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Abstract

We provide an upper bound on the rate of convergence of the mean-squared error for global image

denoising, and illustrate that this upper bound decays to zero with increasing image size. Hence, global

denoising is asymptotically optimal. This property does not hold for patch-based methods such as BM3D,

thereby limiting their performance for large images. As observed in practice and shown in this work,

this gap in performance is small for moderate size images, but it can grow quickly with image size.

Index Terms

Image Denoising Bound, Non-Local Filters, Global Filter, Optimal Image Denoising.

I. INTRODUCTION

When it comes to denoising, there is no shortage of algorithms. Patch-based methods have been the front

runners in performance; and as the race continues, newer methods have largely been variations on this

theme. Leading patch-based methods have been modestly improved upon recently [1], [2] by innovations

in the way patches are selected, how they are clustered, etc. Recently, we advocated abandoning the

explicit use of patches [3] (as done in leading methods such as BM3D) in favor of a global approach

where every pixel contributes to the denoising of every other pixel in the image. The similarity of pixels

in this approach can still be measured using patches, but the application of the filter is truly global. The

advantage of this approach is that it is asymptotically optimal in the sense that its mean-squared-error

converges to zero with increasing image size – a property that does not hold for any of the leading

patch-based methods [4] – even if the size of the image grows infinitely large, and the range of search

for similar patches is allowed to grow as well [5].
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It is by now beyond dispute that images (or natural signals generally) contain many redundancies.

This notion has been cleverly exploited to design high performance image denoisers with great success.

It stands to reason then that a good denoiser should exhibit improved performance as the number of

samples (i.e. image size) grows. This concept is not new. In fact, we can go back as far as Shannon

who pointed out [6] more than 60 years ago that ”If the source already has a certain redundancy and

no attempt is made to eliminate it, a sizable fraction of the letters can be received incorrectly and still

[perfectly] reconstructed by the context.” More recently, this fundamental result was in fact shown for

the case of restoring binary images from context in [7], [8]. More relevant still, the seminal paper on

the Non-Local Means (NLM) method [9] was inspired in part by [7], [8] and itself gave a proof of the

asymptotic consistency of the NLM method.

Over time, however, the idea of globally considering the denoising problem was abandoned in favor

of more computationally friendly methods that treat patches (or groups of patches) together [4], [10].

Our approach in [3] relied on a truly global methodology where the effect of every pixel was taken

into account to develop a denoiser, and the significant questions of computational complexity were also

dealt with by using a subsampling strategy based on the Nyström extension. In the course of that work,

we noted that the performance of the global approach consistently improved with image size, but the

same was not observed for patch-based methods, hence motivating the work presented here. Intuitively,

in larger images, as the total number of patches grows, the expected performance improvement due to

availability of more overall patches is offset by the lower likelihood of finding closely matching patches

(see Fig. 1). Increasing the size of the patches reduces the number of available patches, but increases

the dimension of the space in which these patches live, hence sometimes providing a helpful effect, but

never enough to drive the error to zero asymptotically (see Fig. 2). As a result, performance flattens out

with increasing image size (see Fig. 7).

The story is very different (and much more favorable) with global filters. These use all the pixels in

the input image to denoise every single pixel. Here, we take the analysis a step deeper to prove that the

performance of the global approach always improves as a function of image size, regardless of image

content. Furthermore, we provide a rate for this improvement, and show that this rate is a function of

the sparsity of the image in a naturally constructed basis adapted to the content of the image. More

specifically, we give an oracle upper bound on the mean-squared-error for estimating each pixel using

all the pixels in the image, and show that for typical images, it decays at the rate of at least n−1 for a
√
n×√

n image.
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Fig. 1. Comparison of patch matching for local and non-local patches. Likelihood of finding closely similar patches drops as

the size of the window search increases.

(a) Small Patches (b) Similar Patches for (a)  (c) Large Patches (d) Similar Patches for (c)  

Fig. 2. Comparison of patch matching for different patch sizes. As the patch size grows, fewer similar patches are available.

II. BACKGROUND

Let’s begin with the model of the problem. The additive noise model for measurement of a corrupted

image is:

y = z+ e (1)

where the zero-mean white noise vector e with variance σ2 is added to the latent signal vector z of

length n to get the noisy observation y. Essentially all restoration approaches can be summarized into

the following filtering scheme [11]:

ẑ = Wy (2)

where the n×nmatrixW represents the employed filter to obtain the estimated image ẑ. More specifically,

we construct the filtering matrix by first defining affinities between pixels, or patches around pixels. This

can be done very generally [11]. But here we can, for instance, use the NLM definition of weights to

measure the similarity between the samples yi and yj as:

Kij = exp

{
−‖yi − yj‖2

h2

}
, (3)
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where yi and yj are patches centered at yi and yj , respectively. The denoiser is then described as follows:

ẑ =

⎡⎢⎢⎢⎢⎢⎢⎣
wT
1

wT
2

...

wT
n

⎤⎥⎥⎥⎥⎥⎥⎦ y = Wy, (4)

where the i-th row of the matrix W defined above contains the corresponding normalized weights as:

wi =
1∑n

j=1Kij
[Ki1,Ki2, . . . ,Kin]

T . (5)

The filter matrix W can be closely approximated with a positive-definite, doubly-stochastic and sym-

metric matrix [11], [12], and therefore its eigen-decomposition can be expressed as:

W = VSVT , (6)

in which the columns of the matrix V = [v1, ..., vn] form an orthonormal basis, and where S =

diag[λ1, ..., λn] denotes the eigenvalues (i.e. shrinkage factors) in decreasing order 0 ≤ λn ≤ ... < λ1 = 1.

It is worth pointing out that this global description subsumes the local filter descriptions because even

if the pixels are estimated locally, the effect of overlapped patches and the corresponding aggregations

can be reflected with a simple modification to the this global description. Having the eigen-decomposition

of the filter and the aggregation matrix A, the matrix W can be decomposed as:

W = AVSVT (7)

Numerous denoising algorithms have been proposed to find the optimal basis, shrinkage and aggregation

strategy. In general, most of these methods try to use a set of local basis functions in which the patches

have a sparse representation. Fixed basis functions such as wavelet and DCT [4], [13], data adapted

functions obtained from principal component analysis (PCA) [14], [15] and, training based dictionaries

[10], [16] are a few examples of the commonly used bases. While the basis selection strategies vary

widely, the Wiener shrinkage has been established as the optimal strategy to minimize the mean-squared

error (MSE) [4], [11], [17].

To overcome the limitations of this wide class of denoising filters, we can consider a somewhat

different scenario where (1) the patch matching and filtering procedure is replaced by matching similar

pixels (with some appropriate context provided possible by patches,) and (2) all the pixels in the image

are forced to contribute in denoising every single pixel. These conditions are equivalent to having an

identity aggregation matrix A = I and using a global rather than local basis in (7). This is what we
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advocate; and as we will show, a key consequence of this global approach is to get continuously better

denoising performance for increasingly larger images.

As discussed in [11], spatial domain filters such as Non-Local Means (NLM) [9] can be interpreted as

transform domain filters, where eigenvectors of the filter matrix W form the orthonormal basis and the

eigenvalues are the shrinkage coefficients, respectively. In practice, the global eigenvectors corresponding

to the leading eigenvalues encode the latent image contents [3] well, whereas the same can not be said

for the aggregated collection of local eigenvectors provided by the patch-based methods. Furthermore,

the spectral decomposition of the global filter makes it possible to have a relatively straight-forward

estimation of the MSE, leading to global performance analysis. As we will explain in the next section,

the obtained MSE function is in fact inversely dependent on the number of pixels, and directly related

to the quality of the basis functions in representing the image (i.e. the sparsity of the image in the basis

provided by the filter). Building on our previous work in [18], our current results suggest that: (1) there

is a huge performance gap between “oracle” versions of patch-based denoising and the proposed global

scheme, and (2) as the image size grows, the MSE of the global scheme asymptotically approaches zero,

whereas the same is not true of strictly patch-based methods.

III. COMPUTING AND BOUNDING THE ORACLE GLOBAL MSE

The filter W, being data dependent, is of course impacted by the noise in the given image. In practice

the filter is never computed directly from the raw, noisy input pixels. Instead, a “pre-filter” is always

applied to y first to reduce the effect of noise, and then the filter weights are computed from this result.

When it comes time to the actual filtering, however, this is done using the filter coefficients on the original

noisy pixels. In the present discussion, since we are interested in the oracle performance, we consider

the case where the filter is directly computed from the clean latent image z and is therefore deterministic.

Recall that each row of the filter can be expressed as:

wT
i =

n∑
j=1

λjvj(i)vTj , (8)

where vj(i) denotes the i-th entry of the j-th eigenvector. Then each estimated pixel ẑi has the following

form:

ẑi =

n∑
j=1

λjvj(i)vTj y, (9)

The bias of this estimate is:

bias(ẑi) = zi − E(ẑi) = zi −
n∑

j=1

λjvj(i)bj (10)
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where b = VT z = [b1, ..., bn]
T contains the coefficients representing the latent image in the global basis.

The variance, for its part, has the following form:

var(ẑi) = σ2(wT
i wi) = σ2(

n∑
j=1

λjvj(i)vTj )(
n∑

j′=1

λj′vj′(i)vj′)

= σ2
n∑

j=1

λ2
jvj(i)

2 (11)

Therefore, the (oracle) MSE of the i-th estimated pixel is:

MSEi = bias(ẑi)
2 + var(ẑi)

= (zi −
n∑

j=1

λjvj(i)bj)2 + σ2
n∑

j=1

λ2
jvj(i)

2

= z2i +

n∑
j=1

(λ2
j (b

2
j + σ2)vj(i)2 − 2ziλjvj(i)bj) (12)

Having MSEi, the overall MSE for the whole image is:

MSE =
1

n

n∑
i=1

MSEi =
1

n

n∑
i=1

z2i +
1

n

n∑
j=1

(
(λ2

j − 2λj)b
2
j + σ2λ2

j

)
(13)

where ‖bias(ẑ)‖2 =
∑n

i=1 z
2
i +

∑n
j=1(λ

2
j − 2λj)b

2
j and var(ẑ) = tr(cov(ẑ)) = σ2

∑n
j=1 λ

2
j . Since V is

orthonormal, we can replace
∑n

i=1 z
2
i with

∑n
j=1 b

2
j to get:

MSE =
1

n

n∑
j=1

(λj − 1)2b2j + σ2λ2
j (14)

Minimizing the MSE with respect to the eigenvalues λi requires a simple differentiation:

∂MSE(λ)
∂λ

= 0 =⇒ λ∗
j =

1

1 + snr−1
j

, (15)

where, somewhat unsurprisingly, the “optimal” eigenvalues {λ∗
j} are the Wiener coefficients with snrj =

b2j
σ2 . This shrinkage strategy leads to the minimum value of the MSE1:

MMSE = MSE(λ∗) =
σ2

n

n∑
j=1

λ∗
j (16)

1Since the equivalent shrunk filter should be kept doubly-stochastic, λ∗
1 should in theory be 1; a constraint which increases

the minimum MSE. This MSE increment is ΔMSE = σ2

n
(1− λ∗

1) =
σ4

n(b21+σ2)
. Having the first eigenvector v1 = 1√

n
1n, the

squared signal projection coefficient can be expressed as b21 = 1
n
(
∑n

i=1 zi)
2. Practically, for a moderate size image in the range

of [0,255], ΔMSE is very small and can be neglected (or equivalently λ∗
1 ≈ 1). Consequently, it is not necessary to impose

λ∗
1 = 1 as a constraint in our analysis.
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A. Bounding the Oracle MSE

Expanding the minimum MSE given by (16):

MMSE =
σ2

n

n∑
j=1

λ∗
j =

1

n

n∑
j=1

σ2b2j
σ2 + b2j

(17)

The last equality can be expressed as:

MMSE =
1

2n

n∑
j=1

σ|bj |
σ2+b2j

2

σ|bj | (18)

Using the Arithmetic-Geometric means inequality [19] we have σ|bj | ≤ σ2+b2j
2 , which implies:

MMSE =
1

2n

n∑
j=1

σ|bj |
σ2+b2j

2

σ|bj | ≤ 1

2n

n∑
j=1

σ|bj | (19)

And this in turn means

MMSE ≤ σ

2n
‖b‖1 (20)

The oracle MSE is evidently bounded by the l1 norm of the projection coefficients b. This implies

that for a given n, the more sparse the signal is in the basis given by the filter kernel, the smaller the

MSE error will be. Furthermore, for a signal (image) with finite energy, the 1-norm of b can not grow

faster than n with increasing dimension, so the upper bound must collapse to zero asymptotically. Let’s

consider the worst case pathology wherein |bj| = c (a constant), resulting in linear grown of ‖b‖1 with
n. This essentially corresponds to the signal being “white noise” in the basis defined by the kernel. In

this worst case scenario, the MMSE is upper bounded by a constant cσ
2 . In general, however, we expect

the coefficients to drop off at some rate, say α > 0. That is, |bj | = c
jα , which implies that

σ

2n

n∑
j=1

|bj | = σ

2n

n∑
j=1

c

jα
(21)

As n → ∞, MMSE will tend to zero for all α > 0, so this establishes the most general case of MSE

convergence. Now let’s have a look at the rate of convergence in more detail. For this purpose, it is

useful to consider the coefficients bj as samples of the function |b(t)| = c/tα. That is, define bj = b(j).

Using the integral test for convergence (Maclaurlin-Cauchy test) [20], we have the following lower

and upper bound:
1

n

∫ n+1

1

c

tα
dt ≤ 1

n

n∑
j=1

|bj | ≤ 1

n
(c+

∫ n

1

c

tα
dt) (22)

For 0 < α < 1 we have:

c(
(n+ 1)1−α − 1

(1− α)n
) ≤ 1

n

n∑
j=1

c

jα
≤ c(

n1−α − α

(1− α)n
) (23)
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Barbara Stream Peppers Mandrill 

Boat Man Goldhill Lena 

Fig. 3. Some benchmark images used to evaluate performance of our denoising method.

which means a convergence rate of O(n−α).

On the other hand, for α = 1 we have:

c ln(n+ 1)

n
≤ 1

n

n∑
j=1

c

j
≤ c(1 + ln(n))

n
(24)

which indicates a rate of O(n−1 ln(n)). Finally, the decay rate is O(n−1) for α > 1 since the summation

in (21) converges to a finite constant. In summary, as long as the coefficients decay at all, at whatever

rate, the minimum MSE is guaranteed to approach zero. Next, we illustrate these results with some

experiments.

IV. EXPERIMENTS

Some benchmark images used in this section are shown in Fig. 3. Effect of the image size on the

denoising performance is explored in the first set of experiments in Fig. 4. For this experiment we

denoised different image windows with increasing size. As can be seen, the increment in the number of

pixels consistently leads to lower MSE. It is also important to highlight that the MSE values of the full

size image (512 × 512) are very small and below round off error.

Fig. 5 illustrates the image coefficients |bj | for some images in Fig. 4. These curves can be used to
determine relative denoising limit of each image. For example, the Goldhill image coefficients are the

lowest compared to the other images which predicts the least MSE values in Fig. 4.

The oracle MSE for the images in Fig. 4 are shown in Fig. 6 where for each noise level, the bound
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 2.96 0.40 0.14 0.07 12.76 0.74 0.14 0.07 5.30 0.20 0.09 0.06 0.56 0.20 0.11 0.05 

 3.73 0.82 0.39 0.21 13.55 1.32 0.38 0.18 6.15 0.51 0.26 0.19 1.24 0.53 0.29 0.16 

 4.84 1.34 0.70 0.40 17.78 2.13 0.66 0.32 7.42 0.91 0.49 0.36 2.07 0.95 0.51 0.30 

 12.74 0.45 0.15 0.07 17.54 0.73 0.16 0.08 4.59 0.21 0.07 0.04 5.09 0.30 0.11 0.02 

 13.69 0.96 0.40 0.21 18.44 1.27 0.42 0.20 5.26 0.45 0.21 0.13 5.73 0.71 0.31 0.16 

 15.11 1.60 0.73 0.42 19.78 1.96 0.78 0.37 6.13 0.72 0.39 0.26 6.60 1.21 0.57 0.29 

Fig. 4. Performance of the global denoising scheme for different window sizes. MSE values are averaged over 20 different

WGN realizations.

in (35) and the oracle MSE values are computed and then averaged across images given in Fig. 32.

Our next experiment in Fig. 7 compares the effect of image size on BM3D [4] (which is close to

optimal among patch-based denoisers) and on the proposed method3. The selected Building image has

patterns that are both locally and globally repetitive, so it fits both BM3D and our scheme to achieve the

best results. As can be seen in Fig. 7, our oracle method has a very large performance advantage over

2We note that for practical purposes, our experiments are carried out using a truncated filter with only a small percentage of

the leading eigenvectors of W. Still, the averaged MSEs in Fig. 6 capture the decay rate for the tested images as hypothesized.

See Appendix A.

3BM3D is a two-stage image denoising scheme in which the first stage, as a pre-filter, provides a “pilot” estimate of the noise

free image. The second stage uses the pre-filtered image to obtain the near optimal Wiener shrinkage using an estimate of the

SNR and also to perform a more accurate patch matching. In other words, in the oracle BM3D the output of the first stage is

assumed to be the clean image.
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Fig. 6. Averaged MSE of denoising images given in Fig. 3 for different noise levels. The estimated bound given in (35) is

averaged for all the images.

oracle BM3D even for small window sizes, and as the window size increases, the advantage grows. Also

as predicted, BM3D results are not showing any regular improvement by enlarging the image size.

The oracle performance of NLM [9], BM3D and our approach our compared in Table I. As the noise

level increases, the gap between our oracle scheme and oracle BM3D monotonically grows.
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Building 

Fig. 7. Top left: Building image. Bottom left: Building image corrupted by WGN of standard deviation σ = 40. Right: Averaged

oracle PSNR of the denoised window size for BM3D [4], and our method.

V. CONCLUSION

We emphasize that the oracle results do not correspond to practical denoising algorithms yet, and

practical realization of the global scheme remains to be studied. However, global filtering has an interesting

asymptotic behavior that surpasses the existing patch-based bounds by a large margin. The oracle MSE

values for the global filter converge to perfect reconstruction of the clean image, which is apparently

impossible to achieve for oracle versions of algorithms like NLM and BM3D. This implies that global

filtering is promising as a way to see how much farther practical algorithms can be pushed.

APPENDIX A

THE TRUNCATED FILTER AND ITS MSE ANALYSIS

As shown in [3], it is possible to efficiently compute and use only the first m leading eigenvectors of

the filter matrix (this is facilitated in practice by using the Nyström extension [21].) This approximation

is employed to illustrate the validity of our analysis in a somewhat more practical scenario.

Keeping m leading eigenvectors of the filter W, the truncated filter can be expressed as:

Ŵ = VmSmVT
m, (25)

where Vm contains the first m eigenvectors as its columns and the m × m matrix Sm contains the m

corresponding leading eigenvalues. Each row of the truncated filter can be expressed as:

ŵT
i =

m∑
j=1

λjvj(i)vTj , (26)
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TABLE I

ORACLE MSE VALUES OF NLM [9] (1ST COLUMN), ORACLE BM3D [4] (2ND COLUMN), AND OURS (3RD COLUMN). THE

MSE VALUES ARE AVERAGED OVER 20 INDEPENDENT NOISE REALIZATIONS FOR EACH σ.

σ
Barbara Stream Peppers Mandrill

NLM BM3D Ours NLM BM3D Ours NLM BM3D Ours NLM BM3D Ours

10 29.36 11.34 0.03 62.95 26.93 0.03 21.87 11.41 0.02 70.97 31.32 0.02

20 42.15 22.98 0.07 120.77 63.42 0.07 33.43 20.81 0.06 166.23 76.30 0.06

30 61.91 34.11 0.14 171.91 98.39 0.12 45.18 28.53 0.12 196.61 121.54 0.10

40 91.74 45.14 0.21 233.03 130.44 0.18 58.84 35.83 0.19 275.49 164.95 0.16

50 126.43 59.80 0.3 285.12 158.55 0.25 75.23 48.33 0.27 391.81 188.16 0.22

60 163.33 71.26 0.4 329.89 184.09 0.32 93.52 56.87 0.36 431.36 220.80 0.3

σ
Boat Man Goldhill Lena

NLM BM3D Ours NLM BM3D Ours NLM BM3D Ours NLM BM3D Ours

10 31.87 14.30 0.02 36.25 16.26 0.03 31.16 14.93 0.01 19.77 9.71 0.02

20 56.96 29.42 0.07 67.85 35.59 0.07 53.47 29.72 0.04 31.07 18.34 0.05

30 80.44 43.16 0.13 94.89 53.72 0.13 78.67 42.06 0.08 44.68 26.28 0.1

40 108.72 56.16 0.21 125.95 70.61 0.2 105.51 52.91 0.13 60.46 34.13 0.16

50 138.42 75.05 0.31 158.01 93.27 0.28 131.17 69.78 0.19 76.56 45.22 0.22

60 168.69 88.32 0.42 188.98 109.14 0.37 155.07 80.54 0.26 92.94 53.70 0.29

In a fashion similar to the full-space filter W, the truncated filter’s MSE for the i-the pixel is:

MSE(m)
i = z2i +

m∑
j=1

(λ2
j(b

2
j + σ2)vj(i)2 − 2ziλjvj(i)bj) (27)

The total MSE for the whole image is:

MSE(m) =
1

n

n∑
i=1

MSE(m)
i =

1

n

n∑
i=1

z2i +
1

n

m∑
j=1

(
(λ2

j − 2λj)b
2
j + σ2λ2

j

)
(28)

where ‖bias(ẑ)‖2 = ∑n
i=1 z

2
i +

∑m
j=1(λ

2
j −2λj)b

2
j and var(ẑ) = σ2

∑m
j=1 λ

2
j . Truncation results in larger

bias and smaller variance as shown by the expressions.

The optimal eigenvalues are again the Wiener shrinkage coefficients (λ∗
j ) which lead to the minimum

MSE as:

MMSE(m) =
1

n

n∑
i=1

z2i −
1

n

m∑
j=1

b2jλ
∗
j (29)

Of course this MSE will necessary be larger than the case where all the eigenvectors are used. Replacing
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1
n

∑n
i=1 z

2
i with

1
n

∑n
j=1 b

2
j and after some simplifications:

MMSE(m) =
1

n

n∑
j=1

b2j −
1

n

m∑
j=1

b2jλ
∗
j

=
1

n

n∑
j=1

b2j −
1

n

n∑
j=1

b2jλ
∗
j +

1

n

n∑
j=m+1

b2jλ
∗
j

=
1

n

n∑
j=1

σ2b2j
σ2 + b2j︸ ︷︷ ︸

MMSE

+
1

n

n∑
j=m+1

b4j
b2j + σ2︸ ︷︷ ︸

ΔMSE(m)

(30)

where the first term is the same as the minimum MSE given in (17) and ΔMSE(m) denotes the filter

truncation effect on the MSE. We can show that the added MSE term is bounded and consequently, the

MMSE(m) will be upper bounded.

We start with an upper bound on ΔMSE(m):

ΔMSE(m) =
1

n

n∑
j=m+1

b4j
b2j + σ2

≤ 1

σ2n

n∑
j=m+1

b4j =
1

σ2n
(‖b‖44 − ‖bm‖44) (31)

where 4 ‖bm‖44 =
∑m

j=1 b
4
j . Again, assuming a decay rate of α > 0 for the coefficients |b(t)| = c/tα and

using the integral test for convergence [20], we obtain the following lower and upper bound:

1

σ2n

∫ n+1

m+1

c4

t4α
dt ≤ 1

σ2n

n∑
j=m+1

b4j ≤
1

σ2n
(

c4

(m+ 1)4α
+

∫ n

m+1

c4

t4α
dt) (32)

For 0 < α < 1
4 we have:

c4

σ2

(
(n+ 1)1−4α − (m+ 1)1−4α

(1− 4α)n

)
≤ 1

σ2n

n∑
j=m+1

c4

j4α
≤ c4

σ2

(
1

n(m+ 1)4α
+ (

n1−4α − (m+ 1)1−4α

(1− 4α)n
)

)
(33)

where a convergence rate of O(n−4α) is guaranteed. For α = 1
4 we have:

c4

σ2
(
ln( n+1

m+1 )

n
) ≤ 1

σ2n

n∑
j=m+1

c4

j4
≤ c4

σ2
(

1

n(m+ 1)
+

ln( n
m+1 )

n
) (34)

which means a decay rate of O(n−1 ln(n)). Similar to our previous analysis, for α > 1
4 the decay rate

is O(n−1). Overall, the minimum MSE of denoising by the truncated filter has the following bound:

MMSE(m) ≤ σ

2n
‖b‖1 + 1

σ2n
(‖b‖44 − ‖bm‖44) (35)

It is not hard to see that even when m is kept fixed and n tends to infinity, a sufficiently fast decay of

the coefficients b will still yield an asymptotic MSE of zero. In our experiments the ratio between m

and n is kept fixed as m
n = 1

1000 , which leads to m ≈ 250 for a test image of size 512 × 512.

4In practice, for j > m we have b2j � σ2 (see Fig. 5). This means that
b4j

b2j+σ2 ≤ b4j
σ2 ≤ b2j .
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