residual method
(GMRES) for non-symmetric linear systems [37], and fixed-point iteration methods[36] for nonlinear
PDEs. However, many high-fidelity, multi-physics models can exhaust the resources of the largest
machines with a single instantiation and, as such, are not practical for even the most advanced UQ
techniques. As such, several methods for improving the performance of iterative solvers have been
proposed; especially preconditioner and subspace methods for iterative Krylov solvers. A strategy
that utilizes shared search directions for solving a collection of linear systems based on the CG
method is proposed in [8]. In [33] a technique called Krylov recycling was introduced to solve sets of
linear systems sequentially, based on ideas adapted from restarted and truncated GMRES (see [38]
and the references therein). This approach was later applied to the linear systems that arise from
SG approximations that use the so-called doubly orthogonal bases to solve stochastic paramterized
PDEs [25] . In addition, several preconditioners have been developed that improve the performance of
solving the large linear systems resulting from SG approximations that employ standard orthogonal
polynomials [16, 18, 21, 35].

On the other hand, when a general linear solver is employed to solve the underling SG or SC
approximation, it is straightforward to see that improved initial approximations can significantly
reduce the number of iterations required to reach a prescribed accuracy. A sequential orthogonal
expansion is utilized in [18, 34] such that a low resolution solution provides an initial guess for the
solution of the system with an enriched basis. However, at each step, all the expansion coefficients
must be explicitly recomputed, resulting in increased costs. Similarly, in [21] an extension of a
mean-based preconditioner is applied to each linear system coming from a sequential SC approach,
wherein the solution of the j-th system is given as the initial vector for the (j + 1)-th system. This
approach, as well as the Krylov recycling method, impose an ordering of the linear systems that
appear in the SC approximation. Consequently, new approaches are needed to amortize the cost
of expensive simulations by reusing both deterministic and stochastic information across multiple
ensembles of solutions.

In this work, we propose to improve the computational efficiency of non-intrusive approxima-
tions, by focusing on SC approaches that sequentially construct a multi-dimensional Lagrange inter-
polant in a hierarchical sequence of polynomial spaces of increasing fidelity. As opposed to multilevel
methods that reduce the overall computational burden by taking advantage of a hierarchical spatial
approximation, our approach exploits the structure of the SC interpolant to accelerate the under-
lying ensemble of deterministic solutions. Specifically, we predict the solution of the parametrized
PDE at each collocation point on the current level of the SC approximation by evaluating each
sample with a previously assembled lower fidelity interpolant, and then use such predictions to pro-
vide deterministic (linear or nonlinear) iterative solvers with improved initial approximations. As a
particular application, we pose this acceleration technique in the context of hierarchical SC methods
that employ sparse tensor products of globally defined Lagrange polynomials [30, 31], on nested
one-dimensional Clenshaw-Curtis abscissas. However, the same idea can be extended to other non-
intrusive collocation approaches including orthogonal polynomials [44], as well as piecewise local and
wavelet polynomials expansions [7, 22].

The sparse grid SC approximation considered in this work produces a sequence of interpolants,
where a new set of collocation points is added on each level in order to increase the accuracy of the
interpolant. For each newly added collocation point on the current level, we predict the solution of
the underlying deterministic PDE using the most up to date sparse grid interpolant available; the
previous level’s interpolant. We then use the prediction as the starting point of the iterative solver.
The uniform convergence of the sparse grid interpolant to the true solution results in an increasingly
accurate initial guess as the level increases, so that the overall complexity of the SC method can
be dramatically reduced. We apply our novel approach in the context of solving both linear and
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nonlinear stochastic PDEs, wherein, we assume that the parameterized systems are solved by some
existing linear or nonlinear iterative method. Furthermore, in the linear case, this technique can
also be used to efficiently generate improved preconditioners for linear systems associated to the
collocation points on higher levels, which further accelerates the convergence rate of the underlying
solver.

The outline of this paper is as follows: We begin by describing the class of parameterized
linear and nonlinear stochastic PDEs under consideration in §2. In §3 we describe our acceleration
technique in the context of general stochastic collocation methods, defined on a hierarchical sequence
of polynomial spaces, for approximating both linear and nonlinear stochastic elliptic PDEs using
nonlinear iterative solvers. In §4 we briefly recall the sparse grid SC method, where the sparse
grid interpolant is constructed with the use of nested one-dimensional Clenshaw-Curtis abscissas.
The theoretical convergence rates, with respect to the level of the interpolant and the degrees of
freedom are shown in §4.1. In §4.2 we provide a rigorous computational complexity analysis of
the resulting fully discrete sparse grid SC approximation, with and without acceleration, used to
demonstrate the effectiveness of our proposed methodology in reducing the total number of iterations
of a conjugate gradient solution of the finite element systems at each collocation point. Finally, in
§5 we provide several numerical examples, including both moderately large-dimensional linear and
nonlinear parametrized PDEs, which are used to illustrate the theoretical results and the improved
efficiency of this technique compared with several others.

2. Problem setting. Let D ⊂ Rd, d = 1, 2, 3, be a bounded domain and let (Ω,F ,P) denote
a complete probability space with sample space Ω, σ-algebra F = 2Ω, and probability measure
P : F → [0, 1]. Define L as a differential operator that depends on a coefficient a(x, ω) with x ∈ D
and ω ∈ Ω. Analogously, the forcing term f = f(x, ω) can be assumed to be a random field as well.
In general, a and f belong to different probability spaces but, for economy of notation, we simply
denote the stochastic dependences in the same probability space. Consider the stochastic boundary
value problem. Find a random function u : D×Ω → R such that, P-a.e. in Ω, the following equations
hold:

{
L(a)(u) = f in D,

u = g on ∂D,
(2.1)

where g is a suitable boundary condition. We denote by W (D) a Banach space and assume the
underlying random input data are chosen so that the corresponding stochastic system (2.1) is well-
posed and has a unique solution u(x, ω) ∈ Lq

P
(Ω;W (D)), the function space given by

Lq
P
(Ω;W (D)) :=

{
u : D × Ω → R

∣∣∣ u is strongly measurable and

∫

Ω

‖u‖qW (D) dP(ω) < +∞
}
.

In this setting, the approximation space consists of Banach-space valued functions that have finite
q-th order moments. Two example problems posed in this setting are given as follows.

Example 2.1. (Linear elliptic problem). Find a random field u : D × Ω → R such that P-a.e.

{
−∇ · (a(x, ω)∇u(x, ω)) = f(x, ω) in D × Ω,

u(x, ω) = 0 on ∂D × Ω,
(2.2)
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where ∇ denotes the gradient operator with respect to the spatial variable x ∈ D. The well-posedness
of (2.2) is guaranteed in L2

P
(Ω;H1

0 (D)) with a(x, ω) uniformly elliptic, i.e.,

P
(
ω ∈ Ω : amin ≤ a(x, ω) ≤ amax ∀x ∈ D

)
= 1 with amin, amax ∈ (0,∞), (2.3)

and f(x, ω) square integrable, i.e.,

∫

D

E[f2]dx :=

∫

D

∫

Ω

f2(x, ω) dP(ω)dx < +∞.

Example 2.2. (Nonlinear elliptic problem). For k ∈ N, find a random field u : D × Ω → R

such that P-a.e.
{

−∇ · (a(x, ω)∇u(x, ω)) + u(x, ω)|u(x, ω)|k = f(x, ω) in D,
u(x, ω) = 0 on ∂D.

(2.4)

The well-posedness of (2.4) is guaranteed in L2
P
(Ω;W (D)) with a, f as in Example 2.1 and W (D) =

H1
0 (D) ∩ Lk+2 (D) [31].
In many applications, the source of randomness can be approximated with only a finite number

of uncorrelated, or even independent, random variables. For instance, the random input data a and
f in (2.1) may have a piecewise representation, or in other applications may have spatial variation
that can be modeled as a correlated random field, making them amenable to approximation by a
Karhunen-Loève (KL) expansion [26]. In practice, one has to truncate such expansions according to
the desired accuracy of the simulation. As such, we make the following assumption regarding the
random input data a and f (cf [23, 31]).

Assumption 2.1. (Independence and finite dimensional noise). The random fields a(x, ω) and
f(x, ω) have the form:

a(x, ω) = a(x,y(ω)) and f(x, ω) = f(x,y(ω)) on D × Ω,

where y(ω) = [y1(ω), . . . , yN (ω)] : Ω → RN is a vector of independent and uncorrelated real-valued
random variables.

We note that Assumption 2.1 and the Doob-Dynkin lemma [32] guarantee that a(x,y(ω)) and
f(x,y(ω)) are Borel-measurable functions of the random vector y : Ω → R

N . In our setting, we

denote by Γn = yn(Ω) ⊂ R the image of the random variable yn, and set Γ =
∏N

n=1 Γn, where
N ∈ N+. If the distribution measure of y(ω) is absolutely continuous with respect to Lebesgue
measure, then there exists a joint probability density function of y(ω) denoted by

̺(y) : Γ → R+, with ̺(y) =

N∏

n=1

̺n(yn) ∈ L∞(Γ).

Therefore, based on Assumption 2.1, the probability space (Ω,F ,P) is mapped to (Γ,B(Γ), ̺(y)dy),
where B(Γ) is the Borel σ-algebra on Γ and ̺(y)dy is a probability measure on B(Γ). By assuming
the solution u of (2.1) is σ-measurable with respect to a and f , the Doob-Dynkin lemma guarantees
that u(x, ω) can also be characterized by the same random vector y, i.e.,

u(x, ω) = u(x, y1(ω), . . . , yN (ω)) ∈ Lq
̺(Γ;W (D)),
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where Lq
̺(Γ;W (D)) is defined by

Lq
̺(Γ;W (D)) =

{
u : D × Γ → R

∣∣∣ u strongly measurable and

∫

Γ

‖u‖qW (D) ̺(y)dy <∞
}
.

Note that the above integral will be replaced by the essential supremum when q = ∞:

L∞(Γ;W (D)) =

{
u : D × Γ → R

∣∣∣ u strongly measurable and ess supy ‖u(y)‖W (D) <∞
}
.

2.1. Weak formulation. In what follows, we treat the solution to (2.1) as a parameterized
function u(x,y) of the N -dimensional random variables y ∈ Γ ⊂ RN . This leads to a Galerkin weak
formulation [23] of the PDE in (2.1), with respect to both physical and parameter space, i.e., seek
u ∈ Lq

̺(Γ;W (D)) such that

∫

Γ

∫

D

(
∑

ν∈Λ1∪Λ2

Sν(u;y)Tν(v)

)
̺ dxdy =

∫

Γ

∫

D

f v̺ dxdy, ∀v ∈ Lq
̺(Γ;W (D)),

where Tν , ν ∈ Λ1 ∪ Λ2 are linear operators independent of y, while the operators Sν are linear for
ν ∈ Λ1, and nonlinear for ν ∈ Λ2. Moreover, since the solution u can be viewed as a mapping
u : Γ →W (D), for convenience we may omit the dependence on x ∈ D and write u(y) to emphasize
the dependence of u on y. As such, we may also write the problem (2.1) in the alternative weak
form

∫

D

(
∑

ν∈Λ1∪Λ2

Sν(u(y);y)Tν(v)

)
dx =

∫

D

f(y) v dx, ∀v ∈W (D), ̺-a.e. in Γ. (2.5)

Therefore, the stochastic boundary-value problem (2.1) has been converted into a deterministic
parametric problem (2.5). The acceleration technique proposed in §3 and the sparse-grid SC method
discussed in §4 will be based on the solution of the weak form (2.5) above.

3. Accelerating stochastic collocation methods. Our acceleration scheme will be proposed
in the context of both linear and nonlinear elliptic PDEs. A general SC approach requires the semi-
discrete solution uh(·,y) ∈ Wh(D) ⊂ W (D) at a set of collocation points {yL,j}ML

j=1 ⊂ Γ, given
by

uh(x,yL,j) =

Mh∑

i=1

cL,j,i ϕi(x), j = 1, . . . ,ML. (3.1)

Here {ϕi}Mh
i=1 is a predefined finite element basis of Wh(D), and for j = 1, . . . ,ML, the coefficient

vector cL,j := (cL,j,1, . . . , cL,j,Mh
)⊤ is the solution of the following system of equations:

Mh∑

i=1

cL,j,i

∫

D

∑

ν∈Λ1

Sν (ϕi;yL,j) Tν(ϕi′ ) dx (3.2)

=

∫

D

f(yL,j)ϕi′ −
∑

ν∈Λ2

Sν

(
Mh∑

i=1

cL,j,i ϕi;yL,j

)
Tν(ϕi′) dx, i′ = 1, . . . ,Mh,
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with Sν and Tν defined as above. Note that (3.2) is equivalent to (2.5) with the nonlinear oper-
ators subtracted on the right hand side. When Λ2 = ∅, the PDE is linear, and a standard FEM
discretization leads to a linear system of equations.

For L ∈ N+, we denote by IL an interpolation operator that utilizes ML collocation points,
defined by HL = {yL,j}ML

j=1. More generally, assume that we have a family of interpolation operators
{IL}L∈N+ , which for each L ∈ N+ approximates the solution uh(x, ·) in polynomial spaces

P1(Γ) ⊂ . . . ⊂ PL(Γ) ⊂ PL+1(Γ) ⊂ . . . ⊂ L2
̺(Γ),

of increasing fidelity, defined on sets of sample points HL ⊂ Γ. Assume further that the fully discrete
solution uh,L ∈Wh(D)⊗ PL(Γ) has Lagrange interpolating form

uh,L(x,y) := IL[uh](x,y) =
ML∑

j=1

(
Mh∑

i=1

cL,j,iϕi(x)

)
ΨL,j(y), (3.3)

where {ΨL,j}ML

j=1 is a basis for PL(Γ). The approximation (3.3) can be constructed by solving for
uh(x,yL,j) independently at each sample point yL,j ∈ HL. In §4, we construct a specific example of
an interpolation scheme satisfying (3.3), namely global sparse grid collocation.

For each L ∈ N, the bulk of the computational cost in using (3.3) goes into solving the ML

systems of equations (3.2) corresponding to each collocation point yL,j, j = 1, . . . ,ML. Since the
systems are independent and deterministic, they can be solved separately using existing FEM solvers,
providing a straightforward path to parallelization compared to intrusive methods such as stochastic
Galerkin methods. In this work, we consider iterative solvers for the system in (3.2), and propose an
acceleration scheme to reduce the total number of iterations necessary to the collection of systems
over the set of sample parameters.

Denoting by ũh the output of the selected iterative solver for the system (3.2), for yL,j ∈ HL

the semi-discrete solution uh(x,yL,j) is approximated by

uh(x,yL,j) =

Mh∑

i=1

cL,j,i ϕi(x) ≈ ũh(x,yL,j) =

Mh∑

i=1

c̃L,j,i ϕi(x),

where we define c̃L,j = (c̃L,j,1, . . . , c̃L,j,Mh
)⊤, and therefore the final SC approximation is given by

a perturbation of (3.3), i.e.,

ũh,L(x,y) :=

ML∑

j=1

(
Mh∑

i=1

c̃L,j,i ϕi(x)

)
ΨL,j(y). (3.4)

We observe that the performance of the underlying iterative solver can be improved by proposing

a good initial guess, denoted c
(0)
L,j, or constructing an effective preconditioner to reduce the condition

number of the system. Here, we propose our approach for improving initial deterministic approxima-
tions, remarking that the same idea can be also utilized to construct preconditioners. To start the

iterative solver for the system in (3.2), it is common to use a zero initial guess, i.e., c
(0)
L,j = (0, . . . , 0)⊤.

However, we can predict the solution at level L using lower level approximations to construct im-

proved initial solutions c
(0)
L,j. Assume that we first obtain ũh,L−1(x,y) by collocating solutions to

(3.2) over HL−1. Then at level L, for each new point yL,j ∈ HL \ HL−1, the initial guess c
(0)
L,j can
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be given by interpolating the solutions from level L− 1, i.e.,

c
(0)
L,j =

(
ũh,L−1(x1,yL,j), . . . , ũh,L−1(xMh

,yL,j)
)⊤

=

ML−1∑

j′=1

c̃L−1,j′ΨL−1,j′(yL,j). (3.5)

For a convergent interpolation scheme, we expect the necessary number of iterations to compute
c̃L,j to become smaller as the level L increases to an overall maximum level, denoted Lmax. As such,
the construction of the desired solution ũh,Lmax is accelerated through the intermediate solutions

{ũh,L}Lmax−1
L=1 . Note that this approach reduces computational cost by improving initial guesses,

but does not depend on the specific solver used. Thus, our scheme may be combined with other
techniques for accelerating convergence, such as faster nonlinear solvers or better preconditioners.
When the underlying PDE is nonlinear with respect to u, iterative solvers are commonly used for
the solution of (3.2). In Algorithm 1, we outline the acceleration procedure described above, using
a general nonlinear iterative method for the solution of (3.2).

Algorithm 1: The accelerated SC algorithm

Goal: Compute ũh,Lmax(x,y) :=
∑MLmax

j=1

(∑Mh

i=1 c̃Lmax,j,i ϕi(x)
)
ΨLmax,j(y)

1: Define M0 = 1 and c̃0,1 = (0, . . . , 0)⊤

2: for L = 1, . . . , Lmax do

3: for yL,j ∈ HL \
(⋃L−1

l=1 Hl

)
do

4: Compute the initial guess according to (3.5):

5: c
(0)
L,j =

∑ML−1

j′=1 c̃L−1,j′ΨL−1,j′(yL,j)

6: Initialize: k = 1

7: repeat

8: Compute residual r
(k)
L,j = (r

(k)
L,j,1, . . . , r

(k)
L,j,Mh

)⊤:

9: for i = 1, . . . ,Mh do

10: r
(k)
L,j,i =

∫
D f (yL,j)ϕi −

∑

ν∈Λ1∪Λ2

Sν

(∑Mh

i′=1 c
(k)
L,j,i′ ϕi′ (x),yL,j

)
Tν(ϕi) dx

11: end for

12: Update the solution: c
(k+1)
L,j = c

(k)
L,j + S (r

(1)
L,j, . . . , r

(k)
L,j)

13: k = k + 1

14: until ‖c(k)L,j − c
(k−1)
L,j ‖ < τ

15: c̃L,j = c
(k)
L,j

16: end for

17: end for

The efficiency of the proposed algorithm will depend crucially on the number of times the

iterative solver is utilized, i.e., how many sample points are in the set ∆HL = HL \
(⋃L−1

l=1 Hl

)
for

each level L. In fact, if the sample points are not nested, it could be the case that ∆HL = HL, and
the algorithm may be very inefficient. Hence, in the following sections we will assume:

Assumption 3.1. Assume that the multidimensional point sets HL, L = 1, . . . , Lmax are nested,
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i.e.,

H1 ⊂ H2 ⊂ . . . ⊂ HLmax ⊂ Γ.

Then ∆HL = HL \ HL−1, and we can construct the intermediate solutions {ũh,L}Lmax−1
L=1 using a

subset of the information needed to approximate ũh,Lmax.
In §4 we construct an interpolant using a point set which satisfies Assumption 3.1. Next, we

give several examples of Algorithm 1, using iterative solvers for both nonlinear and linear elliptic
PDEs.

Example 3.1. Consider the weak form of the nonlinear elliptic PDE in Example 2.2, letting
S1(v;y) = a(x,y)∇v, T1(v) = ∇v, S2(v,y) = v(x,y)|v(x,y)|s, and T2(v) = v (note that Λ1 = {1},
Λ2 = {2}). When using the fixed point iterative method in Algorithm 1, for the update step we define

S (r
(1)
L,j , . . . , r

(k)
L,j) = A−1

L,jr
(k)
L,j,

where the matrix AL,j = A(yL,j), j = 1, . . . ,ML is defined by

[AL,j]i,i′ =

∫

D

a(yL,j)∇ϕi′∇ϕi dx, for i, i′ = 1, . . . ,Mh. (3.6)

With u
(k)
h,L(x,yL,j) =

∑Mh

i=1 c
(k)
L,j,i ϕi(x), this update is equivalent to solving the following linear system

∫

D

a(yL,j)∇u(k+1)
h,L ∇v dx =

∫

D

[
f(yL,j)− u

(k)
h,L(yL,j)|u(k)h,L(yL,j)|s

]
v dx ∀v ∈Wh(D),

to update u
(k)
h to u

(k+1)
h at the (k+1)-th iteration. Note that each iteration of the solver in Algorithm

1 requires the solution of this linear system, which is not accelerated by our algorithm.
Example 3.2. As a special case of the example above, consider the weak form of the linear

elliptic problem in Example 2.1 with Λ1 = {1}, Λ2 = ∅, S1(v;y) = a∇v and T1(v) = ∇v in (3.2).

Due to the linearity, at each collocation point the solution uh(x,yL,j) =
∑Mh

i=1 cL,j,iϕi(x) can be
approximated by solving the following linear system

AL,jcL,j = fL,j, (3.7)

with AL,j = A(yL,j), j = 1, . . . ,ML as in (3.6), and (fL,j)i =
∫
D f(x,yL,j)ϕi(x)dx for i =

1, . . . ,Mh. Under our assumptions on the coefficient a, the linear system (3.7) is symmetric positive
definite, and we can use the CG method [37] to find its solution. For k ∈ N+, by recursively defining

p
(k)
L,j = r

(k)
L,j −

∑

k′<k

p
(k′)⊤
L,j AL,jr

(k)
L,j

p
(k′)⊤
L,j AL,jp

(k′)
L,j

p
(k′)
L,j ,

we get the update function

S (r
(1)
L,j, . . . , r

(k)
L,j) =

p
(k)⊤
L,j r

(k)
L,j

p
(k)⊤
L,j AL,jp

(k)
L,j

p
(k)
L,j.
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Recall the following well-known error estimate for CG:

∥∥∥cL,j − c
(k)
L,j

∥∥∥
AL,j

≤ 2

(√
κL,j − 1

√
κL,j + 1

)k ∥∥∥cL,j − c
(0)
L,j

∥∥∥
AL,j

, (3.8)

where κL,j = κ(yL,j) denotes the condition number of AL,j, c
(0)
L,j is the vector of initial guess and

c
(k)
L,j is the output of the k-th iteration of the CG solver. As opposed to Example 3.1, for this example

Algorithm 1 accelerates the solution of the linear system (3.7).
To evaluate the efficiency of the accelerated SC method, we define cost metrics for the construc-

tion of standard and accelerated SC approximations. In general, the computational cost in floating
point operations (flops) is the total number iterations to solve (3.2) summed over each of the sample
points—denoted by Kzero and Kacc for the standard and accelerated SC methods, respectively—
multiplied by the cost of performing one iteration, denoted Citer. Let Cint be the additional cost of
interpolation incurred by using the accelerated initial vectors (3.5). Then, we define

Czero = CiterKzero, (3.9)

for the standard SC approach, and

Cacc = CiterKacc + Cint, (3.10)

for the accelerated SC approximation, respectively.
In Example 3.2 the discretization of the linear PDE leads to ML sparse systems of equations of

size Mh ×Mh. When solving these systems with a CG solver, Kzero and Kacc are the sum of solver
iterations contributed from each sample system. In this case, the cost of one iteration is just the
cost of one matrix vector product, i.e., Citer = CDMh, where CD depends on the domain D and the
type of finite element basis.

Remark 3.1. (Relationship to multilevel methods). Multilevel methods reduce the complexity
of stochastic sampling methods by balancing errors and computational cost across a sequence of
stochastic and spatial approximations. Let uhk

∈ Vk, k = 0, . . . ,K, be a sequence of semi-discrete
approximations built in nested spaces, i.e., V0 ⊂ . . . ⊂ VK . Multilevel methods are based on the
following identity:

uhK =

K∑

k=0

(uhk
− uhk−1

).

Letting QLK−k
, k = 0, . . . ,K, denote the chosen method of stochastic approximation, a general mul-

tilevel method might be written as

u
(ML)
K =

K∑

k=0

QLK−k
[uhk

− uhk−1
].

The main idea is that highly resolved, expensive stochastic approximations, e.g., QLK , in combination
with coarse deterministic approximations, that is, uh0 , and vice versa. In a similar way, collocation
with nested grid points provides a natural multilevel hierarchy which we use in our method to ac-
celerate each PDE solve (3.5). A combination of these methods could involve using our algorithm
to accelerate the construction of the operators QLK−k

, as well as reusing information from level to
level, thus improving further the performance of SC methods.
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Remark 3.2. (Interpolation costs). Note that many adaptive interpolation schemes already
require evaluation of the intermediate interpolation operators as in (3.5), e.g., to compute residual
error estimators. Thus, these methods will incur the interpolation cost Cint even in the case of zero
initial vectors. Furthermore, for most nonlinear problems the deterministic solver is expensive, thus
reducing the number of iterations is the most important element in reducing the cost. In each of
these settings, we can define the cost metrics to simply be Kzero and Kacc.

Remark 3.3. (Hierarchical preconditioner construction). When solving linear systems using
iterative methods, convergence properties can be improved by considering the condition number of
the system. As with initial vectors, an interpolation algorithm can be used to construct good, cheap
preconditioners. We consider preconditioner algorithms where an explicit preconditioner matrix, or
its inverse, is constructed. In this case, for some low collocation level LPC, we construct a strong
preconditioner, PLPC,j := P (yLPC,j), for each individual iterative solver, j = 1, . . . ,MLPC . Then,
these lower level preconditioners are interpolated for the subsequent levels. More specifically, for
L > LPC, and yL,j ∈ HL \ HLPC , we use the preconditioner

P̃L,j := P̃ (yL,j) =

MLPC∑

j′=1

PLPC,j′ ΨLPC,j′(yL,j). (3.11)

Numerical illustrations of this approach are given in §5.
4. Applications to sparse grid stochastic collocation. In this section, we provide a specific

example of an interpolation scheme satisfying the assumptions described in §3, i.e., a generalized
sparse grid SC approach for a fixed level L. In what follows, we briefly review the construction of
sparse grid interpolants, and rigorously analyze the approximation errors and the complexities of
both the standard and accelerated SC approaches, in order to demonstrate the improved efficiency
of the proposed acceleration technique when applied to iterative linear solvers.

The fully discrete SC approximation is built by polynomial interpolation of the semi-discrete
solution uh(x,y) on an appropriate set of collocation points in Γ. In our setting, such an interpolation
scheme is based on a sparse tensor products of one-dimensional Lagrange interpolating polynomials
with global support. Specifically, in the one-dimensional case, N = 1, we introduce a sequence of
Lagrange interpolation operators U m(l) : C0(Γ) → Pm(l)−1(Γ), with Pm(l)−1(Γ) the space of degree
m(l)− 1 polynomials over Γ. Given a general function v ∈ C0(Γ), these operators are defined by

U
m(l)[v](y) =

m(l)∑

j=1

v(ylj) ψ
l
j(y).

Here l ∈ N represents the resolution level of the operator, m(l) ∈ N+ denotes the number of
interpolation points on level l, ψ1

1(y) = 1 and for l > 1,

ψl
j(y) =

m(l)∏

i=1
i6=j

y − yli
ylj − yli

for j = 1, . . . ,m(l),

are the global Lagrange polynomials of degreem(l)−1 associated with the point set ϑl = {yl1, . . . , ylm(l)}.
To satisfy Assumption 3.1, we need nestedness of the one-dimensional sets, i.e., ϑl−1 ⊂ ϑl, which is
determined by the choice of interpolation points and the definition of m(l). In addition, we remark
that similar constructions for U m(l) can be built based on wavelets [22] or other locally supported
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polynomial functions [23].
In the multi-dimensional case, i.e., N > 1, using the convention that U m(0) = 0, we introduce

the difference operator

∆m(l1) ⊗ · · · ⊗∆m(lN ) =

N⊗

n=1

(
U

m(ln) − U
m(ln−1)

)
, (4.1)

and define the multi-index l = (l1, . . . , lN ) ∈ NN
+ . The desired approximation is defined by a linear

combination of tensor-product operators (4.1) over a set of multi-indices, determined by the condition
g(l) ≤ L, for L ∈ N+, and g(l) : N

N
+ → N+ a strictly increasing function. For v ∈ C0(Γ) , we now

define the generalized SC operator Im,g
L by

Im,g
L [v](y) =

∑

g(l)≤L

(
∆m(l1) ⊗ · · · ⊗∆m(lN )

)
[v](y)

=
∑

g(l)≤L

∑

i∈{0,1}N

(−1)|i|
(
U

m(l1−i1) ⊗ · · · ⊗ U
m(lN−iN )

)
[v](y),

(4.2)

where i = (i1, . . . , iN) is a multi-index with in ∈ {0, 1}, |i| = i1 + · · · + iN , and L ∈ N+ represents
the approximation level. This approximation lives in the tensor product polynomial space given by

PΛm,g
L

= span

{
N∏

n=1

ylnn

∣∣∣∣ l ∈ Λm,g
L

}
,

where the multi-index set is defined as follows

Λm,g
L =

{
l ∈ N

N

∣∣∣∣ g(m
†(l+ 1)) ≤ L

}
.

Here m(l) = (m(l1), . . . ,m(lN )), and m†(l) := min{w ∈ N+ : m(w) ≥ l} is the left inverse of m (see
[2]).

Specific choices for the one-dimensional growth rate m(l) and the function g(l) are needed to
define the multi-index set Λm,g

L and the corresponding polynomial space PΛm,g
L

for the approximation.
In this work, we construct the interpolant in (4.2) using the anisotropic Smolyak construction, i.e.,

m(1) = 1, m(l) = 2l−1 + 1 for l > 1 and g(l) =
N∑

n=1

αn

αmin
(ln − 1), (4.3)

where α = (α1, . . . , αN ) ∈ RN
+ is a vector of weights reflecting the anisotropy of the system, i.e.,

the relative importance of each dimension, with αmin := minn αn (see [30] for more details). Our
analysis does not depend strongly on this choice of m and g, and we could use other functions, e.g.,
m(l) = l and g(l) = maxn αnln define the anisotropic tensor product approximation.

When Γ is a bounded domain in RN , a common choice is the Clenshaw-Curtis abcsissas [10]
given by the sets of extrema of Chebyshev polynomials including the end-point extrema. For a
sample set of any size m(l) > 1, the abscissas in the standard domain [−1, 1] are given by

ϑl =

{
ylj ∈ [−1, 1]

∣∣∣∣ y
l
j = − cos

(
π (j − 1)

m(l)− 1

)
for j = 1, . . . ,m(l)

}
. (4.4)
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By taking y11 = 0 and letting m(l) grow according to the rule in (4.3), one gets a sequence of
nested sets ϑl ⊂ ϑl+1 for l ∈ N+. In addition, with g(l) defined as in (4.3), the resulting set of
N -dimensional abscissas is a Clenshaw-Curtis sparse grid. Other nested families of sparse grids can
be constructed from, e.g., the Leja points [13], Gauss-Patterson [42], etc.

Remark 4.1. (Specific Choice of m, g). For the remainder of the paper, we will assume that
the functions m and g are given as in (4.3), and use an underlying Clenshaw-Curtis sparse grid.
For simplicity, we will also only consider isotropic collocation methods, i.e. α1 = α2 = . . . = αN .
We then lighten the notation by defining IL := Im,g

L .
Construction of the approximation IL[v] := Im,g

L [v] requires evaluation of v on a set of collocation
points HL ⊂ Γ with cardinality ML. In our case, since the one-dimensional point sets are nested,
i.e., ϑl ⊂ ϑl+1 for l ∈ N+, so that the multi-dimensional point set used by IL[v] is given by

HL =
⋃

g(l)=L

(
ϑl1 ⊗ · · · ⊗ ϑlN

)
,

and the nested structure is preserved, i.e., HL ⊂ HL+1, to satisfy assumption 3.1. Define the
difference of the sets ∆HL := HL\HL−1, and the number of new collocation points ∆ML = #(∆HL).
With this nestedness condition, the approximation IL[v] is a Lagrange interpolating polynomial [31],
and thus (4.2) can be rewritten as a linear combination of Lagrange basis functions,

IL[v](y) =
ML∑

j=1

v(yL,j)ΨL,j(y)

=

ML∑

j=1

v(yL,j)
∑

l∈J (L,j)

∑

i∈{0,1}N

(−1)|i|
N∏

n=1

ψln−in
kn(j)

(yn)

︸ ︷︷ ︸
ΨL,j(y)

,
(4.5)

where the index set J (L, j) is defined by

J (L, j) =

{
l ∈ N

N
+

∣∣∣∣∣ g(l) ≤ L and yL,j ∈
N⊗

n=1

ϑln−in with i ∈ {0, 1}N
}
.

For a given L and j, this represents the subset of multi-indices corresponding to the tensor-product
operators U m(l1−i1) ⊗ · · · ⊗ U m(lN−iN ) in (4.2) with the supporting point yL,j. Then for each

l ∈ J (L, j) and i ∈ {0, 1}N , the function
∏N

n=1 ψ
ln−in
kn(j)

(yn) with kn(j) ∈ {1, . . . ,m(ln − in)}, n =

1, . . . , N , represents the unique Lagrange basis function for the operator U m(l1−i1)⊗· · ·⊗U m(lN−iN )

corresponding to yL,j. Therefore, the functions {ΨL,j}ML

j=1 are given by a linear combination of
tensorized Lagrange polynomials satisfying the “delta property”, i.e., ΨL,j′(yL,j) = δjj′ for j, j′ =
1, . . . ,ML, and is in the required form of (3.3).

Finally, to construct the fully-discrete approximation in the space Wh(D)⊗ PΛm,g
L

(Γ) we apply
the interpolation operator IL[·], given by (4.5), to the semi-discrete solution uh(x,y) in (3.1) to
obtain:,

uh,L(x,y) = IL[uh](x,y) =
ML∑

j=1

(
Mh∑

i=1

cL,j,iϕi(x)

)
ΨL,j(y). (4.6)
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Due to the delta property of the basis function ΨL,j(y), the interpolation matrix for IL[uh] is a
diagonal matrix, and thus the coefficient vectors cL,j = (cL,j,1, . . . , cL,j,Mh

) for j = 1, . . . ,ML can
be computed by independently solving ML systems of type (3.2).

4.1. Error estimates for fixed L. In what follows, we focus on the linear elliptic problem
(2.2) described in Examples 2.1 and 3.2, and present a detailed convergence and complexity analysis
of a fully discrete SC approximation, denoted ũh,L, for any fixed level, 1 ≤ L ≤ Lmax. As specified
in Remark 4.1, in this section we consider only the isotropic Smolyak version of SC interpolant given
by (4.2), defined on Clenshaw-Curtis abscissas, for solving the parameterized linear elliptic PDE.
However, our analysis can be extended without any essential difficulty to anisotropic SC methods
and more complicated underlying PDEs.

The parameterized elliptic PDE (2.2) admits a weak form that is a symmetric, uniformly coercive
and continuous bilinear operator on H1

0 (D); i.e., there exist α, β > 0, depending on amin and amax

but independent of y, such that for every v, w ∈ H1
0 (D),

∣∣∣∣
∫

D

a(y)∇v∇w dx
∣∣∣∣ ≤ α ‖v‖H1

0 (D) ‖w‖H1
0 (D) and β ‖v‖2H1

0 (D) ≤
∫

D

a(y)|∇v|2 dx.

In this case, the bilinear form induces a norm ‖v‖2 =
∫
D a(y)|∇v|2 dx, which for functions v(x) =∑Mh

i=1 ciφi(x) ∈Wh(D), with c = (c1, . . . , cMh
), coincides with the discrete norm ‖c‖A(y), where the

matrix A(y) is defined in (3.6). Thus we have

Continuity: ‖c‖A(y) = ‖v‖ ≤ √
α ‖v‖H1

0 (D) , and, (4.7a)

Ellipticity:
√
β ‖v‖H1

0 (D) ≤ ‖v‖ = ‖c‖A(y) . (4.7b)

We next state some regularity conditions on the parameterized solution u : Γ → H1
0 (D) to the

parameterized elliptic PDE in Examples 2.1 and 3.2.
Assumption 4.1. (Polyellipse analyticity). Let γ = (γ1, . . . , γN ) ∈ (1,∞)N , and assume that

u : Γ → H1
0 (D) admits a complex extension u∗ : CN → H1

0 (D), which is analytic on the polyellipse

Σ(γ) =
∏

1≤n≤N

Σ(n; γn) ⊂ C
N ,

where Σ(n; γn) denotes the region bounded by the Bernstein ellipse,

Σ(n; γn) =

{
1

2

(
zn + z−1

n

)
: zn ∈ C, |zn| ≤ γn

}
.

The set Σ(γ) ⊂ CN is the product of ellipses in the complex plane, with foci zn = ±1, which
are the endpoints of the domain Γn, n = 1, . . . , N . Such ellipses are common in proving convergence
results for global interpolation schemes. Conditions under which u satisfies Assumption 4.1 can be
found in [12, Theorem 1.2] and [14, Theorem 2.5].

In order to investigate the complexity of the fully discrete approximation ũh.L, L ∈ N+, we first
need to derive sufficient conditions for the error ‖u− ũh,L‖L2

̺
to achieve a tolerance of ε > 0, where

L2
̺ := L2

̺(Γ;H
1
0 (D)). Using the triangle inequality, the total error can be split into three parts, i.e.,

‖u− ũh,L‖L2
̺
≤ ‖u− uh‖︸ ︷︷ ︸

e1

L2
̺
+ ‖uh − uh,L‖︸ ︷︷ ︸

e2

L2
̺
+ ‖uh,L − ũh,L‖︸ ︷︷ ︸

e3

L2
̺
. (4.8)
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The contributions of e1 and e2 correspond to the FEM and SC errors, respectively, and have been
previously examined [31]. The error e3 contributed by the linear solver is often omitted from the
analysis in the literature, and in practice can be controlled by setting a tight tolerance on the
iterative solver. However, the analysis presented here is focused on providing cost estimates for the
iterative solver and requires careful consideration of this term. First, we recall error estimates for
e1 and e2, given from [31].

Lemma 4.1. Let Th be a uniform finite element mesh over D ⊂ Rd, d = 1, 2, 3, with Mh =
O(1/hd) grid points. For the random elliptic PDE in Example (2.1), when u(x,y) ∈ L2

̺(Γ;H
1
0 (D)∩

Hs+1(D)), s ∈ N+, the error of the finite element approximation uh is bounded by

‖u− uh‖L2
̺
≤ Cfem h

s, (4.9)

where the constant Cfem is independent of h and y.
Lemma 4.2. Let u satisfy Assumption 4.1. For L ∈ N+, the interpolation error u − IL[u] of

the sparse grid SC method using Clenshaw-Curtis abscissas can be bounded as

‖u− IL[u]‖L∞(Γ;H1
0 (D)) ≤ Csce

−rN2L/N

, (4.10)

where, for a constant 0 < δ < 1, the rate r = (1 − δ)min1≤n≤N log γn, and the constant Csc > 0
depends on N , u, and δ. We remark that the projection of u into the finite element subspace,
denoted uh, also satisfies Assumption 4.1 with the same region of analyticity, and therefore the
application of the interpolant, IL, to the semidiscete solution uh will converge as in (4.10).

We now turn our attention to the global solver error e3 in (4.8), which is the error incurred from
approximating the solution to (3.7) at each sample point. The difference uh,L− ũh,L can be written
as an interpolant of the solver error, i.e.,

uh,L − ũh,L = IL[uh − ũh],

which represents the solver error amplified by the interpolation operator. For the operator IL[·] in
(4.5), we have

‖uh,L − ũh,L‖L∞(Γ;H1
0 (D)) ≤ CL max

j=1,...,ML

‖uh(yL,j)− ũh(yL,j)‖H1
0 (D) .

Thus, from the ellipticity condition in (4.7b),

e3 ≤ CL max
j=1,...,ML

‖uh(yL,j)− ũh(yL,j)‖H1
0 (D) ≤ CL

1√
β

max
j=1,...,ML

‖cL,j − c̃L,j‖A(yL,j)
≤ τ√

β
CL,

where τ is defined to be the tolerance of the linear solver. Note that the expression uh − ũh is
only defined at collocation points. The solver error for each fixed yL,j ∈ HL is controlled by
the CG convergence estimate (3.8). The Lebesgue constant of the operator IL[·] is defined by

CL = maxy∈Γ

∑ML

j=1 |ΨL,j(y)| where ΨL,j is given in (4.5). We now provide an upper bound of CL

in the following lemma.
Lemma 4.3. The Lebesgue constant for the isotropic sparse-grid interpolation operator IL[·] in

(4.5) using the Clenshaw-Curtis rule on Γ =
∏N

n=1 Γn = [−1, 1]N is bounded by

CL ≤ [(L+ 1)(L+ 2)]N , (4.11)

where L and N are the level of the interpolation operator and dimension of the parameter space,
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respectively.
Proof. For each n = 1, . . . , N , recall that the Lebesgue constants λln of the one-dimensional

operators U m(ln) are given by [43]

λln = max
z∈Γn

m(ln)∑

j=1

∣∣∣ψln
j (z)

∣∣∣ .

For Lagrange interpolants based on Clenshaw-Curtis abscissas (4.4), we have [15]

λln ≤ 2

π
log (m (ln)− 1) + 1 for ln ≥ 2.

Combining this with the growth rate m(ln) = 2ln−1+1 for ln ≥ 2 given by (4.3), it is easy to obtain
that

λln ≤ 2ln − 1 for ln ≥ 2.

For v ∈ C0(Γn), the difference operator ∆m(ln) for ln = 1 satisfies

∥∥∥∆m(1)[v]
∥∥∥
L∞(Γn)

=
∥∥∥U m(1)[v]

∥∥∥
L∞(Γn)

≤ λ1 max
yn∈ϑ1

|v(yn)|.

For ln ≥ 2, the triangle inequality yields

∥∥∥∆m(ln)[v]
∥∥∥
L∞(Γn)

=
∥∥∥U m(ln)[v]− U

m(ln−1)[v]
∥∥∥
L∞(Γn)

≤ (λln + λln−1) max
yn∈ϑln

|v(yn)|.

Finally, for v ∈ C0(Γ), we bound the interpolant IL[v] by

‖IL[v]‖L∞(Γ) =

∥∥∥∥∥∥

∑

g(l)≤L

∆m(l1) ⊗ · · · ⊗∆m(lN )[v]

∥∥∥∥∥∥
L∞(Γ)

≤



2N
∑

g(l)≤L

N∏

n=1

ln



 max
j=1,...,ML

|v(yL,j)| ≤ 2N

(
L+1∑

l=1

l

)N

max
j=1,...,ML

|v(yL,j)|

= [(L+ 1)(L+ 2)]
N

max
j=1,...,ML

|v(yL,j)|,

which gives the desired estimate.

4.2. Complexity analysis. Now we analyze the cost of constructing ũh,Lmax, Lmax ∈ N+, with
the prescribed accuracy ε. Here we assume ε > 0 is sufficiently small, and study the asymptotic
growth of the total costs (3.10) for the accelerated construction of ũh,Lmax, described in §3. For
comparison, we will also analyze the cost (3.9) associated with the standard SC method, where
iterative solvers for the sequence of solutions to the linear systems (3.7) are seeded with the zero
vector as an initial guess. According to the error estimates discussed in §4.1, a sufficient condition
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to ensure ‖u− ũh,Lmax‖L2
̺
≤ ε is that

‖e1‖L2
̺
≤ Cfemh

s ≤ ε

3
, (4.12a)

‖e2‖L2
̺
≤ ‖e2‖L∞

̺
≤ Csc e

−rN2Lmax/N ≤ ε

3
, (4.12b)

‖e3‖L2
̺
≤ ‖e3‖L∞

̺
≤ (Lmax + 2)2N

τ√
β

≤ ε

3
. (4.12c)

In section §3 we defined Kzero and Kacc as the total number of solver iterations used by the standard
and accelerated SC methods, respectively, to solve (3.7) at each sample point. Now let Kzero(ε)
and Kacc(ε) represent the minimum values of Kzero and Kacc, respectively, needed to satisfy the
inequalities (4.12). Here we aim to estimate upper bounds of Kzero(ε) and Kacc(ε). Note that, for
fixed dimension N , level Lmax, and mesh size h, the total number of iterations is determined by the
inequality (4.12c). Larger values of Lmax and 1/h, lead to higher costs. Thus, the estimation of
Kzero(ε) and Kacc(ε) has two steps: (i) Given N and ε, estimate the maximum possible h to satisfy
(4.12a) and the minimum Lmax that achieves (4.12b); (ii) Substitute the obtained values into (4.12c)
to estimate upper bounds on Kzero(ε) and Kacc(ε) according to the CG error estimate (3.8). For
(i), we have the following lemma, that follows immediately from Lemmas 4.1 and 4.2.

Lemma 4.4. Given the assumptions of Lemmas 4.1 and 4.2, the error bounds (4.12a) and
(4.12b) can be achieved by choosing finite element mesh size h and the sparse-grid level Lmax ac-
cording to

h(ε) =

(
ε

3Cfem

)1/s

and Lmax(ε) =

⌈
N

log 2
log

(
1

rN
log

(
3Csc

ε

))⌉
. (4.13)

For convenience, we treat the integer quantities Kzero(ε), Kacc(ε), and Lmax(ε) as positive real
numbers in the rest of this section. Now, based on the estimate in Lemma 4.3 for the Lebesgue
constant CLmax , we state the following lemma related to the choice of an appropriate tolerance τ(ε)
to satisfy the error bounds (4.12c).

Lemma 4.5. Let ε > 0. Given the assumptions of Lemmas 4.1 and 4.2, a sufficient condition
to ensure e3 < ε/3 is that

τ(ε) =

√
β ε

3(Lmax(ε) + 2)2N
. (4.14)

Moreover, it holds

1√
β
(L+ 2)2Nτ(ε) ≤ Csc e

−rN2L/N

for L = 0, . . . , Lmax(ε)− 1,

where Lmax(ε) is the minimum level given in (4.13).
Proof. It is easy to see that (4.14) is an immediate result of (4.12c). For L = 0, . . . , Lmax(ε)− 1,

we have

1√
β
(L+ 2)2Nτ(ε) ≤ 1√

β
(Lmax(ε) + 2)2Nτ(ε) ≤ ε

3
≤ Csg e−rN2(Lmax(ε)−1)/N ≤ Csg e−rN2L/N

,

which completes the proof.
Using the selected h := h(ε), Lmax := Lmax(ε), and τ := τ(ε), we now estimate the upper
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bounds on the number of CG iterations needed to solve a linear system at a point yLmax,j ∈ HLmax .
To proceed, define

kzero := max
yLmax,j∈HLmax

kLmax,j and kLacc := max
yL,j∈∆HL

kL,j for L = 1, . . . , Lmax,

where kL,j is the number of CG iterations required to achieve ‖cL,j − c
(kL,j)
L,j ‖AL,j ≤ τ(ε), which, in

general, depends on the choice of initial vector. Note that, in the case c
(0)
L,j = (0, . . . , 0)⊤, there is

no improvement in the iteration count as the level L increases, so kzero does not depend on L. Now
we give the following estimates on kzero and {kLacc}Lmax

L=1 .
Lemma 4.6. Under the conditions of Lemmas 4.1 and 4.2, for any yLmax,j ∈ HLmax , if the CG

method with zero initial vector is used to solve (3.7) to tolerance τ > 0, then kzero can be bounded by

kzero ≤ log

(
2
√
α ‖uh‖L∞(Γ;H1

0 (D))

τ

)/
log

(√
κ̄+ 1√
κ̄− 1

)
. (4.15)

Here κ = supy∈Γ κ(y), with κ(y) the condition number of the matrix A(y) corresponding to (3.2).

Alternatively, if the initial vector is given by the acceleration method as in (3.5), then kL
acc

can be
bounded by

kLacc ≤ log

(
4
√
αCsc e

−rN2(L−1)/N

τ

)/
log

(√
κ̄+ 1√
κ̄− 1

)
, (4.16)

for L = 1, . . . , Lmax.

Proof. Let yL,j be an arbitrary point in HL, 1 ≤ L ≤ Lmax. Given an initial guess c
(0)
L,j, the

minimum number of CG iterations needed to achieve tolerance τ > 0 can be obtained immediately
from (3.8), that is,

kL,j =

⌈
log

(
2‖cL,j − c

(0)
L,j‖AL,j

τ

)/
log

(√
κL,j + 1

√
κL,j − 1

)⌉
,

where AL,j = A(yL,j) is the FE system matrix corresponding to parameter yL,j , and κL,j = κ(yL,j)

is the condition number of AL,j (See Example 3.2). In the case that c
(0)
L,j = (0, . . . , 0)⊤, the estimate

in (4.15) can be obtained from (4.7a), i.e.,

∥∥∥cL,j − c
(0)
L,j

∥∥∥
AL,j

= ‖cL,j‖AL,j ≤
√
α ‖uh‖L∞(Γ;H1

0 (D)) .

Alternatively, when using ũh,L−1 for L = 1, . . . Lmax to provide initial vectors for the CG solver
(based on (3.5)), for yL,j ∈ ∆HL we use Lemma 4.5 and (4.7a) to get the following estimate:

∥∥∥cL,j − c
(0)
L,j

∥∥∥
AL,j

≤ √
α ‖uh − ũh,L−1‖L∞(Γ;H1

0 (D))

≤ √
α
(
‖uh − uh,L−1‖L∞(Γ;H1

0 (D)) + ‖uh,L−1 − ũh,L−1‖L∞(Γ;H1
0 (D))

)

≤ √
α

(
Csc e

−rN2(L−1)/N

+
1√
β
(L+ 1)2Nτ

)

≤ 2
√
αCsc e

−rN2(L−1)/N

.
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This leads directly to the estimate in (4.16).
In the accelerated case, the sparse-grid interpolant ILmax [uh] must be constructed in the following

fashion: before solving the system (3.7) corresponding to a sample point yL,j ∈ ∆HL, we must first
solve the systems for all sample points in HL−1. With a total number ∆ML = #(∆HL) of new
linear systems at level L, the total number of CG iterations for the newly added points at level L can
be bounded by ∆MLkzero and ∆MLk

L
acc, for the standard and the accelerated cases, respectively.

Then since MLmax =
∑Lmax

L=1 ∆ML, we find that the total number of iterations for the standard and
accelerated schemes can be bounded as

Kzero(ε) ≤MLmax kzero, and Kacc(ε) ≤
Lmax∑

L=1

∆ML k
L
acc.

This leads to the following estimates.
Theorem 4.7. Given Assumption 4.1, and the conditions of Lemmas 4.1 and 4.2, for ε > 0,

the minimum total number of CG iterations Kzero(ε) to achieve ‖u − ũh,Lmax‖L2
̺
< ε, using zero

initial vectors is bounded by

Kzero(ε) ≤ C1

[
log

(
3Csc

ε

)]N [
C2 +

1

log 2
log log

(
3Csc

ε

)]N−1

× 1

log
(√

κ+1√
κ−1

)
{
log

(
C3

ε

)
+ C4 + 2N log log

[
1

rN
log

(
3Csc

ε

)]}
,

(4.17)

where κ is as defined in Lemma 4.6, and the constants C1, C2, C3 and C4 are defined by

C1 =

(
e

log 2

)N−1(
2

rN

)N

, C2 = 1 +
1

log 2
log

(
1

rN

)
,

C3 = 6

√
α

β
‖uh‖L∞(Γ;H1

0 (D)) , C4 = 2N log

(
2N

log 2

)
.

(4.18)

Proof. To achieve the prescribed error, we balance the three error sources that contribute to the
total error (4.8). To control e1 and e2, set h = h(ε) and Lmax = Lmax(ε) according to Lemma 4.4.
For the solver error e3, we choose the solver tolerance τ = τ(ε) according to Lemma 4.5. Then, the
total number of iterations Kzero(ε) can be bounded by

Kzero(ε) =

MLmax∑

j=1

≤MLmax kzero. (4.19)

From Lemma 4.5 and 4.6, we have

kzero ≤ log

(
2
√
α ‖uh‖L∞(Γ;H1

0 (D))

τ

)/
log

(√
κ+ 1√
κ− 1

)

≤ log

(
6
√
α ‖uh‖L∞(Γ;H1

0 (D)) (Lmax + 2)2N
√
βε

)/
log

(√
κ+ 1√
κ− 1

)
(4.20)
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≤
[
log

(
C3

ε

)
+ 2N log (Lmax + 2)

]/
log

(√
κ+ 1√
κ− 1

)

≤
{
log

(
C3

ε

)
+ C4 + 2N log log

(
1

rN
log

(
3Csc

ε

))}/
log

(√
κ+ 1√
κ− 1

)
.

In addition, following [31, Lemma 3.9], we bound the number of interpolation points:

MLmax ≤
Lmax∑

L=1

2L
(
N − 1 + L

N − 1

)
≤

Lmax∑

L=1

2L
(
1 +

L

N − 1

)N−1

eN−1

≤ eN−12Lmax+1

(
1 +

Lmax

N − 1

)N−1

(4.21)

≤ 2eN−1

{
log

(
3Csc

ε

)}N {
C2 +

1

log 2
log log

(
3Csc

ε

)}N−1

,

where in the last line we have used (4.13) to replace Lmax. Substituting (4.20) and (4.21) into (4.19)
concludes the proof.

Theorem 4.8. Given Assumption 4.1, and the conditions of Lemmas 4.1 and 4.2, for ε > 0,
the minimum total number of CG iterations Kacc(ε), to achieve ‖u− ũh,Lmax‖L2

̺
< ε, in Algorithm

1, is bounded by

Kacc(ε) ≤ C1

[
log

(
3Csc

ε

)]N [
C2 +

1

log 2
log log

(
3Csc

ε

)]N−1

× 1

log
(√

κ+1√
κ−1

)
{
C5 + 2

(
2

1
N − 1

)
log

(
3Csc

ε

)
+ 2N log log

[
1

rN
log

(
3Csc

ε

)]}
,
(4.22)

where κ = supy∈Γ(κ(y)) as in Lemma 4.6, C1 and C2 are defined as in (4.18), and C5 is defined by

C5 = 2N log

(
2N

log 2

)
+ log

(
4

√
α

β

)
.

Proof. To achieve the prescribed error, we again choose h = h(ε), Lmax = Lmax(ε) and τ = τ(ε)
as in Lemmas 4.4 and 4.5. Then, the total number of iterations Kacc(ε) can be bounded by

Kacc(ε) =

Lmax∑

L=1

∑

yL,j∈∆HL

kL,j ≤
Lmax∑

L=1

∆ML k
L
acc.

From Lemma 4.5 and 4.6, for L = 1, . . . , Lmax, we have

kLacc ≤ log

(
4
√
αCsc e

−rN2(L−1)/N

τ

)/
log

(√
κ+ 1√
κ− 1

)

≤ 1

log
(√

κ+1√
κ−1

) log

(
12

√
αCscCLmaxe

−rN2(L−1)/N

√
βε

)
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=
1

log
(√

κ+1√
κ−1

) log

[(
3Csce

−rN2L/N

ε

)
4

√
α

β
CLmaxe

rN2L/N−rN2(L−1)/N

]

≤ 1

log
(√

κ+1√
κ−1

) log

(
4

√
α

β
CLmaxe

rN(2L/N−2(L−1)/N)
)

=
1

log
(√

κ+1√
κ−1

)
[
log

(
4

√
α

β
CLmax

)
+ rN

(
2L/N − 2(L−1)/N

)]
.

Hence,

Kacc(ε) ≤MLmax

log
(
4
√
α/βCLmax

)

log
(√

κ+1√
κ−1

) +
rN

log
(√

κ+1√
κ−1

)
Lmax∑

L=1

∆ML

(
2Lmax/N − 2(L−1)/N

)

︸ ︷︷ ︸
S

,

where S can be bounded using results from geometric sums, i.e.,

S ≤
Lmax∑

L=1

2L
(
N − 1 + L

N − 1

)(
2Lmax/N − 2(L−1)/N

)

≤ eN−1

(
1 +

Lmax

N − 1

)N−1 Lmax∑

L=1

(
2Lmax/N − 2(L−1)/N

)
2L

= eN−1

(
1 +

Lmax

N − 1

)N−1{(
1− 1

21+1/N

)
2Lmax+12Lmax/N +

2

21+1/N − 1
− 21+Lmax/N

}

≤ eN−1

(
1 +

Lmax

N − 1

)N−1 (
21/N − 1

)
2Lmax+22Lmax/N .

Combining the last two inequalities, along with (4.21), we get

Kacc(ε) ≤ eN−1

(
1 +

Lmax

N − 1

)N−1

2Lmax+1

× 1

log
(√

κ+1√
κ−1

) log

(
4

√
α

β

)
+ 2N log (Lmax + 2) + 2rN

(
21/N − 1

)
2Lmax/N

Substituting (4.13) for Lmax concludes the proof.
In the case of the accelerated SC method, an interpolant IL−1[ũh], defined by (4.5) and (3.4),

must be evaluated for each of the ∆ML collocation points in ∆HL. Each interpolant evaluation
costs 2ML−1 − 1 operations, i.e., additions and multiplications, and must be evaluated for each of
the Mh components of the FEM coefficient vector. Then the interpolation cost on each level is
Mh∆ML(2ML−1 − 1) for L = 1, . . . , Lmax(ε). Now we give an estimate of the total interpolation
cost Cint(ε) for our algorithm to achieve the prescribed accuracy ε.

Theorem 4.9. Given Assumption 4.1 and the conditions of Lemma 4.1, for sufficiently small
ε > 0, the total cost of interpolation when using the sparse grid interpolation method in (3.5) is
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bounded by

Cint(ε) ≤MhC8

(
1

rN
log

(
3Csc

ε

))2N {
C2 +

1

log 2
log log

(
3Csc

ε

)}2(N−1)

,

where C2 are defined as in Theorem 4.7, and C8 = 64 e2(N−1).
Proof. The total interpolation cost is bounded by

Cint(ε) ≤ 2Mh

Lmax(ε)∑

L=2

∆MLML−1

≤ 2Mh

Lmax(ε)∑

L=2

2L
(
N − 1 + L

N − 1

) L∑

l=1

2l
(
N − 1 + l

N − 1

)

≤ 2Mh

Lmax(ε)∑

L=2

2L
(
N − 1 + L

N − 1

) L∑

l=1

2l
(
N − 1 + l

N − 1

)

≤ 2Mh

Lmax(ε)∑

L=2

2L
{(

N − 1 + L

N − 1

)}2

2L+1

≤ 4Mh

{(
N − 1 + Lmax(ε)

N − 1

)}2

4Lmax(ε)+1

≤ 16Mhe
2(N−1)4Lmax(ε)

(
1 +

Lmax(ε)

N − 1

)2(N−1)

. (4.23)

Substituting the definition of Lmax(ε) from Lemma 4.4 into (4.23) concludes the proof.
Based on Theorems 4.7, 4.8 and 4.9, we finally discuss the savings of the accelerated SC method

proposed in §3. By comparing the estimates of Kzero(ε) and Kacc(ε), we see that the acceleration
technique reduces log(C3/ε) in (4.17) to 2

(
21/N − 1

)
log (3Csc/ε) in (4.22). Here both terms are

of the same asymptotic order with respect to ε, but the savings from acceleration increases with
dimension N since (21/N − 1) → 0 as N → ∞. On the other hand, when taking into account the
cost of interpolation Cint, we must consider the cost Citer of performing each iteration. In the case
of using CG solvers, Citer is the cost of one matrix-vector multiplication, and will be determined
by the size of the unknown vector, Mh, and the sparsity of the mass matrix A(y). Thus Citer is
proportional to the size of the finite element vector, i.e., Citer = CDMh, where CD depends on the
dimension d of the physical domain and choice of finite element basis. For example, without the use
of a preconditioner, we can assume that the condition numbers of the matrices A(y), for y ∈ Γ,
satisfy

κ := sup
y∈Γ

κ(y) ≤
(
Cκ

h

)2

,

where the constant Cκ > 0 is independent of y ∈ Γ [3]. Then we can examine the contribution of
the condition number in Theorems 4.7 and 4.8: using the inequality log(x) ≥ (x−1)/x and Lemmas
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4.1 and 4.4, we bound the terms involving the condition number as

1

log
(√

κ+1√
κ−1

) ≤
√
κ+ 1

2
≤ Cκ

(
3Cfem

ε

)1/s

.

Now as ε→ 0, the asymptotic iterative solver costs, Czero = CDMhKzero are of the orderMh

(
1
ε

)1/s {
log
(
1
ε

)}N+1 {
log log

(
1
ε

)}N−1
,

while in the accelerated case, the estimate for CDMhKacc, is of the same order with respect to ε, but
with an improvement to the constant of

(
21/N − 1

)
. For the accelerated method, the additional in-

terpolation costs Cint are of order Mh

{
log
(
1
ε

)}2N {
log log

(
1
ε

)}2(N−1)
, which is negligible compared

to the iterative solver complexity. It is clear that, asymptotically, the accelerated method leads to a
net reduction in computational cost. We remark that for many adaptive interpolation methods, the
addition of new points already involves evaluation of the current (coarse) interpolant. In this case,
the cost of interpolation can be ignored, and the accelerated method should be used.

5. Numerical examples. The goal of this section is to demonstrate the reduction in compu-
tational cost of SC methods using the proposed acceleration technique. In Example 5.1, we first
use the accelerated SC method to solve an stochastic elliptic PDE with one spatial dimension, and
compute the overall cost and iteration savings gained by acceleration. Example 5.2 considers a sim-
ilar problem and looks at the number of CG iterations versus the collocation error, comparing the
implementation of the method using isotropic and anisotropic sparse grids, and demonstrating the
effect of varying stochastic dimension N on the convergence of the individual systems. In addition,
as described in Remark 3.3, we extend our acceleration technique to interpolated preconditioners,
which also exhibit the convergence improvements of the method. Finally, Example 5.3 applies the
accelerated method to iterative solvers for nonlinear parametrized PDEs.

The analysis in section 4.1 consisted of two components: (i) estimates for the reduction in
solver iterations from using acceleration, and (ii) interpolation costs. The interpolation costs can
be computed exactly for non-adaptive methods, and for adaptive implementations of sparse grid SC
the interpolation costs can be ignored. In Example 5.1, all error contributions are balanced, and the
total cost is examined, including both solver iterations and interpolation construction. In Examples
5.2 and 5.3 we focus only on the number of iterations of the CG solver.

Example 5.1. We consider the following elliptic stochastic PDE

{
−∇ · (a (x,y)∇u (x,y)) = 10 in D × Γ,

u(x,y) = 0 on ∂D × Γ,
(5.1)

where D = [0, 1], y = (y1, y2, y3, y4)
⊤, Γn = [−1, 1], n = 1, . . . , 4, and the coefficient a is given by:

log (a (x,y)− 1) = e−1/8 (y1 cosπx+ y2 sinπx+ y3 cos 2πx+ y4 sin 2πx) . (5.2)

The random variables {yi}4i=1 are independent and identically distributed uniform random variables
in [−1, 1]. In the one-dimensional physical domain, a finite element discretization using linear ele-
ments yields tridiagonal, symmetric positive-definite systems. While this type of system could be
solved efficiently by direct methods, nevertheless we use CG solvers to demonstrate the convergence
properties of the acceleration method.

Table 5.1 compares the standard and the accelerated SC methods, where the error for each
approximate solution, ũh,Lmax, is computed against a highly refined approximate reference solution
ũh∗,L∗ with h∗ = 2−14, L∗ = 10. In Figure 5.1 we plot the savings of the accelerated SC method,
computed according to the cost metrics (3.9) and (3.10). Since the constants Cfem and Csc in Lemma
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4.4 are not known a priori, to balance the error contributions in (4.12) we use trial and error to
determine sufficient values h, Lmax, and τ to achieve the desired overall error ε in the L2

̺ norm.
Especially for the larger systems, i.e., those with a large number of spatial degrees of freedom,
significant savings are achieved. The percent savings in the number of iterations versus the cost of
interpolation are calculated according to

Czero − Cacc
Czero

=
MhCD(Kzero −Kacc)− Cint

MhCDKzero
,

where CD = 5, since the matrices are tridiagonal.

Tot. Err FE DoFs SC Pts CG tol Kzero Kacc Savings

1× 10−2 255 137 1× 10−3 28,259 21,123 19.4 %

5× 10−3 511 401 5× 10−3 173,671 83,884 42.4%

1× 10−3 2,047 1,105 1× 10−4 2,001,905 626,215 62.3%

5× 10−4 4,095 2,929 5× 10−5 10,878,352 1,842,703 74.5%

1× 10−4 16,383 7,537 1× 10−5 114,570,175 12,345,968 75.1%

Table 5.1: Comparison in computational cost between the standard and the accelerated SC methods
for solving (5.1)–(5.2).

10
−4

10
−3

10
−2

10
5

10
8

10
11

10
14

C
os

t 
(F

lo
ps

)

Error

 

 

20

40

60

80

%
 S

av
in

gs

Czero
Cacc
Cint
Savings

Fig. 5.1: Cost (left axis) and percent savings (right axis) of the accelerated SC method versus the
standard SC method for solving (5.1)–(5.2). Costs are computed according to (3.9) and (3.10).

Example 5.2. We consider the following stochastic linear elliptic problem

{
−∇ · (a (x,y)∇u (x,y)) = cos(x1) sin(x2) in D × Γ,

u(x,y) = 0 on ∂D × Γ,
(5.3)
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where D = [0, 1]× [0, 1], Γn = [−
√
3,
√
3], n = 1, . . . , N , and x = (x1, x2) is the spatial variable. The

random diffusion term has one-dimensional spatial dependence given by

log(a(x,y)− 0.5) = 1 + y1
(√
πR/2

)1/2
+

N∑

n=2

ζnϕn(x)yn, (5.4a)

where

ζn := (
√
π R)1/2 exp

(
− (⌊n/2⌋πR)2

8

)
, n > 1 (5.4b)

and

ϕn(x) :=






sin

(⌊n/2⌋πx1
Rp

)
, n even

cos

(⌊n/2⌋πx1
Rp

)
, n odd.

(5.4c)

The random variables {yn}Nn=1 are i.i.d. and are each uniformly distributed in [−
√
3,
√
3], with zero

mean and unit variance, i.e., E[yn] = 0, and E[ynym] = δnm, for n,m ∈ N+. The finite dimensional
stochastic diffusion a represents the N -term truncation of an expansion of a random field with
stationary covariance function, given by

Cov [log (a− 0.5)] (x1, x
′
1) = exp

(
− (x1 − x′1)

2

R2
c

)
, (5.5)

where x1, x
′
1 ∈ [0, 1], and Rc is the physical correlation length for the random field a. The parameter

Rp in (5.4c) is given by Rp = max{1, 2Rc} and R is given by R = Rc/Rp. Then ζn and ϕn(x) are the
eigenvalues and eigenfunctions associated with (5.5). Here we will consider two correlation lengths,
namely Rc = 1/2, and Rc = 1/64, where Figure 5.2 shows the corresponding decay of eigenvalues.
For the spatial discretization, we use a finite element approximation on a regular triangular mesh
with linear finite elements and 4225 degrees of freedom. The CG method is used for the linear solver
with diagonal preconditioners and a tolerance of 10−14.

First, for Rc = 1/64, the error and total iteration count of both the standard case, using
zero initial vectors, and accelerated SC construction, computed using several dimensions N , are
summarized in Table 5.2. The error is measured using the expectation of the approximate solutions,
‖E[uh,Lmax] − E[uh,L∗ ]‖L2(D), for Lmax = 1, . . . , 7, where the “exact” solution E[uh,L∗ ] is computed
using L∗ = 8. We compare these errors against the cumulative total number of iterations, Kzero and
Kacc, needed to construct E[uh,Lmax ].

An alternative approach to accelerating SC methods is found in [21]. For a particular SC
level Lmax, this method orders the collocation points lexicographically, with each dimension ordered
according to the decay of the eigenvalues in (5.4a). We also implemented a similar method without
the sequential ordering; for a given level L, at each new collocation point in ∆HL the solution at the
nearest collocation point from lower levels is given as an initial guess to accelerate the CG solver.
We refer to this method as the “nearest neighbor” approach. Figure 5.3 shows the average number
of iterations needed to solve the linear system (3.7), where the average is taken over the new points
at level L, i.e., ∆HL, for L = 1, . . . , 7. We compare our interpolated acceleration algorithm, the
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Fig. 5.2: First 19 eigenvalues for (5.5) for correlation length Rc = 1/64, 1/2.

Error SC Pts Kzero Kacc Savings in K

N=3

3.83e-8 25 6,780 5,991 11.6%

9.57e-10 69 18,893 14,628 22.6%

9.86e-12 177 48,691 27,765 43.0%

N=5

5.28e-07 61 17058 15095 11.6%

1.03e-08 241 67,955 53,992 20.6%

1.44e-10 801 226,597 150,241 33.7%

N=7

2.43e-08 589 168,237 136,072 19.1%

6.63e-10 2,465 706,049 500,718 29.1%

1.94e-11 9,017 2,585,970 1,496,391 42.1%

N=9

1.68e-07 1,177 338,428 277,583 18.0%

7.83e-09 6,001 1,729,337 1,273,895 26.3%

8.86e-11 26,017 7,505,343 4,719,820 37.1%

N=11

2.59e-07 2,069 596,368 495,705 16.9%

2.43e-08 12,497 3,608,185 2,736,615 24.2%

1.95e-09 63,097 18,231,420 12,139,658 33.4%

Table 5.2: Iteration counts and savings of the accelerated SC method for solving (5.3)–(5.4) with
correlation length Rc = 1/64, and stochastic dimensions N = 5, 7, 9, and 11.

nearest neighbor approach, and standard SC method without acceleration, for N = 3 and N = 11,
using Rc = 1/64. The interpolated initial vector provided by the acceleration algorithm yields a
reduction in the average number of iterations at each level, which increases with L. Figure 5.3 also
shows the effect of using the nearest neighbor solution as the initial vector, which provides some
improvement over the standard case using zero initial vectors, but the savings do not match those of
our acceleration scheme. Note that since the number of new collocation points grows exponentially
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Fig. 5.3: Comparison of the average CG iterations per level for solving problem (5.3)–(5.4) with
dimensions N = 3 (left) and N = 11 (right), and correlation length Rc = 1/64.

with each level (cf (4.3)), there is an increase in total iteration savings over successive levels in both
the nearest neighbor and accelerated case.

The left plot of Figure 5.4 shows the total iteration savings achieved by the acceleration algo-
rithm with different maximum collocation levels Lmax = 1, . . . , 6. The savings are measured as the
percentage reduction in the cumulative iteration count up to level Lmax, relative to standard case
using zero initial vectors, i.e., (Kzero−Kzero)/Kzero. Here we also see the effect of stochastic dimen-
sion on the convergence of SC methods: as N increases, our algorithm provides less accurate initial
guesses for a given maximum SC level Lmax. This can also be seen by comparing the left and right
plots of Figure 5.3, which show how the average number of iterations at a given SC level L changes
from N = 3 to N = 11. On the other hand, the right plot of Figure 5.4 shows the same total iteration
savings now plotted versus error. As above, the error is measured as ‖E[uh,Lmax] − E[uh,L∗ ]‖L2(D),
with L∗ = 7. These results are in agreement with the theoretical asymptotic estimates from Theorem
4.8, which predict an increased savings vs error for larger dimensions.

Next we examine the effect of the correlation length, Rc, on our acceleration algorithm. Larger
correlation lengths result in faster decay of eigenvalues of the covariance function (5.5) (see Figure
5.2), and implies that u(y) depends on certain components of the vector y more than others, which
reduces the effectiveness of isotropic methods. Figure 5.5 plots the convergence of the error in
E[uh,L] versus the total number of CG iterations for N = 3 and N = 11, and for both Rc = 1/2
and Rc = 1/64. The larger correlation length, Rc = 1/2, results in slower convergence of the SC
interpolant than for Rc = 1/64, but note that the accelerated method reduces the total iteration
count in both cases.

On the other hand, we can employ anisotropic methods to increase the efficiency of SC in the
case of larger correlation lengths [30]. Anisotropic SC methods will place more points in directions
corresponding to large eigenvalues of (5.5), and the importance of each dimension is encoded in a
weight vector (see (4.3)). Figure 5.6 plots the average number of iterations for problem (5.3)–(5.4)
with a relatively large correlation length Rc = 1/2, and N = 11. Here we employ the weights given
by an a posteriori selection described in [30], i.e., the weight vector α ∈ RN , with α1 = 0.85, α2 =
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Fig. 5.4: Percentage cumulative reduction in CG iterations vs level (left) and error (right) for
solving (5.3)–(5.4) using our accelerated approach, with N = 5, 7, 9, and 11 and for correlation
length Rc = 1/64.
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Fig. 5.5: The convergence of the SC approximation for solving (5.3)–(5.4), using CG, with and
without acceleration, for correlation lengths Rc = 1/64, 1/2, and dimensions N = 3 (left), and
N = 11 (right).

α3 = 0.8, α4 = α5 = 1.0, α6 = α7 = 1.6, α8 = α9 = 2.6, α10 = α11 = 3.7. The acceleration method
decreases the average number of iterations needed to solve the linear system, but the effect is not
as pronounced as in the case of an isotropic SC method. This occurs because the isotropic method
places far too many points in relatively unimportant directions, thus the dependence of u(y) on
a certain component yn of y may be well approximated at very low levels. Anisotropic methods
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Fig. 5.6: Average CG iterations per level for solving problem (5.3)–(5.4) for N = 11 and with
correlation length Rc = 1/2, using an isotropic SC (left) and anisotropic SC (right). The inefficiencies
from using an isotropic grid are partially offset by increased gains from acceleration.

exhibit better convergence with respect to MLmax (and lower interpolation costs) versus isotropic
methods, yet we see here that the acceleration algorithm helps to somewhat offset the inefficiency
of isotropic methods for anisotropic problems.

In the preceding results we have used a simple diagonal preconditioner strategy. As described in
Remark 3.3, we can also construct efficient preconditioners with our acceleration scheme. Table 5.3
shows the effectiveness of the preconditioning strategy for solving equations (5.3)–(5.4), with N = 7
and Rc = 1/64, where we compare the average number of iterations needed to solve (3.7) at each new
point yL,j ∈ ∆HL at a given level L. Here we compute an incomplete Cholesky preconditioner for
each linear system on the levels L = 1, . . . , LPC, for LPC = 1, 2, and 3, and use these to provide an
“accelerated” preconditioner (3.11) for the systems on the remaining levels LPC + 1, . . . , Lmax. We
compare this against the cases where a simple diagonal preconditioner and an incomplete Cholesky
preconditioner are used for each system. The three-level accelerated preconditioner reduces the
average number of iterations to within a decimal point of the incomplete Cholesky preconditioner,
and the cost of computing the low-level preconditioners and interpolating is relatively cheap in
comparison.

Example 5.3. The preceding experiments demonstrate the benefits of using acceleration to
improve the convergence of individual iterative linear solvers. In the case of a nonlinear PDE, the
possibilities for savings can be even greater than the linear cases above, since convergence of a
nonlinear solver may be slow or even unattainable from a poor initial vector. In this example, we
consider the problem





−∇ · (a (x,y)∇u (x,y)) + F [u](x,y) = x in D × Γ,

u(0,y) = 0 in Γ,

u′(1,y) = 1 in Γ,

where a is given by (5.2), D = [0, 1], Γn = [−1, 1], n = 1, . . . , 4, and F [u] is some nonlinear function
of u. In what follows, we consider the nonlinear functions F [u] = u5, and F [u] = uu′.
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CG iterations for standard SC
Level No PC Diag PC Inc. Chol. LPC = 1 LPC = 2 LPC = 3
1 243 243 55 55 – –
2 311.8 278.4 54.7 60.7 54.7 –
3 332.3 284.9 54.6 63.5 54.9 54.6
4 341.0 286.1 54.6 65.2 55.3 54.6
5 345.8 286.7 54.6 66.2 55.5 54.6
6 348.4 286.9 54.6 66.7 55.6 54.6

CG iterations for accelerated SC
Level No PC Diag PC Inc. Chol. LPC = 1 LPC = 2 LPC = 3
1 243 243 55 55 – –
2 299.3 264.6 52.9 58.4 52.9 –
3 295.8 251.3 49.1 57.1 49.4 49.1
4 270.8 225.8 43.7 52.3 44.2 43.7
5 237.0 194.3 37.3 45.8 38.0 37.3
6 186.1 151.9 28.9 36.0 29.5 28.9

Table 5.3: Average iteration counts for the standard SC method (top), and the accelerated SC
method (bottom) using six preconditioner schemes to solve (5.3)–(5.4) with N = 7, and Rc = 1/64.
From left to right: no preconditioner, diagonal preconditioners, incomplete Cholesky preconditioners,
and accelerated preconditioners (3.11) built using incomplete Cholesky preconditioners with LPC =
1, 2, 3.

Nonlinear problems are typically solved with the use of iterative methods such as Picard itera-
tions or Newton’s method. We implement a combination of these methods that begins with Picard
iterations, then utilizes Newton’s method once the relative errors are small. For spatial discretiza-
tion, we use piecewise linear finite elements on [0, 1] with a mesh size of h = 1/500, and solved the
resulting systems at each iteration using exact methods. The stopping criterion for the solver is a
relative tolerance of 10−8 in the l2 norm.

Results for these experiments are given in Figure 5.7. For each SC level, L = 1, . . . , 8, we plot
the average number of nonlinear iterations, where the average is taken over the set of points which
are new to level L, namely ∆HL. Finally, we show the total computational time in Table 5.4,
for different maximum levels of stochastic approximation, measured on a workstation with 1.7GHz
dual core processors and 8 GB of RAM. We note that in Table 5.4, the size of the finite element
system is fixed. Thus, as we move to higher levels of collocation, the stochastic approximation
becomes relatively more expensive to compute compared to the solving the finite element systems.
This is why the savings begin to decrease after level 5, even though Figure 5.7 shows dramatic
savings in iterations for higher levels. Furthermore, the reason for the negative savings for a level
L = 2 stochastic approximation is that the interpolant is not yet accurate enough to overcome the
additional cost of the acceleration.

6. Conclusion. In this work, we proposed and analyzed an acceleration method for construc-
tion of sparse interpolation-based approximate solutions to PDEs with random input parameters.
The acceleration method exploits the sequence of increasingly accurate approximate solutions to
provide increasingly good initial guesses for the underlying iterative solvers that are used at each
sample point. We have developed this method using a global Lagrange polynomial basis but the

30



1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Level

A
ve

ra
ge

 It
er

at
io

ns

 

 

w/ acceleration
zero inital vector

1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Level

A
ve

ra
ge

 It
er

at
io

ns

 

 

zero initial vector
w/ acceleration

Fig. 5.7: Average number of Newton iterations per level for solving problem (5.6) with F [u] = uu′

(left) and F [u] = u5 (right).

SC Level 2 3 4 5 6

F [u] = u5, acc .03018 .113832 .2746 .7039 2.33314
F [u] = u5, zero .025976 .119256 .339678 .949184 2.61958
% Savings -16.2 4.5 19.2 25.8 10.9

F [u] = uu′, acc .027754 .089082 .22706 .629451 2.05741
F [u] = uu′, zero .026527 .090435 .273355 .895027 2.4008
% Savings -4.6 1.5 16.9 29.7 14.3

Table 5.4: Computational time in seconds for computing solution to problem 5.6.

method can easily be extended to other non-intrusive methods.
While our method takes advantage of the natural structure provided by hierarchical SC methods,

we do not take advantage of any hierarchy in the spatial approximation. As explained in Remark 3.1,
our method may be used in combination with the multilevel method to accelerate the construction of
stochastic operators, and reuse information from level to level. The combination of the acceleration
scheme with multilevel methods will be the subject of future work.

We rigorously studied error estimates in the special the case of linear elliptic PDEs with ran-
dom inputs, providing complexity estimates for the proposed method. Several numerical examples
confirm the expected performance. While the analysis of §4.1 applies to linear stochastic PDEs,
the acceleration method may be even more well suited to nonlinear problems, as convergence rates
may be improved, based on the choice of a good initial guess for nonlinear iterative solvers. A final
numerical example demonstrates the advantage of our approach to nonlinear problems. A more
rigorous study of acceleration for nonlinear solvers and extension to time dependent problems may
provide interesting opportunities in the future.
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