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ANALYSIS OF THE INCOMPATIBILITY OPERATOR AND APPLICATION

IN INTRINSIC ELASTICITY WITH DISLOCATIONS

SAMUEL AMSTUTZ AND NICOLAS VAN GOETHEM

Abstract. The incompatibility operator arises in the modeling of elastic materials with

dislocations and in the intrinsic approach to elasticity, where it is related to the Riemannian

curvature of the elastic metric. It consists of applying successively the curl to the rows and
the columns of a 2nd-rank tensor, usually chosen symmetric and divergence free. This paper

presents a systematic analysis of boundary value problems associated with the incompatibility

operator. It provides answers to such questions as existence and uniqueness of solutions,
boundary traces lifting and transmission conditions. Physical interpretations in dislocation

models are also discussed, but the application range of these results exceed by far any specific

physical model.

1. Introduction

The incompatibility operator is a 2nd-order differential operator consisting of taking the curl
of the rows and the columns of a 2nd-rank tensor ε, viz.,

inc ε = Curl Curlt ε, (1.1)

the curl being taken row-wise. The incompatibility operator arises in physics, in the area of
dislocation modeling, since the linear elastic strain ε is incompatible in the presence of disloca-
tions, that is, cannot be written as a symmetric gradient, as soon as inc ε 6= 0. Specifically, its
incompatibility is related to the tensor-valued density of dislocations Λ as found by Kröner [14]
and further discussed in, e.g. [20, 23], and shows ultimately as a macroscopic manifestation
of plasticity (let us recall that plasticity is generated by dislocation motion). The insight of
Kröner was to understand the incompatibility as a genuine geometric property of the dislocated
crystal related to the connection torsion and contortion (we refer to [9, 18, 20]), the crystallo-
graphic evidence of the latter had been first identified by Nye [17]. In a recent contribution [21]
to this discussion, it was shown that the incompatible strain writes by virtue of the Beltrami
decomposition [15] as

ε = ∇Su+ inc F, (1.2)

where u may be given the meaning of a displacement field, here complemented with a tensor-
valued symmetric and divergence-free field F which is related to the dislocation density by the
formula

inc inc F = inc ε = Curl κ, (1.3)

where the last equality is due to Kröner [14], and with the contortion tensor

κ := Λ− I
2

tr Λ. (1.4)

Here Λ is the macroscopic counterpart of the mesoscopic dislocation density tensor ΛL :=
τ ⊗ bH1

xL, where τ is the unit tangent vector to the dislocation line L, and b its Burgers vector.
Moreover, Eq. (1.1) shows tensor Curlt ε, called the Frank tensor [23] and from which

the infinitesimal rotations and the displacement field are classically defined in linear elasticity.
In fact, in the presence of dislocation lines, the displacement and rotation jumps around the
lines are explicitly given [15] by means of recursive line integration of linear combinations of
the elastic strain and Frank tensors. Obviously, these jumps vanish if and only if the strain
incompatibility vanishes.
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So far, we can say that incompatibility is an important operator in Continuum mechanics,
which is related to dislocations and which carries a clear geometric interpretation. About this
latter point, it should be emphasized that inc ε is another way of writing the curvature tensor
associated to the elastic metric g := I − 2ε, to the first order (the explicit relation between
the 4th-rank curvature tensor and the 2nd-rank strain incompatibility can be found in [15]),
whose properties in mathematical models of elasticity have been discussed in a series of recent
works by Ph. Ciarlet (see for instance [6, 7]), in what he calls the intrinsic model. Let us here
emphasize the deep impact of this point of view for modeling, since it consists in a change of
paradigm: no more to consider the displacement as the main model variable, rather the strain,
and from its knowledge (be it given, or be it deduced from a constitutive law from the stress
field) to define an elastic metric g, the associated Riemann curvature tensor (and possibly, the
Cartan torsion, as far as dislocations are considered, see, e.g. [14, 20]), and then in a second
step to deduce a displacement field. In Ciarlet’s series of works, the displacement is found as
soon as the curvature tensor associated to g vanishes. We also share this point of view, and
consider the elastic strain as the primal variable, here defined from the stress σ by the linear
homogeneous, isotropic and isothermal constitutive law

ε = A−1σ,

where A is the elasticity tensor. However, for us, not only the Riemann curvature does not
vanish because of (1.3), but it is the central model variable besides the elastic strain.

The main motivation and purpose of this work is indeed the mathematical study of the
incompatibility operator, in particular in terms of function spaces used and their properties.
From a mathematical viewpoint, it should also be stressed that the incompatibility operator is
related to the Laplacian in the sense that for symmetric and divergence-free fields E, one has
tr inc E = ∆ tr E1 and inc inc E = ∆2. Thus, in some sense, it constitutes a tensor general-
ization of the Laplacian, but as for the Curl Curl operator (recall that Curl Curl = −∆ for
solenoidal vectors), any associated boundary value problem must be addressed carefully since it
applies to solenoidal fields and hence might not be an elliptic operator (see [13] for the analysis
of Curl Curl systems, the vector and 1st-order counterpart of our study). Indeed, the solution
must satisfy the divergence-free condition in the domain, as well as specific boundary conditions
(i.e., complementary in the sense of Agmon, Douglis and Nirenberg [1]) normal and/or tangen-
tial components of its boundary traces. Note that in H1-spaces, the study of divergence-free
fields is of the utmost importance in fluid dynamics [10, 19]. In particular, boundary lifiting
results can be found in [11].

A first natural question is to seek the appropriate boundary conditions (if one thinks of the
strong form) in order to well define the BVP inc (M inc E) = G, or the appropriate function
space (if one thinks of the weak form) to have existence of minimizers for

∫
Ω

( 1
2M inc E · inc E−

G · E)dx, where G is some given symmetric and divergence-free force dual to E. A first issue
is therefore the bilinear form coercivity and the function trace lifting properties, that is, given
appropriate combinations of E and its normal derivatives, is it possible to find a divergence-free
field E in H2 whose trace on the boundary corresponds to these values?

These issues are positively answered in this paper. As a first step, a study of the extension
of boundary tangent and normal vectors will also be achieved. Such extensions and their
differentiability properties can here be found in Theorem 2.2. We emphasize that our solution
method is not very standard, since it is coordinate-free and based on the extension of an
orthonormal basis on the boundary, which is thus viewed as locally Euclidean, though with a
triad of local, non constant, basis vectors. Our core result is Theorem 3.10 and states that one
can find F ∈ H2

0 (Ω) with prescribed divergence in Ω. Its main application for our purposes is
about trace boundary lifting for solenoidal fields in H2(Ω). The exact statement can be found in
Theorem 3.12. Then, in Section 4, combining this latter result with the bilinear form coercivity
in H2

0 (Ω) (namely, Theorem 3.9), existence and uniqueness of the nonhomogeneous boundary
value problem inc (M inc E) = G follow in a standard way. Lastly, with a view to perform

1trace tr here meaning the sum of the diagonal components of a 2nd-rank tensor.
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topological sensitivity analysis in future work in the spirit of [2, 3], transmission conditions are
identified by means of an appropriate Gauss-Green formula. They are given in Theorem 4.4.

To the knowledge of the authors, our most substantial auxiliary results, namely Theorems
3.10 and 3.12 were not found elsewhere in the literature, and seem of the utmost importance for
a broad range of applications, exceeding by far our study of the incompatibility operator. Let
us emphasize that the incompatibility operator and its physical interpretation in dislocation
modeling must be considered here as one possible application, which was the motivation for
addressing this problem, but Theorems 3.10 and 3.12 show a level of generality which we believe
renders their study useful to a large community of mathematicians working in applied sciences.
Let us also stress the importance of boundary lifting in numerical analysis, in particular in the
finite elements methods [5, 11].

To conclude, the proper boundary value problem is discussed in Section 4, while its applica-
tion in dislocation models is proposed in Section 5.

Physical meaning of the model field E in Elasticity. The first physical interpretation of
the variable E is the field F in Beltrami decomposition (1.2). Let be given the stress σ and
define the elastic strain as ε := A−1σ, where A is the assumed constant elasticity tensor, i.e.,
A = 2µI4 + λI2 ⊗ I2, with λ and µ the Lamé coefficicents. Equilibrium reads{

−div σ = −div Aε = 0 in Ω,
σN = g on ∂Ω,

(1.5)

and from (1.2) is rewritten as{
−div (A∇Su) = FΛL := λ∇ tr ( inc F ) in Ω,

(A∇Su)N = g − λ tr ( inc F )N = g on ∂Ω,
(1.6)

recalling the solenoideal property of inc F . Therefore, u is called the generalized displacement
field. By virtue of (1.3) with a suitable choice of boundary conditions, one also has

inc inc F = inc ε = Curl κ in Ω,
F = 0 on ∂Ω,

(∂NF ×N)
t ×N = 0 on ∂Ω.

(1.7)

Systems (1.6) and (1.7) are also discussed in [21].

Moreover, recall (1.2) and take E = ε0 := inc F . By (1.3), the symmetric and solenoidal field
ε0 is the part of the elastic strain which plays a role with dislocations. Thus it may be called
the dislocation-induced elastic strain. Let us address now the question of a thermodynamical
setting in our elastic body with dislocations in which the free energy would depend on internal
defect variables such as ε0 and κ. Considering a high-order model in the spirit of [4], which
involves the derivatives of κ in the form of its curl, then by (1.3) the free energy is a function
of ε0 and inc ε0. If now a quadratic model is proposed (we refer again to [4]) one would
naturally consider terms such as 1

2M inc ε0 · inc ε0 in the free energy, with M a positive-definite
4th-rank tensor whose components are related to material properties of the crystal and of the
dislocations. Therefore, one is lead to study variational problems of form

inf
ε=∇Su+ε0

∫
Ω

(
1

2
A∇Su.∇Su+

1

2
M inc ε0 · inc ε0

)
dx−

∫
Ω

G · εdx,

where G is a body force that works against the total strain ε. Of course, surface forces could
also be incorporated, as discussed in Section 5. If now G is decomposed as G = ∇Sw + G0,
ones has ∫

Ω

G · εdx =

∫
Ω

(
−div ∇Sw.u+ G0.ε0

)
dx,

where all boundary terms have again been dropped for simplicity. Thus, f := −div ∇Sw is
recognized as a body force that works against the displacement, while G0 works against the
solenoidal part of the strain. Moreover, the minimizations with respect to u and ε0 become
uncoupled. The former one provides the standard linear elasticity equations, and the latter one
formally yields

inc (M inc ε0) = G0.
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With these two examples of physical fields E, whose incompatibility plays a central role, let
us now begin the mathematical analysis.

Notations and conventions. Let Ω be a bounded domain of R3 with smooth boundary
∂Ω. By smooth we mean C∞, but this assumption could be considerably weakened. Let
M3 denote the space of square 3-matrices, and S3 of symmetric 3-matrices. Divergence, curl,
incompatibility and cross product with 2nd order tensors are defined componentwise as follows
with the summation convention on repeated indices. Here, E and T are 2nd rank tensors, N is
a vector, and ε is the Levi-Civita 3rd rank tensor. One has:

( div E)i := ∂jEij ,

( Curl T )ij := (∇× T )ij = εjkm∂kTim,

( inc E)ij := ( Curl Curlt E)ij = εikmεjln∂k∂lEmn,

(N × T )ij := −(T ×N)ij = εjkmNkTim,

(E × T )ijk := εjmnEimTkn,

tr (E × T )j := εjmnEpmTpn.

2. Extension and differentiation of the normal and tangent vectors to a
surface

2.1. Signed distance function and extended unit normal. We denote byN∂Ω the outward
unit normal to ∂Ω, and by b the signed distance to ∂Ω, i.e.,

b(x) =

{
dist(x, ∂Ω) if x /∈ Ω,
−dist(x, ∂Ω) if x ∈ Ω.

We recall the following results ([8], Chap. 5, Thms 3.1 and 4.3).

Theorem 2.1. There exists an open neighborhood W of ∂Ω such that

(1) b is smooth in W ;
(2) every x ∈W admits a unique projection p∂Ω(x) onto ∂Ω;
(3) this projection satisfies

p∂Ω(x) = x− 1

2
∇b2(x), x ∈W ; (2.1)

(4) it holds

∇b(x) = N∂Ω(p∂Ω(x)), x ∈W.

In particular, this latter property shows that ∇b(x) = N∂Ω(x) for all x ∈ ∂Ω and |∇b(x)| = 1
for all x ∈W . Therefore, we define the extended unit normal by

N(x) := ∇b(x) = N∂Ω(p∂Ω(x)), x ∈W. (2.2)

2.2. Tangent vectors on ∂Ω. For all x ∈ ∂Ω, we denote by T∂Ω(x) the tangent plane to ∂Ω
at x, that is, the orthogonal complement of N∂Ω(x). As ∂Ω is smooth, there exists a covering of
∂Ω by open balls B1, ..., BM of R3 such that, for each index k, two smooth vector fields τA∂Ω, τ

B
∂Ω

can be constructed on ∂Ω ∩Bk where, for all x ∈ ∂Ω ∩Bk, (τA∂Ω(x), τB∂Ω(x)) is an orthonormal
basis of T∂Ω(x). In all the sequel, the index k will be implicitly considered as fixed and the
restriction to Bk will be omitted. In fact, for our needs, global properties and constructions
will be easily obtained from local ones through a partition of unity subordinate to the covering.

Using that the Jacobian matrix DN(x) = D2b(x) of N(x) is symmetric, differentiating the
equality |N(x)|2 = 1 entails

∂NN(x) = DN(x)N(x) = 0, x ∈W. (2.3)

In other words, N(x) is an eigenvector of DN(x) for the eigenvalue 0. For all x ∈ ∂Ω, the
system (τA∂Ω(x), τB∂Ω(x), N∂Ω(x)) is an orthonormal basis of R3. In this basis, DN(x) takes the
form

DN(x) =

κA∂Ω(x) ξ∂Ω(x) 0
ξ∂Ω(x) κB∂Ω(x) 0

0 0 0

 , x ∈ ∂Ω, (2.4)
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where κA∂Ω, κB∂Ω and ξ are smooth scalar fields defined on ∂Ω.
If R ∈ {A,B}, we denote by R∗ the complementary index of R, that is, R∗ = B if R = A

and R∗ = A if R = B.

2.3. Extended tangent vectors. Let d be defined in W by

d =
(
1 + b κA∂Ω ◦ p∂Ω

) (
1 + b κB∂Ω ◦ p∂Ω

)
− (b ξ∂Ω ◦ p∂Ω)

2
.

Possibly adjusting W so that d(x) > 0 for all x ∈W , we define in W :

τR = τR∂Ω ◦ p∂Ω, R = A,B, (2.5)

κR = d−1
(

(1 + b κR
∗

∂Ω ◦ p∂Ω)(κR∂Ω ◦ p∂Ω)− b (ξ∂Ω ◦ p∂Ω)2
)
, R = A,B,

ξ = d−1ξ∂Ω ◦ p∂Ω,

κ = κA + κB ,

γR = div τR, R = A,B.

Obviously, for each x ∈ W , the triple
(
τA(x), τB(x), N(x)

)
forms an orthonormal basis of

R3. Next, we compute the normal and tangential derivatives of these vectors. We denote the
tangential derivative ∂τR by ∂R for simplicity. Specifically ∂Rg(x) is the differential of the
vector g at x in the direction τR, viz.,

∂Rg(x) := Dg(x)τR(x).

Theorem 2.2. It holds in W :

∂Nτ
R = 0, (2.6)

∂RN = κRτR + ξτR
∗
, (2.7)

∂Rτ
R = −κRN − γR

∗
τR
∗
, (2.8)

∂R∗τ
R = γRτR

∗
− ξN, (2.9)

div N = tr DN = ∆b = κ. (2.10)

Proof. Differentiating (2.1) in the direction h ∈ R3 and using (2.2) yields

Dp∂Ω(x)h = h− (N(x).h)N(x)− b(x)DN(x)h.

Choosing h = N(x) and using (2.3) entails Dp∂Ω(x)N(x) = 0, then (2.6) in view of (2.5).
Choosing now h = τR(x) gives

Dp∂Ω(x)τR(x) = τR(x)− b(x)DN(x)τR(x). (2.11)

Differentiating N(x) = N(p∂Ω(x)) in the direction τR(x), one obtains using (2.11)

(I + b(x)DN(p∂Ω(x))) ∂RN(x) = DN(p∂Ω(x))τR(x). (2.12)

Plugging (2.4) into (2.12) yields (2.7). Differentiating the relations τR(x) ·N(x) = 0, |τR(x)|2 =
1 and τR(x) · τR∗(x) = 0 in the direction τR(x) yields ∂Rτ

R(x) · N(x) = −κR(x), ∂Rτ
R(x) ·

τR(x) = 0 and ∂Rτ
R(x) · τR∗(x) + ∂Rτ

R∗(x) · τR(x) = 0, respectively. From

div τR(x) = ∂Rτ
R(x) · τR(x) + ∂R∗τ

R(x) · τR
∗
(x) + ∂Nτ

R(x).N(x)

and the preceding relations one infers

γR(x) = ∂R∗τ
R(x) · τR

∗
(x) = −∂R∗τR

∗
(x) · τR(x). (2.13)

This leads to (2.8). Differentiating τR(x).N(x) = 0 and |τR(x)|2 = 1 in the direction τR
∗
(x)

yields ∂R∗τ
R(x).N(x) = −ξ(x) and ∂R∗τ

R(x) · τR(x) = 0. With the help of (2.13) one arrives
at (2.9). Finally, (2.10) is a straightforward consequence of (2.7) and the definitions. �

Corollary 2.3. If f is twice differentiable in Ω it holds

∂R∂Nf = ∂N∂Rf + κR∂Rf + ξ∂R∗f. (2.14)
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Proof. We have on one hand

∂R∂Nf = ∂R(∇f ·N)

= ∂R∇f ·N +∇f · (κRτR + ξτR
∗
)

= D2fτR ·N + κR∂Rf + ξ∂R∗f,

and on the other hand

∂N∂Rf = ∂N (∇f · τR) = ∂N∇f · τR = D2fN · τR.

One concludes using the standard Schwarz lemma. �

2.4. Divergence expression in the local basis. Let us decompose a 3×3 symmetric matrix
E in the local basis (τA, τB , N):

Eij = ENNNiNj+
∑

R=A,B

ENR(Niτ
R
j +Njτ

R
i )+

∑
R=A,B

ERRτ
R
i τ

R
j +EAB(τAi τ

B
j +τAj τ

B
i ). (2.15)

Using Theorem 2.2 we obtain:

∂jEij = ∂jENNNiNj + ENN (∂NNi + κNi)

+
∑
R

[
∂jENR(Niτ

R
j +Njτ

R
i ) + ENR(∂RNi +Ni∂jτ

R
j + ∂jNjτ

R
i + ∂Nτ

R
i )
]

+
∑
R

[
∂jERRτ

R
i τ

R
j + ERR(∂Rτ

R
i + τRi ∂jτ

R
j )
]

+∂jEAB(τAi τ
B
j + τAj τ

B
i ) + EAB(∂Bτ

A
i + τAi ∂jτ

B
j + τBi ∂jτ

A
j + ∂Aτ

B
i )

= ∂NENNNi + ENNκNi

+
∑
R

[
∂RENRNi + ∂NENRτ

R
i + ENR(κRτRi + ξτR

∗

i + γRNi + κτRi )
]

+
∑
R

[
∂RERRτ

R
i + ERR(−κRNi − γR

∗
τR
∗

i + γRτRi )
]

+∂BEABτ
A
i + ∂AEABτ

B
i + EAB(γAτBi − ξNi + γBτAi + γAτBi + γBτAi − ξNi)

= Ni

(
∂NENN + κENN +

∑
R

(
∂RENR + γRENR − κRERR

)
− 2ξEAB

)
+
∑
R

[
τRi
(
∂NENR + (κ+ κR)ENR + ξENR∗ + ∂RERR

+γRERR − γRER∗R∗ + ∂R∗EAB + 2γR
∗
EAB

)]
.

Hence

div E =

(
∂NENN + κENN +

∑
R

(
∂RENR + γRENR − κRERR

)
− 2ξEAB

)
N

+
∑
R

(
∂NENR + (κ+ κR)ENR + ξENR∗ + ∂RERR

+ γRERR − γRER∗R∗ + ∂R∗EAB + 2γR
∗
EAB

)
τR. (2.16)
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3. Function spaces

3.1. Definitions and basic properties. Let Γ0 be a subset of ∂Ω which is not everywhere
flat and has nonzero 2-dimensional Hausdorff measure. Define

Hcurl(Ω,M3) := {E ∈ L2(Ω,M3) : Curl E ∈ L2(Ω,M3)},
Hinc(Ω,S3) := {E ∈ L2(Ω,S3) : inc E ∈ L2(Ω,S3)},

H(Ω) := {E ∈ H2(Ω,S3) : div E = 0},
H0(Ω) := {E ∈ H(Ω) : E = (∂NE ×N)t ×N = 0 on ∂Ω},
HΓ0

(Ω) := {E ∈ H(Ω) : E = (∂NE ×N)t ×N = 0 on Γ0},

H̃1
0 (Ω,R3) :=

{
u ∈ H1

0 (Ω,R3) :

∫
Ω

udx = 0

}
,

H̃3/2(∂Ω,S3) :=

{
E ∈ H3/2(∂Ω,S3) :

∫
∂Ω

ENdS(x) = 0

}
.

Given E ∈ H̃3/2(∂Ω;S3) and F ∈ H1/2(∂Ω;S3) such that
∫
∂Ω

ENdS(x) = 0 and FN = 0, we
define the affine spaces

HE,F(Ω) := {E ∈ H(Ω) : E = E, (∂NE ×N)t ×N = F on ∂Ω}, (3.1)

and

HE,F;Γ0
(Ω) := {E ∈ H(Ω) : E = E, (∂NE ×N)t ×N = F on Γ0}. (3.2)

Obviously, in this latter case, it suffices that E and F be defined on Γ0, and the condition∫
∂Ω

ENdS(x) = 0 is not restrictive whenever Γ0 ⊂⊂ ∂Ω. The spaces H(Ω), H0(Ω) and the

above affine spaces are naturally endowed with the Hilbertian structure of H2(Ω,S3).

Lemma 3.1. For all E ∈ H2(Ω,S3) it holds in W

Curlt E ×N = − (∂NE ×N)
t ×N +

(∑
R

τR × ∂RE

)t
×N on ∂Ω.

Proof. We compute componentwise

−[ Curlt E ×N ]mq = εjqvNvεmln∂lEjn

= εjqvNvεmlnNl∂NEjn + εjqvNvεmln
∑
R

τRl ∂REjn

=
(

(∂NE ×N)
t ×N

)
mq
−

(∑
R

τR × ∂RE

)t
×N


mq

,

proving the result. �

Lemma 3.2. For all V ∈ H1(Ω,R3) it holds in W

Curl V ·N = ∂AVB − ∂BVA − γBVA + γAVB .

Proof. We have

Curl V.N = εijkNi∂jVk

= εijkNi
(
∂NVkNj + ∂AVkτ

A
j + ∂BVkτ

B
j

)
= ∂AV · τB − ∂BV · τA

= ∂A(VAτ
A + VBτ

B + VNN) · τB − ∂B(VAτ
A + VBτ

B + VNN) · τA

= ∂AVB + (VA∂Aτ
A + VB∂Aτ

B + VN∂AN) · τB

−∂BVA − (VA∂Bτ
A + VB∂Bτ

B + VN∂BN) · τA.

Then one concludes using Theorem 2.2. �
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Lemma 3.3. Every E ∈ H0(Ω) satisfies

div Curlt E = 0 in Ω, (3.3)

Curlt E ×N = 0 on ∂Ω, (3.4)

∂NE = 0 on ∂Ω. (3.5)

Proof. One has
[ div Curlt E]i = εikm∂j∂kEjm = εikm∂k∂jEmj = 0

and Curlt E ×N = 0 by Lemma 3.1.
From (2.16) one infers on ∂Ω

∂NENN = 0, ∂NENR = 0.

Therefore (2.15) entails

∂NEij =
∑
R

∂NERRτ
R
i τ

R
j + ∂NEAB(τAi τ

B
j + τAj τ

B
i ).

In the basis (τA, τB , N) one has

∂NE =

∂NEAA ∂NEAB 0
∂NEAB ∂NEBB 0

0 0 0

 , ∂NE ×N =

∂NEAB −∂NEAA 0
∂NEBB −∂NEAB 0

0 0 0

 , (3.6)

0 = (∂NE ×N)t ×N =

 ∂NEBB −∂NEAB 0
−∂NEAB ∂NEAA 0

0 0 0

 , (3.7)

whereby (3.5) follows. �

Remark 3.4. In the same token, for a general symmetric tensor T , one has in the basis
(τA, τB , N):

T =

TAA TAB TAN
TBA TBB TBN
TNA TNB TNN

 , T ×N =

TAB −TAA 0
TBB −TBA 0
TNB −TNA 0

 ,

(T ×N)t ×N =

 TBB −TAB 0
−TAB TAA 0

0 0 0

 . (3.8)

Remark 3.5. Let T = Curlt E be such that T × N = 0 on ∂Ω. Then, by Remark 3.4, one
has TQR = 0 for R = A,B and Q = A,B,N . For fixed i, let Vj = Tij in Lemma 3.2. We infer
( Curl T )N = ( inc E)N = 0 on ∂Ω.

Lemma 3.6 (Kozono-Yanagisawa-von Wahl [13, 24]). Let F ∈ Hcurl(Ω;M3) such that div F =
0 in Ω and F ×N = 0 on ∂Ω. Then F ∈ H1(Ω,M3) and it holds

‖∇F‖L2(Ω) ≤ C‖Curl F‖L2(Ω) (3.9)

for some positive constant C independent of F .

Lemma 3.7. For all E ∈ H0(Ω) it holds

‖E‖H2(Ω) ≤ C
(
‖E‖L2(Ω) + ‖Curl E‖L2(Ω) + ‖ inc E‖L2(Ω)

)
for some positive constant C independent of E.

Proof. By Lemma 3.6 we have already

‖∇E‖L2(Ω) ≤ C‖Curl E‖L2(Ω).

Set F = Curlt E. We have Curl F ∈ L2(Ω), and, by Lemma 3.3, div F = 0 in Ω and F×N = 0
on ∂Ω. Hence Lemma 3.6 entails ‖∇F‖L2(Ω) ≤ C‖Curl F‖L2(Ω), i.e.,

‖∂i Curlt E‖L2(Ω) ≤ C‖ inc E‖L2(Ω).

This implies
‖Curl ∂iE‖L2(Ω) ≤ C‖ inc E‖L2(Ω). (3.10)
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In addition, div ∂iE = ∂i div E = 0 in Ω. By Lemma 3.3, ∂NE×N = 0 on ∂Ω, whereby, since
E = 0 on ∂Ω, ∂iE ×N = 0 on ∂Ω. Therefore, by Lemma 3.6,

‖∂j∂iE‖L2(Ω) ≤ C‖Curl ∂iE‖L2(Ω).

Using (3.10) we derive

‖∂j∂iE‖L2(Ω) ≤ C‖ inc E‖L2(Ω), (3.11)

and the proof is achieved. �

Theorem 3.8 (Poincaré). There exists a constant C > 0 such that, for each u ∈ H1(Ω,R3),

‖u‖L2(Ω) ≤ C
(
‖∇u‖L2(Ω) +

∫
Γ0

|u×N |dS
)
. (3.12)

Proof. By contradiction, assume that for each k ∈ N, there exists a uk ∈ H1(Ω;R3) such that

‖uk‖L2(Ω) > k

(
‖∇uk‖L2(Ω) +

∫
Γ0

|uk ×N |dS
)
.

Defining u̇k := uk/‖uk‖L2(Ω), one has ‖u̇k‖L2(Ω) = 1 and hence (i) ‖∇u̇k‖L2(Ω) → 0, (ii)∫
Γ0
|u̇k × N |dS → 0 as k → ∞. By (i) and Rellich’s theorem there exists v ∈ Hs(Ω,R3),

1/2 < s < 1, such that a nonrelabelled subsequence u̇k → v in Hs(Ω,R3), and hence by virtue
of (i) and for every ϕ ∈ D(Ω,R3),∫

Ω

v div ϕdx = lim
k→∞

∫
Ω

u̇k div ϕdx = − lim
k→∞

∫
Ω

Du̇kϕdx = 0,

whereby ∇v = 0, meaning that v is a constant vector. Condition (ii) now implies that
∫

Γ0
|u̇k×

N |dS →
∫

Γ0
|v ×N |dS = 0 as k →∞, i.e., v ×N = 0 and thus v is parallel to N , which is not

constant and of unit length, and hence v = 0, a contradiction, since ‖v‖L2(Ω) = 1. �

Theorem 3.9 (Coercivity). There exists a positive constant C such that, for each E ∈ H0(Ω),

‖E‖H2(Ω) ≤ C‖ inc E‖L2(Ω). (3.13)

Proof. By Theorem 3.8, the tensor counterpart of (3.12) reads

‖F‖L2(Ω) ≤ C
(
‖∇F‖L2(Ω) +

∫
Γ0

|F ×N |dS
)
,

for all F ∈ H1(Ω,M3). By Lemma 3.3, div Curlt E = 0 in Ω and Curlt E × N = 0 on
∂Ω. Hence by Lemma 3.6 and again by Theorem 3.8, one has (with the nonrelabeled constant
C > 0),

‖E‖L2(Ω) ≤ C‖∇E‖L2(Ω) ≤ C‖Curl E‖L2(Ω) = C‖Curlt E‖L2(Ω)

≤ C‖∇Curlt E‖L2(Ω) ≤ C‖Curl Curlt E‖L2(Ω) = C‖ inc E‖L2(Ω).

The proof is completed using Lemma 3.7. �

3.2. Lifting of boundary traces.

Theorem 3.10. Let g ∈ H̃1
0 (Ω,R3). There exists U ∈ H2

0 (Ω,S3) such that div U = g.

Proof. Step 1. Let v ∈ H1(Ω,R3) be a solution (unique up to a rigid motion) of{
−div ∇sv = g in Ω,
∇svN = 0 on ∂Ω,

and set V = ∇sv. By elliptic regularity, v ∈ H3(Ω), thus V ∈ H2(Ω). We have div V = g in
Ω and V N = 0 on ∂Ω.
Step 2. We aim at defining U = V +W where W = inc Ψ, Ψ ∈ H4(Ω,S3), must satisfy:

WN = 0 on ∂Ω, (3.14)

WτR = −V τR on ∂Ω, (3.15)

∂NW = −∂NV on ∂Ω. (3.16)
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We assume a priori that Ψ ∈ H4(Ω,S3) satisfies

Ψ = ∂NΨ = 0 on ∂Ω. (3.17)

Then (3.14) holds true by Remark 3.5 and Lemma 3.1. We are going to derive other conditions
on Ψ such that (3.15)-(3.16) are also satisfied.
Step 3. Let us rewrite the traces of V and ∂NV on ∂Ω in the local basis (τA, τB , N) as

V =

VAA VAB VAN
VAB VBB VBN
VAN VBN VNN

 =

VAA VAB 0
VAB VBB 0

0 0 0

 , ∂NV =

∂NVAA ∂NVAB ∂NVAN
∂NVAB ∂NVBB ∂NVBN
∂NVAN ∂NVBN ∂NVNN

 .

Assume that

∂2
NΨ =

−VBB VAB 0
VAB −VAA 0

0 0 0

 , (3.18)

and

∂3
NΨ =

 (−∂N + 2κA)VBB − 2ξVAB (∂N − κ)VAB + ξ(VAA + VBB) 0
(∂N − κ)VAB + ξ(VAA + VBB) (−∂N + 2κB)VAA − 2ξVAB 0

0 0 0

 . (3.19)

Let us compute the components of the vector WτR.
• For WτR ·N , it holds

WτR ·N : WτR ·N = WN · τR = 0 = −VRN . (3.20)

• For WτR · τR, we compute componentwise

Wijτ
A
j τ

A
i = εikmτ

A
i εjlnτ

A
j ∂k∂lΨmn

= εikmτ
A
i εjln∂k(τAj ∂lΨmn)− εikmτAi εjln(∂kτ

A
j )∂lΨmn.

The last term of the right hand side vanishes by (3.17), hence

Wijτ
A
j τ

A
i =εikmτ

A
i ∂k(εjlnτ

A
j ∂lΨmn)

=εikmτ
A
i (τBk ∂B +Nk∂N )

(
εjlnτ

A
j (τBl ∂B +Nl∂N )Ψmn

)
=(Nm∂B − τBm∂N )(Nn∂B − τBn ∂N )Ψmn

=Nm∂B(Nn∂BΨmn)−Nm∂B(τBn ∂NΨmn)− τBm∂N (Nn∂BΨmn) + τBm∂N (τBn ∂NΨmn),

which again by (3.17) yields

Wijτ
A
j τ

A
i = −τBmNn∂N (∂BΨmn) + τBmτ

B
n ∂N (∂NΨmn),

that is, by (3.17) and (2.14),

Wijτ
A
j τ

A
i = ∂N∂N (τBmτ

B
n Ψmn) = ∂2

NΨBB . (3.21)

Similarly, it holds Wijτ
B
j τ

B
i = ∂2

NΨAA.

• Now, consider WτR · τR∗ and compute componentwise

Wijτ
A
j τ

B
i = εikmτ

B
i εjlnτ

A
j ∂k∂lΨmn = εikmτ

B
i ∂k(εjlnτ

A
j ∂lΨmn)

= εikmτ
B
i (τAk ∂A +Nk∂N )

(
εjlnτ

A
j (τBl ∂B +Nl∂N )Ψmn

)
= (−Nm∂A + τAm∂N )(Nn∂B − τBn ∂N )Ψmn

= −Nm∂A(Nn∂BΨmn) +Nm∂A(τBn ∂NΨmn) + τAm∂N (Nn∂BΨmn)− τAm∂N (τBn ∂NΨmn).

By (3.17) and (2.14), this reads

Wijτ
A
j τ

B
i = −∂2

NΨAB . (3.22)

Thus (3.15) is satisfied by (3.18) and (3.20)-(3.22).
Step 4. Let us compute ∂NW .
• We first compute ∂NWτR · τR. Recall that, from Corollary 2.3, one has

∂NA = ∂AN − κA∂A − ξ∂B . (3.23)
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By mere projections, we have

∂NWijτ
A
j τ

A
i =∂N

[
εikmεjlnτ

A
i τ

A
j ∂k∂lΨmn

]
=∂N

[
εikmεjlnτ

A
i τ

A
j (τAk ∂A + τBk ∂B +Nk∂N )(τAl ∂A + τBl ∂B +Nl∂N )Ψmn

]
=∂N

[
εikmτ

A
i (τAk ∂A + τBk ∂B +Nk∂N )

(
εjlnτ

A
j (τAl ∂A + τBl ∂B +Nl∂N )Ψmn

)
− εikmεjlnτAi (τAk ∂A + τBk ∂B +Nk∂N )τAj (τAl ∂A + τBl ∂B +Nl∂N )Ψmn

]
=∂N

[
(Nm∂B − τBm∂N )(Nn∂B − τBn ∂N )Ψmn

− εjln
(
(Nm∂B − τBm∂N )τAj

)
(τAl ∂A + τBl ∂B +Nl∂N )Ψmn

]
=(Nm∂NB − τBm∂NN )(Nn∂B − τBn ∂N )Ψmn

− εjlnNm∂BτAj (τAl ∂NA + τBl ∂NB +Nl∂NN )Ψmn

− εjln
(
(Nm∂NB − τBm∂NN )τAj

)
(τAl ∂A + τBl ∂B +Nl∂N )Ψmn, (3.24)

and hence from (3.17) and (3.23), the right hand side of (3.24) equals to

(Nm∂NB − τBm∂NN )(Nn∂B − τBn ∂N )Ψmn − εjlnNm∂BτAj (τAl ∂NA + τBl ∂NB +Nl∂NN )Ψmn.

By (3.23), it follows that

∂NWijτ
A
j τ

A
i = (Nm∂BN − κBNm∂B − ξNm∂A − τBm∂NN )(Nn∂B − τBn ∂N )Ψmn

− εjlnNm(γAτBj − ξNj)(τAl ∂NA + τBl ∂NB +Nl∂NN )Ψmn,

thus by virtue of (3.17) and (3.23),

∂NWijτ
A
j τ

A
i =(Nm∂BN − τBm∂NN )(Nn∂B − τBn ∂N )Ψmn − εjlnNm(γAτBj − ξNj)(Nl∂NN )Ψmn

=(Nm∂B − τBm∂N )(Nn∂NB − τBn ∂NN )Ψmn −Nm(γAτAn )∂NNΨmn,

and again by (3.23),

∂NWijτ
A
j τ

A
i = (Nm∂B − τBm∂N )(Nn∂BN − κBNn∂B − ξNn∂A − τBn ∂NN )Ψmn

− γANmτAn ∂NNΨmn.

By (3.17), this entails that

∂NWijτ
A
j τ

A
i = Nm∂B(−τBn ∂NN )Ψmn − τBm(Nn∂NBN − κBNn∂NB − (∂Nκ

B)Nn∂B

− ξNn∂NA − (∂Nξ)Nn∂A − τBn ∂NNN )Ψmn − γANmτAn ∂NNΨmn,

whereby, using again (3.17) and (3.23),

∂NWijτ
A
j τ

A
i =−Nm∂B(τBn ∂NN )Ψmn − τBm(Nn∂NBN − τBn ∂NNN )Ψmn − γANmτAn ∂NNΨmn

=−Nm(−κBNn∂NN − γAτAn ∂NN + τBn ∂BNN ))Ψmn

− τBm(Nn∂BNN − τBn ∂NNN )Ψmn − γANmτAn ∂NNΨmn.

Therefore,

∂NWijτ
A
j τ

A
i =κBNmNn∂NNΨmn − (Nmτ

B
n +Nnτ

B
m)∂BNNΨmn + τBmτ

B
n ∂NNNΨmn

=κBNmNn∂NNΨmn − 2Nmτ
B
n ∂BNNΨmn + τBmτ

B
n ∂NNNΨmn. (3.25)

Yet

∂B(Nmτ
B
n ) = (κBτBm + ξτAm)τBn +Nm(−κBNn − γAτAn )

= κBτBmτ
B
n + ξτAmτ

B
n − κBNmNn − γANmτAn . (3.26)
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This yields

∂NWijτ
A
j τ

A
i =κBNmNn∂NNΨmn − 2∂B(Nmτ

B
n ∂NNΨmn)

+ 2(κBτBmτ
B
n + ξτAmτ

B
n − κBNmNn − γANmτAn )∂NNΨmn + τBmτ

B
n ∂NNNΨmn

=− κBNmNn∂NNΨmn − 2∂B(Nmτ
B
n ∂NNΨmn)

+ 2(κBτBmτ
B
n + ξτAmτ

B
n − γANmτAn )∂NNΨmn + τBmτ

B
n ∂NNNΨmn

=− κB∂NNΨNN − 2∂B∂NNΨBN

+ 2κB∂NNΨBB + 2ξ∂NNΨAB − 2γA∂NNΨAN + ∂NNNΨBB ,

which implies by (3.18) and (3.19) that

∂NWijτ
A
j τ

A
i =− 2κBVAA + 2ξVAB + ∂3

NΨBB = −∂NVAA. (3.27)

We have obtained ∂NWAA = −∂NVAA. Similarly we find ∂NWBB = −∂NVBB .
• Then we compute ∂NWτR · τR∗ . We have

∂NWijτ
A
j τ

B
i =∂N

[
εikmεjlnτ

B
i τ

A
j ∂k∂lΨmn

]
=∂N

[
εikmεjlnτ

B
i τ

A
j (τAk ∂A + τBk ∂B +Nk∂N )(τAl ∂A + τBl ∂B +Nl∂N )Ψmn

]
=∂N

[
(−Nm∂A + τAm∂N )(Nn∂B − τBn ∂N )Ψmn

− εjln(−Nm∂A + τAm∂N )τAj (τAl ∂A + τBl ∂B +Nl∂N )Ψmn

]
,

which by virtue (3.17) rewrites as

∂NWijτ
A
j τ

B
i = (−Nm∂NA + τAm∂NN )(Nn∂B − τBn ∂N )Ψmn

+ εjlnNm(−κANj − γBτBj )(τAl ∂NA + τBl ∂NB +Nl∂NN )Ψmn.

Hence, by (3.17) and (3.23),

∂NWijτ
A
j τ

B
i = (−Nm∂AN + κANm∂A + ξNm∂B + τAm∂NN )(Nn∂B − τBn ∂N )Ψmn

+ εjlnNm(−κANj − γBτBj )(τAl ∂NA + τBl ∂NB +Nl∂NN )Ψmn,

and by (3.17) again, one has

∂NWijτ
A
j τ

B
i =(−Nm∂AN + τAm∂NN )(Nn∂B − τBn ∂N )Ψmn − εjlnNm(κANj + γBτBj )Nl∂NNΨmn

=(−Nm∂A + τAm∂N )(Nn∂NB − τBn ∂NN )Ψmn − γBNmτAn ∂NNΨmn. (3.28)

Again by (3.23), the right hand side of (3.28) equals to

(−Nm∂A + τAm∂N )(Nn∂BN − κBNn∂B − ξNn∂A − τBn ∂NN )Ψmn − γBNmτAn ∂NNΨmn,

which by (3.17) is rewritten as

Nm∂Aτ
B
n ∂NNψmn + τAm(Nn∂NBN − κBNn∂NB − ξNn∂NA − τBn ∂NNN )Ψmn − γBNmτAn ∂NNΨmn.

Therefore, (3.17) and (3.23) imply that

∂NWijτ
A
j τ

B
i =Nm∂A(τBn ∂NN )ψmn + τAm(Nn∂NBN − τBn ∂NNN )Ψmn − γBNmτAn ∂NNΨmn

=Nm(γBτAn ∂NN − ξNn∂NN + τBn ∂ANN ))Ψmn

+ τAm(Nn∂BNN − τBn ∂NNN )Ψmn − γBNmτAn ∂NNΨmn

=− ξNmNn∂NNΨmn +Nmτ
B
n ∂ANNΨmn +Nnτ

A
m∂BNNΨmn − τAmτBn ∂NNNΨmn.

Yet,

∂A(Nmτ
B
n ) + ∂B(Nnτ

A
m) = κτAmτ

B
n + ξ(τAmτ

A
n + τBmτ

B
n ) + γBNmτ

A
n + γANnτ

B
m − 2ξNmNn.
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This yields

∂NWijτ
A
j τ

B
i =− ξNmNn∂NNΨmn + ∂A(Nmτ

B
n ∂NNΨmn) + ∂B(Nnτ

A
m∂NNΨmn)

−
(
κτAmτ

B
n + ξ(τAmτ

A
n + τBmτ

B
n ) + γBNmτ

A
n + γANnτ

B
m − 2ξNmNn

)
∂NNΨmn

− τAmτBn ∂NNNΨmn

=ξNmNn∂NNΨmn + ∂A(Nmτ
B
n ∂NNΨmn) + ∂B(Nnτ

A
m∂NNΨmn)

−
(
κτAmτ

B
n + ξ(τAmτ

A
n + τBmτ

B
n ) + γBNmτ

A
n + γANnτ

B
m

)
∂NNΨmn − τAmτBn ∂NNNΨmn

=ξ∂NNΨNN + ∂A(∂NNΨBN ) + ∂B(∂NNΨAN )

− κ∂NNΨAB − ξ∂NN (ΨAA + ΨBB)− γB∂NNΨAN − γA∂NNΨBN − ∂NNNΨAB .

Thus, by (3.18) and (3.19), one has

∂NWijτ
A
j τ

B
i =− κVAB + ξ(VAA + VBB)− ∂3

NΨAB = −∂NVAB .

• Now we address the term ∂NWN · τR. It holds

∂NWijNjτ
A
i = ∂N

[
(Nm∂B − τBm∂N )(τBn ∂A − τAn ∂B)Ψmn

− εjln
(
(Nm∂B + τBm∂N )Nj

)
(τAl ∂A + τBl ∂B +Nl∂N )Ψmn

]
,

which by (3.17) rewrites as

∂NWijNjτ
A
i = (Nm∂NB − τBm∂NN )(τBn ∂A − τAn ∂B)Ψmn

− εjlnNm (∂BNj) (τAl ∂NA + τBl ∂NB +Nl∂NN )Ψmn,

and by (3.17) and (3.23), as

∂NWijNjτ
A
i = (Nm∂BN − τBm∂NN )(τBn ∂A − τAn ∂B)Ψmn − εjlnNm (∂BNj)Nl∂NNΨmn.

The last term vanishes since ∂NNΨiN = 0. Thus

∂NWijNjτ
A
i =(Nm∂B − τBm∂N )(τBn ∂NA − τAn ∂NB)Ψmn − γANmτAn ∂NNΨmn,

and by (3.23), rewrites as

∂NWijNjτ
A
i =(Nm∂B − τBm∂N )(τBn ∂AN − κAτBn ∂A − ξτBn ∂B − τAn ∂BN + κBτAn ∂B + ξτAn ∂A)Ψmn,

which by virtue (3.17) rewrites as

∂NWijNjτ
A
i =− τBm∂N (τBn ∂AN − κAτBn ∂A − ξτBn ∂B − τAn ∂BN + κBτAn ∂B + ξτAn ∂A)Ψmn

=− τBm(τBn ∂NAN − κAτBn ∂NA − ξτBn ∂NB − τAn ∂NBN + κBτAn ∂NB + ξτAn ∂NA)Ψmn.

Again by (3.17) and (3.23), one writes

∂NWijNjτ
A
i = −τBm(τBn ∂ANN − κAτBn ∂AN − ξτBn ∂BN − τAn ∂BNN + κBτAn ∂BN + ξτAn ∂AN )Ψmn,

which, recalling (3.17), reads

∂NWijNjτ
A
i =− τBm(τBn ∂ANN − τAn ∂BNN )Ψmn

=− τBmτBn ∂ANNΨmn + τBmτ
A
n ∂BNNΨmn.

Yet,

−∂A(τBmτ
B
n ) + ∂B(τBmτ

A
n ) = −γB(τAmτ

B
n + τBmτ

A
n ) + ξNmτ

B
n − κBNmτAn + γA(−τAmτAn + τBmτ

B
n ),

and hence

∂NWijNjτ
A
i =− ∂A(τBmτ

B
n ∂NNΨmn) + ∂B(τBmτ

A
n ∂NNΨmn)− γANmτAn ∂NNΨmn

−
(
−γB(τAmτ

B
n + τBmτ

A
n ) + ξNmτ

B
n − κBNmτAn + γA(−τAmτAn + τBmτ

B
n )
)
∂NNΨmn

=− ∂ANNΨBB + ∂BNNΨAB − γA∂NNΨNA

+ 2γB∂NNΨAB − ξ∂NNΨBN + κB∂NNΨAN + γA∂NN (ΨAA −ΨBB).

Therefore, (3.18) yields

∂NWijNjτ
A
i =∂AVAA + ∂BVAB + 2γBVAB + γA(VAA − VBB).
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Since div V = 0 and V N = 0, we infer from (2.16) that

∂NVAN + ∂AVAA + γA(VAA − VBB) + ∂BVAB + 2γBVAB = 0.

Thus

∂NWAN = −∂NVAN .
Similarly one gets ∂NWBN = −∂NVBN .
• Lastly it remains to consider ∂NWN ·N . We have

∂NWijNjNi = ∂N
[
(τBm∂A − τAm∂B)(τBn ∂A − τAn ∂B)Ψmn

− εjln(τBm∂A − τAm∂B)Nj(τ
A
l ∂A + τBl ∂B +Nl∂N )Ψmn

]
,

which by (3.17) writes as

∂NWijNjNi = (τBm∂NA − τAm∂NB)(τBn ∂A − τAn ∂B)Ψmn

− εjln(τBm∂A − τAm∂B)Nj(τ
A
l ∂NA + τBl ∂NB +Nl∂NN )Ψmn,

and again by (3.17), recalling (3.23), rewrites as

∂NWijNjNi =(τBm∂AN − τAm∂BN )(τBn ∂A − τAn ∂B)Ψmn

− εjln(κAτBmτ
A
j + ξτBmτ

B
j − κBτAmτBj − ξτAmτAj )Nl∂NNΨmn

=(τBm∂A − τAm∂B)(τBn ∂NA − τAn ∂NB)Ψmn

− (−κAτBmτBn + ξτBmτ
A
n − κBτAmτAn + ξτAmτ

B
n )∂NNΨmn.

Hence, (3.17) and (3.23) imply that

∂NWijNjNi =(τBm∂A − τAm∂B)(τBn ∂AN − τAn ∂AN )Ψmn

+ (κAτBmτ
B
n + κBτAmτ

A
n − ξτBmτAn − ξτAmτBn )∂NNΨmn.

Yet, (3.17) yields

∂NWijNjNi = κA∂NNΨBB + κB∂NNΨAA − 2ξ∂NNΨAB ,

which by (3.18) achieves the calculation, since

∂NWijNjNi = −κAVAA − κBVBB − 2ξVAB .

Recall now that div V = 0 and V N = 0, to infer from (2.16) that

∂NWNN = −∂NVNN .
Thus (3.16) is satisfied.
Step 5. The proof is achieved by the classical lifting theorem in H4(Ω) for the components
of Ψ in the local basis, such that (3.17),(3.18) and (3.19) are satisfied. �

If E is a symmetric matrix decomposed as (2.15), we denote by ET the tangential part of E
with components

(ET )ij := EAAτ
A
i τ

A
j + EBBτ

B
i τ

B
j + EAB(τAi τ

B
j + τAj τ

B
i ). (3.29)

Lemma 3.11. Let E ∈ H3/2(∂Ω,S3), G ∈ H1/2(∂Ω,S3). There exists H ∈ H2(Ω,S3) such
that  H = E on ∂Ω,

(∂NH)T = GT on ∂Ω,
div H = 0 on ∂Ω.

Proof. By the lifting theorem in H2(Ω), one constructs functions HAA, HAB , HBB ∈ H2(Ω)
such that on ∂Ω:

HAA = EAA, HAB = EAB , HBB = EBB ,
∂NHAA = GAA, ∂NHAB = GAB , ∂NHBB = GBB .

By (2.16), the conditions div H = 0 and H = E on ∂Ω impose ∂NHNN , ∂NHNA and ∂NHNB

on ∂Ω. Then one constructs HNN , HNA and HNB in Ω using again the lifting theorem in
H2(Ω). �
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Theorem 3.12. Let E ∈ H3/2(∂Ω,S3) with∫
∂Ω

ENdS(x) = 0,

i.e., E ∈ H̃3/2(∂Ω,S3), and G ∈ H1/2(∂Ω,S3). There exists E ∈ H2(Ω,S3) such that E = E on ∂Ω,
(∂NE)T = GT on ∂Ω,
div E = 0 in Ω.

In addition, such a lifting can be obtained through a linear continuous operator

L∂Ω : (E,G) ∈ H̃3/2(∂Ω,S3)×H1/2(∂Ω,S3) 7→ E ∈ H2(Ω,S3).

Proof. Let H be the function defined in Lemma 3.11. We must construct K = E − H ∈
H2(Ω,S3) satisfying  K = 0 on ∂Ω,

(∂NK)T = 0 on ∂Ω,
div K = −div H in Ω.

We have div H ∈ H1
0 (Ω,R3) and∫

Ω

div Hdx =

∫
∂Ω

HNdS(x) =

∫
∂Ω

ENdS(x) = 0.

Therefore Theorem 3.10 provides the desired K. Finally, the linearity and the continuity of the
obtained lifting is easily checked at each step of its construction. �

3.3. Beltrami decomposition. The following result is again given for the sake of generality
in Lp(Ω) with 1 < p <∞ but should be here be considered for p = 2.

Theorem 3.13 (Beltrami decomposition [15]). Assume that Ω is simply-connected. Let p ∈
(1,+∞) be a real number and let E ∈ Lp(Ω,S3) be a symmetric tensor. Then, For any U ∈
W 1/p,p(∂Ω), there exists a unique u ∈ W 1,p(Ω,R3) with u = U on ∂Ω and a unique F ∈
Lp(Ω,S3) with Curl F ∈ Lp(Ω,R3×3), inc F ∈ Lp(Ω,S3), div F = 0 and FN = 0 on ∂Ω such
that

E = ∇Su+ inc F. (3.30)

We call ∇Su the compatible part and E0 := inc F the (solenoidal) incompatible part of the
Beltrami decomposition.

3.4. Green formula. Let V be a vector field defined on ∂Ω and let Ṽ be any extension of V
in Ω with appropriate regularity. The surface divergence of V is defined on ∂Ω by

divS V = div Ṽ − (∂N Ṽ ) ·N. (3.31)

Lemma 3.14 ([12]). If V ∈W 1,1(∂Ω,R3) then∫
∂Ω

divS V dS(x) =

∫
∂Ω

κV ·NdS(x).

Lemma 3.15. For all A,B ∈ C2(Ω,M3),∫
Ω

A · Curl Bdx =

∫
Ω

Curl A ·Bdx+

∫
∂Ω

(A×N) ·BdS(x).

Proof. We have∫
Ω

A · Curl Bdx =

∫
Ω

εjkmAij∂kBimdx

= −
∫

Ω

εjkm∂kAijBimdx+

∫
∂Ω

εjkmAijBimNkdS(x)

=

∫
Ω

( Curl A)imBimdx+

∫
∂Ω

(A×N)imBimdS(x).

�

Denote AS = (A+At)/2 the symmetric part of a tensor A.
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Theorem 3.16. Suppose that T ∈ C2(Ω,S3) and η ∈ H2(Ω,S3). Then∫
Ω

T · inc ηdx =

∫
Ω

inc T · ηdx

+

∫
∂Ω

T1(T ) · η dS(x) +

∫
∂Ω

T0(T ) · ∂NηdS(x) (3.32)

with the trace operators defined as

T0(T ) := (T ×N)
t ×N,

T1(T ) :=
(

Curl (T ×N)t
)S

+ ((∂N + κ)T ×N)
t ×N+

(
Curlt T ×N

)S
. (3.33)

Proof. By density we can assume that η is smooth. Lemma 3.15 yields∫
Ω

T · inc ηdx =

∫
Ω

Curlt T · Curl ηdx +

∫
∂Ω

Curl η · (T × N)tdS(x).

From the definition of the cross product of two tensors and its trace we observe that

div ( tr A×B) = Curl A ·B − Curl B ·A.

As a consequence, setting A = (T ×N)t and B = η in the above identity, one has∫
Ω

T · inc ηdx =

∫
Ω

Curlt T · Curl ηdx+

∫
∂Ω

η · Curl (T ×N)tdS(x)

−
∫
∂Ω

div ( tr
((
T ×N)t × η

))
dS(x).

By definition of the surface divergence, this rewrites as∫
Ω

T · inc ηdx =

∫
Ω

Curlt T · Curl ηdx+

∫
∂Ω

η · Curl (T ×N)tdS(x)

−
∫
∂Ω

[
divS

(
tr
(

(T ×N)
t × η

))
+ ∂N

(
tr
(

(T ×N)
t × η

))
·N
]
dS(x).

A short calculation shows that for two tensors A, B,

tr (A×B) ·N = −(A×N) ·B.

Using Lemma 3.14 we obtain∫
Ω

T · inc ηdx =

∫
Ω

Curlt T · Curl ηdx+

∫
∂Ω

η · Curl (T ×N)tdS(x)

+

∫
∂Ω

κ(T ×N)t ×N · ηdS(x) +

∫
∂Ω

∂N
(
(T ×N)t ×N) · η

)
dS(x).

Rearranging yields∫
Ω

T · inc ηdx =

∫
Ω

Curlt T · Curl ηdx+

∫
∂Ω

(T ×N)
t ×N · ∂NηdS(x)

+

∫
∂Ω

(
Curl (T ×N)t + ((∂N + κ)T ×N)

t ×N
)
· ηdS(x). (3.34)

One concludes using Lemma 3.15. �

Remark 3.17. By Remark 3.4, only (∂Nη)T matters in the rightmost integral of (3.32).

Remark 3.18. For a symmetric tensor A and vectors u and v, one has ((A× u)t × v)
t

=
(A× v)t × u. Indeed, we have componentwise(

(A× u)t × v
)
ip

= εpjmεiklAjkulvm = εiklεpjmAkjvmul = εikl(A× v)tpkul = (A× v)t × u)pi.

(3.35)
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Lemma 3.19. We have the alternative expressions

T1(T ) = −
∑
R

κR(T × τR)t × τR −
∑
R

ξ(T × τR)t × τR
∗

+ ((−∂N + κ)T ×N)
t ×N

− 2

(∑
R

(∂RT ×N)t × τR
)S

, (3.36)

T1(T ) =
∑
R

κR(T × τR)t × τR +
∑
R

ξ(T × τR)t × τR
∗
− ((∂N + κ)T ×N)

t ×N

− 2
∑
R

(∂R + γR)
(
(T ×N)t × τR

)S
. (3.37)

In addition it holds ∫
∂Ω

T1(T )NdS(x) = 0. (3.38)

Proof. We have(
Curl (T ×N)t

)
mn

= −εikmεjln∂l(NkTij)
= −εikmεjln(∂lNkTij +Nk∂lTij)

= −εikmεjln

(∑
R

τRl ∂RNkTij +Nk∂lTij

)

= −εikmεjln

(∑
R

(κRτRl τ
R
k + ξτRl τ

R∗

k )Tij +Nk∂lTij

)
= −

∑
R

κR
(
(T × τR)t × τR

)
nm
−
∑
R

ξ
(

(T × τR)t × τR
∗
)
nm

+
(

Curlt T ×N
)
nm

.

Hence

Curl (T ×N)t = −
∑
R

κR(T × τR)t × τR −
∑
R

ξ(T × τR)t × τR
∗

+
(

Curlt T ×N
)t
. (3.39)

By Lemma 3.1 and (3.35) we obtain (3.36).
Denote EA = E − ES = 1

2 (E − Et). By (3.39) and Lemma 3.1 we have

(
Curl (T ×N)t

)A
= −

(
Curlt T ×N

)A
=

(∑
R

(∂RT × τR)t ×N

)A
.

Integrating against N and using the Stokes formula, by which
∫
∂Ω

Curl FNdS(x) = 0 for any
tensor F , yields∫

∂Ω

Curlt (T ×N)tNdS(x) =

∫
∂Ω

(∑
R

(∂RT × τR)t ×N

)t
NdS(x).

Using (3.35) and reordering the mixed product entails∫
∂Ω

Curlt (T ×N)tNdS(x) = −
∫
∂Ω

(∑
R

(∂RT ×N)t ×N

)
τRdS(x). (3.40)

From the Stokes formula we have∫
∂Ω

T1(T )NdS(x) =
1

2

∫
∂Ω

Curlt (T ×N)tNdS(x) +
1

2

∫
∂Ω

(
Curlt T ×N

)t
NdS(x), (3.41)

and by Lemma 3.1(
Curlt T ×N

)t
N = −

∑
R

(
(∂RT × τR)t ×N

)t
N =

∑
R

(
(∂RT ×N)t ×N

)
τR. (3.42)

Combining (3.41), (3.40) and (3.42) entails (3.38).
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Lastly, (3.37) is derived from (3.36) using

(∂RT ×N)
t × τR = ∂R

(
(T ×N)t × τR

)
− (T × ∂RN)t × τR − (T ×N)t × ∂RτR.

�

3.5. Gauge conditions. Theorem 3.16 applies to arbitrary test functions η ∈ H2(Ω,S3), but
only solenoidal fields are considered in the targeted application. The implications as to the dual
characterization of the boundary term T1(T ) is discussed below. We define the gauge set

G :=
{
V �N,V ∈ R3

}
⊂ C∞(∂Ω,S3)

with

V1 � V2 :=
1

2
(V1V

t
2 + V2V

t
1 ) ∀V1, V2 ∈ R3,

and the matrices

M =

∫
∂Ω

NN tdS(x), P = (|∂Ω|I2 +M)−1.

In all the sequel we will denote duality pairings by integrals for the sake of readability.

Lemma 3.20. Let E ∈ H−3/2(∂Ω,S3). Then the condition∫
∂Ω

E · FdS(x) = 0 ∀F ∈ H̃3/2(∂Ω,S3) (3.43)

holds true if and only if E ∈ G.

Proof. Assume first that E ∈ G, i.e., E = V � N for some V ∈ R3. We have for all F ∈
H̃3/2(∂Ω,S3) ∫

∂Ω

E · FdS(x) =

∫
∂Ω

(V �N) · FdS(x) =

∫
∂Ω

(FN) · V dS(x) = 0.

Assume now that E ∈ H−3/2(∂Ω,S3) satisfies (3.43). Let F ∈ H3/2(∂Ω,S3) be arbitrary and
define

Φ =

∫
∂Ω

FNdS(x), F̃ = F − 2(PΦ)�N.

We have ∫
∂Ω

F̃NdS(x) = Φ− 2

∫
∂Ω

((PΦ)�N)NdS(x)

= Φ−
∫
∂Ω

(
PΦN tN +NN tPΦ

)
dS(x)

= Φ− (PΦ|∂Ω|+MPΦ)

= Φ− (|∂Ω|I2 +M)PΦ = 0.

This implies that F̃ ∈ H̃3/2(∂Ω,S3). Therefore

0 =

∫
∂Ω

E · F̃ dS(x)

=

∫
∂Ω

E · FdS(x)− 2

∫
∂Ω

(PΦ) · (EN)dS(x)

=

∫
∂Ω

E · FdS(x)− 2P

(∫
∂Ω

FNdS(x)

)
.

(∫
∂Ω

ENdS(x)

)
.

Set V = P
∫
∂Ω

ENdS(x). We obtain

0 =

∫
∂Ω

E · FdS(x)− 2V ·
(∫

∂Ω

FNdS(x)

)
=

∫
∂Ω

(
E−NV t − V N t

)
· FdS(x).

This being true for all F ∈ H3/2(∂Ω,S3), we infer E = NV t + V N t = 2V �N . �
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We denote by (H̃3/2(∂Ω,S3))′ the dual space of H̃3/2(∂Ω,S3). The restriction operator

R : H−3/2(∂Ω,S3)→ (H̃3/2(∂Ω,S3))′

is surjective by the Hahn-Banach theorem, and Lemma 3.20 says that kerR = G. Therefore,
the reduced map R̃ : H−3/2(∂Ω,S3)/G → (H̃3/2(∂Ω,S3))′ is an isomorphism. This permits to

identify the dual of H̃3/2(∂Ω,S3) with the quotient space H−3/2(∂Ω,S3)/G.

Lemma 3.21. Every E ∈ H−3/2(∂Ω,S3)/G admits a unique representative Ẽ such that∫
∂Ω

ẼNdS(x) = 0. (3.44)

It is given by

Ẽ = E− 2

(
P

∫
∂Ω

ENdS(x)

)
�N. (3.45)

Proof. Arguing as in Lemma 3.20, one obtains that the function Ẽ defined by (3.45) satisfies

(3.44). For the uniqueness, one has to show that, if Ẽ ∈ G satisfies (3.44), then Ẽ = 0. Thus,

suppose that Ẽ = V �N , V ∈ R3. We have∫
∂Ω

ẼNdS(x) =
1

2

∫
∂Ω

(V N tN +NN tV )dS(x) =
1

2
P−1V,

whereby (3.44) implies V = 0 and subsequently Ẽ = 0. �

With these elements at hand, we can now generalize Theorem 3.16 to arbitrary tensors
T ∈ Hinc(Ω,S3). First we remark that, by density,∫

Ω

T · inc ηdx =

∫
Ω

inc T · ηdx (3.46)

for every T ∈ Hinc(Ω,S3) and η ∈ H2(Ω,R3) such that η = (∂Nη)T = 0 on ∂Ω. Then, for every
T ∈ Hinc(Ω,S3), we define the traces T0(T ) ∈ H−1/2(∂Ω,S3) and T1(T ) ∈ H−3/2(∂Ω,S3)/G by

〈T0(T ), ϕ0〉 =

∫
Ω

T · inc η0dx−
∫

Ω

inc T · η0dx, ∀ϕ0 ∈ H1/2(∂Ω,S3),

〈T1(T ), ϕ1〉 =

∫
Ω

T · inc η1dx−
∫

Ω

inc T · η1dx, ∀ϕ1 ∈ H̃3/2(∂Ω,S3),

with η0 = L∂Ω(0, ϕ0) and η1 = L∂Ω(ϕ1, 0) (recall that L∂Ω is the lifting operator defined in
Theorem 3.12). These definitions are independent of the choice of the liftings by virtue of (3.46).
In addition, by Lemma 3.21, the function T1(T ) satisfying (3.38) is unambiguously defined in
this way. By linearity of L∂Ω, this extends formula (3.32) to any functions T ∈ Hinc(Ω,S3) and
η ∈ H(Ω).

Because of the aforementioned gauge properties, Lemmas 3.20 and 3.21 are also crucial in
order to derive strong formulations. This issue is examined in the next section.

4. A boundary value problem for the incompatibility

In this section we assume that Ω is simply-connected.

4.1. Governing equations. Let α ∈ L∞(Ω) with infΩ α > 0, G ∈ L2(Ω,S3) with div G = 0
in the sense of distributions. Consider the strictly convex minimization problem

min
E∈H0(Ω)

∫
Ω

(α
2
| inc E|2 −G · E

)
dx, (4.1)

whose Euler-Lagrange equation is∫
Ω

α inc E · inc Fdx =

∫
Ω

G · Fdx ∀F ∈ H0(Ω). (4.2)

By Theorem 3.9 and the Lax-Milgram theorem, (4.2) admits a unique solution E ∈ H0(Ω).
Remark that by Theorem 3.12, (4.2) also admits a unique solution in HE,F(Ω) and even in

HE,F;Γ0(Ω) (with the test function F ∈ HΓ0(Ω)). In fact it suffices to consider Theorem 3.9
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and the Lax-Milgram theorem with the unknown E − L∂Ω(E,F) which satisfies homogeneous
boundary conditions. Note that by (3.7), the tangential components of F are permutations
of the components of (∂NF)T of Theorem 3.12. It should also be remarked that by the Green
formula (3.32) and arguing as in Section 4.2, the solution E ∈ HE,F;Γ0

(Ω) satisfies the Neumann
conditions T0(α inc E) = T1(α inc E) = 0 on ∂Ω \ Γ0.

If F ∈ D(Ω,S3) is not solenoidal, the Beltrami decomposition gives F = F 0 + ∇Sw with
div F 0 = 0 and w = 0 on ∂Ω, and subsequently∫

Ω

α inc E · inc Fdx =

∫
Ω

α inc E · inc F 0dx =

∫
Ω

G · F 0dx

=

∫
Ω

G · Fdx−
∫

Ω

G · ∇Swdx =

∫
Ω

G · Fdx, (4.3)

since div G = 0. Thus, in view of (3.32) with T = α inc E, the strong form associated with
(4.3) is: 

inc (α inc E) = G in Ω,
div E = 0 in Ω,
E = 0 on ∂Ω,
(∂NE ×N)t ×N = 0 on ∂Ω.

(4.4)

Let us first focus on the specific case where α is constant. We have

Lemma 4.1. For all E symmetric and solenoidal, it holds inc ( inc E) = ∆∆E.

Proof. Componentwise, one computes

( inc ( inc E))ij = εiklεjmnεlpqεnrs∂k∂m∂p∂rEqs

= (δipδkq − δiqδkp)(δjrδms − δjsδmr)∂k∂m∂p∂rEqs
= ∂i∂j∂q∂sEqs − ∂2

k∂j∂sEis − ∂2
k∂r∂jEij + ∂2

p∂
2
rEij = ∆∆Eij ,

which gives the expected result. �

By (3.6) and (3.7), the expression (∂NE×N)t×N is a mere linear recombination of ∂NE×N ,
whereby these two expressions are equivalent. Therefore, it is not difficult to see [21] that (4.4)
for α constant is equivalent to

∆(α∆E) = G in Ω,
E = 0 on ∂Ω,

div E = 0 on ∂Ω,
∂NE ×N = 0 on ∂Ω,
∂N div E = 0 on ∂Ω.

(4.5)

Moreover one has the following result [21].

Theorem 4.2. The system (4.5) admits a unique strong solution E ∈ H4(Ω,S3), which is also
solution of (4.2) and (4.4).

We infer the following property, which enables to reconstruct a solenoidal tensor field from
its incompatibility.

Lemma 4.3. Let T ∈ L2(Ω,S3) with div T = 0 in the sense of distributions. There exists
S ∈ H2(Ω,S3) such that div S = 0 and inc S = T .

Proof. It suffices to set S = inc E with E solution of (4.4) with α = 1 and G = T . Theorem
4.2 shows that E ∈ H4(Ω,S3), hence S ∈ H2(Ω,S3). �

4.2. Transmission conditions. Let ω ⊂⊂ Ω with smooth boundary ∂ω and outward unit
normal N . Suppose that

α =

{
α0 in Ω \ ω,
α1 in ω,

with α0, α1 two positive constants.
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Theorem 4.4. Assume E is solution of (4.2) and denote T = inc E. Denote [[A]] the jump of
the quantity A across ∂ω, with the trace counted positively on the interior side of ω. Then

inc (αT ) = G in Ω \ ∂ω, (4.6)

[[T1(αT )]] = 0 on ∂ω, (4.7)

[[T0(αT )]] = 0 on ∂ω, (4.8)

[[TN ]] = 0 on ∂ω. (4.9)

Conversely, if T ∈ Hinc(Ω \ ∂ω, S3) satisfies

div T = 0 in Ω \ ∂ω,

together with (4.6)-(4.9), then

div T = 0 and inc (αT ) = G in Ω

in the sense of distributions. Moreover, there exists E ∈ H2(Ω,S3) with div E = 0 such that
T = inc E.

Proof. Using (3.32) (in its generalized version, see the discussion in Section 3.4) we have for all
F ∈ H0(Ω) ∫

Ω

G · Fdx =

∫
ω

α1T · inc Fdx+

∫
Ω\ω

α0T · inc Fdx

=

∫
ω

inc (α1T ) · Fdx+

∫
Ω\ω

inc (α0T ) · Fdx

+

∫
∂ω

[[T1(αT )]] · FdS(x) +

∫
∂ω

[[T0(αT )]] · ∂NFdS(x).

Choosing F with compact support in ω then in Ω \ω yields (4.6), as in (4.4). By Theorem 3.12
combined with Lemmas 3.19, 3.20 and 3.21, we infer the two transmission conditions (4.7) and
(4.8). In addition, one has div T = 0 which reads in the weak form∫

Ω

T · ∇Fdx = 0 ∀F ∈ D(Ω,R3).

Integrating by parts yields (4.9).
The converse relies on the standard Green formula, Theorem 3.16 and Lemma 4.3. �

5. Physical interpretation

The aim of this section is to describe two physically motivated problems where our model 4th-
order boundary value problem with the inc operator is considered. In the first example special
emphasis is given to the two Dirichlet boundary conditions, whereas in the second example, the
main concern is the first Neumann boundary condition. In both case, providing two Dirichlet
boundary conditions on (arbitrarily small, but non flat) Γ0, is mandatory to ensure uniqueness
of the solution.

The displacement in linear elasticity in the presence of dislocations. Let us assume that the
distribution of dislocations is known and given by the smooth 2nd-rank tensor Λ satisfying a
local conservation law expressed in the form div Λt = 0, and meaning that the dislocation
lines are closed or end at the boundary [14, 23]. Let Γ0 be a subset of ∂Ω which is not
everywhere flat and has nonzero H2-measure. Let F ∈ H1/2(∂Ω;S3) such that FN = 0. By
Lemma 3.1, one rewrites (1.7) with the second Dirichlet boundary condition restricted to Γ0

and nonhomogeneous as  inc inc E = Curl κ in Ω,
E = 0 on ∂Ω,

Curlt E ×N = −F on Γ0.
(5.1)
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It is understood that natural (homogeneous Neumann) boundary conditions complement this
system. It is first observed from (1.4) that Curl κ is symmetric as soon as Λt is divergence free,
since its skewsymmetric part vanishes, as seen by the following computation:

εmnpεnkl∂k(κ)ml = εmnpεnkl∂k(Λ)ml −
1

2
εmnpεmnk∂k(Λ)qq (5.2)

= ∂p(Λ)ll − ∂m(Λ)mp −
1

2
εmnpεmnk∂k(Λ)qq = 0, (5.3)

where we have used the identity εmnpεmnk = 2δpk. Moreover, the second boundary condition
is on the Frank tensor, the physical meaning of which is alluded to in the introduction.

Recall (3.2) and define

HF;Γ0
(Ω) := {E ∈ H0,F;Γ0

(Ω) : E = 0 on ∂Ω}. (5.4)

Therefore, by our existence result for the nonhomogeneous problem, the field E is found as the
solution of

min
E∈HF;Γ0

(Ω)

∫
Ω

(
1

2
| inc E|2 − Curl κ · E

)
dx. (5.5)

Let us denote ε0 := inc E. Now, by (1.6), one infers that the displacement u is solution of{
−div (A∇Su) = λ∇ tr ε0 in Ω,

(A∇Su)N = g − λ tr ε0N on ∂Ω.
(5.6)

In this equation, one identifies λ∇ tr ε0 as a dislocation-induced conservative force in the body,
and −λ tr ε0N as a dislocation-induced traction at the boundary.

Remark that by Lemma 3.32 one has T0(ε0) = 0 on ∂Ω\Γ0, that is, the tangential components
of ε0 vanish. Obviously one can take Γ0 = ∂Ω to recover the full pure Dirichlet problem. It
should also be noted that by Remark 3.5, taking F = 0 in the second Dirichlet condition implies
that ( inc E)N = ε0N = 0 on Γ0.

To summarize, in this section we have given a meaning to equation{
−div (A∇Su) = f in Ω,

(A∇Su)N = g on ∂Ω,
(5.7)

where u is the displacement field and f a conservative force (as the gravity), in the case where
−div σ = 0 (global equilibrium) and in the presence of dislocations, i.e., ∇Su = A−1σ−ε0 with
inc ε0 related to the density of dislocations. Thus, we have started with the strain as variable,
as in the intrinsic models of elasticity, and then introduced the displacement as the solutions
of PDEs which describe the static problem of an elastic body with dislocations.

Elements of a thermodynamic model for crystal growth. Assume that the elastic body with
dislocations is embedded in an environment whose temperature field T is known. Assume that
the dislocation density and hence the contortion tensor satisfy a constitutive law of the type

κ(T ) = Keq exp

(
H

kbT0
(
T0

T
− 1) + S(1− T

T0
)(
T0

T
− 1)

)
, (5.8)

where kb is the Boltzman constant, Keq is the equilibrium concentration at the reference tem-
perature T0, and with H and S the effective formation enthalpy and entropy, respectively. A
law such as (5.8) has been used successfully for the numerical simulation of points defects in
single crystals, as reported in [22]. Referring to the brief discussion in the introduction and to
Theorem 3.16, we would like to consider the mixed problem

inc (M inc ε0) = G in Ω,
ε0 = 0 on ∂Ω,

Curlt ε0 ×N = −F on Γ0,
T0( inc ε0) = T on ∂Ω \ Γ0,

(5.9)

whose solution exists and is unique in HF;Γ0
(Ω) as defined in (5.4). Our aim is to physically

interpret the boundary conditions of (5.9) and in particular the Neumann condition. Before
all, the first Dirichlet boundary condition means by Beltrami decomposition that

σN = (Aε)N = (A∇Su)N = g,
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on ∂Ω, i.e., pure traction is exerted, with u interpreted as the displacement field. As for the
second, taking F = 0 implies that ( inc ε0)N = ( Curl κ)N = 0 on Γ0. By (5.8) this rewrites as
κ′(T0)(∇T ×N) = 0 with T0 the temperature at Γ0, which is a condition satisfied if and only
if T = T0 is a constant on Γ0, that is, the temperature gradient is purely normal on Γ0. As for
the first Neumann boundary conditions, one has T0( Curl κ) = ( Curl κ×N)t×N = T. By the
symmetry property of κ (cf. (5.2)), by Lemma 3.1 and by (3.35), one has

( Curl κ×N)t = ( Curlt κ×N)t = −(∂Nκ×N)t ×N −
∑
R

(∂Rκ×N)t × τR.

By (5.8), this yields

( Curl κ×N)t = −∂NT (κ′(T )×N)t ×N − (κ′(T )×N)t ×∇ST,

where ∇ST =
∑
R τ

R∂RT means the surface gradient. Thus

( Curl κ×N)t ×N = ∂NT (κ′(T )×N)t +
(
(κ′(T )×N)t ×N

)
×∇ST. (5.10)

We have assumed that the temperature field is known and hence T must be given by the RHS
of (5.10), which involves the normal and tangential gradients of T . Note that the tangential
gradient may not be zero, if one thinks of a physical experiment such as Czochralski growth of
single crystals [16, 22]. Moreover, in this case one can take as Γ0 the solidification interface,
where on the one hand the temperature is constant (and equal to the solidification temperature
T0), and which on the other hand is nowhere flat (by superficial tension properties).
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da Universidade, C6, 1749-016 Lisboa, Portugal
E-mail address: vangoeth@fc.ul.pt


