
REGULARITY PROPERTIES OF STATIONARY HARMONIC
FUNCTIONS WHOSE LAPLACIAN IS A RADON MEASURE

RÉMY RODIAC

Abstract. We study the regularity of Radon measures µ which satisfy that there
exists a function hµ in H1(Ω), stationary harmonic such that ∆hµ = µ in Ω (here Ω is
an open set of R2). Such conditions appear in physical contexts such as the study of
a limiting vorticity measure associated to a family (uε)ε of solutions of the Ginzburg-
Landau system without magnetic field. Under these conditions we prove that locally
there exists a harmonic function H such that the support of the measure is contained
in the set of zeros of H. Using the local structure of the set of zeros of harmonic
functions we can thus obtain that locally the support of µ is a union of smooth simple
curves.

1. Introduction and main results

Stationary harmonic functions arise in many physical problems such as the study of
Ginzburg-Landau equations linked to superconductivity or the study of Euler equations
in fluid mechanics. They are also related to limiting vorticities of stationary system of
point vortices. Let Ω be a bounded open set in R2.

Definition 1.1. A function h in H1(Ω) is stationary harmonic if div Th = 0 in Ω in the
sense of distributions, where Th is the stress-energy tensor associated to the Dirichlet
energy, defined by

(1) Th =

(
1
2

[(∂yh)2 − (∂xh
2)] −∂xh∂yh

−∂xh∂yh 1
2

[(∂xh)2 − (∂yh
2)]

)
.

Equivalently h is stationary harmonic in Ω if

(2) ωh := (∂xh)2 − (∂yh)2 − 2i∂xh∂yh is holomorphic in Ω.

Equation (1) means that ∂x(Th)i1 +∂y(Th)i2 = 0 for i = 1, 2 in the sense of distributions.
Let us denote by H−1(Ω) the dual of the Sobolev space H1

0 (Ω). The aim of this paper
is to describe the local regularity of Radon measures µ which satisfy the following
conditions:

(3) µ ∈ H−1(Ω),

there exists a function hµ such that

(4) ∆hµ = µ in Ω,

and

(5) hµ is stationary harmonic.

Note that if hµ is a solution of (4) then hµ ∈ H1(Ω) and then condition (5) is
well-defined. Indeed we can see that there exists a solution of (4) in H1

0 (Ω) using the
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2 RÉMY RODIAC

Lax-Milgram theorem. Then all the solutions are in H1(Ω) since the difference between
two solutions is harmonic in Ω end hence belongs to H1(Ω).

We will discuss the physical motivations of this problem in the next section. Now we
wish to examine in slightly more details the condition (5) and some of its direct conse-
quences. One can show that if h is harmonic (∆h = 0) then h is stationary harmonic
but the converse is not true in general. It is true if h is regular. Indeed using the same
techniques as in [11] chapter 13 we can prove that if µ is in Lp for some p > 1 then a
solution of (3), (4),(5) is harmonic, i.e., µ = 0. For the proof of these facts and other
properties of stationary harmonic functions we refer to the Appendix.

Another direct consequence of condition (5) is that ∇hµ ∈ L∞loc and then hµ is locally
lipschitz continuous. This is due to the fact that |∇hµ|2 = |ωhµ|2 and ωhµ is holomorphic
in Ω. In particular hµ and |∇hµ| are continuous. The fact that ωhµ is holomorphic also
gives us the following:

Proposition 1.1. Let hµ which satisfies that ωhµ = (∂xhµ)2 − (∂yhµ)2 − 2i∂xhµ∂yhµ is
holomorphic. Then the zeros of ωhµ are isolated in Ω. If Ω is compact there is a finite
number of such critical points.

In the present paper we are interested in describing the properties of Radon measures
µ which satisfy hypothesis (3), (4), (5). Let us recall that the support of a measure µ is
the complement of the largest open set A such that µ(A) = 0. Our first result describes
the local regularity of the measure µ in the neighborhood of point z0 which belongs
to the support of µ and such that ωhµ(z0) 6= 0. Note that we can always assume that
hµ(z0) = 0 because adding a constant to h does not change the hypothesis (3), (4), (5).
Note also that near a point z0 which does not belong to the support of µ the function
hµ is a harmonic function.

Theorem 1.1. Let z0 ∈ suppµ, with (hµ, µ) which satisfy assumptions (3), (4), (5)
and such that ωhµ(z0) 6= 0. We assume that hµ(z0) = 0. Then there exist a neighborhood
V of z0 and a harmonic function H in V such that

(6) hµ = |H|, in V or hµ = −|H|, in V

(7) suppµbV = {z ∈ V ;H(z) = 0}.
Furthermore we have that ∇H(z0) 6= 0 and the set {z ∈ V ;H(z) = 0} is a smooth
simple curve diffeomorphic to a straight line.

Near a point z0 such that ωhµ(z0) = 0 the behavior of hµ and the geometry of the
support of µ is a little bit more complicated. Nevertheless if z0 is a zero of even order
of ωhµ the situation is similar.

Theorem 1.2. Let z0 ∈ suppµ, with (hµ, µ) which satisfy assumptions (3), (4), (5),
and such that z0 is a zero of even order of ωhµ. We assume that hµ(z0) = 0. Then there
exist a neighborhood V of z0, a harmonic function H in V and a function θ : V → {±1}
such that

(8) hµ(z) = θ(z)H(z) in V.

The function θH is continuous and ∇H(z0) = 0. Besides the support of µbV is a union
of smooth curves included in {z ∈ V ;H(z) = 0} which end at z0.

A key ingredient in the proof of the previous theorem is the local structure of the set
of zeros of harmonic functions (see e.g. [8] or [12]).
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Figure 1. Near a regular point suppµ is a smooth curve.

Theorem 1.3 ([12]). Let H be a harmonic function defined on an open set D ⊂ R2. We
let Z0(H) := {z ∈ D;H(z) = 0}. Suppose z0 ∈ D, H(z0) = 0 and H is not identically
zero. Then there exist a unique integer n = n(H, z0) ≥ 1, a neighborhood U(z0) of z0 in
D and n analytic curves

γk :]− 1, 1[→ U(z0), (k = 1, 2, ..., n)

such that γk(0) = z0 and:

1) Z0(H) ∩ U(z0) = ∪nk=1γk (where γk denotes the set {γk(t); t ∈]− 1, 1[})
2) ang(γk, γk+1) = π

n
, k = 1, ..n, where γn+1 denotes γ1 and ang(γk, γk+1) is the

angle between γk and γk+1 at z0.
3) There exists an analytic diffeomorphism φ : U(z0)→ B(0, 1) such that

φ ◦ γk(t) = t exp(iθk)

where t ∈]− 1, 1[, k = 1, ..., n, θk = π
2n

+ (k−1)π
n

.

This means that Γk = φ(γk) are n symmetrically placed diameters of B(0, 1).

Remark: Note that in Theorem 1.2 it can happen that the support of µ is strictly
contained in the set {z ∈ v;H(z) = 0}. In this case we can not have hµ = |H|. This
is illustrated by the following example: we set h(reiϕ) = θ(ϕ)r2 cos(2ϕ), for r ∈ [0, 1],
ϕ ∈ [0, 2π[ and

θ(ϕ) =

{
−1, if π

4
≤ ϕ ≤ 3π

4

+1, otherwise.

This function h satisfies (3), (4), (5). In particular one can check that ∆h = µ with
supp(µ) = D1 ∪D2 where D1 = {z = reiϕ, 0 ≤ r ≤ 1 and ϕ = π

4
}, D2 = {z = reiϕ, 0 ≤

r ≤ 1 and ϕ = 3π
4
}

When z0 ∈ supp(µ) is a zero of odd order of ωhµ we must use multivalued harmonic
function.

Theorem 1.4. Let z0 ∈ suppµ with (hµ, µ) which satisfy assumptions (3), (4), (5), and
such that z0 is a zero of odd order of ωhµ. We assume that hµ(z0) = 0. Then there exist
a neighborhood V of z0, a multivalued harmonic function H1 in V such that H := |H1|
is a single-valued function and a function θ : V → {±1} such that

(9) hµ(x) = θ(x)H(x) in V,
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Figure 2. An example of the geometry of suppµ near a critical point of hµ.

the function θH being continuous and ∇H(z0) = 0. Besides the support of µbV is a
union of smooth curves included in {z ∈ V ;H(z) = 0} which end at z0.

Furthermore the function H1 is such that: there exist an unique integer n ≥ 1, a
small number r > 0 and a biholomorphism Φ : B(0, r)→ V such that Φ(0) = z0 and

(10) H1 ◦ Φ(z) = Re(zn+ 1
2 ), for z ∈ B(0, r)

Thanks to the property satisfied by the function H1 in the previous theorem we can
obtain a description of the set of zeros of H1 similar to Theorem 1.3.

Theorem 1.5. let H1 be as in the previous Theorem 1.4. Then there exist 2n + 1
analytic curves

γk :]− 1, 1[→ V, (k = 1, 2, ..., 2n+ 1)

such that γk(0) = z0 and

1) {z ∈ R2;H1(z) = 0} ∩ V = ∪2n+1
k=1 γk

2) ang(γk, γk+1) = 2π
n+1

, k = 1, ..., 2n+ 1, where γ2n+n denotes γ1 and ang(γk, γk+1)
is the angle between γk and γk+1 at z0.

3) There exists an analytic diffeomorphism φ : V → B(0, 1) such that

φ ◦ γk(t) = t exp(iθk)

where t ∈]− 1, 1[, k = 1, ..., 2n+ 1, and θk = π
2n+1

+ 2(k−1)π
2n

.

z0

suppµ

V

Figure 3. Illustration of Theorem 1.4.
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In order to conclude this introduction we would like to comment on the hypothesis
(3), (4), (5). First note that the fact that hµ is in H1 (or equivalently that µ ∈ H−1)
is essential to assume (5) since we take the divergence of the tensor Tµ in the sense of
distributions we must have that its coefficients are in L1

loc. Then we want to give an
example which shows that (5) does not necessarily imply that µ is a Radon measure.
The example is the following: one can take h defined on [0, 1] such that h(0) = 0 and

h′(x) =

{
+1, if x ∈] 1

n+1
, 1
n
[ with n even

−1, if x ∈] 1
n+1

, 1
n
[ with n odd.

We then have that h ∈ H1([0, 1]), and h satisfies ωh = |h′(x)|2 = 1 is holomorphic. But
∆h =

∑+∞
n=2 δ 1

n
is not a Radon measure.

The paper is organized as follows: In Section 2 we explain the physical motivations
for studying this problem. Section 3 is devoted to the description of the measure µ near
a point z0 such that ωhµ(z0) 6= 0. In Section 4 we discuss the case of a zero of even order
of ωhµ and in Section 5 the case of a zero of odd order of ωhµ .

2. Physical motivations of the problem

2.1. Connections to Ginzburg-Landau vortices without magnetic field. The
conditions (3), (4), (5) are motivated by the problem of describing limiting vorticities
for the critical points (uε)ε of the Ginzburg-Landau energy without magnetic field

(11) Eε(u) =
1

2

∫
Ω

|∇u|2dx+
1

4ε2

∫
Ω

(1− |u|2)2dx.

Here u is a complex-valued function called the order parameter and its isolated ze-
ros are called vortices. The Ginzburg-Landau theory is a model for describing the
superconductivity. The Ginzburg-Landau system without magnetic field was studied
by Béthuel-Brézis-Hélein in [3]. Later on Sandier-Serfaty in [11] studied the Ginzburg-
Landau system with magnetic field which is a more physically relevant model. The
vortices are important features of the model. They correspond to small regions in the
superconducting sample where the superconductivity is destroyed. Let Ω be a bounded
domain in R2. We consider a family (uε)ε>0 of solutions of

(12) −∆uε =
uε
ε2

(1− |uε|2) in Ω.

We assume that |uε| ≤ 1 in Ω and

(13) Eε(uε) < C0ε
α−1, α >

2

3

for every ε > 0. We let jε = 〈iuε,∇uε〉 where 〈., .〉 denotes the inner product in C
identified with R2. We also let µε = curl jε. Here jε describes superconducting currents
and µε is the vorticity of these currents. A direct calculation shows that div jε = 0
hence we can write jε = ∇⊥hε for some function hε. Furthermore this function satisfies
the following equation

(14)

{
∆hε = µε in Ω
∂νhε = 〈jε, τ〉 on ∂Ω.

Here ν is the outward pointing normal to ∂Ω and τ = ν⊥. By the solution to (14) we
mean the solution with zero average in Ω. We split hε into two pieces: let us define h0

ε
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and h1
ε by {

−∆h1
ε = µε in Ω,
h1
ε = 0 on ∂Ω.

, h0
ε = hε − h1

ε.

We recall the following result which describes the behavior of the vorticity measure
as ε goes to 0 (see [10] and [11]).

Theorem 2.1 (Theorem 13.2 in [11]). A) Let {uε}ε>0 be solutions of (12). Then
for any ε > 0, there exists a measure νε of the form 2π

∑
i d

ε
iδaεi where the sum

is finite, aεi ∈ Ω and dεi ∈ Z for every i, such that, letting nε =
∑

i |dεi |,

(15) nε ≤ C
Eε(uε,Bε)
| log ε|

,

where Bε is a union of balls of total radius less than Cε2/3, and such that

(16) ‖µε − νε‖W−1,p(Ω)‖µε − νε‖(C0(Ω))∗ → 0,

for some p ∈ (1, 2).
B) Let {νε}ε be any measures of the form 2π

∑
i d

ε
iδaεi satisfying (16), let nε =∑

i |dεi |, and let {Mε}ε be positive real numbers such that {h0
ε/Mε}ε converges in

L1
loc(Ω) to a function H0. Then H0 is harmonic and, possibly after extraction,

one of the following holds.
0) nε = 0 for every ε small enough and then µε tends to 0 in W−1,p(Ω).
1) nε = o(Mε) is nonzero for ε small enough, and then µε/nε converges in

W−1,p(Ω) to a measure µ such that

µ∇H0 = 0,

hence the support of µ is contained in the set of critical points of H0.
2) Mε ∼ λnε, with λ > 0, and then µε/Mε converges in W−1,p(Ω) to a measure

µ, and hε/Mε converges in W 1,p
loc (Ω) to a solution of ∆hµ = µ in Ω. Moreover

the symmetric 2-tensor Tµ with coefficients Tij given by

(17) Tij = −∂ihµ∂jhµ +
1

2
|∇hµ|2δij

is divergence-free in finite part (see Definition 2.1 below).
3) Mε = 0(nε), and then µε/nε converges in W−1,p(Ω) to a measure µ, and

hε/nε converges in W 1,p
loc (Ω) to the solution of

(18)

{
∆hµ = µ in Ω
hµ = 0 on ∂Ω.

Moreover the symmetric 2-tensor Tµ with coefficients Tij given by (17) is
divergence-free in finite part.

In cases 2) and 3), if µ ∈ H−1(Ω) then solutions of ∆hµ = µ are in H1
loc(Ω). Thus Tµ

is in L1
loc(Ω) and we have that div(Tµ) = 0 in the sense of distributions. In other words

hµ is stationary harmonic.

Hence we can see that the limiting vorticity in cases 2), 3), with the additional
hypothesis that µ ∈ H−1(Ω) satisfies condition (4), (5). Understanding the limiting
measure µ will in turn give qualitative information on the behavior of vortices.
We now recall the definition of the notion of divergence-free in finite part taken from
[11].

Definition 2.1. Assume X is a vector field in Ω. We say that X is divergence-free in
finite part if there exists a family of sets {Eδ}δ>0 such that

1. For any compact K ⊂ Ω, we have limδ→0 cap1(K ∩ Eδ) = 0.
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2. For every δ > 0, X ∈ L1(Ω \ Eδ).
3. For every ζ ∈ C∞c (Ω), ∫

Ω\Fδ
X · ∇ζ = 0

where Fδ = ζ−1(ζ(Eδ)). If T is a 2-tensor with coefficients {Tij}1≤i,j≤2, we say
that T is divergence free in finite part if the vectors Ti = (Ti1, Ti2) are, for
i = 1, 2.

In this definition we denoted by cap1 the 1-capacity of a set E ⊂ R2 and we recall from
Evans-Gariepy [6] that the p-capacity (1 ≤ p < 2) of a set E is defined as

capp(E) = inf{
∫
R2

|∇ϕ|p;ϕ ∈ Lp∗(R2),∇ϕ ∈ Lp(R2), A ⊂ int(ϕ ≥ 1)},

where int(A) denotes the interior of A and p∗ = 2p
2−p . We would like mention that in [9],

the author studied limiting vorticity measures associated to the Ginzburg-Landau sys-
tem with magnetic field. This leads to conditions analog to (3), (4), (5). He investigated
these conditions under the additional assumption that the measure µ is supported by
a simple smooth curve. He then proved, among other things, that in that in this case
µ has a fixed sign.

2.2. Connections to the Euler System. It turns out that conditions (4), (5) are
also related to the Euler equations for incompressible flow in fluid mechanics. They can
be written as follows:

(19)

{
∂tv + (v · ∇)v +∇p = 0 in Ω

div(v) = 0 in Ω

where Ω is an open set of R2. In this system p is called the pressure and it is an unknown
of the system. Here v ·∇v := v1∂xv+v2∂yv, and v is the velocity of the fluid. The system
is stationary if it does not involve in time, i.e., if ∂tv = 0 in Ω. A quantity of particular
interest in fluid mechanics is the vorticity of the fluid defined by

(20) µ = curl v.

We must be more specific to define the notion of solutions of the Euler system. Indeed
we want to give a meaning to (19) for vector-fields which are only in L2(Ω). First note
that thanks to the condition div(v) = 0 we can rewrite the stationary Euler system in
the following form:

(21)

{
div(v ⊗ v) +∇p = 0

div(v) = 0.

where (v⊗v) is a 2×2 matrix given by (v⊗v)i,j = vivj, for 1 ≥ i, j ≥ 2. The divergence
of a matrix is the sum of the divergence of the row. Let us denote by 〈A,B〉 := tr(AtB)
the inner product between two matrices.

Definition 2.2. Let Ω be an open set in R2. We say that v ∈ L2(Ω,R2) is a weak
solution of (21) if there exists p ∈ L1(Ω) such that

(22)

∫
Ω

〈v ⊗ v,Dϕ〉+

∫
Ω

p div(ϕ) = 0, ∀ ϕ ∈ C∞c (Ω,R2).

Proposition 2.1. Let hµ satisfy (3), (4), (5). We set v = ∇⊥hµ. Then v is a weak
solution of the stationary Euler system with vorticity equal to µ.
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Proof. Let ϕ = (ϕ1, ϕ2) ∈ C∞c (Ω,R2), recall that ∇⊥h = (−∂yh, ∂xh).∫
Ω

〈∇⊥h⊗∇⊥h,Dϕ〉 =

∫
Ω

(∂yh)2∂xϕ1 − (∂yh∂xh) [∂yϕ1 + ∂xϕ2] + (∂xh)2∂yϕ2.

However because of the condition (5) we have∫
Ω

1

2
(∂yh

2 − ∂xh2)∂xϕ1 − (∂xh∂yh)∂yϕ1 = 0∫
Ω

(−∂xh∂yh)∂xϕ2 +
1

2
(∂xh

2 − ∂yh2)∂yϕ2 = 0.

Hence we can rewrite

∫
Ω

〈∇⊥h⊗∇⊥h,Dϕ〉 =

∫
Ω

1

2
(∂xh

2 + ∂yh
2)∂xϕ1 +

∫
Ω

1

2
(∂xh

2 + ∂yh
2)∂yϕ2.

We then set p = 1
2
|∇h|2 ∈ L1(Ω) and we obtain that for all ϕ ∈ C∞c (Ω,R2) we have∫

Ω

〈∇⊥h⊗∇⊥h,Dϕ〉 = −
∫

Ω

p div(ϕ).

Thus v = ∇⊥h is a weak solution of stationary Euler system, with pressure p = 1
2
|∇h|2

and with vorticity equal to curl∇⊥h = ∆h = µ. �

The previous Proposition 2.1 combined with Theorems 1.1, 1.2, 1.4, implies that if
v is a weak solution of the Euler system (21) such that v = ∇⊥h with h which satis-
fies hypothesis (3), (4), (5) then v is a vortex sheet solution of (21). The vortex sheet
problem consists in finding a solution (v, p) of (19) such that the initial data v|t=0 = v0

satisfies that div(v0) = 0 and ω0 = curl v0 = δΣ with Σ a compact smooth curve in
R2. The existence of global solution of vortex sheet solutions of the Euler equation
is due to J.M Delort in [5]. Note that in his paper an important assumption for the
proof of the existence of global solution of vortex sheet solutions is that the initial data
ω0 = curl v0 = µ is a positive (or negative) measure. However in cases of theorems 1.2,
1.4, it can happen that µ has no sign. For example setting h(r, ϕ) = θ(ϕ)r2 cos(2ϕ)
with θ(ϕ) = +1, if −3π

4
≤ ϕ ≤ π

4
and θ(ϕ) = −1 if ϕ ∈ [−π, π] \ [−3π

4
, π

4
]. Then one can

check that ∆h is a measure with no fixed sign.

Let us mention that not all stationary solutions of the Euler system (21) can be
written as v = ∇⊥h with h which satisfies (3),(4),(5). For example we take v = (−y, x)
for x, y ∈ B(0, 1). Then we can check that v is a solution of (21) with p = 1

2
(x2 + y2).

We can write v = ∇⊥h with h = 1
2
(x2 + y2). But h satisfies that ωh = (x− iy)2 and it

is not holomorphic. Hence (5) is not satisfied. Note that in this case ∆h = 1 in B(0, 1).
Such a solution is called a vortex patch.

2.3. Connections to system of point vortices. A system of N -point vortices in
evolution is described by the following system of ordinary differential equations

(23)
dzi
dt

(t) = ∇⊥
[

N∑
j=1,j 6=i

dj ln |z − zj(t)|

]
(zi(t)), ∀i = 1, ..., N.

with ∇⊥ = (−∂y, ∂x) and dj ∈ N. The points zi(t) are called vortices and di are the
degrees of vortices. The system is stationary if the vortices do not evolve in time, one
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then has

(24)
N∑

j=1,j 6=i

dj
zi − zj
|zi − zj|2

= 0, ∀i = 1, ..., N.

A natural question is the following: What are the limiting vorticities of a stationary
system of point vortices when the number of points tends to infinity?

Let us reformulate precisely this question. Let Ω be a bounded domain, we are inter-
ested in Radon measure µ which satisfies the following conditions:

(25) ∀ε > 0,∃N ε ∈ N, (zεi )1≤i≤Nε ∈ Ω, dεi ∈ Z s.t.‖µ− 2π
Nε∑
i=1

dεiδzεi ‖(C0(Ω))∗ < ε

(26)
(
(zεi )1≤i≤Nε , (d

ε
i )1≤i≤Nε

)
define a stationary system of point vortices.

The limiting vorticities of a stationary system of point vortices are described by a
result analog to Theorem 2.1:

Theorem 2.2. Let Ω be a bounded domain. Let µ be a Radon measure in Ω which
satisfies (25) and (26). There exists a function u ∈ L1

loc(Ω) such that

1) ∆u = µ

2) The tensor

Tu =

(
1
2

[(∂yu)2 − (∂xu)2] −∂xu∂yu
−∂xu∂yu 1

2
[(∂xu)2 − (∂yu)2]

)
is divergence-free in finite parts. Furthermore if µ is in H−1(Ω) then u is in
H1(Ω) and div(Tu) = 0 in the sense of distributions. That is u satisfies the
conditions (3), (4), (5).

Thanks to the previous theorem we see that studying the conditions (3), (4), (5)
can be useful to obtain information about the vorticity of a stationary system of point
vortices when the number of vortices tends to infinity. The rest of this subsection is
devoted to the definitions needed in the statement of Theorem 2.2 and its proof. The
definitions and some results are taken from [11] Chapter 13.

In this section we use an equivalent definition of divergence-free in finite part:

Definition 2.3. Let X be a vector field in Ω, and z1, ...zN in Ω such that X ∈ C0(Ω \
{z1, ..., zN}). We say that X is divergence free in finite part if

1. div(X) = 0 in D′(Ω \ {z1, ..., zN}).
2.
∫
∂B(zi,δ)

X.νi = 0, ∀ i = 1, ..., N, ∀δ > 0 where ν denotes the outward unit

normal to ∂B(zi, δ).

The equivalence between the two previous definitions can be proved using the coarea
formula.

Definition 2.4. We say that u is weakly stationary harmonic if Tu is divergence free
in finite part.

Example 2.1. u(z) = ln |z| is weakly stationary harmonic in R2.

Proof. Let z = x + iy. We have that ln |z| is harmonic in R2 \ {0} and smooth in
R2 \ {0}. Then it is stationary harmonic in R2 \ {0}, that is div(Tu) = 0 in R2 \ {0},
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with Tu =

(
∂xu

2 − ∂yu2 2∂xu∂yu
2∂xu∂yu ∂yu

2 − ∂xu2

)
. We want to show the second condition in the

previous definition. Let δ > 0 we have

∂xu
2 − ∂yu2 =

x2 − y2

|z|2
and 2∂xu∂yu =

xy

|z|2
.

The outward unit normal to ∂B(0, δ) is ν = z
|z| . Hence, for all δ > 0 small:∫

∂B(0,δ)

(∂xu
2 − ∂yu2)ν1 + (2∂xu∂yu)ν2 =

∫
∂B(0,δ)

x(x2 + y2)

|z|3

= δ

∫ 2π

0

cos(ϕ)dϕ = 0.

The integral of the other component of Th is computed the same way and we also find
that it is equal to 0. Thus u is weaky stationary harmonic. �

We can associate to a system of point vortices (24) the measure
∑N

i=1 diδzi , where we
denoted by δz0 the Dirac mass in z0. Let us consider the particular solution of

(27) ∆u =
2π

MN

N∑
i=1

diδzi

given by

(28) u(z) =
1

MN

N∑
i=1

di ln |z − zi|, where MN =
N∑
i=1

|di|.

Proposition 2.2. The points (zi)1≤i≤N ∈ R2 form a stationary system of point vortices

if and only if the function u(z) = 1
MN

∑N
i=1 di ln |z − zi| is weakly stationary harmonic.

Remark: Note that if u is not in H1(Ω) then it does not make sense to say that u
is stationary harmonic that is why we need the notion of weak stationary harmonicity.

Proof. We use Definition 2.3. Again away from the points z1, ..., zN , u is harmonic and
smooth. Thus it is stationary harmonic. Near z1 we have

u(z) = α1 ln |z − z1|+H1(z)

where H1(z) := 1
MN

∑N
i=2 di ln |z−zi| is harmonic near z1 (in a neighborhood of z1 which

contains only z1 and no other zi) and α1 is a constant. Without loss of generality we
can assume that α1 = 1 and z1 = 0. We then have:

∂xu
2 − ∂yu2 =

(
x

|z|
+ ∂xH1(z)

)2

−
(
y

|z|
+ ∂yH1(z)

)2

=
x2 − y2

|z|2
+ (∂xH

2
1 − ∂yH2

1 ) + 2

(
x

|z|
∂xH1 −

y

|z|
∂yH1

)

2∂xu∂yu = 2
xy

|z|2
+ 2∂xH1∂yH1 + 2

(
x

|z|
∂yH1 +

y

|z|
∂xH1

)
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Thus∫
∂B(0,δ)

(∂xu
2 − ∂yu2)ν1 + (2∂xu∂yu)ν2 =

∫
∂B(0,δ)

x2 − y2

|z|2
ν1 + 2

xy

|z|2
ν2

+

∫
∂B(0,δ)

(∂xH
2
1 − ∂yH2

1 )ν1 + (2∂xH1∂yH1)ν2

+

∫
∂B(0,δ)

2

(
x

|z|
∂xH1 −

y

|z|
∂yH1

)
ν1 + 2

(
x

|z|
∂yH1 +

y

|z|
∂xH1

)
ν2.

The first term in this sum is zero because ln |z| is weakly stationary harmonic. The
second term is also zero because H is harmonic, smooth, and hence stationary harmonic
and weakly stationary harmonic. For the third term we can use the fact that the normal
on ∂B(0, δ) is ν = z−z1

|z−z1| to prove that it is equal to 2
∫
∂B(0,δ)

∂xH1.

Hence if u is weakly stationary harmonic this term must be equal to zero for all δ. Then
dividing this quantity by δ and letting δ go to 0 we find that ∂xH1(z1) = 0. With the
same method applied to the other component of Tu we obtain∫

∂B(0,δ)

(2∂xu∂yu)ν1 + (∂yu
2 − ∂xu2)ν2 = 2

∫
∂B(0,δ)

∂yH1.

Thus if u is weakly stationary harmonic we find that ∇H1(0) = 0. By repeating this
argument near each zi, we obtain that if u is weakly stationary harmonic then z1, ..., zN
form a stationary system of point vortices:

N∑
j=1,j 6=i

dj
zi − zj
|zi − zj|2

= 0 ∀i = 1, ..., N.

�

We now prove Theorem 2.2. Let µ be a Radon measure which satisfies (25), (26). We
set

(29) uNε :=
1

MNε

N∑
i=1

dεi ln |z − zεi |

with MNε =
∑Nε

i=1 |dεi |. We want to prove that uNε converges to a function u when ε
goes to 0 such that u satisfies ∆u = µ and u is weakly stationary harmonic. However
we need to have a notion of convergence which preserves the notion of weak stationary
harmonicity. This is the object of the following definition.

Definition 2.5 ([11]). We say (with some abuse of notation) that a sequence (Xn)n
in L1(Ω) converges in L1

δ(Ω) to X if Xn → X in L1
loc(Ω) except on a set of arbitrarily

small 1-capacity, or precisely if there exists a family of sets (Eδ)δ>0 such that for any
compact K ⊂ Ω,

(30) lim
δ→0

cap1(K ∩ Eδ) = 0, and ∀δ > 0 lim
n→+∞

∫
K\Eδ

|Xn −X| = 0.

We define similarly the convergence in L2
δ by replacing L1 by L2 in the above.

Proposition 2.3 ([11]). Assume (Xn)n∈N is a sequence of divergence-free in finite part
vector fields which converges to X in L1

δ(Ω). Then X is divergence free in finite part.
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Corollary 2.1. Assume that uN is a sequence of weakly stationary harmonic functions
such that uN converges to u in L2

δ(Ω) and ∇uN converges in L2
δ(Ω) then u is weakly

stationary harmonic.

Thus to prove Theorem 2.2 we only need to prove that the functions uNε converge
in L2

δ(Ω) to a function u such that ∇uNε converge to ∇u in L2
δ(Ω).

Proposition 2.4. Let Ω be a bounded open set in R2. Let µ be a Radon measure in Ω
such that (25),(26) hold. Let uNε = 1

MNε

∑N
i=1 d

ε
i ln |z− zεi | then there exists u such that

uNε converge in L2
δ(Ω) to u and ∇uNε converge to ∇u in L2

δ(Ω).

Proof. We let

(31) µNε :=
2π

MNε

Nε∑
i=1

δzεi .

Since Ω is bounded the measure µNε has compact support and we can then write

(32) uNε = ln |z| ∗ µNε

where ∗ denotes the convolution product. Then for all ϕ in C∞c (R2) we have

〈uNε , ϕ〉 = 〈ln |z| ∗ µNε , ϕ〉 = 〈µNε , ln |z| ∗ ϕ〉.
Now we let ε go to 0, by hypothesis µNε converges to µ in (C0(Ω))∗. Hence

〈uNε , ϕ〉 → 〈µ, ln |x| ∗ ϕ〉.
This proves that uNε converges to some u in the sense of distributions.

In the rest of the proof we drop the subscript ε and consider the limit N → +∞ (if
Nε stays bounded the proof is immediate). We follow closely the proof of Proposition
13.2 in [11]. We choose a bounded open set Ω′ such that Ω ⊂⊂ Ω′. We can define µN ,
µ, uN and u in Ω′ (using formulas (32), (31) for uN and µN valid in R2 and passing to
the limit in Ω′). In Ω′ we set

(33) vN = uN − u, αN = µN − µ.
We then have

(34) ∆vN = αN in Ω′.

It holds that lim
N→+∞

‖αN‖C0(Ω′)∗ = 0. But since we have W 1,q(Ω′) ↪→ C0(Ω′) for q > 2 we

also have C0(Ω′)∗ ↪→ W−1,p(Ω′) for p < 2. Thus we obtain

lim
N→+∞

‖αN‖W−1,p(Ω′) = 0 for p < 2.

Now we let

(35) δN =

(
‖αN‖W−1,p(Ω′)

‖αN‖C0(Ω′)∗ + 1

)1/2

, FN = {x ∈ Ω; |vN | ≥ δN}.

We have the following bound on the p-capacity of FN (cf. [6] p.158)

(36) capp(FN) ≤ C
‖vn‖pW 1,p(Ω)

δpN
.

We note note that by elliptic regularity theory ‖vN‖W 1,p(Ω) ≤ C‖αN‖W−1,p(Ω′) because
of (34) and because Ω ⊂⊂ Ω′. Thus from (35) and (36) we find that

capp(FN) ≤ C‖αN‖p/2W−1,p(Ω′)(‖αN‖C0(Ω′)∗ + 1)p/2,
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and therefore tends to 0 as N goes to infinity. This implies in turn that

lim
N→+∞

cap1(FN) = 0.

Now we use a cut-off function ϕ ∈ C∞(Ω′) such that |ϕ(x)| ≤ 1 for all x ∈ Ω′, ϕ ≡ 1 in
Ω and ϕ = 0 on ∂Ω′. We also set

F̃N = {x ∈ Ω′; |ϕvN | ≥ δN}.

We have that FN ⊂ F̃N and F̃N ∩ Ω = FN since ϕ ≡ 1 in Ω. We use the following
truncated function:

(37) ϕvN =

{
ϕvN if |ϕvN | ≤ δN ,
δN if |ϕvN | > δN .

From a property of Sobolev functions (see e.g. Lemma 7.7 in [7]), we have ∇(ϕvN) = 0
almost everywhere in F̃N . We thus obtain:∫

Ω\FN
|∇vN |2 ≤

∫
Ω′\F̃N

|∇(ϕvN)|2

≤
∫

Ω′
∇(ϕvN) · ∇(ϕvN)

≤
∫

Ω′
−∆(ϕvN)ϕvN .

The last inequality being true since ϕ = 0 on ∂Ω′. Using the Leibniz formula we obtain
that

∆(ϕvN) = ∆ϕvN + 2∇ϕ · ∇vN + ϕ∆vN .

Hence∫
Ω\FN

|∇vN |2 ≤
∫

Ω′
|∆ϕvN(ϕvN)|+

∫
Ω′

2|∇ϕ||∇vN ||ϕvN |+
∫

Ω′
|ϕvN |dαN

where we used the fact that ∆vN = αN in Ω′. Now we use Hölder inequality to obtain
that

∫
Ω\FN

|∇vN |2 ≤ CδN

(∫
Ω′
|vN |p

)1/p

+ CδN

(∫
Ω′
|∇vN |p

)1/p

+ δN‖αN‖C0(Ω)∗

≤ CδN
(
‖vN‖W 1,p(Ω′) + ‖αN‖C0(Ω′)∗

)
.

Thus

(38) lim
N→+∞

‖∇vN‖L2(Ω\FN ) = 0.

We can also see, from the definition of FN and because Ω is bounded that

(39) lim
N→+∞

‖vN‖L2(Ω\FN ) = 0.

We conclude as in [11]. Since limn→+∞ cap1(FN) = 0, there is a subsequence, still
denoted by {n}, such that

∑
n cap1(FN) < +∞. We define

Eδ =
⋃
N> 1

δ

FN .
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Then cap1(Eδ) tends to zero as δ goes to zero since it is bounded above by the tail of
a convergent series. Moreover, for any δ > 0 we have FN ⊂ Eδ when N is large enough
and therefore (38) and (39) imply that

lim
N→+∞

‖vN‖L2(Ω\Eδ) = lim
N→+∞

‖∇vN‖L2(Ω\Eδ) = 0.

�

This proposition proves point 1) and 2) of Theorem 2.2. The next proposition shows
that if we add the hypothesis that µ is in H−1(Ω), then u weakly stationary harmonic
implies u stationary harmonic.

Proposition 2.5 (Proposition 13.1 in [11]). Assume that X is divergence-free in finite
part in Ω and that X is in L1(Ω \ E). Then for every ζ ∈ C∞c (Ω),∫

Ω\F
X · ∇ζ = 0,

where F = ζ−1(ζ(E)). In particular if X is in L1(Ω), then F = ∅ in the above and
therefore divX = 0 in D′(Ω).

If µ is in H−1(Ω) we have seen in the introduction that u is in H1(Ω) and Tu is
in L1(Ω). Thanks to the previous proposition u weakly stationary harmonic implies u
stationary harmonic.

3. First case: local behavior near a point z0 such that
ωhµ(z0) = (∂xhµ − i∂yhµ)2(z0) 6= 0

Let us recall that we consider a couple (µ, hµ) which satisfies

(40) hµ ∈ H1(Ω)

(41) ∆hµ = µ, in Ω

where µ is a Radon measure and

(42) ωhµ = (∂xhµ)2 − (∂yhµ)2 − 2i∂xhµ∂yhµ is holomorphic in Ω

In this section we drop the subscript µ when there is no possible confusion. We denote
by Br = B(z0, r) = {z ∈ C; |z − z0| < R} the ball of center z0 and of radius r. The
starting point of the proof of Theorem 1.1 is the following:

Lemma 3.1. Let h which satisfies (40), (41), (42). Let z0 ∈ Ω such that ωh(z0) 6= 0.
Then there exist R > 0, a function θ : BR → {±1} and a harmonic function H : BR →
R such that

(43) ∂xh(z)− i∂yh(z) = θ(z) [∂xH(z)− i∂yH(z)] , ∀ z ∈ BR.

Proof. It holds that

ωh = (∂xh)2 − (∂yh)2 − 2i∂xh∂yh = 4(∂zh)2 = (∂xh− i∂yh)2.

Thus (∂xh − i∂yh)2 is a holomorphic function in Ω. If z0 is such that ωh(z0) 6= 0 then
f := (∂xh− i∂yh)2 satisfies that f is holomorphic in Ω and f(z0) 6= 0. This implies that
in a neighborhood U of z0 where f(z) does not vanish there exists a function g : U → C
such that g2 = f in U . We can hence deduce that there exists θ : U → {±1} such that

∂xh− i∂yh = θ(z)g(z) in U.
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From now on we take U = B(z0, R) =: BR for R sufficiently small. We then set
H(z) := Re

∫ z
z0
g(s)ds. This is well defined since BR is simply connected. The function

H satisfies the following properties:

1) H vanishes at z0.
2) H is harmonic in BR because it is the real part of an holomorphic function.
3) 2∂zH(z) = g(z) or equivalently ∂xH − i∂yH = g

Thus

(44) ∂xh− i∂yh = θ(∂xH − i∂yH), in BR.

Besides we have that ∇H(z0) 6= 0 since |∇H(z0)|2 = |ωh(z0)|2 6= 0. �

We set:

B+
R := {z ∈ BR; θ(z) = +1} B−R := {z ∈ BR; θ(z) = −1}.(45)

Idea of the proof of Theorem 1.1 : The strategy of the proof is the following:
we first show that the function θ is in BV (BR). Hence B+

R and B−R are sets of finite
perimeter in BR. It turns out that the support of µbBR is equal to the essential boundary
of B+

R minus the (topological) boundary ∂BR. Then we use a theorem of structure of sets
of finite perimeter in R2 due to Ambrosio-Caselles-Morel-Masnou in [1] to decompose
the essential boundary of B+

R as a disjoint union of Jordan curves. Because of the
relation (43) we are able to show that these Jordan curves are unions of some part of
the boundary ∂BR and of level curves of the harmonic function H. Since µ is a Radon
measure we prove that there can not be an infinite number of level curves of H in the
support of µ near z0 (otherwise µ(BR) = +∞). Then we can take a smaller open set
V containing z0 such that the support of µbV is the set of zeros of H. In V we can use
the fact that ∇(h − θH) = 0 or use the maximum principle to obtain that h = +|H|
or h = −|H|.

Lemma 3.2. Let h which satisfies (40), (41), (42). Let R > 0 be small enough, θ :
BR → {±1} and H : BR → R such that (43) holds. Then θ is in BV (BR).

Proof. We set g = ∂xH − i∂yH. Since H is harmonic it holds that g is holomorphic.
Since z0 is not a zero of the function f = (∂xh− i∂yh)2 we have that g does not vanish
in BR. Then we can write

θ(z) =
∂xh(z)− i∂yh(z)

g(z)
.

We obtain that θ is in L1(BR) since h is in H1(Ω) and g is in C∞(BR).
Furthermore we can differentiate θ in the sense of distributions using the Leibniz rule
since g ∈ C∞(BR). We obtain

∂xθ =
(∂2
xxh− i∂2

yxh)g − ∂xg(∂xh− i∂yh)

g2
, ∂yθ =

(∂2
xyh− i∂2

yyh)g − ∂yg(∂xh− i∂yh)

g2
.

Summing these two equalities it comes

∂xθ + i∂yθ =
∆h

g
− (∂xg + i∂yg)(∂xh− i∂yh)

g2
.

But since g is holomorphic in BR it holds that ∂z̄g = 1
2
[∂xg + i∂yg] = 0. Hence ∂xθ +

i∂yθ = ∆h
g
. Now ∆h = µ is a Radon measure and we can write ∂xθ = Re(1

g
)∆h ,

∂yθ = Im(1
g
)∆h. Let us denote by 〈., .〉 the duality bracket for distributions. For all

ϕ ∈ C1
c (BR,R2) with |ϕ| ≤ 1, we have
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∫
BR

θ divϕ = −〈∂xθ, ϕ1〉 − 〈∂yθ, ϕ2〉 = −
∫
BR

Re(
1

g
)ϕ1dµ−

∫
BR

Im(
1

g
)ϕ2dµ.

Hence we obtain

|
∫
BR

θ divϕ| ≤ ‖1

g
‖L∞µ(BR) < +∞

which means that θ is in BV (BR) by definition. �

Recall that a set E ⊂ Ω is a set of finite perimeter in Ω if its characteristic function
χE is in BV (Ω). We have

χB+
R

=
1

2
(1 + θ), χB−R

=
1

2
(1− θ).

Hence B+
R and B−R are sets of finite perimeter in BR. We need several definitions and

results from the theory of sets of finite perimeter we recall these notions now and we
refer the reader to the books [6], or [2] for the proof of these results.

Theorem 3.1 ([6] p.167). Let E be a set of locally finite perimeter in Ω, then there exists
a Radon measure on Ω denoted by ‖∂E‖ and a ‖∂E‖-measurable function νE : Ω→ R
such that

1) |νE(x)| = 1 ‖∂E‖- a.e. , and
2)
∫
E

divϕdx =
∫

Ω
ϕ · νE d‖∂E‖ for all ϕ ∈ C1

c (Ω,Rn).

We present two notions of “boundary” of sets of finite perimeter:

Definition 3.1. Let E be a set of locally finite perimeter in Rn and x ∈ Rn. We say
that x ∈ ∂?E, the reduced boundary of E, if

i) ‖∂E‖(B(x, r)) > 0 for all r > 0,

ii) lim
r→0

1

|B(x, r)|

∫
B(x,r)

νEd‖∂E‖ = νE(x), and

iii) |νE(x)| = 1.

Definition 3.2. Let E be a Lebesgue measurable set in Rn and x ∈ Rn. We say x ∈ ∂?E,
the measure theoretic boundary or essential boundary of E if

lim sup
r→0

|B(x, r) ∩ E|
rn

> 0 and lim sup
r→0

|B(x, r) \ E|
rn

> 0.

(Here |A| denotes the n-Lebesgue measure of a set in Rn).

The structure of the reduced boundary of a set of locally finite perimeter in Rn is
described by the following theorem:

Theorem 3.2 ([6] p.205). Assume E has locally finite perimeter in Rn.

i) Then

∂?E =
∞⋃
k=1

Kk ∪N,

where
‖∂E‖(N) = 0

and Kk is a compact subset of a C1-hypersurface Sk (k = 1, 2, ...).
ii) Furthermore, νE|Sk is normal to Sk (k = 1, ...) and

iii) ‖∂E‖ = Hn−1
b∂?E

.

We have a relation between the reduced and the essential boundary.
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Proposition 3.1. i) ∂?E ⊂ ∂?E.
ii) Hn−1(∂?E \ ∂?E) = 0.

We will also use the following theorem

Theorem 3.3 (Gauss-Green formula [6] p.209). Let E ⊂ Rn have locally finite perime-
ter.

i) Then Hn−1(∂?E ∩K) < +∞ for each compact set K ⊂ Rn.
ii) Furthermore, for Hn−1 a.e. x ∈ ∂?E, there is a unique measure theoretic unit

outer normal νE(x) such that

(46)

∫
E

div(ϕ)dx =

∫
∂?E

ϕ · νEdHn−1

for all ϕ ∈ C1
c (Rn,Rn).

Since B+
R is a set of finite perimeter in BR, we denote by νB+

R
its measure theoretic

(or generalized) outer normal.

Lemma 3.3. Let h as in Lemma 3.1. Let θ, H given by Lemma 3.1. Let B+
R = {z ∈

BR; θ(z) = +1}, thanks to Lemma 3.2, B+
R is a set of finite perimeter in BR and

we have: the generalized normal νB+
R

is collinear to ∇h and ∇H, H1
b∂?B+

R\∂BR
almost

everywhere in BR.

Proof. Let us recall that, because of (43) we have

(47) ∂xh− i∂yh = θ(∂xH − i∂yH).

In the sense of distributions we have ∂x∂yh = ∂y∂xh. Thus we obtain ∂y(θ∂xH) =
∂x(θ∂yH) and

(48) ∂yθ∂xH + θ∂y∂xH = ∂xθ∂yH + θ∂x∂yH.

Now since H is harmonic and hence C∞(BR) it holds that ∂2
xyH = ∂2

yxH. Hence

∂yθ∂xH = ∂xθ∂yH.

Thus for all ϕ ∈ C∞c (BR,R) we have

〈∂yθ∂xH,ϕ〉 = 〈∂xθ∂yH,ϕ〉
〈∂yθ, ∂xHϕ〉 = 〈∂xθ, ∂yHϕ〉

〈∂xθ,−∂yHϕ〉+ 〈∂yθ, ∂xHϕ〉 = 0∫
BR

θ divψ = 0∫
B+
R

divψ −
∫
B−R

divψ = 0.

where in the last equalities we set ψ := (−∂yHϕ, ∂xHϕ). We then use Theorem 3.3 to
obtain ∫

∂?B
+
R

ψ · νB+
R
dH1 −

∫
∂?B

−
R

ψ · νB−RdH
1 = 0.

But ∂?B
+
R = ∂?B

−
R and νB+

R
= −νB−R because B+

R = BR \B−R . Hence we obtain

2

∫
∂?B

+
R

ψ · νB+
R
dH1 = 0.

Using the fact that ϕ has compact support in BR and the definition of ψ we find that
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(49)

∫
∂?B

+
R\∂BR

(−∂yHν1
B+
R

+ ∂xHν
2
B+
R

)ϕdH1 = 0

for all ϕ ∈ C1
c (BR,R2), where we denoted νB+

R
= (ν1

B+
R

, ν2
B+
R

). We conclude from (49)

that

−∂yHν1
B+
R

+ ∂xHν
2
B+
R

= 0, H1 − a.e. on ∂?B
+
R \ ∂BR.

The last equality means that νB+
R

is orthogonal to (−∂yH, ∂xH) H1-a.e on ∂?B
+
R \ ∂BR

and hence parallel to (∂xH, ∂yH). We also obtain that νB+
R

is collinear to ∇h because

∇h = θ∇H in BR. �

We can now describe the support of the measure µbBR in terms of the boundary of
B+
R .

Lemma 3.4. Let h satisfy the hypothesis (40), (41), (42). Let θ, H, BR, B+
R as in

Lemma 3.1. Then the support of µbBR is ∂?B
+
R \ ∂BR and we have

µbBR = −2∇H · νB+
R
H1
b∂?B+

R\∂BR
.

Proof. It holds that

〈∆h, ϕ〉 = −
∫
BR

∇h · ∇ϕ, ∀ϕ ∈ C∞c (BR) (h ∈ H1(Ω))

= −
∫
B+
R

∇H · ∇ϕ+

∫
B−R

∇H · ∇ϕ (∇h = ±1∇H in B±R)

Now we use the fact that H is harmonic in BR (∆H = 0 in BR) and the Gauss-Green
formula 3.3 to obtain

〈∆h, ϕ〉 = −
∫
∂?B

+
R\∂BR

ϕ∇H · νB+
R
dH1 +

∫
∂?B

−
R\∂BR

ϕ∇H · νB−RdH
1

= −2

∫
∂?B

+
R\∂BR

ϕ∇H · νB+
R
dH1

since ∂∗B
+
R = ∂∗B

−
R and νB+

R
= −νB−R . Now because of the previous Lemma 3.3 we have

that |∇H · νB+
R
| = |∇H| 6= 0 in BR (recall that |∇H| = |∇h| in BR). Hence we can

deduce that the support of µbBR is ∂∗B
+
R \ ∂BR and the lemma is proved. �

We study in more details ∂?B
+
R \ ∂BR. In particular since ∇h and νB+

R
are parallel

on ∂?B
+
R \ ∂BR we expect H to be constant on the connected components of this set.

In order to prove this fact we need more definitions and more results from geometric
measure theory, these can be found in the article [1].

Definition 3.3. A curve Γ ⊂ R2 is a Jordan curve if Γ = γ([a, b]) for some a, b ∈ R
with a < b, and some continuous map γ, one-to-one on [a, b) and such that γ(a) = γ(b).

Definition 3.4. A curve Γ ⊂ R2 is rectifiable if H1(Γ) <∞.

Lemma 3.5 (Lemma 3 in [1]). Let C ⊂ Rn be a compact connected set withH1(C) <∞.
Then for any pair of distinct points x, y ∈ C there exists a Lipschitz one-to-one map
γ : [0, 1]→ C such that γ(0) = x and γ(1) = y.
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A consequence of this lemma is that any rectifiable Jordan curve admits a Lipschitz
re-parametrization.

In order to state the next theorem, following [1], we introduce a formal Jordan curve
J∞ whose interior is Rn and a formal Jordan curve J0 whose interior is empty. We
denote by S the set of Jordan curves and formal Jordan curves. We then have the
following description of the essential boundary of sets of finite perimeter in R2.

Theorem 3.4 (Corollary 1 in [1]). Let E be a subset of R2 of finite perimeter. Then
there is a unique decomposition of ∂?E into rectifiable Jordan curves {C+

i , C
−
k : i, k ∈

N} ⊂ S, such that

i) Given int(C+
i ), int(C+

k ), i 6= k, they are either disjoint or one is contained in the
other; given int(C−i ), int(C−k ), i 6= k, they are either disjoint or one is contained
in the other. Each int(C−i ) is contained in one of the int(C+

k ).
ii) P (E) =

∑
iH1(C+

i ) +
∑

kH1(C−k ).
iii) If int(C+

i ) ⊂ int(C+
j ), i 6= j, then there is some rectifiable Jordan curve C−k

such that int(C+
i ) ⊂ int(C−k ) ⊂ int(C+

j ). Similarly if int(C−i ) ⊂ int(C−j ), i 6= j,

then there is some rectifiable Jordan curve C+
k such that int(C−i ) ⊂ int(C+

k ) ⊂
int(C−j ).

iv) Setting Lj = {i; int(C−i ⊆ int(C+
j )}, the sets Yj = int(C+

j ) \ ∪i∈Lj int(C−i ) are
pairwise disjoint, indecomposable and E = ∪jYj.

We are now able to prove:

Lemma 3.6. Let θ be such that (43) holds, θ ∈ BV (BR). Let B+
R as before. There exist

(possibly infinitely many) disjoint rectifiable Jordan curves γi such that

∂?B
+
R =

+∞⋃
i=1

γi.

Proof. We must check that B+
R is a set of finite perimeter in R2 (not just in BR) in

order to apply Theorem 3.4. To this end we set

θ̃ :=

{
θ if x ∈ BR,

−1 if x ∈ R2 \BR.

We also set χB+
R

= 1
2
(1 + θ̃), this is the characteristic function of B+

R in R2. We must

prove that χB+
R
∈ BV (R2). First we note that χB+

R
∈ L1(R2) because it is bounded in

BR and it is null in R2 \BR. Second for all ϕ ∈ C∞c (R2,R2) we have∫
R2

χB+
R

div(ϕ) =
1

2

∫
R2

θ̃ div(ϕ)

since ϕ has compact support in R2. Thus∫
R2

χB+
R

div(ϕ) =
1

2

[∫
BR

θ div(ϕ)−
∫
R2\BR

div(ϕ)

]
=

1

2

∫
B+
R

div(ϕ)− 1

2

∫
B−R

div(ϕ)− 1

2

∫
R2\BR

div(ϕ).

Now we claim that B+
R , B−R and R2 \ BR have locally finite perimeter in R2. This is

obvious for R2 \ BR because BR is a smooth open set with finite perimeter in R2. For
B+
R , B−R thanks to a deep criterion (cf. Theorem 1 p.222 of [6]) we must only check that

for all K compact subset of R2

H1(K ∩ ∂?B+
R) < +∞.
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But H1(K ∩∂?B+
R) ≤ H1(BR∩∂?B+

R) < +∞ because B+
R has finite perimeter in BR by

definition, and the same is true for B−R . We can thus apply the Gauss-Green formula
3.3 to obtain

∫
R2

θ̃ div(ϕ) =

∫
∂?B

+
R

ϕ · νB+
R
dH1 −

∫
∂?B

−
R

ϕ · νB−RdH
1 −

∫
∂BR

ϕ · νBRdH1.

Hence for all ϕ ∈ C∞c (R2,R2) we have

|
∫
R2

θ̃ div(ϕ)| ≤ 2H1(∂?B
+
R) +H1(∂BR) < +∞.

This proves that χB+
R

is in BV (R2). We can thus apply the Theorem 3.4 to obtain

the lemma. �

In order to pursue the proof of the main result we need the following version of the
coarea formula:

Theorem 3.5 (Theorem 2.93 in [2] p.101). Let f : R2 → R be a Lipschitz function and
let E be a countably H1-rectifiable subset of R2. Then the function t 7→ H0(E ∩ f−1(t))
is Lebesgue measurable in R, E ∩ f−1(t) is countably H0-rectifiable for dt-a.e. t ∈ R
and

(50)

∫
E

Ckd
EfxdH1(x) =

∫
R
H0(E ∩ f−1(t))dt.

where dEfx is the tangential differential of f at x ∈ E, Ckd
Efx is the k-dimensional

coarea factor, H0 is the 0-dimensional Hausdorff measure (this is the counting measure)
and for the definitions of these notions we refer to [2] Chapter 2.

We can apply the previous theorem with the function f : R2 → R, x 7→ |x| (we have
that |dEfx| ≤ 1 for this f and all E countably H1-rectifiable subset of R2). We then
find that for all rectifiable Jordan curves γ we have, for R > ρ > 0

(51) H1(γ ∩ (BR \BR−ρ)) ≥
∫ R

R−ρ
H0(γi ∩ Ct)dt

where Ct = {z ∈ R2; |z| = t}. We then obtain:

Lemma 3.7. Under the same assumptions as in Lemma 3.6. There exist 0 < R′ < R
and (possibly infinitely many) connected rectifiable simple curves Γj such that

(52) ∂?B
+
R′ \ ∂BR′ =

+∞⋃
j=1

Γj.

Proof. We use the formula (51), and the fact that H0(γi ∩Ct) is finite for almost every
t ∈ [R − ρ,R] . We choose R′ such that H0(γi ∩ CR′) < +∞ and we have that for all
i ∈ N there exists ki ∈ N and ki intervals of R such that

γi ∩BR′ = γi(I1) ∪ ... ∪ γi(Iki)

with Ij =]aj, bj[ and γi(aj), γi(bj) ∈ ∂BR′ for j = 1, ..., ki. Hence γi ∩ BR′ is a finite
union of connected rectifiable simple curves. We define B+

R′ = B+
R ∩ BR′ and we find

that
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�
�
�
�

BR′

Γj

z0

+

−

+

−

+

−

Figure 4. Illustration of Lemma 3.7

suppµbBR′ = ∂?B
+
R′ \ ∂BR′ = suppµbBR ∩BR′

=
+∞⋃
i=1

γi ∩BR′ =
+∞⋃
j=1

Γj

with Γj connected rectifiable simple curves. �

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. Let h which satisfies (40), (41),(42). Let θ, H be defined by (43).
Let R′ > 0 be as in Lemma 3.7. From now on we denote by B the ball BR′ . We also
denote by B+ = {z ∈ B; θ(z) = +1}. Let {Γj}j∈N simple connected rectifiable given by
Lemma 3.7. The next claim states that each connected component of ∂?B

+ \ ∂B is a
connected component of some level curve of the function H in B.

Claim 3.1. For all i ∈ N, there exists ci ∈ R such that

Γi = {z ∈ R2;H(z) = ci} ∩B.

1) We first show that for all i ∈ N there exists ci ∈ R such that Γi ⊂ {H = ci} ∩ B,
where {H = ci} is a short for {z ∈ R2;H(z) = ci}. Indeed let x, y ∈ Γi, x 6= y, thanks
to Lemma 3.5 we can find a bijective lipschitz map f : [0, 1] → Γi such that f(0) = x
and f(1) = y. We then have

H(y)−H(x) =

∫ 1

0

d

dt
(H ◦ f)(t)dt

because H ◦ f ∈ W 1,1([0, 1],R), (that is H ◦ f is absolutely continuous). To prove the
absolute continuity we use that H ∈ C∞(B) and f ∈ W 1,∞([0, 1], B). Hence ( we obtain
that H ◦ f ∈ W 1,∞([0, 1]) ⊂ W 1,1([0, 1]) (see e.g. Proposition 9.5 p. 270 of [4]). Thus

H(y)−H(x) =

∫ 1

0

∇H(f(t) · f ′(t)dt

where f ′(t) denotes the derivative of f which exists for L1-almost every t ∈ [0, 1]
(because Lipschitz functions are differentiable almost everywhere). But f ′(t) is tan-
gent to Γi and ∇H(f(t)) is orthogonal to f ′(t) for almost every t ∈ [0, 1]. Indeed
thanks to Lemma 3.3, we have that ∇H parallel to νB+ H1-a.e. Hence we obtain that
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∇H(f(t)) · f ′(t) = 0 a.e. and H(y) = H(x). This shows that Γi ⊂ {H = ci} ∩B.

2) We show that Γi = {H = ci} ∩B using the following Lemma 3.8. We use the fact
that since ∇H does not vanish in B the level curves {H = ci}∩B are diffeomorphic to
straight line (this is a consequence of the implicit function theorem or can be seen in
Theorem 1.3) if R′ is small enough. Hence they are connected. We then apply Lemma
3.8 to Γi and {H = ci} ∩ B. These two curves are rectifiable, connected and simple,
and we have Γi ⊂ {H = ci} ∩B and Γi ∩ ∂B = {H = ci} ∩ ∂B by continuity of H.

Lemma 3.8. Let B be a ball of radius R. Let γ and γ̃ be two connected rectifiable
simple curves. We also denote by γ, γ̃ : [0, 1] → R2 some Lipschitz parametrization of
these curves. We suppose that γ, γ̃ are homeomorphism from [0, 1] onto their image.
Assume that

i) γ(]0, 1[) ⊂ B and γ(0), γ(1) ∈ ∂B,
ii) γ̃(]0, 1[) ⊂ B and γ̃(0), γ̃(1) ∈ ∂B,
iii) γ̃([0, 1]) ⊂ γ([0, 1]).

Then γ = γ̃.

We postpone the proof of this lemma at the end of the section. Now that we know
the geometry of the curves Γi we can prove that there exists only a finite number of
such curves in a sufficiently small ball.

Claim 3.2. Let ρ > 0 small enough such that Γi ∩ B(z0, ρ) = {H = ci} ∩ B(z0, ρ) is
diffeomorphic to an open segment for all i ∈ N such that Γi 6= ∅. Then there exists a
finite number of curves Γi such that Γi ∩B(z0, ρ) 6= ∅.

With ρ as in the statement of the claim we let Bρ = B(z0, ρ). Since θ ∈ BV (BR) we
also have θ ∈ BV (Bρ).Thus using the same notations as before we have

+∞ > H1(∂?B
+
ρ \ ∂Bρ)

= H1(supp(µbBρ))

= H1(
+∞⋃
i=1

Γi ∩Bρ)

≥
∫ ρ

0

H0(
+∞⋃
i=1

Γi ∩ Ct)dt

where in the last equality we used the coarea formula (Theorem 3.5), and we let
Ct = {z ∈ C; |z| = t}. The coarea formula also tells us that for almost every t ∈ [0, ρ]
we have H0(

⋃+∞
i=1 Γi ∩ Ct) < +∞. But if ρ is small enough then every level curves of

the harmonic function H meet the boundary of the ball Bρ. This is a consequence of

the maximum principle. As a consequence we have that H0(
⋃+∞
i=1 Γi∩Ct) is exactly two

times the number of curves Γi inside Bt. Then the number of curves Γi is finite inside Bρ.

We can now conclude the proof of Theorem 1.1. The last claim proved that there
exists a finite number of Γi near Z0 := {z ∈ B;H(z) = 0}. Thus there exists η > 0
such that dist(Z0,Γi) > η for all i ∈ N such that Γi is not included in Z0. We then set
V := B(z0,

η
2
). Because of the definition of η we obtain that

supp(µbV ) = {z ∈;H(z) = 0}.
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Note that Z0 is a smooth connected rectifiable curve near z0 (since ∇H(z0) 6= 0). We
also set as usual V + = {z ∈ V ; θ(z) = +1}, V − = {z ∈ V ; θ(z) = −1}. We have that

∇h = +∇H, on V +, ∇h = −∇H, on V −.

We thus deduce that h = H on V + and h = −H on V − because h = H = 0 on
∂?V

+ \ ∂V = Z0. We know that H does not vanish in V + and V −, because H vanishes
only on Z0. Hence H has constant sign on V + and on V − thanks to the maximum
principle. These two signs are opposite, because if they were the same then the minimum
(or maximum) of H would be 0 and would be inside the domain V , this contradicts
the maximum principle. We can assume for example that H is non negative in V + and
then h = |H| in V .

�

Proof of Lemma 3.8. By contradiction, assume that there exists p ∈ γ \ γ̃. Let t0 ∈]0, 1[
such that γ(t0) = p. Then we have

]0, 1[= γ̃−1
(
γ(]0, t0[) ∪ γ(]t0, 1[)

)
since γ̃(]0, 1[) ⊂ γ(]0, 1[) and since γ(t0) /∈ γ̃. We then deduce that

]0, 1[= γ̃−1 (γ(]0, t0[)) ∪ γ̃−1 (γ(]t0, 1[)) .

But since γ̃ and γ are homeomorphism onto their image we have that γ̃−1(γ(]0, t0[))
and γ̃−1(γ(]t0, 1[)) are two disjoint open sets. Thanks to the connectedness of ]0, 1[ we
can deduce that

1) γ̃−1(γ(]0, t0[)) =]0, 1[ and γ̃−1(γ(]t0, 1[)) = ∅ or
2) γ̃−1(γ(]0, t0[)) = ∅ and γ̃−1(γ(]t0, 1[)) =]0, 1[.

These two cases are similar. Let us assume that we are in case 1). We can then obtain
that

γ(]t0, 1[) ∩ γ̃(]0, 1[) = ∅.
This implies that γ(]t0, 1[) = ∅ or γ̃ * γ. The first assertion is impossible because γ is
assumed to be a homeomorphism from [0, 1] onto its image and the second possibility
is in contradiction with the hypothesis iii). Thus it holds that γ̃ = γ. �

4. Second case: local behavior near a zero of even order of
ωhµ(z) = (∂xhµ − i∂yhµ)2(z)

This section is devoted to the proof of Theorem 1.2. It is very similar to the proof of
Theorem 1.1. Here ωhµ(z0) = 0, but since we assume that z0 is a zero of even order of ωhµ
there is no difficulty to find a holomorphic function g such that (∂xhµ− i∂yhµ)2 = g(z)2.
Then the proof of Theorem 1.2 is a rather direct adaptation of the proof of Theorem
1.1 except that here because the function g vanishes at z0 we can only show that the
function θ defined as in the previous section is in BVloc(BR \ {z0}) for R sufficiently
enough. This introduce a new technical difficulty. We drop the subscript µ in the rest
of this section.

Lemma 4.1. Let h which satisfies (40), (41), (42). Let z0 ∈ Ω be a zero of even order
of ωh(z) = (∂xh− i∂yh)2(z) . Then there exist R > 0, a function θ : BR → {±1} and a
harmonic function H : BR → R such that

(53) ∂xh(z)− i∂yh(z) = θ(z) (∂xH(z)− i∂yH(z)) , ∀ z ∈ BR
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Proof. Since z0 is a zero of even order of ωh, we can find a neighborhood U of z0, n ∈ N
and a holomorphic function f1 : U → C such that f1(z0) 6= 0 and

(54) (∂xh− i∂yh)2 = (z − z0)2nf1(z).

Since f1(z0) 6= 0, we can choose a smaller neighborhood of z0 still denoted by U such that
in U there exists a holomorphic function denoted by ϕ1 which satisfies ϕ2

1(z) = f1(z),
and furthermore we can choose U = B(z0, R) for R small enough. We then have

(55) (∂xh− i∂yh)2 = [(z − z0)nϕ(z)]2 =: g(z)2.

We set F (z) :=
∫ z
z0
g(s)ds and

(56) H(z) := ReF (z) = Re

(∫ z

z0

g(s)ds

)
.

The function H is harmonic in BR and satisfies

2∂zH = F ′(z) = g(z) = (z − z0)nϕ1(z).

Hence, thanks to (54) we deduce that there exists θ : U → {±1} such that

(57) ∂xh− i∂yh = θ(z)(∂xH − i∂yH)

�

As before we set

B+
R := {z ∈ BR; θ(z) = +1}, B−R := {z ∈ BR; θ(z) = −1}.

We thus obtain that

∇h = +∇H, on B+
R , ∇h = −∇H, on B−R .

Lemma 4.2. Let h which satisfies (40), (41), (42). Let R > 0 be small enough and
θ : BR → {±1} such that (57) holds with H defined by (56). Then the function θ is in
BVloc(BR \ {z0}).

Proof. In order to prove this result we can apply Lemma 3.2 of the previous section in
any open subset W ⊂ BR such that g = ∂xH − i∂yH does not vanish in W . �

Thus B+
R and B−R are sets of locally finite perimeter in BR \ {z0}.

Lemma 4.3. Let h as in Lemma 4.1. Let θ, H given by Lemma 4.1. Let B+
R = {z ∈

BR; θ(z) = +1}, thanks to Lemma 4.2 B+
R is a set of locally finite perimeter in BR \

({z0}). Furthermore the generalized normal νB+
R

is collinear to ∇h and ∇H, H1
b∂?B+

R\∂BR
almost everywhere in BR.

The proof of this lemma is exactly the same as the one of Lemma 3.3. We can also
copy the proof of Lemma 3.4 to obtain

Lemma 4.4. Let h satisfy the hypothesis (40), (41), (42). Let θ, BR, B+
R as in the

previous lemma 3.3. Then the support of µbBR is ∂?B
+
R \ ∂BR and we have

µbBR = −2∇H · νB+
R
H1
b∂∗B+

R\∂BR
.
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We would like to apply Theorem 3.4 to the set B+
R and continue the proof as in the

previous section but we can not do that because B+
R have only locally finite perimeter

in BR \ {z0}. In fact we will show that this is just a technical issue and that B+
R has

indeed finite perimeter in BR but it requires some work. In a first time we work in an
annular domain. Let 0 < ρ < R, we set

AR,ρ = {z ∈ C; ρ < |z| < R} A+
R,ρ = {z ∈ AR,ρ; θ(z) = +1}.

We first apply Theorem 3.4 to the set A+
R,ρ.

Lemma 4.5. Let θ be such that (53) holds, θ ∈ BVloc(BR \ {z0}). Let A+
R,ρ as before.

There exist (possibly infinitely many) disjoint rectifiable Jordan curves γρi such that

∂?A
+
R,ρ =

+∞⋃
i=1

γρi .

Proof. We have that θ ∈ BV (AR,ρ). As in the proof of Lemma 3.6 one can show that
A+
R,ρ has finite perimeter in R2. We can then apply Theorem 3.4 to deduce the result. �

Lemma 4.6. Under the same assumptions as Lemma 4.5, there exist 0 < ρ < ρ′ <
R′ < R and (possibly infinitely many) connected rectifiable simple curves Γρj such that

(58) ∂?(A
+
R′,ρ′) \ ∂(AR′,ρ′) =

∞⋃
j=1

Γρ
′

j

��
��
��
��

BR′

{H = 0}

z0

+

+

−

+
−

+

−

−

ρ

−

Γρj

Figure 5. Illustration of Lemma 4.6

Proof. The proof is the same as in Lemma 3.7, it uses the coarea formula (see 3.5). �

Lemma 4.7. Under the same assumptions as in Lemma 4.5, for all j ∈ N, there exists

cρ
′

j ∈ R such that Γρ
′

i is exactly one connected component of {z ∈ R2;H(z) = cρ
′

i }∩AR′,ρ′.

Proof. Again in order to prove this lemma we can follow line by line the proof of claim
3.1. The only difference is that here {z ∈ R2;H(z) = ci} ∩ AR′,ρ′ is not necessarily
connected if ci 6= 0. �



26 RÉMY RODIAC

Lemma 4.8. Under the same assumptions as in Lemma 4.6 with R′ sufficiently small

there exists a finite number Nρ′ of curves Γρ
′

j such that Γρ
′

j ∩ AR′,ρ′ 6= ∅. We then have

supp(µbAR′,ρ′
) = ∂?(A

+
R′,ρ′) \ ∂AR′,ρ′

=

Nρ′⋃
j=1

Γρj .

Proof. As in Lemma 3.2 this is due to the coarea formula and the fact that the curves

Γρ
′

i are level curves of the harmonic function H. �

The next result shows that, with R′ fixed if we take a larger annulus, then the
number of curves in the decomposition of the support of µ is the same. This is due to
the geometry of these curves since they are level curves of the harmonic function H.

Lemma 4.9. Under the same assumptions as in Lemma 4.6 let ρ′1 < ρ′2 and R′ as
before small enough. Then using the previous notations we have Nρ′2

= Nρ′1
and, up to

re-order it holds Γ
ρ′1
j ⊂ Γ

ρ′2
j for j = 1, ..., Nρ′1

.

Proof. Using the previous notations we have:

supp(µbAR,ρ1 ) =

Nρ1⋃
j=1

Γρ1j

supp(µbAR,ρ2 ) =

Nρ2⋃
j=1

Γρ2j .

Besides it holds that supp(µbAR,ρ2 ) = supp(µbAR,ρ1 ) ∩ AR,ρ2 . We thus deduce that

Nρ1⋃
j=1

Γρ1j ⊂
Nρ2⋃
j=1

Γρ2j .

We also recall that we have the existence of real numbers (cρ1j ), j = 1, ..., Nρ1 and
(cρ2j ), j = 1, ..., Nρ2 such that Γρ1j is exactly one connected component of {H = cρ1j } ∩
AR,ρ1 and Γρ2j is exactly one connected component of {H = cρ2j } ∩ AR,ρ2 .

Assume that there exists cρ1j0 which is different from all the cρ2i for i = 1, ..., Nρ2 . Thanks
to the maximum principle every connected component of level curves of the harmonic
function H which lies in the ball BR meets the boundary of this ball if R is small
enough. We thus obtain that Γρ1j0 ∩ AR,ρ2 6= ∅ and then

Γρ1j0 ∩ AR,ρ2 ⊂ supp(µbAR,ρ2 ).

As a consequence we obtain that Γρ1j0 ∩ AR,ρ2 = Γρ2i0 for some 1 ≤ i0 ≤ Nρ2 . This is a
contradiction with our hypothesis on cρ1j0 . We then have

{cρ1j }j = {cρ2i }i.

With the same justification we prove that Nρ1 = Nρ2 . And then up to reorder we have

Γ
ρ′1
j ⊂ Γ

ρ′2
j for j = 1, ..., Nρ′1

.

�

We are now in position to prove:
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Lemma 4.10. Let θ, H be such that (53) holds with h which satisfies (40), (41), (42).
As before we set B+

R = {z ∈ BR; θ(z) = +1}. Then there exists R > 0 small enough
such that H1(∂?B

+
R \ ∂BR) < +∞ and consequently θ is in BV (BR).

Proof. By contradiction if H1(∂?B
+
R \ ∂BR) = +∞ then for all sequence (ρn) of real

numbers such that ρn ↘ 0 we have

(59) lim
n→+∞

H1(∂?A
+
R,ρn
\ ∂AR,ρn) = +∞.

with AR,ρ = {z ∈ C; ρ < |z| < R} and AR,ρ+ = AR,ρ ∩B+
R . This is due to the fact that

∂?B
+
R \ ∂BR =

⋃
n∈N

∂?B
+
R ∩ AR,ρn

= ∂?A
+
R,ρn
\ ∂AR,ρn

and the union of these sets is increasing. We now use the previous Lemmas 4.6 and 4.9
to obtain that for R small enough there exists an integer N such that for all n ∈ N
there are N simple connected rectifiable curves Γρnj and N real numbers cj such that

∂?A
+
R,ρn
\ ∂AR,ρn =

N⋃
j=1

Γρnj

and Γρnj = {H = cj} ∩ AR,ρn . Furthermore we also have Γρnj ⊂ Γρmj if n > m. We then
obtain

H1
(
∂?B

+
R ∩ AR,ρn

)
≤ H1

(
N⋃
i=1

{H = ci} ∩BR

)

≤
N∑
i=1

H1 ({H = ci} ∩BR) .

But for R small enough the level curves of H have a finite Hausdorff measure. Thus
there exists M > 0 such that for all n ∈ N,

H1(∂?B
+
R ∩ AR,ρn) ≤M.

This is a contradiction with (59) and then H1(∂?B
+
R \ ∂BR) < +∞.

Now we prove that θ ∈ BV (BR). We recall that in the proof of Lemma 4.2 we found
that

∂xθ − i∂yθ =
∆h

g
=

1

g
µ

in the sense of distributions where g = ∂xH − i∂yH. We then have

∂xθ − i∂yθ =
1

|g|2
gµ =

(∂xH + i∂yH)µ

|∇H|2

thus ∂xθ = ∂xH
|∇H|2µ and ∂yθ = ∂yH

|∇H|2µ. Now for all ϕ ∈ C1
c (BR′ ,R2) with |ϕ| ≤ 1∫

BR

θ divϕ = −〈∂xθ, ϕ1〉 − 〈∂yθ, ϕ2〉

= −
∫
BR

∂xH

|∇H|2
ϕ1dµ+

∫
BR

∂yH

|∇H|2
ϕ2dµ.
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We now use Lemma 4.4 to say that

µbBR = −2∇H · ν+
BR
H1
b∂?B+

R\∂BR

hence∫
BR

θ divϕ = 2

∫
∂?B

+
R\∂BR

∇H · νB+
R

∂xHϕ1

|∇H|2
dH1 − 2

∫
∂?B

+
R\∂BR

∇H · νB+
R

∂yHϕ2

|∇H|2
dH1.

We thus deduce, using the fact that | ∂xH|∇H|2 | ≤ 1 and | ∂yH|∇H|2 | ≤ 1, that

|
∫
BR

θ divϕ| ≤ 4H1(∂?B
+
R \ ∂BR) < +∞

for all ϕ ∈ C1
c (BR,R2) ; |ϕ| ≤ 1. This proves the claim. �

From this point we have all the ingredients to pursue the proof of Theorem 1.2 as in
the previous section.

Proof of Theorem 1.2.

Claim 4.1. There exist R > 0 small enough, a finite number N and N simple, con-
nected, rectifiable curves Γj such that

supp(µbBR ) = ∂?B
+
R \ ∂BR =

N⋃
j=1

Γj.

Furthermore for all 1 ≤ j ≤ N there exists cj such that Γj is exactly a connected
component of the level set {z ∈ C, H(z) = cj} ∩BR.

Once we know that the function θ defined by (57) is in BV (BR) for R small enough
we can apply the same arguments as in the previous section to prove this claim, it
results from an adaptation of Lemmas 3.4, 3.6, 3.7, and Claims 3.1, 3.2.

We can now conclude the proof of Theorem 1.2. The last claim proves that there
exist a finite number of Γj near Z0 := {z ∈ B;H(z) = 0}. Thus there exists η > 0
such that dist(Z0,Γi) > η for all j ∈ N such that Γj is not included in Z0. We then set
V := B(z0,

η
2
). Because of the definition of η we can say that

supp(µbV ) ⊂ {z ∈;H(z) = 0}.

We also set as usual V + = {z ∈ V ; θ(z) = +1} ,V − = {z ∈ V ; θ(z) = −1}. We have
that

∇h = +∇H, on V +, ∇h = −∇H, on V −.

Note that in V the function θH is continuous since H = 0 at the discontinuity points of
θ. Then θH is in H1(V ) since H is in H1. Computing∇(θH) in the sense of distributions
we obtain that ∇(θH) = θ∇H. Besides it comes

∇(h− θH) = 0 in V.

This proves that h − θH is constant in V , but evaluating this constant in z0 we find
that

h = θH, in V.

This concludes the proof of Theorem 1.2.
�
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5. Third case: local behavior near a zero of odd order of
ωhµ(z) = (∂xhµ − i∂yhµ)2(z)

In this section we deal with the case where z0 is a point in the support of µ and z0

is a zero of odd order of ωhµ . This case is the most difficult. Indeed unlike the previous
cases we can not find a holomorphic function g such that (∂xhµ − i∂yhµ)2 = g2. We
must use multivalued holomorphic function to overcome this difficulty. We do not want
to discuss here the notion of multivalued function. For us the prototype of multivalued
function is z 7→ z

1
2 . Such a multivalued function is single-valued up to a sign. Indeed

given any complex number z different from 0 there exist exactly two complex numbers
z1 and z2 such that z2

i = z for i = 1, 2 and z1 = −z2. In particular |z 1
2 | = |z| 12 is well

defined. We drop the subscript µ during the rest of this section.

Lemma 5.1. Let h which satisfies (40), (41), (42). Let z0 ∈ Ω be a zero of odd order
of ωh(z) = (∂xh − i∂yh)2(z). Then there exist W a neighborhood of z0, a function
θ : W → {±1} and a function H : W → R which satisfies H = |H1|, where H1 is a
multivalued function W such that

(60) ∂xh(z)− i∂yh(z) = θ(z)(∂xH(z)− i∂yH(z)) in W.

Furthermore the function H1 is such that: there exist an unique integer n ≥ 1, a small
number r > 0 and a biholomorphism Φ : B(0, r)→ W such that Φ(0) = z0 and

(61) H1 ◦ Φ(z) = Re(zn+ 1
2 ), for z ∈ B(0, r)

Proof. Let z0 be a zero of odd order of (∂xh− i∂yh)2. We can find a neighborhood U of
z0, an integer n and a holomorphic function f1 : U → C with f1(z0) 6= 0 such that

(∂xh− i∂yh)2 = (z − z0)2n+1f1(z).

Since f1(z0) 6= 0, there exists a smaller neighborhood of z0, still denoted by U and a
holomorphic function ϕ1 : U → C such that ϕ2

1(z) = f1(z), for z ∈ U.
We then set

(62) g(z) = (z − z0)n+ 1
2ϕ1(z), for z ∈ U.

Like z 7→ z
1
2 , g is a multi-valued function which is single-valued up to a sign. As in

the previous sections we want to take a primitive of the function g. However the fact
that g is multivalued introduces a difficulty in this process. But we can show that we
can choose a special form of a primitive of g.

Claim 5.1. There exist a neighborhood U of z0 and a single-valued holomorphic function
ϕ2 : U → C such that ϕ2(z) 6= 0 for all z ∈ U and

G(z) := (z − z0)n+ 3
2ϕ2(z),

satisfies G′(z) = g(z), for all z ∈ U (where g is defined by (62)) .

Proof. Let us assume that such a function ϕ2 exists. We then have:

G′(z) = [(z − z0)n+ 3
2ϕ2(z)]′

= (n+
3

2
)(z − z0)n+ 1

2ϕ2(z) + (z − z0)n+ 3
2ϕ′2(z)

Since we want G′(z) = g(z) = (z − z0)n+ 1
2ϕ1(z), the function ϕ2 must satisfies the

following complex ordinary differential equation:

(63) (n+
3

2
)(z − z0)n+ 1

2ϕ2(z) + (z − z0)n+ 3
2ϕ′2(z) = (z − z0)n+ 1

2ϕ1(z).
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In a neighborhood of z0 we can expand ϕ1 in power series

ϕ1(z) =
+∞∑
k=0

ak(z − z0)k.

Thanks to an expansion in power series we have: ϕ2(z) =
∑+∞

k=0 bk(z − z0)k. Using (63)
we find that the coefficient bk must satisfy

(64) (n+
3

2
)

+∞∑
k=0

bk(z − z0)k +
+∞∑
k=1

kbk(z − z0)k =
+∞∑
k=0

ak(z − z0)k.

Thus we must have

* for k = 0: b0 = a0
n+ 3

2

* for k ≥ 1: bk = ak
n+ 3

2
+k

.

We can check that if we set ϕ2(z) =
+∞∑
k=0

ak
n+ 3/2 + k

(z − z0)k then G(z) = (z −

z0)n+ 3
2ϕ2(z) is a primitive of g. furthermore because ϕ(z0) 6= 0 we have a0 6= 0 and

hence ϕ2(z0) 6= 0. Thus ϕ2(z) 6= 0 in a neighborhood of z0 denoted by U . �

We then set
H1(z) = Re(G(z))

and

(65) H(z) = |H1(z)| for all z in U.

Note that H1 is a multi-valued function which is single-valued up to a sign. The proof
of the next claim is very similar to an analogous result for harmonic function (see e.g.
[12]).

Claim 5.2. There exist a neighborhood W of z0, a number r > 0 and an analytic
diffeomorphism Φ : B(0, r)→ W such that Φ(0) = z0 and

H1 ◦ Φ(z) = Re(zn+ 3
2 ),

for all z ∈ B(0, r).

Proof. We have H1(z) = Re(G(z)) = Re[(z−z0)n+ 3
2ϕ2(z)], for all z ∈ U and ϕ2(z0) 6= 0

(where U and ϕ2 are given by Lemma 5.1). This last property allow us to find a
neighborhood of z0, denoted by W , and a (single-valued) function ϕ3 : U → C such

that ϕ3(z)n+ 3
2 = ϕ2(z) for all z ∈ W . We thus obtain that

G(z) = [(z − z0)ϕ3(z)]n+ 3
2 .

Note also that ϕ3(z0) 6= 0. We let k(z) = (z− z0)ϕ3(z). We have that k is holomorphic,
k(z0) = 0 and k′(z0) 6= 0. We can thus apply an analytic version of the local inverse the-
orem to obtain that there exists a neighborhood of z0, still denoted by W and a number
r > 0 such that k : W → B(0, r) is an analytic diffeomorphism (or biholomorphism).
Now we set Φ = k−1, we have that k ◦ Φ(z) = z ∈ B(0, r), Φ(0) = z0 and

G ◦ Φ(z) = [k(Φ(z))]n+ 3
2 = zn+ 3

2 .

We then deduce that

H1 ◦ Φ(z) = Re(G ◦ Φ(z)) = Re(zn+ 3
2 )

for all z ∈ B(0, r) and the claim is proved. �
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One can check that

(∂xH − i∂yH)2 = (∂xH1 − i∂yH1)2 = g(z)2 = f(z).

We thus deduce that there exists a function θ : W → {±1} such that

(66) (∂xh− i∂yh) = θ(∂xH − i∂yH) in W.

�

We then set

W+ = {z ∈ W ; θ(z) = +1}, W− = {z ∈ W ; θ(z) = −1}.

Note that the function θ does not play the same role as in the previous section. This
is because the function H is not harmonic here. Furthermore H is only lipschitz and
not smooth thus we can not use the same argument as in the previous section to prove
that θ is in BVloc(W \ {z0}). Indeed to prove this we used the fact that

θ(z) =
∂xh− i∂yh
∂xH − i∂yH

, ∀ z ∈ W \ {z0}

and we differentiated this expression in the sense of distributions, using the Leibniz
rule. We can not do the same here since ∂xH − i∂yH is not a smooth function.

For this reason we work in W \ {z ∈ U ;H(z) = 0}. Thanks to Proposition 5.2 we
know that this set is an union of 2n+3 connected disjoint open sets (where n is defined
in 5.2). We have

(67) W \ {z ∈ W ;H(z) = 0} =
2n+3⋃
k=1

Wk

with Wk connected and open and such that Wk ∩ Wj = ∅ if k 6= j. In each Wk, H
does not vanish and (∂xH− i∂yH) does not vanish either. We can then find a harmonic

single valued function H̃k such that

|H| = H̃k, in Wk.

����

W

W1

W2
z0

W3

{H = 0}

Figure 6. Partition of W in disjoint open connected subsets.

In particular |H| ∈ C∞(Wk) for all 1 ≤ k ≤ 2n+3. We are now in position to state that

Claim 5.3. The function θ is in BVloc(Wk \ {z0}) for all 1 ≤ k ≤ 2n+ 3.
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The proof of this fact is the same as the proofs of Lemma 3.2 and 4.2 in the previous
sections. For 1 ≤ k ≤ 2n+ 3 we set

W+
k = {z ∈ Wk; θ(z) = +1}.

These sets are sets of locally finite perimeter in Wk. As in the previous sections (see
Lemma 3.3) we can obtain

Claim 5.4. The generalized outer normal νU+
k

is collinear to ∇h and ∇H, ‖∂U+
k ‖-

almost everywhere in Uk.

We have all the ingredients to repeat the arguments of Sections 3 and 4 in each
sub-domains Wk and obtain

Claim 5.5. For all 1 ≤ k ≤ 2n + 3, there exist Nk ∈ N, and Nk simple connected
rectifiable curves Γkj , 1 ≤ j ≤ 2n+ 3 such that

∂?W
+
k \ ∂W =

Nk⋃
j=1

Γkj .

Furthermore there exist ckj real numbers such that Γkj is exactly a connected component

of {z ∈ U ;H(z) = ckj}.

Proof of Theorem 1.4. Let h which satisfies (40), (41), (42). Let W , θ, H be defined by
(60) in Lemma 5.1. As before we set

W \ {z ∈ W ;H(z) = 0} =
2n+3⋃
k=1

Wk.

with Wk open and connected and Wk ∩ Wj = ∅ if k 6= j. We also set W+
k = {z ∈

Wk; θ(z) = +1}. We use the previous Claim 5.5 and we obtain that for all 1 ≤ k ≤ 2n+3,

since there are only a finite number of curves Γkj such that ∂?W
+
k \∂W =

⋃Nk
j=1 Γkj , with

the Γkj which are connected component of level curves of H then we can find ηk such
that

B(z0, ηk) ∩ ∂?W+
k \ ∂W ⊂ {z ∈ W ;H(z) = 0}.

We then set η := min1≤k≤2n+3 ηk and V := B(z0, η). We have that θ is constant in each
V ∩Wk since θ is constant in each B(z0, ηk) ∩Wk from the definition of ηk.

We claim that V + = {z ∈ V ; θ(z) = +1} is a set of finite perimeter in V . Indeed we
have that ∂V + \ ∂V ⊂ {z ∈ V ;H(z) = 0} (here we use the topological boundary ∂V +)
and H1({z ∈ V ;H(z) = 0}) < +∞ from the last point of Lemma 5.1. Then applying
Proposition 3.62 of [2] we deduce that V + is a set of finite perimeter.

Note that in V the function θH is continuous since H = 0 at the discontinuity
points of θ. Then θH is in H1(V ) since H is in H1. Computing ∇(θH) in the sense of
distributions we obtain that ∇(θH) = θ∇H and it comes

∇(h− θH) = 0 in V.

this proves that h−θH is constant in V , but evaluating this constant in z0 we find that

h = θH in V.

�
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6. Appendix: On the stationary harmonic functions

This appendix is devoted to elementary results on stationary harmonic functions.
These results are stated without proof in the introduction of this paper. The original
definition of stationary harmonic function is the following:

Definition 6.1. A function h in H1(Ω) is stationary harmonic if for any family of
diffeomorphisms φt of Ω such that φ0 = Id we have

d

dt
|t=0E(h ◦ φt) = 0,

where E(h) = 1
2

∫
Ω
|∇h|2dx is the Dirichlet energy.

As shown by the following proposition we used an equivalent characterization.

Proposition 6.1. A function h is stationary harmonic if and only if div Th = 0 in the
sense of distributions, where

Th =

(
1
2

[(∂yh)2 − (∂xh)2] −∂xh∂yh
−∂xh∂yh 1

2
[(∂xh)2 − (∂yh)2] .

)
Proof. We first note that div(Th) = 0 in the sense of distributions if and only if∫

Ω

〈Th, Dη〉 = 0, ∀η ∈ C∞c (Ω,R2),

where Dη denotes the differential of η (which is a 2× 2 matrix) and 〈A,B〉 = tr(tAB)
denotes the inner product of two matrices. Let φt(x) = x + tη(x) with η ∈ C∞c (Ω,R2),
if t is small enough φt is a diffeomorphism. Let ht := h ◦ φt, we have

∇ht(x) = (I + tDη(x)).∇h(x+ tη(x))

|∇ht(x)|2 = |∇h(x+ tη(x))|2 + 2t〈∇h(x+ tη(x)), [Dη(x).∇h(x+ tη(x))]〉+ o(t)

Then

1

2

∫
Ω

|∇ht(x)|2dx =
1

2

∫
Ω

|∇h(x+ tη(x))|2dx+

+ t

∫
Ω

〈∇h(x+ tη(x)), [Dη(x).∇h(x+ tη(x))]〉dx+ o(t).

We can make the following change of variables y = x + tη(x) ⇔ x = y − tη(x) ⇒ x =
y − tη(y) + o(t) (the last implication holds because η(x) = η(y) + o(1) when t goes to
0). We also have

det [D(y − tη(y) + o(t))] = det(I −Dη + o(t)) = 1− t trDη + o(t)

because det(I + tA) = 1 + t tr(A) + o(t). Then

E(ht) =
1

2

∫
Ω

|∇h(y)|2dy − t

2

∫
Ω

|∇h(y)|2 trDη(y)dy +

+ t

∫
Ω

〈∇h(y), [Dη(y)∇h(y)]〉dy + o(t).

Hence
d

dt
||t=0E(ht) = 0

is equivalent to∫
Ω

[−1

2
|∇h(y)|2 trDη(y) + 〈∇h(y), [Dη(y).∇h(y)]〉dy = 0.
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But
1

2
|∇h(y)|2 trDη(y) = 〈1

2
|∇h(y)|2I,Dη(y)〉

and

〈∇h(y), Dη(y)∇h(y)〉 = 〈∇h(y)t∇h(y), Dη(y)〉

with ∇h(y)t∇h(y) =

(
(∂xh)2 ∂xh∂yh
∂yh∂xh (∂yh)2

)
. We can then conclude that

d

dt
||t=0E(ht) = 0⇔

∫
Ω

< Th, Dη >= 0

which is equivalent to div(Th) = 0 with Th = ∇ht∇h− 1
2
|∇h|2I. �

The equation (5) can also be interpreted in terms of holomorphic functions

Proposition 6.2. The condition div(Th) = 0 is equivalent to ωh := |∂xh|2 − |∂yh|2 −
2i∂xh∂yh is holomorphic in Ω.

Proof.

div(Th) = 0⇔
{
∂x(∂xh

2 − ∂yh2) = ∂y(−2∂x∂yh)
∂y(∂xh

2 − ∂yh2) = −∂x(−2∂x∂yh).

These are the Cauchy-Riemann equations for ωh written in the sense of distributions.
We can rewrite them as ∂z̄ωh = 0 where ∂z̄ = 1

2
(∂x + i∂y). The operator ∂z̄ is elliptic

and hence the elliptic regularity theory shows that ωh is smooth and then holomorphic
because it satisfies the Cauchy-Riemann equations. �

Proposition 6.3. If h is harmonic in Ω then h is stationary harmonic in Ω.

Proof. Assume that ∆h = 0 in Ω. Recall that ∆v = 4∂z̄∂zv and let us compute

∂z̄ωh = 4∂z̄[∂zh]2 = 8∂zh∂z̄∂zh
= 8∂zh∆h = 0.

Hence ∂z̄ωh(z) = 0, that is ωh is holomorphic.
�

The converse of the previous proposition is not true. However if h is a stationary
harmonic functions which statisfies the hypothesis (3), (4), (5) with µ ∈ Lp, p > 1,
then, using the same methods as in [11] Chapter 13, one can show that h is harmonic.

Proposition 6.4. If µ is in Lp(Ω) for some p > 1 and satisfies (5),(4) then µ = 0.

Proof. Let µ be in Lp(Ω) for some p > 1 and such that div(Tµ) = 0 and ∆hµ = µ. Let
ρn be a regularizing kernel, we set µn := µ ∗ ρn, hn := hµ ∗ ρn and

Tn :=
1

2

(
∂yh

2
n − ∂xh2

n −2∂xhn∂yhn
−2∂xhn∂yhn ∂yh

2
n − ∂xh2

n

)
.

One has µn → µ in Lp(Ω), and because ∇hµ is in L∞loc(Ω) one also has ∇hn → ∇hµ in
Lqloc(Ω), for all q ∈ [1,+∞[. Then

µn∇hn → µ∇hµ, in L1
loc(Ω)

and
Tn → Tµ, in L1

loc(Ω).

The last equation implies that div(Tn) → div(Tµ) = 0 and µn∇hn → µ∇hµ in
the sense of distributions. However div(Tn) = −∆hn∇hn = µn∇hn thus µ∇hµ =
limn→+∞ div(Tn) = 0 in L1

loc(Ω) and almost everywhere. From a property of Sobolev
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functions we have ∆hµ = 0 a.e. on the set F = {∇hµ = 0}, thus µ = 0 a.e. on F and
µ = 0 on Ω \ F hence µ = 0 on Ω. �
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