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ANALYSIS OF THE INCOMPATIBILITY OPERATOR AND APPLICATION
IN INTRINSIC ELASTICITY WITH DISLOCATIONS

SAMUEL AMSTUTZ AND NICOLAS VAN GOETHEM

ABSTRACT. The incompatibility operator arises in the modeling of elastic materials with
dislocations and in the intrinsic approach to elasticity, where it is related to the Riemannian
curvature of the elastic metric. It consists of applying successively the curl to the rows and
the columns of a 2nd-rank tensor, usually chosen symmetric and divergence free. This paper
presents a systematic analysis of boundary value problems associated with the incompatibility
operator. It provides answers to such questions as existence and uniqueness of solutions,
boundary traces lifting and transmission conditions. Physical interpretations in dislocation
models are also discussed, but the application range of these results exceed by far any specific
physical model.

1. INTRODUCTION

The incompatibility operator is a 2nd-order differential operator consisting of taking the curl
of the rows and the columns of a 2nd-rank tensor e, viz.,

inc e = Curl Curl® ¢, (1.1)

the curl being taken row-wise. The incompatibility operator arises in physics, in the area of
dislocation modeling, since the linear elastic strain € is incompatible in the presence of disloca-
tions, that is, cannot be written as a symmetric gradient, as soon as inc € # 0. Specifically, its
incompatibility is related to the tensor-valued density of dislocations A as found by Kroner [14]
and further discussed in, e.g. [20, 23], and shows ultimately as a macroscopic manifestation
of plasticity (let us recall that plasticity is generated by dislocation motion). The insight of
Kroner was to understand the incompatibility as a genuine geometric property of the dislocated
crystal related to the connection torsion and contortion (we refer to [9, 18, 20]), the crystallo-
graphic evidence of the latter had been first identified by Nye [17]. In a recent contribution [21]
to this discussion, it was shown that the incompatible strain writes by virtue of the Beltrami
decomposition [15] as
¢ =V9u+ inc F, (1.2)

where u may be given the meaning of a displacement field, here complemented with a tensor-
valued symmetric and divergence-free field F’ which is related to the dislocation density by the
formula

inc inc F' = inc € = Curl &, (1.3)
where the last equality is due to Kroner [14], and with the contortion tensor

ki=A— gtr A. (1.4)
Here A is the macroscopic counterpart of the mesoscopic dislocation density tensor Ay :=
T®@bH! ., where 7 is the unit tangent vector to the dislocation line £, and b its Burgers vector.
Moreover, Eq. (1.1) shows tensor Curl® ¢, called the Frank tensor [23] and from which
the infinitesimal rotations and the displacement field are classically defined in linear elasticity.
In fact, in the presence of dislocation lines, the displacement and rotation jumps around the
lines are explicitly given [15] by means of recursive line integration of linear combinations of
the elastic strain and Frank tensors. Obviously, these jumps vanish if and only if the strain
incompatibility vanishes.

2010 Mathematics Subject Classification. 35J48,35J58,53A05,74A45,74B99.
Key words and phrases. incompatibility, dislocations, intrinsic elasticity, Sobolev spaces, lifting, transmission
conditions.



2 SAMUEL AMSTUTZ AND NICOLAS VAN GOETHEM

So far, we can say that incompatibility is an important operator in Continuum mechanics,
which is related to dislocations and which carries a clear geometric interpretation. About this
latter point, it should be emphasized that inc € is another way of writing the curvature tensor
associated to the elastic metric g := I — 2¢, to the first order (the explicit relation between
the 4th-rank curvature tensor and the 2nd-rank strain incompatibility can be found in [15]),
whose properties in mathematical models of elasticity have been discussed in a series of recent
works by Ph. Ciarlet (see for instance [6, 7]), in what he calls the intrinsic model. Let us here
emphasize the deep impact of this point of view for modeling, since it consists in a change of
paradigm: no more to consider the displacement as the main model variable, rather the strain,
and from its knowledge (be it given, or be it deduced from a constitutive law from the stress
field) to define an elastic metric g, the associated Riemann curvature tensor (and possibly, the
Cartan torsion, as far as dislocations are considered, see, e.g. [14, 20]), and then in a second
step to deduce a displacement field. In Ciarlet’s series of works, the displacement is found as
soon as the curvature tensor associated to g vanishes. We also share this point of view, and
consider the elastic strain as the primal variable, here defined from the stress ¢ by the linear
homogeneous, isotropic and isothermal constitutive law

e=A"lo,

where A is the elasticity tensor. However, for us, not only the Riemann curvature does not
vanish because of (1.3), but it is the central model variable besides the elastic strain.

The main motivation and purpose of this work is indeed the mathematical study of the
incompatibility operator, in particular in terms of function spaces used and their properties.
From a mathematical viewpoint, it should also be stressed that the incompatibility operator is
related to the Laplacian in the sense that for symmetric and divergence-free fields E, one has
tr inc E = Atr E' and inc inc E = A2, Thus, in some sense, it constitutes a tensor general-
ization of the Laplacian, but as for the Curl Curl operator (recall that Curl Curl = —A for
solenoidal vectors), any associated boundary value problem must be addressed carefully since it
applies to solenoidal fields and hence might not be an elliptic operator (see [13] for the analysis
of Curl Curl systems, the vector and 1st-order counterpart of our study). Indeed, the solution
must satisfy the divergence-free condition in the domain, as well as specific boundary conditions
(i.e., complementary in the sense of Agmon, Douglis and Nirenberg [1]) normal and/or tangen-
tial components of its boundary traces. Note that in H'-spaces, the study of divergence-free
fields is of the utmost importance in fluid dynamics [10, 19]. In particular, boundary lifiting
results can be found in [11].

A first natural question is to seek the appropriate boundary conditions (if one thinks of the
strong form) in order to well define the BVP inc (Minc E) = G, or the appropriate function
space (if one thinks of the weak form) to have existence of minimizers for [,(:Minc E- inc E —
G - E)dz, where G is some given symmetric and divergence-free force dual to E. A first issue
is therefore the bilinear form coercivity and the function trace lifting properties, that is, given
appropriate combinations of £ and its normal derivatives, is it possible to find a divergence-free
field E in H? whose trace on the boundary corresponds to these values?

These issues are positively answered in this paper. As a first step, a study of the extension
of boundary tangent and normal vectors will also be achieved. Such extensions and their
differentiability properties can here be found in Theorem 2.2. We emphasize that our solution
method is not very standard, since it is coordinate-free and based on the extension of an
orthonormal basis on the boundary, which is thus viewed as locally Euclidean, though with a
triad of local, non constant, basis vectors. Our core result is Theorem 3.10 and states that one
can find F' € HZ(Q) with prescribed divergence in . Its main application for our purposes is
about trace boundary lifting for solenoidal fields in H?(2). The exact statement can be found in
Theorem 3.12. Then, in Section 4, combining this latter result with the bilinear form coercivity
in H3(Q) (namely, Theorem 3.9), existence and uniqueness of the nonhomogeneous boundary
value problem inc (Minc E) = G follow in a standard way. Lastly, with a view to perform

Ltrace tr here meaning the sum of the diagonal components of a 2nd-rank tensor.



ANALYSIS OF THE INCOMPATIBILITY OPERATOR 3

topological sensitivity analysis in future work in the spirit of [2, 3], transmission conditions are
identified by means of an appropriate Gauss-Green formula. They are given in Theorem 4.4.

To the knowledge of the authors, our most substantial auxiliary results, namely Theorems
3.10 and 3.12 were not found elsewhere in the literature, and seem of the utmost importance for
a broad range of applications, exceeding by far our study of the incompatibility operator. Let
us emphasize that the incompatibility operator and its physical interpretation in dislocation
modeling must be considered here as one possible application, which was the motivation for
addressing this problem, but Theorems 3.10 and 3.12 show a level of generality which we believe
renders their study useful to a large community of mathematicians working in applied sciences.
Let us also stress the importance of boundary lifting in numerical analysis, in particular in the
finite elements methods [5, 11].

To conclude, the proper boundary value problem is discussed in Section 4, while its applica-
tion in dislocation models is proposed in Section 5.

Physical meaning of the model field F in Elasticity. The first physical interpretation of
the variable E is the field F' in Beltrami decomposition (1.2). Let be given the stress o and
define the elastic strain as € := A~'o, where A is the assumed constant elasticity tensor, i.e.,
A =2plly + My ® I, with A and p the Lamé coefficicents. Equilibrium reads

—div ¢ = —divAe=0 in €
{ oN = g on 0, (1.5)
and from (1.2) is rewritten as
—div (AV®u) = Fa, :=AVtr (inc F) in Q, (1.6)
(AVSu)N = g—Atr (inc F)N =g on 0%, '

recalling the solenoideal property of inc F. Therefore, u is called the generalized displacement
field. By virtue of (1.3) with a suitable choice of boundary conditions, one also has

incinc F=1ince = Curlk in Q,
F = 0 on 09, (1.7)
(ONFxN)YxN = 0 on Q.

Systems (1.6) and (1.7) are also discussed in [21].

Moreover, recall (1.2) and take E = € := inc F. By (1.3), the symmetric and solenoidal field
¥ is the part of the elastic strain which plays a role with dislocations. Thus it may be called
the dislocation-induced elastic strain. Let us address now the question of a thermodynamical
setting in our elastic body with dislocations in which the free energy would depend on internal
defect variables such as € and x. Considering a high-order model in the spirit of [4], which
involves the derivatives of £ in the form of its curl, then by (1.3) the free energy is a function
of €¥ and inc €. If now a quadratic model is proposed (we refer again to [4]) one would
naturally consider terms such as %Minc €” - inc € in the free energy, with M a positive-definite
4th-rank tensor whose components are related to material properties of the crystal and of the
dislocations. Therefore, one is lead to study variational problems of form

inf / (IAVSu.VSu + }Minc - inc 60) dx — / G - edz,
e=VSu+e® Jo 2 2 Q
where G is a body force that works against the total strain e. Of course, surface forces could
also be incorporated, as discussed in Section 5. If now G is decomposed as G = V5w + GO,
ones has

/ G- edx = / (— div Viw.u + Go.eo) dx,
Q Q

where all boundary terms have again been dropped for simplicity. Thus, f := —div Vw is
recognized as a body force that works against the displacement, while G works against the
solenoidal part of the strain. Moreover, the minimizations with respect to u and € become
uncoupled. The former one provides the standard linear elasticity equations, and the latter one
formally yields

inc (Minc €°) = G°.



4 SAMUEL AMSTUTZ AND NICOLAS VAN GOETHEM

With these two examples of physical fields E, whose incompatibility plays a central role, let
us now begin the mathematical analysis.

Notations and conventions. Let Q be a bounded domain of R? with smooth boundary
09). By smooth we mean C'*°, but this assumption could be considerably weakened. Let
M3 denote the space of square 3-matrices, and S of symmetric 3-matrices. Divergence, curl,
incompatibility and cross product with 2nd order tensors are defined componentwise as follows
with the summation convention on repeated indices. Here, E and T are 2nd rank tensors, N is
a vector, and e is the Levi-Civita 3rd rank tensor. One has:

(div E); = 0;E;,
(Curl T)y; = (VXT)ij = €jkmOTim,
(inc E);; = (Curl Curl® E)ij = €ikm€jinOkO1 Emn,
(N xT)ij = —(T*xN)ij = €jxmNeTim,
(ExT)ij = €imnFimThn,
tr (ExT); = €mnLpmTpn.

2. EXTENSION AND DIFFERENTIATION OF THE NORMAL AND TANGENT VECTORS TO A
SURFACE

2.1. Signed distance function and extended unit normal. We denote by Nyq the outward
unit normal to 0f2, and by b the signed distance to 012, i.e.,

bx) = dist(z,00) if = ¢ €,
TT —dist(z,09Q) ifxz e Q.

We recall the following results ([8], Chap. 5, Thms 3.1 and 4.3).

Theorem 2.1. There exists an open neighborhood W of 02 such that
(1) b is smooth in W;
(2) every x € W admits a unique projection ppa(x) onto 0€;
(3) this projection satisfies

1
poo(z) =z — §Vb2($), zeW; (2.1)

(4) it holds
Vb(z) = Naa(poa(r)), xeW.

In particular, this latter property shows that Vb(x) = Naq(z) for all x € 02 and |Vb(z)| =1
for all x € W. Therefore, we define the extended unit normal by

N(z) := Vb(z) = Naa(paa(z)), xeW. (2.2)

2.2. Tangent vectors on 9. For all z € 99, we denote by Tyn(x) the tangent plane to 92
at x, that is, the orthogonal complement of Ngo(x). As 9 is smooth, there exists a covering of
09 by open balls By, ..., By of R? such that, for each index k, two smooth vector fields 7'5‘9, TaBQ
can be constructed on 9§ N By, where, for all z € 9Q N By, (74,(x), 74,(z)) is an orthonormal
basis of Tya(x). In all the sequel, the index k will be implicitly considered as fixed and the
restriction to By will be omitted. In fact, for our needs, global properties and constructions
will be easily obtained from local ones through a partition of unity subordinate to the covering.

Using that the Jacobian matrix DN (x) = D?b(z) of N(x) is symmetric, differentiating the
equality |N(z)|? = 1 entails

OnN(z) = DN(x)N(z) =0, xeW. (2.3)

In other words, N(z) is an eigenvector of DN (z) for the eigenvalue 0. For all x € 09, the
system (744 (), 7%, (), Nao(x)) is an orthonormal basis of R®. In this basis, DN () takes the
form
Kho(r)  Eaa(z) 0
DN(z) = | oa(z) K5y (x) 0], x € 09, (2.4)
0 0 0
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where ngﬂ, Ing and £ are smooth scalar fields defined on 0f).
If R € {A, B}, we denote by R* the complementary index of R, that is, R* = Bif R=A
and R* = A if R= B.

2.3. Extended tangent vectors. Let d be defined in W by
d= (1+b rjgopaa) (1+b k5g 0paa) — (b o 0 paq)’ .
Possibly adjusting W so that d(z) > 0 for all z € W, we define in W:
8 =18 o paq, R=A, B, (2.5)

kf=dt ((1 +b K5q 0 pon) (k5 © pag) — b (€aq OpaQ)Q) , R=A, B,

&€ =d €0 o poa,
k= KA + I{B,

A = div 7T, R=A,B.

Obviously, for each € W, the triple (74(z),7%(z), N(z)) forms an orthonormal basis of
R3. Next, we compute the normal and tangential derivatives of these vectors. We denote the
tangential derivative d,r by Or for simplicity. Specifically Org(z) is the differential of the
vector g at z in the direction 7%, viz.,

Org(x) := Dg(x)r"(x).
Theorem 2.2. It holds in W :

Nt = 0, (2.6)
OrN = kOB 47l (2.7)
Opt?® = —kBN-— ’}/R*TR*, (2.8)
Ot = ~ARFE _¢N, (2.9)
div N = tr DN =Ab=xk. (2.10)

Proof. Differentiating (2.1) in the direction h € R3 and using (2.2) yields
Dpsa(x)h = h — (N(z).h)N(x) — b(z) DN (x)h.

Choosing h = N(z) and using (2.3) entails Dppq(x)N(x) = 0, then (2.6) in view of (2.5).
Choosing now h = 7%(z) gives

Dpaq () (z) = 78(x) — b(x) DN (z)7% (). (2.11)
Differentiating N(x) = N(psq(z)) in the direction 77(x), one obtains using (2.11)
(I +b(x) DN (paa(x))) OrN(x) = DN (poq(x))T" (x). (2.12)
Plugging (2.4) into (2.12) yields (2.7). Differentiating the relations 7%(z)- N(z) = 0, |7 (2)|?> =
1 and 7%(x) - 78 (z) = 0 in the direction 7% (z) yields Or7%(x) - N(z) = —sf(z), Og7R(x) -
8(x) = 0 and Or7R(x) - 7% (x) + OrT™ () - 7%(x) = 0, respectively. From
div 7%(z) = O B(x) - 78(2) + Op-7R(z) - 71 (2) + On 7T (2).N(2)

and the preceding relations one infers

*

YR (x) = gl (x) - 7T (2) = —Op-T (z) - 7T (). (2.13)

This leads to (2.8). Differentiating 7%(x).N(z) = 0 and |7%(2)|?> = 1 in the direction 77 ()
yields Op«78(z).N(z) = —£(z) and Op-7%(x) - 78(2) = 0. With the help of (2.13) one arrives
at (2.9). Finally, (2.10) is a straightforward consequence of (2.7) and the definitions. O

Corollary 2.3. If f is twice differentiable in 2 it holds
OrONf = ONORSf + KRORf + EOR- . (2.14)
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Proof. We have on one hand

OrONf = Or(Vf-N)
OrVf N+ Vf- (kPR 477
= szTR~N+ﬂRaRf+faR*f,

and on the other hand
ONORf = On(Vf - =0nVf -8 =D fN . rE.

One concludes using the standard Schwarz lemma. O

2.4. Divergence expression in the local basis. Let us decompose a 3 X 3 symmetric matrix
E in the local basis (74,758, N):

Eij = ENyNiNj+ Y Exe(Nirf'+N;7f)+ Y Erpr/'rf 4+ Eap(ri*r]}+7 7). (2.15)
R=A,B R=A,B

Using Theorem 2.2 we obtain:

8jEij = @ENNNZ«N]» + ENN(é‘NNi + HNi)

+Z [(%ENR(NJJR + NjTiR) + ENR(aRNi + NiajTjR + 8ij7-iR + (91\/'7'!12)}
R

—|—Z [6jERRTiRTJR+ERR(aRTiR—FTiRajTJR)]
R
—l-@jEAB(TlATjB +Tj“47'iB) +EAB(aBTzA+TZA8jTJB +TZ-BajTJA+8ATiB)
= ONENNN; + EnnEN;

+ Z [8RENRN1‘ + 8NENRTZ»R + ENR(HRTiR + fTiR* + ’YRNZ' + IiTiR):|
R

+ Z |:8RERR7'¢R + Erp(—rBN; — A7 TR 4 ’YRTZ‘R)]
R

+0BEapT{ + 0aEapTE + Eap(v*7P — &Ny + 4878 +447F + 4P —¢INy)

= N <3NENN +KENN + Y (0rEnr +v"Exr — k" Egg) — QEEAB>
R
+ Z |:TiR(8NENR + (:‘i + HR)ENR + gENR* + OrERR
R
+v"ERrg — V" Egeg- + Op-Eap + 27R*EAB)} .

Hence

div £ = (8NENN +rkENN + Z(aRENR +vRENg — kP ERg) — 25EAB) N
R

+ Z (5’NENR + (k+ k")ENg + €Enp + OrERR
R

+ ’YRERR - 'YRER*R* + 6R* EAB + 2’YR*EAB> TR. (216)
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3. FUNCTION SPACES

3.1. Definitions and basic properties. Let I'g be a subset of 02 which is not everywhere
flat and has nonzero 2-dimensional Hausdorff measure. Define

He(,M?) = {E e L*(Q,M?): Cul E € L*(Q,M?)},
Hino(Q,S?) == {E€L*(,S%: inc F € L*(Q,S%)},
H(Q) = {Ec H*Q,S*: div E =0},
Ho(Q) = {E€H(Q): E=(OvE x N)! x N =0 on 09},
Hr,(Q) = {E€H(Q): E=(OnE x N)" x N=0onTy},
Hy(Q,R?) = {u € Hy(Q,R?): / udxr = O} ,
Q
o%2(00,8%) = {E € H¥?(0Q,8%) : | ENdS(z) = o}.
oQ

Given E € H3/2(09;S%) and F € HY/?(09;S?) such that [,, ENdS(z) = 0 and FN = 0, we
define the affine spaces

Her(Q) :={Ee€H(Q): E=E, (OnE X N)t x N =T on 00}, (3.1)
and
Herr, () ={E € H(Q): E=E, (OnE x N)t X N=Fon I'y}. (3.2)

Obviously, in this latter case, it suffices that E and F be defined on I'y, and the condition
Joo ENdS(2z) = 0 is not restrictive whenever T'y CC 9Q. The spaces H(Q2), Ho(€2) and the
above affine spaces are naturally endowed with the Hilbertian structure of H?(,S?).

Lemma 3.1. For all E € H*(Q,S?) it holds in W
¢
CurltExN—(8NE><N)t><N+<ZTR><5‘RE> x N on 0f).
R

Proof. We compute componentwise

*[Curlt E x N}mq = quvaemlnalEjn
= 6qu]\71)6777,ZVL]\[Z8NEjn + quvaEmln Z TlRaREjn
R
t
_ ((8NE x Nt x N) - (ZTR x 6RE> xN|
mq
proving the result. O

Lemma 3.2. For all V € H'(Q,R3) it holds in W
Curl V- N = 04Vp — 95Va — +BV4 +44V5.
Proof. We have
Curl V.N = ¢,;,N;0;Vj
= €IV (6NV]€N]' + aAVijA + 8BVijB)
= 9V TP —9gV. .4
= 0a(Var® +Ver? + VyN) - 7% — 0p(Var? + Vpr” + VyN) - 74
= 94V + (Vadar? + VBOaTB + VyOsN) - 78
—0pVa — (VadpT® + Vpopt? + VyopN) - 7.

Then one concludes using Theorem 2.2. O
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Lemma 3.3. Every E € Ho(R2) satisfies

div Cwl' E = 0 inQ, (3.3)
Cul' ExN = 0 on 09, (3.4)
ONE = 0 on 0. (3.5)

Proof. One has
[diV Curlt E]Z = eikmajakEjm = Ei}cmakajEmj =0
and Curl® E x N =0 by Lemma 3.1.
From (2.16) one infers on 052

ONEnN =0, ONEnr = 0.
Therefore (2.15) entails
OnE;j = Z ONERrTT] + ONEap(r* P + 77 P).

R
In the basis (74,75, N) one has
OnEan OnEap 0 ONEap —OnEaa 0
BNE = 8NEAB (’)NEBB 0 s 8NE X N = 8NEBB —ONEAB 0 N (36)
0 0 0 0 0 0
OnEpp —OnEsap 0
0 = (8NE X N)t x N = _8NEAB 8NEAA 0 s (37)
0 0 0
whereby (3.5) follows. O

Remark 3.4. In the same token, for a gemeral symmetric tensor T, one has in the basis
(14, 7B N):

Tan Tap Tan Tap —Taa O
T=|Tpa Tpp 1Bn|, TxN=|Tgp —-Tpa 0],
Tnva Tnp TnnN ITng —Ina O
Tgp —Tap O
(T X N)t x N = *TAB TAA 0]. (3.8)
0 0 0

Remark 3.5. Let T = Curl® E be such that T x N = 0 on 0Q. Then, by Remark 3.4, one
has Tor =0 for R=A,B and Q = A, B, N. For fized i, let V; = T;; in Lemma 3.2. We infer
(Curl T)N = (inc E)N =0 on 09.

Lemma 3.6 (Kozono-Yanagisawa-von Wahl [13, 24]). Let F € Heun (9 M3) such that div F =
0inQ and F x N =0 on dQ. Then F € H'(Q,M?3) and it holds

[VF|L2(0) < Cl| Curl Fll2(q) (3.9)
for some positive constant C independent of F.
Lemma 3.7. For all E € Ho(Q2) it holds
1Bl 20y < C (1Bllz2(0) + | Curl B z2(q) + [ inc El|2(0))
for some positive constant C' independent of E.
Proof. By Lemma 3.6 we have already
IVE|L2(0) < C| Curl E[2(q).

Set F' = Curl® E. We have Curl F € L?(2), and, by Lemma 3.3, div F = 0in Qand FxN =0
on 09. Hence Lemma 3.6 entails ||VF| 12y < C|| Curl F||p2q), ie.,

HE)Z CU.I‘It EHL?(Q) S CH inc EHLQ(Q)

This implies
|| Curl 81'E||L2(Q) < C” inc E||L2(Q). (310)
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In addition, div §;F = 0;div £ =0 in . By Lemma 3.3, Oy E x N = 0 on 0f2, whereby, since
E=00n 09, 0;E x N =0 on 9. Therefore, by Lemma 3.6,
||8]6zEHL2(Q) < CH Curl 81'E||L2(Q).

Using (3.10) we derive
10;0:E| 1200y < Cllinc El|r2(q), (3.11)
and the proof is achieved. O

Theorem 3.8 (Poincaré). There exists a constant C > 0 such that, for each u € H (2, R3),
HUHL2(Q) <C (HVU”Lz(Q) —‘r/ \u X N|dS) . (312)
o
Proof. By contradiction, assume that for each k € N, there exists a uz, € H(£;R?) such that

||Uk||L2(Q) >k <|ka||L2(Q) +/ |’U,k X N|d8) .
To

Deﬁning U = uk/||uk||L2(Q), one has ||uk||L2(Q) = 1 and hence (l) ||Vuk||L2(Q) — O, (11)
fFo |ig x N|dS — 0 as k — oco. By (i) and Rellich’s theorem there exists v € H?®(Q,R3),

1/2 < s < 1, such that a nonrelabelled subsequence ;, — v in H*(£2,R?), and hence by virtue
of (i) and for every ¢ € D(Q,R?),

/ vdiv pdr = lim / ug div pdr = — lim Duypdr =0,

whereby Vv = 0, meaning that v is a constant vector. Condition (ii) now implies that fl“o [y, %
N|dS — fFo v X N|dS =0 as k — o0, i.e., v Xx N = 0 and thus v is parallel to N, which is not
constant and of unit length, and hence v = 0, a contradiction, since ||v||z2(q) = 1. O

Theorem 3.9 (Coercivity). There exists a positive constant C' such that, for each E € Hy(£2),
£ 20y < Cllinc Elz2(q)- (3.13)
Proof. By Theorem 3.8, the tensor counterpart of (3.12) reads

IFllzz) <€ (IV Pl + [ |F x Vlas).
T'o

for all F € H'(Q,M3). By Lemma 3.3, div Curl' £ = 0 in Q and Curl* E x N = 0 on
09Q. Hence by Lemma 3.6 and again by Theorem 3.8, one has (with the nonrelabeled constant
C >0),

||E||L2(Q) S CHVEHLQ(Q) S CH Curl E||L2(Q) = CH Curlt E”LQ(Q)

< OV Curl® E|p2(0) < C|| Curl Curl® E12(q) = C|/inc E|r2(q)-

The proof is completed using Lemma 3.7. O
3.2. Lifting of boundary traces.
Theorem 3.10. Let g € HL(Q,R3). There exists U € H3(Q,S?) such that div U = g.

Proof. Step 1. Let v € H'(Q,R3) be a solution (unique up to a rigid motion) of
—div Vfv =g in Q,
VSuN =0 on 01,
and set V = V*®v. By elliptic regularity, v € H3(2), thus V € H?(Q2). We have div V = g in

Q and VN =0 on 9.
Step 2. We aim at defining U = V + W where W = inc ¥, ¥ € H*(Q,S?), must satisfy:

WN = 0 on 0, (3.14)
wrft = —vrF on o9, (3.15)
ONW = —0nV on 0Q. (3.16)
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We assume a priori that ¥ € H*((2,S3) satisfies
UV=0y0=0 on Of. (3.17)

Then (3.14) holds true by Remark 3.5 and Lemma 3.1. We are going to derive other conditions
on ¥ such that (3.15)-(3.16) are also satisfied.
Step 3. Let us rewrite the traces of V and dxV on 99 in the local basis (74,75, N) as

Vaa Vap Van Vaa Vap 0 OnVaa OnVap OnVawn
V=|Vag Ve Ven|=|Vas Ve 0|, OnV =|0~vVap OnVBr OnVBN
Van Ven Van 0 0 0 OnVan OnVen ONVNN

Assume that
~Vee Vap 0

3¥ = Vap  —Vaa 0], (3.18)
0 0 0
and
(=On + 26"V —26Vap  (On — K)Vap +&(Vaa +Vip) 0
(913\;\112 (On — K)Vap +&(Vaa + Vip) (—8N+2I€B)VAA—2§VAB 0]. (3.19)
0 0 0

Let us compute the components of the vector WrF.
e For W7 . N, it holds

Wt . N:WrB.N=WN. .78 =0= —Vzn. (3.20)
o For WrR .7 we compute componentwise

A_A
Wij’Tj T;

= eikafejlnTjA(?kal\Ilmn
= eika{Aejlnﬁk(Tf&\Pmn) — eikaiAeﬂ”(8kT]A)8l\IJmn.
The last term of the right hand side vanishes by (3.17), hence
WijTJATiA :qkaf@k(eﬂan@l\Pmn)
:eikaiA(TE@B + NiOn) (ejmrf‘(rﬁag + NlaN)\Ilmn)
=(Np0p — THON)(NnOp — 72 ON) Vs,
=N05(NwOp¥mn) — NnOp(TEONYmn) — TEON (NWdBWonn) + TEON (TR ON T 00),
which again by (3.17) yields

Wit 7t = =1 NpON (08 Vimn) + T 7 On (ON Vi),
that is, by (3.17) and (2.14),
Wiytirit = OnON (T Winn) = O3 V. (3.21)
Similarly, it holds WijTjB TiB = 3]2\,\11 AA-

e Now, consider W7 - 75" and compute componentwise
WiijTiB = qkaiBejlanak@l\I/mn = qkalBak(ejlnTjAal\Ilmn)
= €irmTE (1704 + NipOy) (GjlnT]A(TlBaB + NiON)Vinn)
= (—NpOa + 100N (N0 — T2ON) Urnn
= —Nm0a(Nu0BYmn) + Nipda (12 On Vi) + TinON (N0 ¥imn) — TinOn (12 ON V).
By (3.17) and (2.14), this reads
Wit = 0%V ap. (3.22)

Thus (3.15) is satisfied by (3.18) and (3.20)-(3.22).
Step 4. Let us compute Oy W.
e We first compute Oy W7 - 77, Recall that, from Corollary 2.3, one has

Ona = Oan — K204 — EOB. (3.23)
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By mere projections, we have

3NWiijTZA =0n [eikmeﬂanTfakal\I/mn]
=0n [eikmeﬂan‘Tf(T,faA + 1205 + Non ) (11204 + 7205 + NiON) |
=0N [eikaz-A(TlfaA +720p + N.ON) (ejlan(TlAaA + 780 + NlaN)\Ifmn)
— €ikm€jinTi (T804 + TE OB + NkaN)Tf(TlAaA + 7205 + NiON) ¥
=0y [(Nmag — Tﬁ@N)(NnaB — 7'55‘1\/)\1!7””
— €jin (N0 — T 0N)T]) (704 + 7505 + NiON) V|
=(NpOnp — TEONN) (NnOp — 72 0N) Uns,
— €jin N7 (7 Ona + 7P ONnB + NONN) Vi

— €jin (NmOnp — ThONN)T) (77404 + 7205 + NiON) ¥ pn, (3.24)
and hence from (3.17) and (3.23), the right hand side of (3.24) equals to
(NiOnp — TEONN) (NuOp — TEON)Uinn — €jin N0 T (77* 0n 4 + 720N B + NiONN ) Trnn.
By (3.23), it follows that
ONWiT A = (NimOpNn — KP NiOp — ENmOa — THONN) (N0 — 20N ) Vi
- GjlnNm(’YATJB — EN) (10N a + TPONE + NiONN)Vinn,
thus by virtue of (3.17) and (3.23),
ONWi At =(NmOpn — TEONN)(NuOB — T2ON) Vi — €jtn N (YA TP — EN;) (N1ONN) Wi
=(Nm0p — 750N)(NuOnp — 720NN ) Yimn — N (VA7) ONN Wi,
and again by (3.23),
OINWiT A = (Nim0p — 750N)(NauON — KPNwOp — ENROA — TP ONN) Vi
— VAN T ONN Y .
By (3.17), this entails that
OINWi i = N0 (—77 ONN) Vi — T (NnOnpN — 65 NnOng — (Onk")NaOs
— ENLONA — (ONE)NROA — TPONNN)Ynn — VAN T2 ON N Yo,
whereby, using again (3.17) and (3.23),
OINWiyT it = = NpOp (1.2 ONN) Umn — T (NnOnBN — TR ONNN) Ymn — Y Nin T2 ONN Winn

= — N (=P NN — 27208 N + 7P05NN)) Vinn

—1B(NL 0NN — TPONNN) Y — VAN T2 ON N .
Therefore,

OINWi T =kP Ny NpONN Urn — (N7 + N )OBNN Vi + T T ONNN Winn

=B Ny NpONN Y nn — 2N B0 NN T n + TETEON NN T .- (3.25)
Yet
Op(Nm1P) = (kP15 + &) r 2 + Noo(—6P N, — v

= kBBl 4 erprl — kPN N, — v Nyt (3.26)
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This yields
8NWZ‘]‘TJAT{4 :nBNmNnBNN\I!mn — QaB(NanBaNN\I’mn)
+2(kPrBrB 4 gnﬁff — kBN,,N,, — fyANmTf)aNN\Ilmn + 78180 NN Urnn
= - HBNmNnaNN\I]mn - 28B(Nm7-nBaNN\I}mn)
+ 2(/€BT£TE + 57",1:7'7? - ’YANmT;?)aNN\IJmn + TylzTnBaNNN\I/mn

= — kPONNTU NN — 2080NNT BN

+26B0nNTUpp + 260NNV ap — 270NN T aN + ONNN T BB,
which implies by (3.18) and (3.19) that

8NWUT7ATA = — QKBVAA + 2£VAB + 8]?{[\1133 = _aNVAA- (327)

We have obtained OnWa4 = —OnVaa. Similarly we find OyWgp = —InVEEB.
e Then we compute Iy W7 - 78" We have
aNWijT]ATiB =0nN [EikmejlnTzBTjAakal\I/mn]
=N [€ikm€jinT T (704 + 705 + Ny ) (17204 + 7708 + NiON ) Vs
=0N [(—Nim0a + T10N) (NypOp — TEON) U,

— Ejln(meaA -+ T;?LaN)T]A(TlAaA + TlBaB -+ NlaN)\I/mn],
which by virtue (3.17) rewrites as
8NWij7'JATiB = (—=Npna + 7208 N)(NuOp — T20N) V0
+ €j1n N (=62 N — ’YBTJB)(TlAﬁNA +1P0nB + NiONN) V.
Hence, by (3.17) and (3.23),
ONWiyT)' 1 = (= Nidan + 4 Nnda + ENmOp + 708 N8) (NuOp — 7,/ 08) Wi
+ €j1n N (—6A N — ’YBTJB)(TlAﬁNA +1P0NnB + NiONN)Yn,
and by (3.17) again, one has

3NW¢jTJATl,B :(meaAN + T;?LaNN)(NnaB — TnBaN)\I/mn — ejlnNm(liANj + f)/BTJB)NlaNN\IJmn
(—Nm(?A + TTﬁaN)(NnaNB — TnBaNN)\I/mn — ’yBNmT;?aNN\I/mn. (328)

Again by (3.23), the right hand side of (3.28) equals to
(—=NimOa + 700N (NnOpN — 6P NwOp — ENOA — TP ONN) Vs — VE N ONN Wi,
which by (3.17) is rewritten as
N OaTPONNYmn + T (NaOnpn — 6P NpOng — ENpOna — TEONNN) Y — VO N T2 ON N Y-
Therefore, (3.17) and (3.23) imply that

8NWZ‘]‘TJATZ»B =N Oa(TEONN)mn + TANLONBN — TEONNN) U — YEN W T2 ONN Ui,
=N, (VPr20NN — ENRONN + TPOANN))Vinn
+ 74 (NWOBNN — TEONNN)Yinn — Y N T2 ON N Ui,
= — N NWONN Y + N TEOANNUinn + N TaOBNN Uinn — Ta T2 ONNN Yinn.

Yet,

aA(NanB) + GB(N,LT;:}L) = /17'{27’5 + 5(77‘37';? + TETE) + fyBNmT;? + ’yANnTg — 26N, N,,.
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This yields
ONWi TP = = ENpNuONN Y + 0a(Non T ONN W) + OB (Nn T On N Urnn)
— (kB + &t + TETE) + AP Nyt + AN, TE — 26N, N,) O Ui,
— T;‘LTEC‘)NNN\I/M
=EN NWONN T + 04 (N T2 ONNUinn) + O5(Np T ONNTinn)
- (HT;;‘LTE + (A + BBy 4 4B N, o + ’yANn'rg) ONNYnn — TATBONNN Y
=(ONNYNN +0a(ONNYBN) + OB(ONNY aN)
— kONNYap — EONN(Yaa + Upp) — VP ONNVan — v ONnTBN — ONNN T aB.
Thus, by (3.18) and (3.19), one has
ONWi;Ti 7P == kVap + E(Vaa + Vep) — 03 Vap = —OnVas.
o Now we address the term Oy W N - 2. It holds
ONWii N7t = On (N0 — 720N ) (1504 — 77108) Vs,
— €jin (NnOp + TEON)N;) (104 + 72085 + NiON) U],
which by (3.17) rewrites as
ONWi N7t = (NpOng — 120NN (1204 — 7008) Urnn
— €jinNm (0N;) (172 Ona + 720N B + NiONN) ¥rn,
and by (3.17) and (3.23), as
ONWi N7t = (NpwOpn — 7E0NN) (1204 — 7108) Unn — €j1n N (95 N;) NiONN Y .

The last term vanishes since Oyny¥;n = 0. Thus
ONWii N7t =(Ni0p — TRON) (20N A — 720N E) Yimn — Y Nin T ONN W,

and by (3.23), rewrites as
ONWi N7t =(Nim0p — 7EON) (12 0an — 27504 — 7805 — 7205N + kP10 + €77104) Urnn,
which by virtue (3.17) rewrites as
ONWi N8t = = 7Bon (1Boan — k27804 — e7P0p — 120 0pN + kP7208 + €7204) VU nn

= —1B(1Bonan — kA7BONA — E7BONE — T2 ONBN + KPT ONE + £ 0N A) Ui
Again by (3.17) and (3.23), one writes
ONWii Nt = —1B(1Boann — k7P0an — €7P0pn — 700NN + kBT 08N + €72 04N )Y onn,
which, recalling (3.17), reads

ONWi Nyt = = 12 (r7 0ann — 700NN ) ¥imn

B_B B_A
= =TT OANNYrmn + Ty T OBN N Wonn.-

Yet,

M) + Bprr) = P ) 4 €N N b 7,
and hence

8NI/Vz'jJVjTZ-A = — 8A(T£TTlBaNN\I/mn) + 6B(T£Tf8NN\I!mn) — ’yANmT;?aNN\I/mn

— (AP (T + 1) +ENTy = 6PNty (= mt 1R m)) ONN W
=—0annVsp + 0pNNTan — Y ONNTNA
+27P0NNVap — EONNTYEN + KPONNT AN + 7 OnN (Was — Upp).
Therefore, (3.18) yields

ONWii N7 =0aVaa + 08Vap + 2v8Van + v (Vaa — Veg).
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Since div V' =0 and VN = 0, we infer from (2.16) that
ONVAN +0aVaa + 7 (Vaa — Vep) + 08Vap +27%Vap = 0.

Thus
ONWan = —OnVan.

Similarly one gets aNWBN = _6NVBN-
e Lastly it remains to consider OyW N - N. We have

ONWiN;N; = 0N [(1B04 — 71208) (1204 — 7710B) Unn
— €jin(TB04 — T20B)N; (17204 + 705 + NiON) U na),
which by (3.17) writes as
ONWiiNjN; = (180na — 700nE) (104 — 71008) Vpnn
— (1804 — 120B)N; (11*0n 4 + TEONB + NiONN) Vo,
and again by (3.17), recalling (3.23), rewrites as
ONWiN;N; =(tB0an — 7205N) (1P 04 — 72208) Vs,
- eﬂn(nATijf + 5757—]5 — I{BT;:TJB — gTﬁTJA)NlaNN\I/mn
=(1m 04 — T3 0B) (T Ona — 7,0 ONB) Yinn
— (=rATBrB fer B _ ( BrALA L e Ar By g N T .
Hence, (3.17) and (3.23) imply that
ONWiN;N; =(1B04 — 7205) (1P 0an — 7204N) Urnn
+ (KATETHB + IQBTTéT;? - {Tﬁrf — §T$Tf)8NN\I'mn.
Yet, (3.17) yields
ONWijN;N; = k2OnNTUpp + kPONNUaa — 260NN T as,
which by (3.18) achieves the calculation, since
ONWiiNjN; = —k4Vas — kPVpp — 26Vap.
Recall now that div V =0 and VN = 0, to infer from (2.16) that
ONWNN = —ONVNN.

Thus (3.16) is satisfied.
Step 5. The proof is achieved by the classical lifting theorem in H*(2) for the components
of ¥ in the local basis, such that (3.17),(3.18) and (3.19) are satisfied. O

If E is a symmetric matrix decomposed as (2.15), we denote by Er the tangential part of E
with components
(Er)ij == EAATZ»ATJA + EBBTiBTjB + Eup (TiATjB + TJATZ»B). (3.29)

Lemma 3.11. Let E € H3/2(0Q,S%), G € H'/?(0Q,S%). There exists H € H*(Q,S?) such
that

H=E on 012,
(8NH)T = GT on 6(2,
div H=0 on 0.

Proof. By the lifting theorem in H?((), one constructs functions Haa, Hap, Hgp € H?(Q)
such that on 9Q:
Han =FKEaa, Hap =Eap, Hpp = Eps,
ONHaa = Gan, ONHap = Gap, ONHpp = Gpp.
By (2.16), the conditions div H =0 and H = E on 992 impose On Hyy, ONHna and OvHyp

on 0f2. Then one constructs Hyy, Hya and Hypg in € using again the lifting theorem in
H?(Q). O
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Theorem 3.12. Let E € H3/2(99Q,S?) with
/ ENdS(z) =0,
I9)

i.e., E € H32(0Q,S?), and G € H'/2(90,S?). There exists E € H*(Q,S?) such that

E=E on 0%,
(8NE>T = GT on 89,
div E=0 in .

In addition, such a lifting can be obtained through a linear continuous operator
Loq : (B,G) € H¥?(00,S%) x H/?(8Q,S%) — E € H*(Q,S?).

Proof. Let H be the function defined in Lemma 3.11. We must construct K = F — H €
H?(Q,S?) satisfying

K=0 on 0,

(ONK)r =0 on OS2,

div K = —div H in Q.

We have div H € H}(Q,R3) and

div Hdx = HNdS(J:):/ ENdS(z) = 0.
Q bGle) a0
Therefore Theorem 3.10 provides the desired K. Finally, the linearity and the continuity of the
obtained lifting is easily checked at each step of its construction. O

3.3. Beltrami decomposition. The following result is again given for the sake of generality
in LP () with 1 < p < oo but should be here be considered for p = 2.

Theorem 3.13 (Beltrami decomposition [15]). Assume that Q is simply-connected. Let p €
(1,+00) be a real number and let E € LP(Q,S?) be a symmetric tensor. Then, For any U €
W/rP(0Q), there exists a unique u € WHP(Q,R?) with u = U on 92 and a unique F €
LP(2,S?) with Curl F € LP(Q,R3*3), inc F € LP(Q,S?), div F =0 and FN =0 on 98 such
that

E =V%u+ inc F. (3.30)

We call VSu the compatible part and E° := inc F the (solenoidal) incompatible part of the
Beltrami decomposition.

3.4. Green formula. Let V be a vector field defined on 99 and let V be any extension of V
in  with appropriate regularity. The surface divergence of V' is defined on 02 by

divg V = div V — (xV) - N. (3.31)
Lemma 3.14 ([12]). If V € WH1(0Q,R?) then

/ divg VdS(zx) :/ KV - NdS(z).
a0 29
Lemma 3.15. For all A, B € C*(Q,M?3),
/ A - Curl Bdz = / Curl A~Bdm—|—/ (A x N)-BdS(z).
Q Q a0
Proof. We have

/A~ Curl Bdx = /ejkmAijasz‘mdiE
Q Q

= —/ejkmékAijBimdx—i—/ ijmAijBimedS(l’)
Q o0

Q o0

Denote A5 = (A + A*)/2 the symmetric part of a tensor A.
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Theorem 3.16. Suppose that T € C*(Q,S?) and n € H*(2,S®). Then

/T-incndx = /incT-ndm
Q Q

+ Ti(T) -n dS(z) + To(T) - OnndS(zx) (3.32)
o0 o9

with the trace operators defined as
To(T) := (T x N)" x N,
TUT) = (Curl (T x N)))* 4 ((On + )T x N)' x N+ (Curl' T x N)®.  (3.33)

Proof. By density we can assume that 7 is smooth. Lemma 3.15 yields

/ T - incnder = / Cwrll' T - Curl ndx + / Curln - (T x N)'dS(x).
Q Q a0
From the definition of the cross product of two tensors and its trace we observe that

div (tr Ax B) = Curl A- B — Curl B- A.

As a consequence, setting A = (T x N)! and B = 7 in the above identity, one has
/ T inc ndx = / Curl® T - Curl ndz +/ n- Curl (T x N)'dS(z)
Q Q a0

— [ div (tr ((T x N)" xn))dS(z).
N

By definition of the surface divergence, this rewrites as
/ T - inc ndx :/ Curl® T - Curl ndx +/ n- Curl (T x N)'dS(x)
Q Q o0

— divg (tr ((T'x N)Y xn)) +0n (tr ((T x N xn))-N|dS(z).
L Laivs (o ()" >em)) o (i (7530 ) ) ] st
A short calculation shows that for two tensors A, B,

tr (AxB)-N=—(AxN)-B.

Using Lemma 3.14 we obtain
/ T - inc ndx = / Curl® T - Curl ndz +/ n- Curl (T x N)'dS(z)
Q Q o0

—|—/ KJ(TXN)tXN-ndS(l‘)—I—/ On ((T x N)' x N)-n) dS(z).
o0 o0

Rearranging yields
/ T - inc ndx = / Curl® T - Curl ndx +/ (T x N) x N - dyndS(x)
Q Q o0
+/ (Curl (T x N + (0§ + k)T x N)t X N) -ndS(x). (3.34)
a0
One concludes using Lemma 3.15. g

Remark 3.17. By Remark 3.4, only (Onn)r matters in the rightmost integral of (3.32).

Remark 3.18. For a symmetric tensor A and vectors u and v, one has ((A x u)t x v)" =
(A x v)! x u. Indeed, we have componentwise

((A X u)t X U)ip = EpijiklAjkulUm = eiklepijkjvmul = Eikl(A X v);kul = (A X v)t X u)pi.
(3.35)
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Lemma 3.19. We have the alternative expressions

Zm (T x 7% Zngr + (=N 4+ K)T x N)' x N

S
-2 (Z(&RT x N x TR> . (3.36)

R
T) =Y kT x ) x 7B 43T x ) x 777 — ((On + K)T x N)' x N
R

—23 (@0 +4") (T x N)' x 7). (3.37)
R

In addition it holds

Ti(T)NdS(z) = 0. (3.38)
o0

Proof. We have
(Curl (T x N)*) —€ikm€jin O (N Ti5)

= —€ikm€jin (O N T;; + NpO/T;5)

= —€ikmEjin <Z i 0r Nk Tij + NkalTij>
R

mn

= —€ikm&jin <Z(/€RTlRT,§+§Tl T, —&—Nkalﬂj)
R

= —Zn (T = 7 TR)nm—Zf((TXTR)tXTR*)
R nm
(Curlt TxN)

Hence
Curl (T x N)* Zm T x 77 ZfTXT x 77 4 (Cwl' T x N)'. (3.39)

By Lemma 3.1 and (3.35) we obtain (3.36).
Denote E4 = F — ES = 1(E — E'). By (3.39) and Lemma 3.1 we have

A
(Curl (T x N)")* = = (Curl' T x N)* = (Z(BRT x TR x N) .

R

Integrating against N and using the Stokes formula, by which |, 50 Curl FNdS(x) = 0 for any
tensor F, yields

o9 7

Curl' (T x N)'NdS(z) = / (Z(@RT x TRt x N) NdS(z).
o0

Using (3.35) and reordering the mixed product entails

/ Curl® (T x N)!NdS(z) = — / (Z(&RT x N)t x N) RdS (z). (3.40)
a0 o \R
From the Stokes formula we have
1
/ To(T)NdS(x / Curl® (T x N)!NdS(z) + 3 / (Curl' T x N)' NdS(z), (3.41)
o0
and by Lemma 3.1

(Cal' Tx N)'N == (0aT x 7! x N)' N =3 ((9sT x N)' x N) %, (3.42)
R
Combining (3.41), (3.40) and (3.42) entails (3.38).
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Lastly, (3.37) is derived from (3.36) using
(OrT x N)' x 78 = 9 (T x N)' x 78) — (T x OgN)" x 78 — (T x N)* x 97"
O

3.5. Gauge conditions. Theorem 3.16 applies to arbitrary test functions n € H2(£,S?), but
only solenoidal fields are considered in the targeted application. The implications as to the dual
characterization of the boundary term 77 (7T) is discussed below. We define the gauge set

G:={VaeN,VeR*} cc®Q,s?
with
Vioy= S (W + V) WL € R,
and the matrices

M= [ NN'dS(x), P = (|0QIy + M)~
a0
In all the sequel we will denote duality pairings by integrals for the sake of readability.

Lemma 3.20. Let E € H=3/2(0Q,S?). Then the condition
/ E-FdS(z)=0 VFe HY?0Q,S%) (3.43)
o0

holds true if and only if E € G.
Proof. Assume first that E € G, i.e, E =V © N for some V € R3. We have for all F €
H3/2(00,S%)
/ E- FdS(z) :/ (VON)- - FdS(z) :/ (FN)-VdS(xz)=0.
20 20 20

Assume now that E € H~3/2(00,S?) satisfies (3.43). Let F € H3/2(99Q,S%) be arbitrary and
define

&= [ FNdS(z), F=F-2(P® ®N.
o0

We have
/ FNdS(z) = c1>—2/ (P®) ® N) NdS(x)
oQ oQ
= - / (PON'N + NN'P®) dS(x)
o0

= & (PD|OQ| + MPY)
= & — (|09]l, + M)P® = 0.

This implies that F € H3/2(9Q,S?). Therefore
0 = / E - FdS(z)
o0

/ E. FdS(z) — 2 / (PD) - (EN)dS(x)
o0

o0

/m E. FdS(z) — 2P </m FNdS(x)) . (/m ]ENdS(:c)) .

Set V =P [, ENdS(z). We obtain

0 = /aQIE)-FdS(x)—2V~</89FNdS(x)> :/m (E— NV* — VN') . FdS(x).

This being true for all F € H3/2(9Q,S?), we infer E = NV* + VN =2V © N. O
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We denote by (H3/2(05,S?))’ the dual space of H3/2(9Q,S?). The restriction operator
R H32(00,8%) — (H3?(80,S%))
is surjective by the Hahn-Banach theorem, and Lemma 3.20 says that ker R = G. Therefore,

the reduced map R :NH*3/2(8§2,S3)/Q — (H3/%(09,$%)) is an isomorphism. This permits to
identify the dual of H3/2(9Q,S?) with the quotient space H—3/2(9%,S?)/G.

Lemma 3.21. Every E € H=3/2(0Q,S%)/G admits a unique representative E such that

/ ENdS(z) = 0. (3.44)
o0
It is given by
E=FE—2 (P / ]ENdS(x)) ® N. (3.45)
oQ

Proof. Arguing as in Lemma 3.20, one obtains that the function E defined by (3.45) satisfies
(3.44). For the uniqueness, one has to show that, if E € G satisfies (3.44), then E = 0. Thus,
suppose that E=V ® N, V € R3. We have

/ ENdS(z) = 1 / (VN'N 4+ NN'V)dS(z) = 1Jflv,
a9 2 Joq 2

whereby (3.44) implies V' = 0 and subsequently E = 0. O

With these elements at hand, we can now generalize Theorem 3.16 to arbitrary tensors
T € Hino(9,S?). First we remark that, by density,

/ T - inc ndx = / inc T - ndx (3.46)
Q Q

for every T' € Hinc(Q,S?) and n € H?(Q,R3) such that n = (Oyn)7 = 0 on 9. Then, for every
T € Hine(Q,S?), we define the traces To(T) € H~/2(99,S?) and T1(T) € H~3/2(9Q,S%)/G by

(Ta(T).o0) = [

T - inc nodzx — / inc T - nodz, Yo € Hl/g(aQ,Sg),
Q Q

TT)on) = |

Q
with ng = Loa(0,¢0) and n1 = Loa(p1,0) (recall that Laq is the lifting operator defined in
Theorem 3.12). These definitions are independent of the choice of the liftings by virtue of (3.46).
In addition, by Lemma 3.21, the function 77 (7") satisfying (3.38) is unambiguously defined in
this way. By linearity of L, this extends formula (3.32) to any functions T € Hi,e(£2,S?) and
n € H(K).

T - inc ndx — / inc T - nidax, Y, € ﬁ?’/g(@@Sg),
Q

Because of the aforementioned gauge properties, Lemmas 3.20 and 3.21 are also crucial in
order to derive strong formulations. This issue is examined in the next section.

4. A BOUNDARY VALUE PROBLEM FOR THE INCOMPATIBILITY
In this section we assume that  is simply-connected.

4.1. Governing equations. Let o € L>(Q) with infoa > 0, G € L*(Q2,S3) with div G =0
in the sense of distributions. Consider the strictly convex minimization problem
min / <g|inc E|2—G-E) dr, (4.1)
Ec€Ho(92) Q 2

whose Euler-Lagrange equation is

/aincE- inc Fde = | G- Fdz VF € Ho(2). (4.2)
Q Q

By Theorem 3.9 and the Lax-Milgram theorem, (4.2) admits a unique solution F € Ho ().
Remark that by Theorem 3.12, (4.2) also admits a unique solution in Hg r(£2) and even in
He 7.1 () (with the test function F' € Hp,(£2)). In fact it suffices to consider Theorem 3.9
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and the Lax-Milgram theorem with the unknown E — Ly (E,F) which satisfies homogeneous
boundary conditions. Note that by (3.7), the tangential components of F are permutations
of the components of (OyF)r of Theorem 3.12. It should also be remarked that by the Green
formula (3.32) and arguing as in Section 4.2, the solution E € Hg .1, (£2) satisfies the Neumann
conditions Tp(ainc E) = Ti(ainc E) =0 on 002\ T.

If F € D(Q,S?) is not solenoidal, the Beltrami decomposition gives F = F° + V5w with
div F® = 0 and w = 0 on 99, and subsequently

/aincE~inch;z: = /aincE-incFde:/G-Fodas
Q Q Q

/Gme/GV%M:/GFm, (4.3)
Q Q Q

since div G = 0. Thus, in view of (3.32) with T' = «inc E, the strong form associated with
(4.3) is:

inc (ainc E) =G in €,
div E =0 in Q,

E=0 on 0€), (4.4)
(ONE x N)!x N =0 on 09Q.
Let us first focus on the specific case where « is constant. We have
Lemma 4.1. For all E symmetric and solenoidal, it holds inc (inc E) = AAE.
Proof. Componentwise, one computes
(inc (inc E))ij = €iki€jmnElpgEnrsOkOmOpOr Eqs
= (0ipOrg — 0igOkp) (8rOms — 0jsOmr)OkOmOpOr Eqs
= 0;0j0,05sEys — 030;0sEis — 030,0;Eyj + 82872.Eij = AAE;;,
which gives the expected result. O

By (3.6) and (3.7), the expression (O E x N)! x N is a mere linear recombination of Oy Ex N,
whereby these two expressions are equivalent. Therefore, it is not difficult to see [21] that (4.4)
for a constant is equivalent to

A(aAE) =G in Q,
E =0 on 09,

div B = on 0%, (4.5)
8NE XN = on 8(2,

OndivE =0 on 0N
Moreover one has the following result [21].

Theorem 4.2. The system (4.5) admits a unique strong solution E € H*(,S?), which is also
solution of (4.2) and (4.4).

We infer the following property, which enables to reconstruct a solenoidal tensor field from
its incompatibility.
Lemma 4.3. Let T € L*(Q,S3) with div T = 0 in the sense of distributions. There exists
S € H%(Q,S?) such that div S =0 and inc S =T.

Proof. It suffices to set S = inc F with E solution of (4.4) with o = 1 and G = T. Theorem
4.2 shows that E € H*(2,S%), hence S € H?(Q,S?). O

4.2. Transmission conditions. Let w CC Q with smooth boundary dw and outward unit
normal N. Suppose that

_{ ap in Q\w,

a1 in w,

with ag, a; two positive constants.
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Theorem 4.4. Assume E is solution of (4.2) and denote T = inc E. Denote [A] the jump of
the quantity A across Ow, with the trace counted positively on the interior side of w. Then

inc (o) =G in 2\ Ow, (4.6)
[Ti(aT)] =0 on Odw, (4.7)
[To(eT)] =0 on Ow, (4.8)

[TN]=0 on Ow. (4.9)

Conversely, if T € Hine(2\ 0w, S?) satisfies
div T =0 in Q\ Ow,
together with (4.6)-(4.9), then
div T'=0 and inc (aT) =G in 2

in the sense of distributions. Moreover, there exists E € H?(Q,S3) with div E = 0 such that
T = inc F.

Proof. Using (3.32) (in its generalized version, see the discussion in Section 3.4) we have for all
F e Hy (Q)

/G-Fdx = /ole-inchx—i—/ aoT - inc Fdx
Q w Q\w

= / inc (ayT) - Fdx +/ inc (aT) - Fdx
w QN\w

+ [Ti(aD)] - FdS(z) + [7To(aT)] - ONFdS(x).
ow ow
Choosing F' with compact support in w then in Q\ w yields (4.6), as in (4.4). By Theorem 3.12
combined with Lemmas 3.19, 3.20 and 3.21, we infer the two transmission conditions (4.7) and
(4.8). In addition, one has div T' = 0 which reads in the weak form

/ T-VFdr=0 VFcD(Q,R3).
Q

Integrating by parts yields (4.9).
The converse relies on the standard Green formula, Theorem 3.16 and Lemma 4.3. g

5. PHYSICAL INTERPRETATION

The aim of this section is to describe two physically motivated problems where our model 4th-
order boundary value problem with the inc operator is considered. In the first example special
emphasis is given to the two Dirichlet boundary conditions, whereas in the second example, the
main concern is the first Neumann boundary condition. In both case, providing two Dirichlet
boundary conditions on (arbitrarily small, but non flat) T'g, is mandatory to ensure uniqueness
of the solution.

The displacement in linear elasticity in the presence of dislocations. Let us assume that the
distribution of dislocations is known and given by the smooth 2nd-rank tensor A satisfying a
local conservation law expressed in the form div A' = 0, and meaning that the dislocation
lines are closed or end at the boundary [14, 23]. Let Iy be a subset of 92 which is not
everywhere flat and has nonzero H2-measure. Let F € HY/2(9Q;S?) such that FN = 0. By
Lemma 3.1, one rewrites (1.7) with the second Dirichlet boundary condition restricted to I'g
and nonhomogeneous as

inc inc Curl k in £,
E = 0 on 09, (5.1)
Curll! ExN = —F on T.



22 SAMUEL AMSTUTZ AND NICOLAS VAN GOETHEM

It is understood that natural (homogeneous Neumann) boundary conditions complement this
system. It is first observed from (1.4) that Curl & is symmetric as soon as A? is divergence free,
since its skewsymmetric part vanishes, as seen by the following computation:

1
6rnnpenklak(/{)n’bl = 6mnpénklak (A)ml - §€mnp€mnkak (A)qq (52)
1
= ap(A)ll - am (A)M;D - iemnpemnkak (A)qq = 0, (53)

where we have used the identity €,,np€mnt = 20p,. Moreover, the second boundary condition
is on the Frank tensor, the physical meaning of which is alluded to in the introduction.
Recall (3.2) and define

Hr.r, () :={E € Horr, () : E =0 on 00}. (5.4)
Therefore, by our existence result for the nonhomogeneous problem, the field E is found as the
solution of

min / <; inc B|> — Curl & - E) dz. (5.5)
Q

EEHF;FO (Q)
Let us denote €” := inc E. Now, by (1.6), one infers that the displacement u is solution of

{—div (AVSu) = AVitre® in Q,

(AVSu)N = g—Atr N on 0. (5.6)

In this equation, one identifies AV tr €° as a dislocation-induced conservative force in the body,
and —\tr €N as a dislocation-induced traction at the boundary.

Remark that by Lemma 3.32 one has 7o(e®) = 0 on 9Q\T'y, that is, the tangential components
of €® vanish. Obviously one can take I'y = 9 to recover the full pure Dirichlet problem. It
should also be noted that by Remark 3.5, taking [F = 0 in the second Dirichlet condition implies
that (inc E)N = ¢"N =0 on T.

To summarize, in this section we have given a meaning to equation

{—div (AVSu) = f in Q,

(AVSu)N = g on 09, (5.7)

where u is the displacement field and f a conservative force (as the gravity), in the case where
—div o = 0 (global equilibrium) and in the presence of dislocations, i.e., VSu = A~'g — ¢ with
inc €Y related to the density of dislocations. Thus, we have started with the strain as variable,
as in the intrinsic models of elasticity, and then introduced the displacement as the solutions
of PDEs which describe the static problem of an elastic body with dislocations.

Elements of a thermodynamic model for crystal growth. Assume that the elastic body with
dislocations is embedded in an environment whose temperature field 7' is known. Assume that
the dislocation density and hence the contortion tensor satisfy a constitutive law of the type
H To T TO
K(T) = Keq exp ( )) )

P~ DS (G

where kp is the Boltzman constant, Keq is the equilibrium concentration at the reference tem-
perature Ty, and with H and S the effective formation enthalpy and entropy, respectively. A
law such as (5.8) has been used successfully for the numerical simulation of points defects in
single crystals, as reported in [22]. Referring to the brief discussion in the introduction and to
Theorem 3.16, we would like to consider the mixed problem

(5.8)

inc (Minc €) = G in 9,
€V = 0 on 09,
Curtl' ®x N = —F on Ty, (5-9)
To(inc €°) = T on 0Q\Ty,

whose solution exists and is unique in Hp,r,(?) as defined in (5.4). Our aim is to physically
interpret the boundary conditions of (5.9) and in particular the Neumann condition. Before
all, the first Dirichlet boundary condition means by Beltrami decomposition that

oN = (Ae)N = (AV u)N =g,
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on 0f2, i.e., pure traction is exerted, with u interpreted as the displacement field. As for the
second, taking F = 0 implies that (inc €*)N = (Curl k)N = 0 on I'g. By (5.8) this rewrites as
K (To)(VT x N) = 0 with T, the temperature at I'g, which is a condition satisfied if and only
if T'= Ty is a constant on I'g, that is, the temperature gradient is purely normal on I'y. As for
the first Neumann boundary conditions, one has 7o( Curl k) = (Curl kK x N)! x N = T. By the
symmetry property of x (cf. (5.2)), by Lemma 3.1 and by (3.35), one has

(Curl k x N)! = (Curl® £ x N)! = —(Oyk x N)! x N — Z(@Rn x N)t x 11
R
By (5.8), this yields
(Curl kK x N)! = —ONT (K (T) x N)t x N — (&'(T) x N)* x VsT,
where VT =5, TRORT means the surface gradient. Thus
(Curl k x N) x N = ONT(k'(T) x N)' + ((<'(T) x N)! x N) x VgT.  (5.10)

We have assumed that the temperature field is known and hence T must be given by the RHS
of (5.10), which involves the normal and tangential gradients of 7. Note that the tangential
gradient may not be zero, if one thinks of a physical experiment such as Czochralski growth of
single crystals [16, 22]. Moreover, in this case one can take as I'g the solidification interface,
where on the one hand the temperature is constant (and equal to the solidification temperature
To), and which on the other hand is nowhere flat (by superficial tension properties).
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