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REGULARITY PROPERTIES OF STATIONARY HARMONIC
FUNCTIONS WHOSE LAPLACIAN IS A RADON MEASURE

REMY RODIAC

ABSTRACT. We study the regularity of Radon measures p which satisfy that there
exists a function h,, in H'(12), stationary harmonic such that Ah, = p in Q (here Q is
an open set of R?). Such conditions appear in physical contexts such as the study of
a limiting vorticity measure associated to a family (uc)e of solutions of the Ginzburg-
Landau system without magnetic field. Under these conditions we prove that locally
there exists a harmonic function H such that the support of the measure is contained
in the set of zeros of H. Using the local structure of the set of zeros of harmonic
functions we can thus obtain that locally the support of x4 is a union of smooth simple
curves.

1. INTRODUCTION AND MAIN RESULTS

Stationary harmonic functions arise in many physical problems such as the study of
Ginzburg-Landau equations linked to superconductivity or the study of Euler equations
in fluid mechanics. They are also related to limiting vorticities of stationary system of
point vortices. Let Q be a bounded open set in R2.

Definition 1.1. A function h in H'(Q) is stationary harmonic if div T}, = 0 in 2 in the
sense of distributions, where Ty, is the stress-enerqy tensor associated to the Dirichlet
enerqgy, defined by

11(9,h)? — (0,h2)] —0,ho,h
— 2 Y x T Y
(1) Th = < Cohoh L[(0.h) — (0,h)
Equivalently h is stationary harmonic in € if
(2) wy, = () — (9,h)* — 2i0,hd,h is holomorphic in ().

Equation (1)) means that 0,(7})1+0y(Th)i2 = 0 for i = 1,2 in the sense of distributions.
Let us denote by H~*(2) the dual of the Sobolev space H}(Q2). The aim of this paper
is to describe the local regularity of Radon measures g which satisfy the following
conditions:

(3) peH(Q),

there exists a function h, such that

(4) Ah,, = pin Q,
and
(5) h, is stationary harmonic.

Note that if h, is a solution of then h, € H'(Q) and then condition (] is
well-defined. Indeed we can see that there exists a solution of in Hg () using the
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Lax-Milgram theorem. Then all the solutions are in H'(£2) since the difference between
two solutions is harmonic in  end hence belongs to H'().

We will discuss the physical motivations of this problem in the next section. Now we
wish to examine in slightly more details the condition and some of its direct conse-
quences. One can show that if A is harmonic (Ah = 0) then A is stationary harmonic
but the converse is not true in general. It is true if A is regular. Indeed using the same
techniques as in [I1] chapter 13 we can prove that if p is in L? for some p > 1 then a
solution of , , is harmonic, .e., p = 0. For the proof of these facts and other
properties of stationary harmonic functions we refer to the Appendix.

Another direct consequence of condition is that Vh, € L5, and then h, is locally
lipschitz continuous. This is due to the fact that [Vh,|* = |wy,|* and wy, is holomorphic
in Q. In particular h, and [Vh,| are continuous. The fact that wy,, is holomorphic also

gives us the following:

Proposition 1.1. Let h, which satisfies that wy,, = (Oyh,)* — (Oyh,)?* — 2i0,h,0yhy, is
holomorphic. Then the zeros of wy, are isolated in Q. If Q is compact there is a finite
number of such critical points.

In the present paper we are interested in describing the properties of Radon measures
i which satisfy hypothesis , , . Let us recall that the support of a measure pu is
the complement of the largest open set A such that u(A) = 0. Our first result describes
the local regularity of the measure p in the neighborhood of point zy which belongs
to the support of x and such that wy,(20) # 0. Note that we can always assume that
h,(z0) = 0 because adding a constant to h does not change the hypothesis , , .
Note also that near a point zg which does not belong to the support of u the function
h,, is a harmonic function.

Theorem 1.1. Let 2, € supp p, with (hy, p) which satisfy assumptions (3), (4)), (5)
and such that wy, (z) # 0. We assume that h,(z) = 0. Then there exist a neighborhood
V' of zo and a harmonic function H in V' such that

(6) h,=|H|, inV or h, =—|H|, inV

(7) supp pv = {z € V; H(z) = 0}.

Furthermore we have that VH(zy) # 0 and the set {z € V;H(z) = 0} is a smooth
simple curve diffeomorphic to a straight line.

Near a point z, such that wy,(z9) = 0 the behavior of h, and the geometry of the
support of pu is a little bit more complicated. Nevertheless if z; is a zero of even order
of wy, the situation is similar.

Theorem 1.2. Let zy € supp p, with (h,, p) which satisfy assumptions (3), (), (5).
and such that z is a zero of even order of wy,. We assume that h,(2) = 0. Then there
exist a neighborhood V' of zy, a harmonic function H in'V' and a function 6 : V — {£1}
such that

(8) hu(z) =60(2)H(z) inV.

The function 0H is continuous and VH(z) = 0. Besides the support of jiv is a union
of smooth curves included in {z € V; H(z) = 0} which end at z.

A key ingredient in the proof of the previous theorem is the local structure of the set
of zeros of harmonic functions (see e.g. [§] or [12]).
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20 suppp = {H = 0}

FIGURE 1. Near a regular point supp p is a smooth curve.

Theorem 1.3 ([12]). Let H be a harmonic function defined on an open set D C R?. We
let Zy(H) := {2 € D; H(z) = 0}. Suppose zy € D, H(z) =0 and H is not identically
zero. Then there exist a unique integer n = n(H, zg) > 1, a neighborhood U(zy) of zo in
D and n analytic curves
Y i) — 1, 1= Ul(zo), (k=1,2,...,n)

such that v,(0) = 2o and:

1) Zo(H)NU(20) = Up_17k (where vy denotes the set {yx(t);t €] — 1,1[})

2) ang<7k77k+l) = %7 k = 17"”7 where Tn+1 denotes ! and ang(7k77k+l) is the

angle between v, and Yri1 at zp.
3) There exists an analytic diffeomorphism ¢ : U(zy) — B(0, 1) such that

¢ o (t) = texp(iby)
where t E] - 17 1[7 k= 17 "‘Jnaek = % + (kinl)ﬂ-.
This means that Ty, = ¢(vx) are n symmetrically placed diameters of B(0,1).

Remark: Note that in Theorem it can happen that the support of p is strictly
contained in the set {z € v; H(z) = 0}. In this case we can not have h, = |H|. This
is illustrated by the following example: we set h(re?) = 6(p)r? cos(2yp), for r € [0, 1],
¢ € [0,27[ and

—1,ifrT<p<im
(O TR
+1, otherwise.

This function h satisfies , , . In particular one can check that Ah = p with
supp(p) = Dy U Dy where Dy = {z=re®,0<r <land p =72}, Dy ={z=7e",0<
r<1andp= ?jf}

When z € supp(p) is a zero of odd order of wy,, we must use multivalued harmonic
function.

Theorem 1.4. Let zy € supp p with (hy, i) which satisfy assumptions , , , and
such that zy is a zero of odd order of wy,. We assume that h,(z) = 0. Then there exist
a neighborhood V' of zy, a multivalued harmonic function Hy in'V such that H := |H|
is a single-valued function and a function 6§ : V' — {+1} such that

(9) hy(xz) =6(x)H(z) inV,
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FIGURE 2. An example of the geometry of supp p near a critical point of h,.

the function OH being continuous and VH(zy) = 0. Besides the support of py is a
union of smooth curves included in {z € V; H(z) = 0} which end at z.

Furthermore the function Hy is such that: there exist an unique integer n > 1, a
small number r > 0 and a biholomorphism ® : B(0,7) — V such that ®(0) = zo and

(10) Hyo®(2) = Re(2"*2), for z € B(0,r)

Thanks to the property satisfied by the function H; in the previous theorem we can
obtain a description of the set of zeros of H; similar to Theorem [1.3]

Theorem 1.5. let Hy be as in the previous Theorem [1.J]. Then there exist 2n + 1
analytic curves
v —1L,1=V, (k=1,2,...2n+1)

such that v(0) = 2o and

1) {z € R% Hi(z) =0} NV = U™y,

2) ang<7k7 7k+1) = n2_47rr17 k= 17 ) 2n + 17 where V2n+n denotes M and ang(yk, f)/k:Jrl)

1s the angle between v, and i1 at zp.
3) There ezists an analytic diffeomorphism ¢ : V — B(0,1) such that

¢ o y(t) = texp(iby)
k:—l)7r.

_ _ 2(
wheret €] — 1,1[, k=1,...,2n+ 1, and 0 = g + 2T

V

suppp

FicURE 3. Illustration of Theorem [L.4l
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In order to conclude this introduction we would like to comment on the hypothesis
, , . First note that the fact that h, is in H' (or equivalently that p € H ')
is essential to assume ({5)) since we take the divergence of the tensor 7), in the sense of
distributions we must have that its coefficients are in L},.. Then we want to give an
example which shows that does not necessarily imply that p is a Radon measure.
The example is the following: one can take h defined on [0, 1] such that h(0) = 0 and

M@Q:{+Lﬁxe]

—=, [ with n even
: 1
—1, if v €].47,

[ with n odd.

SI=3-

We then have that h € H'(]0,1]), and h satisfies wy, = |h/(x)|> = 1 is holomorphic. But
Ah = Z:ig 01 is not a Radon measure.

The paper is organized as follows: In Section 2 we explain the physical motivations
for studying this problem. Section 3 is devoted to the description of the measure p near
a point zy such that whﬂ(zo) # 0. In Section 4 we discuss the case of a zero of even order
of wy, and in Section 5 the case of a zero of odd order of wy,,.

2. PHYSICAL MOTIVATIONS OF THE PROBLEM

2.1. Connections to Ginzburg-Landau vortices without magnetic field. The
conditions , , are motivated by the problem of describing limiting vorticities
for the critical points (u.). of the Ginzburg-Landau energy without magnetic field

1 2 1 212
(11) E.(u) = §/Q|Vu| dx + 1= Q(1 — |u|*)*dz.

Here u is a complex-valued function called the order parameter and its isolated ze-
ros are called wvortices. The Ginzburg-Landau theory is a model for describing the
superconductivity. The Ginzburg-Landau system without magnetic field was studied
by Béthuel-Brézis-Hélein in [3]. Later on Sandier-Serfaty in [11] studied the Ginzburg-
Landau system with magnetic field which is a more physically relevant model. The
vortices are important features of the model. They correspond to small regions in the
superconducting sample where the superconductivity is destroyed. Let {2 be a bounded
domain in R?. We consider a family (u.).-q of solutions of

Ue

(12) —m%ZEQ—mﬁ)mQ
We assume that |u.| < 1in Q and

a—1 2
(13) E.(u.) < Coe™", a > 3

for every ¢ > 0. We let j. = (iu., Vu.) where (.,.) denotes the inner product in C
identified with R?. We also let p. = curl j.. Here j. describes superconducting currents
and p. is the vorticity of these currents. A direct calculation shows that divj. = 0
hence we can write j. = V*h, for some function h.. Furthermore this function satisfies
the following equation

Ah, = p. in
(14) {auhs = <j€>7—> on aQ

Here v is the outward pointing normal to dQ and 7 = v*. By the solution to we
mean the solution with zero average in . We split A, into two pieces: let us define hY
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and h! by
_Ah; = e in 0 _ 1
{ W= 0 onoo v Ne=he =l
We recall the following result which describes the behavior of the vorticity measure
as € goes to 0 (see [10] and [11]).

Theorem 2.1 (Theorem 13.2 in [11]). A) Let {u.}es0 be solutions of (12)). Then
for any € > 0, there exists a measure v, of the form 2m ), d56,: where the sum
is finite, a$ € Q2 and d; € Z for every i, such that, letting n. =), |dZ|,

Es(”zza Bz—:)

15 < C
(15) " |log €|

where B. is a union of balls of total radius less than Ce*3, and such that

(16) [pe = vellw-10(0) [l e = vell (o) = 0,
for some p € (1,2).
B) Let {v.}. be any measures of the form 2wy, d5d.: satisfying , let n. =
S 1de], and let {M.}. be positive real numbers such that {h?/M.}. converges in
L} (Q) to a function Hy. Then Hy is harmonic and, possibly after extraction,
one of the following holds.
0) n. =0 for every e small enough and then p. tends to 0 in W=1P(Q).
1) n. = o(M.) is nonzero for € small enough, and then p./n. converges in
W=12(Q) to a measure p such that

[LVHQ = O,

hence the support of p is contained in the set of critical points of Hy.

2) M. ~ An., with X\ > 0, and then p./M. converges in W=1P(Q) to a measure
11, and h. /M. converges in W57 (Q) to a solution of Ah,, = y in 2. Moreover
the symmetric 2-tensor T, with coefficients T;; given by

1
(17) Tij = =0l Oihy + S|V [0

is divergence-free in finite part (see Deﬁm’tion below).
3) M. = 0(n.), and then u./n. converges in W—12(Q) to a measure u, and
he/n. converges in WEP(Q) to the solution of

Ah, = p inQ
(18) { h, = 0 on 0N.

o

Moreover the symmetric 2-tensor T),, with coefficients T;; given by 5
divergence-free in finite part.
In cases 2) and 3), if p € HY(Q) then solutions of Ah, = p are in H. (). Thus T,
is in L}, .(Q) and we have that div(T,) = 0 in the sense of distributions. In other words
hy, is stationary harmonic.

Hence we can see that the limiting vorticity in cases 2), 3), with the additional
hypothesis that 4 € H~'(Q) satisfies condition (4)), (5). Understanding the limiting
measure 4 will in turn give qualitative information on the behavior of vortices.

We now recall the definition of the notion of divergence-free in finite part taken from
[11].

Definition 2.1. Assume X is a vector field in Q2. We say that X is divergence-free in
finite part if there exists a family of sets {Es}s=o such that

1. For any compact K C 2, we have lims_,o cap,(K N Es) = 0.
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2. For every § >0, X € L}(Q\ Es).
3. For every ( € C(Q),
X-V(=0
Q\Fy
where Fs = (7Y (C(Es)). If T is a 2-tensor with coefficients {Tij}1<i j<a, we say
that T' is divergence free in finite part if the vectors T; = (Tj1,Ti2) are, for
i=1,2.

In this definition we denoted by cap, the 1-capacity of a set £ C R? and we recall from
Evans-Gariepy [6] that the p-capacity (1 < p < 2) of a set E is defined as

cap,(E) = inf{/ Vol?; o € L7 (R?), Vi € LP(R?), A Cint(p > 1)},
R2

where int(A) denotes the interior of A and p* = f%’p. We would like mention that in [9],
the author studied limiting vorticity measures associated to the Ginzburg-Landau sys-
tem with magnetic field. This leads to conditions analog to , , . He investigated
these conditions under the additional assumption that the measure u is supported by
a simple smooth curve. He then proved, among other things, that in that in this case
1 has a fixed sign.

2.2. Connections to the Euler System. It turns out that conditions , are
also related to the Euler equations for incompressible flow in fluid mechanics. They can
be written as follows:
(19) v+ (v-V)v+Vp = 0in Q

div(v) = 0in

where (2 is an open set of R2. In this system p is called the pressure and it is an unknown
of the system. Here v-Vv := v,0,v+v20,v, and v is the velocity of the fluid. The system
is stationary if it does not involve in time, i.e., if dyv = 0 in 2. A quantity of particular
interest in fluid mechanics is the vorticity of the fluid defined by

(20) p = curlwv.

We must be more specific to define the notion of solutions of the Euler system. Indeed
we want to give a meaning to for vector-fields which are only in L?(Q). First note
that thanks to the condition div(v) = 0 we can rewrite the stationary Euler system in
the following form:

divio®@v)+Vp = 0
(21) { div(v) = 0.

where (v®w) is a 2 x 2 matrix given by (v®wv); ; = v;v;, for 1 > i, > 2. The divergence
of a matrix is the sum of the divergence of the row. Let us denote by (A, B) := tr(A'B)
the inner product between two matrices.

Definition 2.2. Let Q be an open set in R?. We say that v € L*(Q,R?) is a weak
solution of if there exists p € L*(Q) such that

(22) /Q<v ® v, Dy) + /deiv(go) =0, V¢eCr(Q,R?.

Proposition 2.1. Let h, satisfy , , . We set v = V+h,. Then v is a weak
solution of the stationary Fuler system with vorticity equal to p.
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Proof. Let ¢ = (¢1,p2) € C°(Q,R?), recall that V4h = (—=d,h, 0,.h).
[0 T, Dg) = [ (0,7 0u01 ~ @,10.0) Byps + D] + @uh 0,00
However because of the condition we have
/Q %(thQ 01201 — (DhDh)Iyer = O

1
/Q (~0uh0,)0pa + 5(0ul? — D,7)Dyp2 = 0.

Hence we can rewrite

1 1
[ nevinDg) = [ S0+ [ 500+ 00,0

Q
We then set p = 1|Vh[> € L'(2) and we obtain that for all ¢ € C°(€2, R?) we have

[ 4nevinDg == [ paivte)

Thus v = V+h is a weak solution of stationary Euler system, with pressure p = %|Vh|2
and with vorticity equal to curl Vth = Ah = p. OJ

The previous Proposition combined with Theorems [1.2] [[.4 implies that if
v is a weak solution of the Euler system (21]) such that v = V+h with h which satis-
fies hypothesis , , then v is a vortex sheet solution of . The vortex sheet
problem consists in finding a solution (v, p) of such that the initial data v;—g = vo
satisfies that div(vg) = 0 and wy = curlvy = dy with ¥ a compact smooth curve in
R2. The existence of global solution of vortex sheet solutions of the Euler equation
is due to J.M Delort in [5]. Note that in his paper an important assumption for the
proof of the existence of global solution of vortex sheet solutions is that the initial data
wo = curlvy = p is a positive (or negative) measure. However in cases of theorems
1.4} it can happen that g has no sign. For example setting h(r, ) = 0(p)r? cos(2p)
with () = +1, if =28 <o < T and 0(p) = —1if ¢ € [-7, 7]\ [-2, Z]. Then one can
check that Ah is a measure with no fixed sign.

Let us mention that not all stationary solutions of the Euler system can be
written as v = V*+h with h which satisfies (3),(#),(f]). For example we take v = (—y, x)
for x,y € B(0,1). Then we can check that v is a solution of with p = 3 (2 + 7).
We can write v = V+h with h = (2% + y?). But h satisfies that w, = (z — iy)? and it
is not holomorphic. Hence is not satisfied. Note that in this case Ah =1 in B(0,1).
Such a solution is called a vortez patch.

2.3. Connections to system of point vortices. A system of N-point vortices in
evolution is described by the following system of ordinary differential equations

(23) %(t) = vt LZ d;In |z — Zj(t)|] (z(t), Yi=1,...,N.

=1,j#i

with V+ = (-9,,0,) and d; € N. The points z;(t) are called vortices and d; are the
degrees of vortices. The system is stationary if the vortices do not evolve in time, one
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then has
N . — .
(24) Y 4= =0, Vi=1,.,N.
e

A natural question is the following: What are the limiting vorticities of a stationary
system of point vortices when the number of points tends to infinity?

Let us reformulate precisely this question. Let €2 be a bounded domain, we are inter-
ested in Radon measure p which satisfies the following conditions:

NE

(25) Ve > 0,dN° € N, (Zig)lgz’SNE €, df €7 S.t.H/L — QWdeész(a)(Q))* <e
i=1

(26) ((25)1<i<n., (d)1<i<n=) define a stationary system of point vortices.

The limiting vorticities of a stationary system of point vortices are described by a
result analog to Theorem [2.1}

Theorem 2 2. Let Q) be a bounded domain. Let p be a Radon measure in 2 which
satisfies (25) and (26)). There exists a function u € L}, () such that

1) Au=pu

2) The tensor

% 0,u)? — (Dyu)? —0yudyu
T = ( : —%xuay(u . 5 [(Ou)® — (ayu)Q])

is divergence-free z'n finite parts. Furthermore if u is in H1(Q2) then wu is in
HY(Q) and div(T,) = 0 in the sense of distributions. That is u satisfies the

conditions (| . . .

Thanks to the previous theorem we see that studying the conditions , (14), ()
can be useful to obtain information about the vorticity of a stationary system of point
vortices when the number of vortices tends to infinity. The rest of this subsection is
devoted to the definitions needed in the statement of Theorem and its proof. The
definitions and some results are taken from [I1] Chapter 13.

In this section we use an equivalent definition of divergence-free in finite part:

Definition 2.3. Let X be a vector field in 2, and z1,...zx in § such that X € C°(Q\
{z1,...,2n}). We say that X is divergence free in finite part if
L div(X) =0 in D'(2\ {z1, ..., 28 })-
2. faB(z 5) Xy, =0,Vi=1,.,N, Y6 > 0 where v denotes the outward unit
normal to 0B(z;,9).

The equivalence between the two previous definitions can be proved using the coarea
formula.

Definition 2.4. We say that u is weakly stationary harmonic if T, is divergence free
in finite part.

Example 2.1. u(z) = In|z| is weakly stationary harmonic in R2.

Proof. Let z = x + iy. We have that In|z| is harmonic in R? \ {0} and smooth in
R?\ {0}. Then it is stationary harmonic in R?\ {0}, that is div(7},) = 0 in R? \ {0},
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O,u? — 8yu2 20,u0yu
20,u0,u (9yu2 — 0,u?
previous definition. Let 0 > 0 we have

with T,, = ) We want to show the second condition in the

2 2

rm—Yy Ty
Opu? — 8yu2 = W and 20,ud,u = W

The outward unit normal to 0B(0,0) is ¥ = . Hence, for all § > 0 small:

&

2 | 2
/ (0pu® — Oyu vy + (20,udyu)vy = / x(x—t)y)
9B(0,6) dB(0,6) 2|

27
= 5/ cos(p)dp = 0.
0

The integral of the other component of T}, is computed the same way and we also find
that it is equal to 0. Thus u is weaky stationary harmonic. U

We can associate to a system of point vortices the measure Zfil d;0,,, where we
denoted by d,, the Dirac mass in zy. Let us consider the particular solution of

27 al
(27) Au = 7 ; d;d.,
given by
1 N N
(28) u(z) = M—N;diln|z—zi|, where MN:;W

Proposition 2.2. The points (2;)1<i<n € R? form a stationary system of point vortices
if and only if the function u(z) = MLN sz\il d;In |z — z)| is weakly stationary harmonic.

Remark: Note that if u is not in H*(Q) then it does not make sense to say that u
is stationary harmonic that is why we need the notion of weak stationary harmonicity.

Proof. We use Definition Again away from the points 2, ..., 2y, © is harmonic and
smooth. Thus it is stationary harmonic. Near z; we have

w(z) = arIn|z — 21| + Hyi(2)

where H(z) := MLN SV, d;In |z — 2| is harmonic near z (in a neighborhood of z; which
contains only z; and no other z;) and oy is a constant. Without loss of generality we
can assume that a; = 1 and z; = 0. We then have:

2 2
Opu® — Oyu* = (% + 8$H1(z)) - (% + 8yH1(z)>
x? —y° 2 2 x Y
= o @0 2 (m&cb{l - mayHl)

20,udu = 2% + 20, H,0,H, +2 (
z

iayHl + iale)

|| ||
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Thus

z|?

2 p—
/ (Ou® — Dyu? vy + (20,udyu)vy = / Y 49 5”_?/2 Vo
9B(0,9) 9B(0,6) | ||

+/ (('LH% - 8yH12)I/1 + (2(993H1(9yH1)V2
0B(0,9)

+/ ( 8]-]1 yaH1>7/1+2( 8H1+y8H1)V2
oB0s) \|Z] 2| 2| ||

The first term in this sum is zero because In |z| is weakly stationary harmonic. The
second term is also zero because H is harmonic, smooth, and hence stationary harmonic
and weakly stationary harmonic. For the third term we can use the fact that the normal
on 0B(0,0) is v = Z=2L to prove that it is equal to 2faB(0,5) 0. H,.

|z—z1]

Hence if u is weakly stationary harmonic this term must be equal to zero for all §. Then
dividing this quantity by 0 and letting § go to 0 we find that 0,H;(z1) = 0. With the
same method applied to the other component of T, we obtain

/ (20, udyu)vy + (Ou® — Opu? vy = 2/ 0, H;.
8B(0,6) 9B(0,6)

Thus if u is weakly stationary harmonic we find that VH;(0) = 0. By repeating this
argument near each z;, we obtain that if u is weakly stationary harmonic then zq, ..., 2y
form a stationary system of point vortices:

Z d] _Z]P =0Vi=1,..,N.

J=1,j#i

O

We now prove Theorem . Let p be a Radon measure which satisfies , . We
set

N
1
(29) v = g Do i

with Mye = Zf\fl |d5|. We want to prove that uy- converges to a function u when &
goes to 0 such that u satisfies Au = p and wu is weakly stationary harmonic. However
we need to have a notion of convergence which preserves the notion of weak stationary
harmonicity. This is the object of the following definition.

Definition 2.5 ([I1]). We say (with some abuse of notation) that a sequence (X,)n
in L'(Q2) converges in Li(Q) to X if X,, — X in L},.(Q) except on a set of arbitrarily
small 1-capacity, or precisely if there exists a family of sets (Es)s=o such that for any
compact K C €,

(30) limcap;(KNEs) =0, andVd >0 lim | X, — X|=0.
d—0 n—+00 [\ By

We define similarly the convergence in L} by replacing L' by L? in the above.

Proposition 2.3 ([11]). Assume (X,,)nen is a sequence of divergence-free in finite part
vector fields which converges to X in LY()). Then X is divergence free in finite part.
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Corollary 2.1. Assume that uy is a sequence of weakly stationary harmonic functions
such that uy converges to u in L3(Q) and Vuy converges in L3(Q2) then u is weakly
stationary harmonic.

Thus to prove Theorem [2.2] we only need to prove that the functions uy- converge
in L2(Q) to a function u such that Vuy- converge to Vu in L3(1).

Proposition 2.4. Let Q) be a bounded open set in R2. Let u be a Radon measure in €
such that (25)),(26) hold. Let uy- = M#NE SV deIn |z — 25| then there exists u such that
uy= converge in L2(Q) to u and Vuye converge to Vu in L3(9).

Proof. We let

2T
31 e 1= (szfj-‘.
(31) pove = 3 20

Since (2 is bounded the measure py- has compact support and we can then write

(32) une = In|z| * pye
where * denotes the convolution product. Then for all ¢ in C>°(R?) we have
(une, ) = (In|z] * pne, @) = (e, Inf2] * @).
Now we let € go to 0, by hypothesis - converges to p in (C°(Q))*. Hence
(une, @) = (p, In|z| * ).

This proves that uy- converges to some u in the sense of distributions.

In the rest of the proof we drop the subscript € and consider the limit N — 400 (if
N. stays bounded the proof is immediate). We follow closely the proof of Proposition
13.2 in [I1]. We choose a bounded open set €' such that 2 CC €. We can define uy,
p, uy and w in €' (using formulas , for uy and puy valid in R? and passing to
the limit in Q). In Q" we set

(33) UN =UN — U, QN = HUN — M.
We then have
(34) Avy = ay in Q.

It holds that Nling lancogy+ = 0. But since we have Wh4(€Y') — CO(Y') for ¢ > 2 we
—+00
also have C°(QV)* — W=1r(Q0) for p < 2. Thus we obtain

LirEOO lan||w-1p@) =0 for p < 2.
Now we let
(35) Sy = ( HOéN“W—l,p(Q/) >1/2 Py — {a: c O |UN| > 5N}'
HQNHCO(Q’)* +1 ’ ’ -
We have the following bound on the p-capacity of Fy (cf. [6] p.158)
[0 [F1.0¢
(36) cap,(Fn) < C +1
Oy

We note note that by elliptic regularity theory HUNHWLp(Q) < Cllay||w-1r() because

of and because €2 CC V. Thus from and ( we find that

cap,(Fx) < Cllan2 <||aN||co oy + 1P/,
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and therefore tends to 0 as N goes to infinity. This implies in turn that
Nl_l)I_Ii_loo cap, (Fy) = 0.
Now we use a cut-off function ¢ € C=(€V) such that |p(z)] < 1forallz € ', o =1 in
Q2 and ¢ = 0 on 9€2. We also set
Fy = {z € ;|pvy| > dn}.

We have that Fy C Fy and Fy N Q = Fy since v = 1 in Q. We use the following
truncated function:

___ | vy if |eun| <y,
(37) YUN = { 5]\[ if |§0UN| > 5]\[.

From a property of Sobolev functions (see e.g. Lemma 7.7 in [7]), we have V(pvy) = 0
almost everywhere in Fy. We thus obtain:

[k < [ Ve
O\Fy V\Fy

< N V(pvn) - V(puy)

< —A(pvN)pUN.
Q/

The last inequality being true since ¢ = 0 on 9€2'. Using the Leibniz formula we obtain
that

A(pvy) = Apuy + 2V - Voy + pAuy.

Hence
/ Vosl < / | Apuy (Fom)| + / 2|V [V lpTw] + / ponlda
Q\FN Q Q Q

where we used the fact that Avy = ay in . Now we use Holder inequality to obtain

that
1/p 1/p
/ |VUN|2 S 05N (/ |UN|p) + C(S]\[ (/ |VUN|p> =+ 5N||aN||C0(Q)*
Q\Fy o o
< CéN (HUNHWLp(Q/) —+ ”OéNH(;O(Q/)*) .
Thus
(38) NEIEOO ||VUN||L2(Q\FN) = 0.

We can also see, from the definition of Fy and because () is bounded that
(39) A ffoxlrz ey = 0.

We conclude as in [I1]. Since lim,,_,; cap,(Fy) = 0, there is a subsequence, still
denoted by {n}, such that > cap;(Fn) < +00. We define

Es = U Fy.

1
N>g
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Then cap, (Es) tends to zero as é goes to zero since it is bounded above by the tail of
a convergent series. Moreover, for any 6 > 0 we have Fyy C Es when N is large enough

and therefore (38) and imply that

i flonlzz@ey = lim [ Vox|zes,) = 0.

O

This proposition proves point 1) and 2) of Theorem [2.2] The next proposition shows
that if we add the hypothesis that u is in H~1(£2), then u weakly stationary harmonic
implies u stationary harmonic.

Proposition 2.5 (Proposition 13.1 in [I1]). Assume that X is divergence-free in finite
part in Q and that X is in L*(Q\ E). Then for every ¢ € C°(Q),

X V(¢ =0,
O\F
where F = ("1(C(E)). In particular if X is in L*(), then F = 0 in the above and
therefore div X = 0 in D'(Q2).

If uis in H'(Q2) we have seen in the introduction that w is in H'(Q) and T, is
in L'(Q). Thanks to the previous proposition u weakly stationary harmonic implies u
stationary harmonic.

3. FIRST CASE: LOCAL BEHAVIOR NEAR A POINT 2o SUCH THAT
Wh, (20) = (axhu - iayhu)2(20) # 0

Let us recall that we consider a couple (1, h,) which satisfies

(40) h, € H'()

(41) Ah, =, in Q

where p is a Radon measure and

(42) wp, = (Oxhy)? — (Oyhy)? — 2i0yh,0yhy, is holomorphic in (2

In this section we drop the subscript 1 when there is no possible confusion. We denote
by B, = B(zy,r) = {2z € C;|z — 29| < R} the ball of center 2z, and of radius . The
starting point of the proof of Theorem is the following:

Lemma 3.1. Let h which satisfies (40), [@1), [@2). Let 20 € Q such that wy,(zo) # 0.
Then there exist R > 0, a function 0 : Bg — {£1} and a harmonic function H : Bp —
R such that

(43) Ozh(z) —i0yh(z) = 0(2) [0, H(z) —i0,H(z)], V z € Bg.
Proof. 1t holds that

wp, = (0h)* — (9,h)* — 2i0,hdyh = 4(0.h)* = (O,h — iD,h)>.
Thus (9,h — id,h)?* is a holomorphic function in Q. If z is such that wy(2) # 0 then
[ = (0.h —i0,h)? satisfies that f is holomorphic in 2 and f(zy) # 0. This implies that
in a neighborhood U of z; where f(z) does not vanish there exists a function g : U — C
such that g? = f in U. We can hence deduce that there exists 6 : U — {£1} such that

Ozh —i0yh = 0(2)g(z) in U.
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From now on we take U = B(zp, R) =: Bpr for R sufficiently small. We then set
H(z) :==Re fzzo g(s)ds. This is well defined since Bp is simply connected. The function
H satisfies the following properties:

1) H vanishes at z.

2) H is harmonic in Br because it is the real part of an holomorphic function.
3) 20,H(z) = g(z) or equivalently 0,H —i0,H = g

Thus

(44) 0,k — id,h = 08, H — id,H), in B

Besides we have that VH (zo) # 0 since |V H (z)|* = |wn(20)]? # 0. O
We set:

(45) B} :={z € Bg;0(z) = +1} By :={z € Bg;0(z) = —1}.

Idea of the proof of Theorem : The strategy of the proof is the following:
we first show that the function 6 is in BV (Bg). Hence B}, and Bj, are sets of finite
perimeter in Bg. It turns out that the support of 1| 5, is equal to the essential boundary
of B} minus the (topological) boundary Bg. Then we use a theorem of structure of sets
of finite perimeter in R? due to Ambrosio-Caselles-Morel-Masnou in [I] to decompose
the essential boundary of B} as a disjoint union of Jordan curves. Because of the
relation we are able to show that these Jordan curves are unions of some part of
the boundary 0Bpr and of level curves of the harmonic function H. Since p is a Radon
measure we prove that there can not be an infinite number of level curves of H in the
support of p near zy (otherwise p(Bg) = +00). Then we can take a smaller open set
V' containing zo such that the support of |y is the set of zeros of H. In V' we can use
the fact that V(h — 0H) = 0 or use the maximum principle to obtain that h = +|H|
or h=—|H|.

Lemma 3.2. Let h which satisfies , (41)), . Let R > 0 be small enough, 0 :
Br — {£1} and H : Bg — R such that (43)) holds. Then 0 is in BV (Bg).

Proof. We set g = 0,H — 10,H. Since H is harmonic it holds that ¢ is holomorphic.
Since zg is not a zero of the function f = (9,h — id,h)* we have that g does not vanish
in Bg. Then we can write

Ozh(z) —i0yh(z)
9(2) '
We obtain that 6 is in L'(Bg) since h is in H'(2) and g is in C*®(Bg).
Furthermore we can differentiate 8 in the sense of distributions using the Leibniz rule
since g € C*°(Bg). We obtain

0(z) =

(02,h —i0;,h)g — 0g9(Dph — i0,h)
B
Summing these two equalities it comes

(02,h —i0;,h)g — Dyg(Dch — iDyh)

0,0 = g

0,0 =

) Y

0,0 + i, — Ah (0.9 + z'ayg)(zﬁmh — 10,h)
g g
But since g is holomorphic in B it holds that ;g = (0,9 + i0,9] = 0. Hence 9,6 +
10,0 = %. Now Ah = p is a Radon measure and we can write 0,60 = Re(é)Ah )
0,0 = Im(é)Ah. Let us denote by (.,.) the duality bracket for distributions. For all
¢ € C(Bg,R?) with |p| < 1, we have
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1 1
Re( )1 - / (< )adp.

Br

/ O dive = —(0,0, 1) — (0,0, p2) = _/
Br B

Hence we obtain

R

. 1
| [ Odive| < [|=|Lep(Br) < +oo
Br g

which means that 6 is in BV (Bpg) by definition. O]

Recall that a set F C 2 is a set of finite perimeter in €2 if its characteristic function

X is in BV (§2). We have
1 1

Hence B}, and Bj, are sets of finite perimeter in Br. We need several definitions and
results from the theory of sets of finite perimeter we recall these notions now and we
refer the reader to the books [6], or [2] for the proof of these results.

Theorem 3.1 ([6] p.167). Let E be a set of locally finite perimeter in ), then there exists
a Radon measure on Q denoted by ||OE|| and a ||0F||-measurable function vy : Q — R
such that

1) lvg(x)] =1 ||0E||- a.e. , and

2) [pdivede = [, ¢-vg d|OF| for all ¢ € CL(Q2,R™).

We present two notions of “boundary” of sets of finite perimeter:

Definition 3.1. Let E be a set of locally finite perimeter in R™ and x € R™. We say
that x € O*E, the reduced boundary of E, if
i) ||OE||(B(x,r)) >0 for all T > 0,
1
i) lim ——— d|oF| = d
H) T% ]B(x,r)| /;(m,r) Vg H H VE(x)y an
ii) |ve(x)| = 1.

Definition 3.2. Let E be a Lebesque measurable set in R™ and x € R™. We sayx € O, F,
the measure theoretic boundary or essential boundary of E if

B NE B E
lim sup M >0 and limsup M > 0.
r—0 rr r—0 re

(Here |A| denotes the n-Lebesgue measure of a set in R™).

The structure of the reduced boundary of a set of locally finite perimeter in R” is
described by the following theorem:

Theorem 3.2 ([6] p.205). Assume E has locally finite perimeter in R™.

i) Then
OE=|JK:UN,
k=1
where
[OE[|(N) =0

and Ky, is a compact subset of a C'-hypersurface Sy (k=1,2,...).
ii) Furthermore, vg|Sy is normal to Sy (k=1,...) and

i) |OE| = H*

loxe”

We have a relation between the reduced and the essential boundary.
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Proposition 3.1. i) O"FE C 0,E.
i) H" (0, FE \ O*F) = 0.

We will also use the following theorem

Theorem 3.3 (Gauss-Green formula [6] p.209). Let E C R™ have locally finite perime-
ter.

i) Then H" ' (0,ENK) < +oo for each compact set K C R™.
ii) Furthermore, for H"™' a.e. x € O,F, there is a unique measure theoretic unit
outer normal vg(x) such that

(46) /E div(p)dr = / - vpdH™ !

O E

for all ¢ € CL(R™, R").

Since B}, is a set of finite perimeter in Bg, we denote by Vgt its measure theoretic
(or generalized) outer normal.

Lemma 3.3. Let h as in Lemma/|3.1, Let 0, H given by Lemma[3.1 Let B, = {z €
Bg;0(z) = +1}, thanks to Lemma BY is a set of finite perimeter in Br and

we have: the generalized normal vgt is collinear to Vh and VH, H

0. BE\0B almost

everywhere in Bpg.

Proof. Let us recall that, because of we have
(47) Oyh — 10yh = 0(0, H — i0,H).

In the sense of distributions we have 0,0,h = 0,0,h. Thus we obtain 0,(00,H) =
0,(00,H) and

(48) 0,00, H + 00,0, H = 0,00, H + 00,0, 1.
Now since H is harmonic and hence C**(Bg) it holds that 0;,H = 9, H. Hence
0,00, H — 0,00,H.
Thus for all ¢ € C2°(Bg,R) we have
(0,001, o) (0:00,H, )
(0,0,0.Hp) = (0:0,0,Hp)
(0,0, —0,Hp) + (0,0,0,Hp) =

0
/ Odivy = 0
Br

/ divy — divy = 0.
By By

where in the last equalities we set ¢ := (=0, Hyp, 0, Hp). We then use Theorem to
obtain

V- vgrdH — V- vy-dH = 0.
0. B7; B 0.B;; Br
But 9, B}, = 0,Bx and Vgt = —Vp- because B, = Bp \ By. Hence we obtain
2 Y- vgrdH! = 0.
0.B}; f

Using the fact that ¢ has compact support in Br and the definition of ¢ we find that
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_ 1 2 1_
(49) /8*B§\8BR( %HVBE + &,JHI/BEMCZH 0

for all ¢ € C;(Bg,R?), where we denoted vpy = (V;;, %29;)- We conclude from (49))
that

—@HV}B; + 0, Hv? 0, H' —a.e. on 0,B% \ OBg.

Bf —
The last equality means that vy is orthogonal to (—0,H,0,H) H*-a.e on 8,Bf \ 0Bg

and hence parallel to (0,H,0,H). We also obtain that Vgt is collinear to Vh because
Vh =60VH in Bg. O

We can now describe the support of the measure p|p, in terms of the boundary of
Bt

Lemma 3.4. Let h satisfy the hypothesis , , . Let 0, H, Bgr, B}, as in
Lemma . Then the support of p g, is 8,Bj; \ 0Br and we have

p By = —2VH - ’/B;Hta*ng\aBR'

Proof. 1t holds that

(Ahg) = - / Vh-V, Ve CF(By) (he HY(Q))

= — VH-V(,D—I—/ VH-V¢ (Vh=+1VH in B})
By B

Now we use the fact that H is harmonic in Bg (AH = 0 in Bg) and the Gauss-Green
formula [3.3] to obtain

(A g) = — / $VH - vy dH' + / OVH vy dH!
9. B{\0Br R R

9.By\0Br
— _2/ OV H - vgrdH?
0, B:\0Br "

since 0, B}, = 0.Bp, and Vgt = Vg Now because of the previous Lemma [3.3| we have
that |VH - vpi| = [VH| # 0 in By (recall that [VH| = [Vh| in Bg). Hence we can
deduce that the support of yp, is 9. Bf; \ Bg and the lemma is proved. OJ

We study in more details 9,B}, \ Bg. In particular since Vh and Vpt are parallel

on 9,B} \ 0Br we expect H to be constant on the connected components of this set.
In order to prove this fact we need more definitions and more results from geometric
measure theory, these can be found in the article [1].

Definition 3.3. A curve I' C R? is a Jordan curve if T = v([a,b]) for some a,b € R
with a < b, and some continuous map vy, one-to-one on [a,b) and such that y(a) = v(b).

Definition 3.4. A curve I' C R? is rectifiable if H'(T') < oco.

Lemma 3.5 (Lemma 3 in [I]). Let C' C R™ be a compact connected set with H'(C') < oo.
Then for any pair of distinct points x,y € C' there exists a Lipschitz one-to-one map
v :[0,1] = C such that v(0) = x and v(1) = y.
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A consequence of this lemma is that any rectifiable Jordan curve admits a Lipschitz
re-parametrization.

In order to state the next theorem, following [I], we introduce a formal Jordan curve
Js whose interior is R” and a formal Jordan curve Jy whose interior is empty. We
denote by S the set of Jordan curves and formal Jordan curves. We then have the
following description of the essential boundary of sets of finite perimeter in R2.

Theorem 3.4 (Corollary 1 in [1]). Let E be a subset of R* of finite perimeter. Then
there is a unique decomposition of O,E into rectifiable Jordan curves {C;,C, : i,k €
N} C S, such that

i) Given int(C;),int(C}),i # k, they are either disjoint or one is contained in the
other; given int(C; ),int(Cy ),i # k, they are either disjoint or one is contained
in the other. Each int(C;) is contained in one of the int(C}").

i) P(E) =35, HY(CT) + 2, HU(Cy).

iii) If int(C;") C int(C’;“), i # j, then there is some rectifiable Jordan curve C)
such that int(C;") C int(Cy) C int(C}). Similarly if int(C;) C int(C;), i # j,
then there is some rectifiable Jordan curve C, such that int(C;) C int(C}") C
int(C;).

iv) Setting L; = {3; int(C; C int(C})}, the sets Y; = int(C}") \ Uey, int(C;) are
pairwise disjoint, indecomposable and E = U,;Y;.

We are now able to prove:

Lemma 3.6. Let 6 be such that holds, € BV (Bgr). Let B}, as before. There exist
(possibly infinitely many) disjoint rectifiable Jordan curves ~; such that

+oo
@BE = U Vi

i=1

Proof. We must check that Bj, is a set of finite perimeter in R? (not just in Bg) in
order to apply Theorem [3.4 To this end we set

N 0 if x € Bg,
| —lifz eR\ By
We also set xpi = 1(1 + 6), this is the characteristic function of Bj; in R?. We must

prove that X+ € BV(R?). First we note that xp+ € L'(R?) because it is bounded in
Bpg and it is null in R? \ Bg. Second for all ¢ € C°(R?* R?) we have

1 -
/ e divie) = = [ ddiv(e)
]R2 R 2

R2
since ¢ has compact support in R2. Thus

[ ) = 5 [ v [ av(e)

1/ . 1 . 1 :
= - dlvgo——/ d1v<p——/ div(ep).
2 (P =3 ()2R2\BR<>

R
Now we claim that B}, By and R? \ Bg have locally finite perimeter in R?. This is
obvious for R? \ Bg because By is a smooth open set with finite perimeter in R?. For
B3, By thanks to a deep criterion (c¢f. Theorem 1 p.222 of [6]) we must only check that
for all K compact subset of R?

H' (K NO,B}) < +oo.
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But HY{(KN3d,B}) < HY(BrNO,Bf) < +0o because B}, has finite perimeter in Bg by
definition, and the same is true for By. We can thus apply the Gauss-Green formula
[3.3 to obtain

/ 0 div(p) = / @ vgrdH' — ¢ vg-dH' — / ¢ vp,dH".
R2 0.B} n 8.Bj, R dBg

Hence for all ¢ € C°(R? R?) we have
| | 6div(p)| < 2HY (9, B}) + H(OBR) < +oo0.
R2

This proves that y B is in BV (R?). We can thus apply the Theorem to obtain
the lemma. O

In order to pursue the proof of the main result we need the following version of the
coarea formula:

Theorem 3.5 (Theorem 2.93 in [2] p.101). Let f : R* — R be a Lipschitz function and
let E be a countably H'-rectifiable subset of R%. Then the function t — H(E N f~1(t))
is Lebesque measurable in R, E N f~1(t) is countably H°-rectifiable for dt-a.e. t € R
and

(50) /E Crd® fodH* (x) = /R HO(E N f7(t))dt.

where d¥ f, is the tangential differential of f at v € E, Cpd® f, is the k-dimensional
coarea factor, H® is the 0-dimensional Hausdorff measure (this is the counting measure)
and for the definitions of these notions we refer to [2] Chapter 2.

We can apply the previous theorem with the function f: R* — R, z > |z| (we have
that |df f,| < 1 for this f and all E countably H!-rectifiable subset of R?). We then
find that for all rectifiable Jordan curves v we have, for R > p > 0

51) W B\ B2 [ O Code
R—p

where C; = {z € R?; |z| = t}. We then obtain:

Lemma 3.7. Under the same assumptions as in Lemma[3.6. There exist 0 < R’ < R
and (possibly infinitely many) connected rectifiable simple curves I'; such that

+oo
(52) 0.Bf \ 0Br = | JT.
j=1

Proof. We use the formula (51)), and the fact that H°(v; N C;) is finite for almost every
t € [R— p, R] . We choose R’ such that H°(y; N Cr/) < +00 and we have that for all
1 € N there exists k; € N and k; intervals of R such that

Y N Brr = 7i(1) U... Ui(ly,)

with I; =]a;,b;] and 7;(a;),7i(b;) € 0Bg for j = 1,...,k;. Hence v; N B is a finite
union of connected rectifiable simple curves. We define B;g, = B} N Bp and we find
that
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F1GURE 4. Illustration of Lemma

supp fi(p,, = O.Bjy \ 0Br =supp s, N B
+00 +oo
i=1 j=1
with I'; connected rectifiable simple curves. O

We are now in position to prove Theorem

Proof of Theorem[1.1 Let h which satisfies , ,. Let 6, H be defined by .
Let R’ > 0 be as in Lemma [3.7] From now on we denote by B the ball Br. We also
denote by BT = {z € B;6(z) = +1}. Let {I';};en simple connected rectifiable given by
Lemma [3.7 The next claim states that each connected component of 0,B" \ 0B is a
connected component of some level curve of the function H in B.

Claim 3.1. For all v € N, there exists ¢; € R such that
Fi = {Z ERQ,H(Z) :cl}ﬂB

1) We first show that for all i € N there exists ¢; € R such that I'; € {H = ¢;} N B,
where {H = ¢;} is a short for {z € R* H(z) = ¢;}. Indeed let z,y € T;,  # y, thanks
to Lemma we can find a bijective lipschitz map f : [0,1] — T'; such that f(0) =
and f(1) = y. We then have

Hp) ~ Ha) = [ 5 o Doy

because H o f € WHI([0,1],R), (that is H o f is absolutely continuous). To prove the
absolute continuity we use that H € C°°( )and f € WhH>([0, 1], B). Hence ( we obtain
that H o f € Wh>([0,1]) € WH(]0,1]) (see e.g. Proposition 9.5 p. 270 of [4]). Thus

Hy /VH ()t

where f’(t) denotes the derivative of f which exists for L£'-almost every t € [0,1]
(because Lipschitz functions are differentiable almost everywhere). But f’(t) is tan-
gent to I'; and VH(f(t)) is orthogonal to f'(t) for almost every ¢ € [0,1]. Indeed
thanks to Lemma we have that VH parallel to vz+ H'-a.e. Hence we obtain that
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VH(f(t))- f'(t) =0 a.e. and H(y) = H(x). This shows that I'; C {H = ¢;} N B.

2) We show that T; = {H = ¢;} N B using the following Lemma|[3.8] We use the fact
that since VH does not vanish in B the level curves {H = ¢;} N B are diffeomorphic to
straight line (this is a consequence of the implicit function theorem or can be seen in
Theorem if R is small enough. Hence they are connected. We then apply Lemma
to I'; and {H = ¢;} N B. These two curves are rectifiable, connected and simple,
and we have I, C {H = ¢} N B and I'; N OB = {H = ¢;} N 0B by continuity of H.

Lemma 3.8. Let B be a ball of radius R. Let v and ¥ be two connected rectifiable
simple curves. We also denote by v,7 : [0,1] — R? some Lipschitz parametrization of
these curves. We suppose that 7, 7 are homeomorphism from [0,1] onto their image.
Assume that

i) v(]0,1[) € B and v(0),~(1) € 9B,
ii) 500, 1) € B and 3(0),3(1) € B,
i) ([0, 1]) < ([0, 1]).

Then v = 7.

We postpone the proof of this lemma at the end of the section. Now that we know
the geometry of the curves I'; we can prove that there exists only a finite number of
such curves in a sufficiently small ball.

Claim 3.2. Let p > 0 small enough such that I'; N B(zo,p) = {H = ¢;} N Bz, p) is
diffeomorphic to an open segment for all i € N such that T'; # 0. Then there exists a
finite number of curves T'; such that T'; N B(zo, p) # 0.

With p as in the statement of the claim we let B, = B(z, p). Since § € BV (Bg) we
also have § € BV (B,).Thus using the same notations as before we have

+o00 > H'(0.BF\0B,)
= H'(supp(p5,))

+oo
= H'(JrinB,)
=1

p +o0
> / H(|JTin Cyat

0 i=1

where in the last equality we used the coarea formula (Theorem [3.5), and we let
C; = {z € C;|z| = t}. The coarea formula also tells us that for almost every t € [0, p]
we have HO(U; STy N Cy) < +oo. But if p is small enough then every level curves of
the harmonic function H meet the boundary of the ball B,. This is a consequence of
the maximum principle. As a consequence we have that H( ;010 [;NCy) is exactly two
times the number of curves I'; inside B;. Then the number of curves I'; is finite inside B,,.

We can now conclude the proof of Theorem [I.1] The last claim proved that there
exists a finite number of I'; near Z, := {z € B; H(z) = 0}. Thus there exists n > 0
such that dist(Zy,T';) > n for all i € N such that I'; is not included in Z;. We then set
V := B(20, 9). Because of the definition of 7 we obtain that

supp(p|v) = {z €; H(z) = 0}.
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Note that Zj is a smooth connected rectifiable curve near zy (since VH(z) # 0). We
also set as usual V™ ={z € V;0(z) = +1}, V- = {2z € V;6(z) = —1}. We have that

Vh=+VH, onV't, Vh=-VH onV".

We thus deduce that h = H on V* and h = —H on V'~ because h = H = 0 on
OV T\ OV = Z;. We know that H does not vanish in V' and V'~ because H vanishes
only on Zy. Hence H has constant sign on V' and on V™ thanks to the maximum
principle. These two signs are opposite, because if they were the same then the minimum
(or maximum) of H would be 0 and would be inside the domain V', this contradicts
the maximum principle. We can assume for example that H is non negative in V' and
then h = |H| in V.

O

Proof of Lemma[3.8 By contradiction, assume that there exists p € v\ 4. Let ¢, €]0,1]
such that v(ty) = p. Then we have

10, 1[= 57" ({10, to[) U v (Jto, 1]))
since 4(]0, 1[) C ~(]0, 1]) and since y(to) ¢ 7. We then deduce that

0, 1= 37" (v(J0, t[) UF" (v(Jto, 1[)) -

But since § and v are homeomorphism onto their image we have that 5~(v(]0, to[))
and ¥ (y(]Jto, 1[)) are two disjoint open sets. Thanks to the connectedness of |0, 1] we
can deduce that

1) 57 (2(00, 1)) =10, 1] and 57 (+(]to, 1)) = 0 on

2) 771 (v(10,0])) = 0 and 57 (v(Jto, 1)) =0, 1[.
These two cases are similar. Let us assume that we are in case 1). We can then obtain
that

v(Jto, 1)) N 3(]0, 1) = 0.

This implies that y(]to, 1[) = 0 or 5 € ~. The first assertion is impossible because 7 is
assumed to be a homeomorphism from [0, 1] onto its image and the second possibility
is in contradiction with the hypothesis iii). Thus it holds that 5 = ~. 0

4. SECOND CASE: LOCAL BEHAVIOR NEAR A ZERO OF EVEN ORDER OF
wh, (2) = (0xhy — i0,h,)?(2)
hy i y'op

This section is devoted to the proof of Theorem [I.2] It is very similar to the proof of
Theorem . Here wy,,, (20) = 0, but since we assume that zj is a zero of even order of wy,,
there is no difficulty to find a holomorphic function g such that (9,h, —idyh,)? = g(z)*.
Then the proof of Theorem is a rather direct adaptation of the proof of Theorem
except that here because the function g vanishes at zy we can only show that the
function 6 defined as in the previous section is in BV..(Bg \ {20}) for R sufficiently
enough. This introduce a new technical difficulty. We drop the subscript g in the rest
of this section.

Lemma 4.1. Let h which satisfies , , . Let zg € Q) be a zero of even order
of wp(2) = (O.h —idyh)*(2) . Then there exist R > 0, a function 6 : Br — {£1} and a
harmonic function H : Bg — R such that

(53) Ozh(z) —idyh(2) = 0(2) (0,H(2) —i0,H(2)), V z € Bg
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Proof. Since zj is a zero of even order of wy,, we can find a neighborhood U of z5, n € N
and a holomorphic function f; : U — C such that fi(zp) # 0 and

(54) (Bl — i0,h)? = (2 — 2)2" fi(2).

Since f1(z9) # 0, we can choose a smaller neighborhood of zq still denoted by U such that
in U there exists a holomorphic function denoted by ¢; which satisfies p?(2) = f(2),
and furthermore we can choose U = B(zy, R) for R small enough. We then have

(55) (0:.h —i0,h)* = [(2 — 20)"p(2)]* =: g(2)*.
We set F(z) := [ g(s)ds and

(56) H(2) = ReF() = Re < / g(s)ds) |
20
The function H is harmonic in By and satisfies

20,H = F'(2) = g(2) = (2 — 20)"¢1(2).
Hence, thanks to (54) we deduce that there exists 6 : U — {41} such that

(57) 0,h — i0,h = 0(2) (9, H — i0,H)

As before we set

B} :={z € Bp;0(2) = +1}, By :={z € Bg;0(z) = —1}.
We thus obtain that

Vh=+VH, on B, Vh=-VH, on Bj.

Lemma 4.2. Let h which satisfies , , . Let R > 0 be small enough and
0 : Br — {1} such that holds with H defined by (56). Then the function 6 is in

BViee(Br \ {20})-

Proof. In order to prove this result we can apply Lemma [3.2] of the previous section in
any open subset W C By such that ¢ = 0, H — i0,H does not vanish in W. 0

Thus B}, and By are sets of locally finite perimeter in Bg \ {20}

Lemma 4.3. Let h as in Lemma Let 0, H given by Lemma . Let B} ={z €

Bgr;0(z) = +1}, thanks to Lemma |4.2 B}, is a set of locally finite perimeter in Bg \
1

({z0}). Furthermore the generalized normal vgy s collinear to Vh and VH, %LE)*BE\BBR

almost everywhere in Bg.

The proof of this lemma is exactly the same as the one of Lemma [3.3] We can also
copy the proof of Lemma [3.4] to obtain

Lemma 4.4. Let h satisfy the hypothesis , , [2)). Let 6, B, B}, as in the
previous lemma . Then the support of j g, is 0,B% \ OB and we have

R

By, = —2VH - VB;,ina*Bg\aBR‘
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We would like to apply Theorem to the set B}, and continue the proof as in the
previous section but we can not do that because B} have only locally finite perimeter
in B \ {20}. In fact we will show that this is just a technical issue and that B} has
indeed finite perimeter in By but it requires some work. In a first time we work in an
annular domain. Let 0 < p < R, we set

Ap,=1{2€C;p<|z| < R} AE,p = {2 € Ap,;0(2) = +1}.
We first apply Theorem to the set AE’ o

Lemma 4.5. Let 6 be such that holds, 6 € BVi,e(Br \ {20}). Let A;%p as before.
There exist (possibly infinitely many) disjoint rectifiable Jordan curves vf such that

+oo
@ARP = U ve.
=1

Proof. We have that § € BV (Ag,). As in the proof of Lemma one can show that
A}, , has finite perimeter in R*. We can then apply Theorem 3.4/to deduce the result. [

Lemma 4.6. Under the same assumptions as Lemma [{.8, there exist 0 < p < p' <
R' < R and (possibly infinitely many) connected rectifiable simple curves F§ such that

(58) 0u(Af )\ O(Ar ) = JTY
j=1

FiGURE 5. Illustration of Lemma [4.6]

Proof. The proof is the same as in Lemma , it uses the coarea formula (see . O

Lemma 4.7. Under the same assumptions as in Lemmal[f.5, for all j € N, there exists
¢f € R such that T is exactly one connected component of {z € R*; H(z) = ¢ }NAgr .

Proof. Again in order to prove this lemma we can follow line by line the proof of claim
B.1] The only difference is that here {z € R* H(z) = ¢;} N Ap» is not necessarily
connected if ¢; # 0. O
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Lemma 4.8. Under the same assumptions as in Lemma@ with R sufficiently small
there exists a finite number N, of curves T, such that T'f N Ap » # 0. We then have

Supp(:uLAR,,p,) = 8*(14;’7,;’) \aAR/,p/
Np/
=
j=1
Proof. As in Lemma [3.2] this is due to the coarea formula and the fact that the curves
' are level curves of the harmonic function H. O

The next result shows that, with R’ fixed if we take a larger annulus, then the
number of curves in the decomposition of the support of p is the same. This is due to
the geometry of these curves since they are level curves of the harmonic function H.

Lemma 4.9. Under the same assumptions as in Lemma let py < phy and R as
before small enough. Then using the previous notations we have Ny = Ny and, up to

re-order it holds F]p-ll C Fﬁé Jorj=1,...,Ny.

Proof. Using the previous notations we have:

Npy
Supp(,uLAR’pl) = U F?l

j=1

Npy
supp(fiay,,) = |J %

=1

Besides it holds that supp(¢(ap, ,,) = supp(¢ 4z, ) N AR, We thus deduce that

Np, Npy

Yrec e
j=1 j=1

We also recall that we have the existence of real numbers (cg-’l), Jj =1,..,N, and

(¢5*),j = 1,...,N,, such that I'}* is exactly one connected component of {H = c/'} N

Ag,, and I'f* is exactly one connected component of {H = ¢*} N Ag,.

Assume that there exists ¢}, which is different from all the ¢}* for i = 1, ..., N,,. Thanks
to the maximum principle every connected component of level curves of the harmonic
function H which lies in the ball Br meets the boundary of this ball if R is small
enough. We thus obtain that I';) N Ag,, # () and then

I N AR, CSUpD(fiag, )-

As a consequence we obtain that I N Ag,, = I'}? for some 1 < iy < N,,. This is a
contradiction with our hypothesis on cg-)ol. We then have

() = ()

With the same justification we prove that N, = N,,. And then up to reorder we have

£ 05 .
tCT?for j=1,..,Ny.

We are now in position to prove:
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Lemma 4.10. Let 0, H be such that holds with h which satisfies (40), (41)), (42).
As before we set Bf;y = {z € Bg;0(z) = +1}. Then there exists R > 0 small enough
such that H'(0,B}; \ 0BR) < +o00 and consequently 6 is in BV (Bg).

Proof. By contradiction if H'(0,B}; \ 9Br) = +oo then for all sequence (p,) of real
numbers such that p, \, 0 we have

(59) lim H' (8, A%, \ 0Ag,,) = +oo.

n—-+o0o

with Ar, ={z € C;p < |z| < R} and Ag + = Ar, N B}. This is due to the fact that

0.Bf\0Br = |Jo.BfnAg,,
neN

= a*AE,pn \ aARyPn

and the union of these sets is increasing. We now use the previous Lemmas [4.6| and
to obtain that for R small enough there exists an integer N such that for all n € N
there are N simple connected rectifiable curves I';" and NN real numbers c; such that

N
0, AL, \0Ag,, = U e
j=1

and I'" = {H = ¢;} N Ag,,. Furthermore we also have I'* C T';" if n > m. We then
obtain

N
H' (0.Bf N Ag,,) < H' (U{H =} N BR>
i=1

N
< > H'({H=c}NBg).
i=1
But for R small enough the level curves of H have a finite Hausdorff measure. Thus
there exists M > 0 such that for all n € N,
H' (0,B} N Agp,,) < M.
This is a contradiction with and then H'(9, B}, \ 0BR) < 4.

Now we prove that § € BV (Bg). We recall that in the proof of Lemma [4.2| we found
that

0,0 — 10,0 = ah éu
in the sense of distributions where g = 0, H — 0, H. We then have
0,0 — 10,0 = #yu = (aﬁ; ;[%H)”
thus 0,0 = %TH‘QM and 0,0 = @THPM' Now for all ¢ € C}(Bg/,R?) with |p| < 1
Odive = —(0,0,¢p1) — (0,0, p2)
Br

__/ 0. H d+/ oH
=, vEHRDT ) v HRP
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We now use Lemma [£.4] to say that

1
fiBr = —2VH - VBRHLBB \0BR

hence

H  H
/ Odivey = 2/ VH vy ‘p;cml—zf VH - uBﬁ 22
Br 9, BE\0Br ’VH‘ 9.B}H\8BR ’VH‘

We thus deduce, using the fact that ‘IVHP’ <1 and ’\VHP‘ < 1, that

| [ 0dive| <4H'(0,B}; \ 0Bg) < 40

Br

for all p € C}(Bg,R?) ; |¢| < 1. This proves the claim. O

From this point we have all the ingredients to pursue the proof of Theorem as in
the previous section.

Proof of Theorem[1.3

Claim 4.1. There exist R > 0 small enough, a finite number N and N simple, con-
nected, rectifiable curves I'; such that

N
supp(fi(,,,) = 0, By \ 0B = U r;.

Furthermore for all 1 < j < N there exists c¢; such that I'; is ezactly a connected
component of the level set {z € C, H(z) = ¢;} N Bg.

Once we know that the function ¢ defined by is in BV (Bpg) for R small enough
we can apply the same arguments as in the previous section to prove this claim, it

results from an adaptation of Lemmas .7 and Claims 3.2

We can now conclude the proof of Theorem The last claim proves that there
exist a finite number of I'; near Zy := {z € B; H(z) = 0}. Thus there exists n > 0
such that dist(Zy, ;) > n for all j € N such that I'; is not included in Z;. We then set
V := B(2, 1). Because of the definition of n we can say that

supp(uv) C {z €; H(z) = 0}.

We also set as usual Vt = {z € V;0(z) = +1} ,V- = {z € V;0(z) = —1}. We have
that

Vh=+VH, onV*"', Vh=-VH, onV"~.
Note that in V' the function §H is continuous since H = 0 at the discontinuity points of

6. Then 0H isin H*(V) since H is in H'. Computing V(0 H) in the sense of distributions
we obtain that V(0H) = 0V H. Besides it comes

V(h—60H)=0in V.

This proves that h — H is constant in V', but evaluating this constant in zg we find
that
h=60H, inV.

This concludes the proof of Theorem [I.2]
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5. THIRD CASE: LOCAL BEHAVIOR NEAR A ZERO OF ODD ORDER OF
~ 2
wh,, (2) = (Ouhy — 10yhy)*(2)

In this section we deal with the case where 2 is a point in the support of u and 2
is a zero of odd order of wy,. This case is the most difficult. Indeed unlike the previous
cases we can not find a holomorphic function g such that (9,h, — i0,h,)* = g*. We
must use multivalued holomorphic function to overcome this difficulty. We do not want
to discuss here the notion of multivalued function. For us the prototype of multivalued
function is z — 22. Such a multivalued function is single-valued up to a sign. Indeed
given any complex number z different from 0 there exist exactly two complex numbers
2 and z such that 22 = z for i = 1,2 and 2, = —2,. In particular |22| = |22 is well
defined. We drop the subscript p during the rest of this section.

Lemma 5.1. Let h which satisfies , , . Let zg € Q) be a zero of odd order
of wp(z) = (0zh — i0,h)*(z). Then there exist W a neighborhood of zy, a function
0: W — {£1} and a function H : W — R which satisfies H = |H,|, where Hy is a
multivalued function W such that

(60) Oyh(2) —i0yh(2) = 0(2)(0,H(2) —i0,H(z)) in W.

Furthermore the function Hy is such that: there exist an unique integer n > 1, a small
number r > 0 and a biholomorphism ® : B(0,7) — W such that ®(0) = zy and

(61) Hy 0 ®(2) = Re(2"*2), for z € B(0,r)

Proof. Let z be a zero of odd order of (9,h —id,h)*. We can find a neighborhood U of

2o, an integer n and a holomorphic function f; : U — C with fi(zy) # 0 such that
(Oxh —i0,h)?* = (2 — 20)*" ! f1(2).

Since fi(zo9) # 0, there exists a smaller neighborhood of zy, still denoted by U and a
holomorphic function ¢, : U — C such that ©?(z) = fi(z), for z € U.
We then set

(62) 9(2) = (2 — 20)" 201 (2), for z € U.

Like z z%, g is a multi-valued function which is single-valued up to a sign. As in
the previous sections we want to take a primitive of the function g. However the fact
that ¢ is multivalued introduces a difficulty in this process. But we can show that we
can choose a special form of a primitive of g.

Claim 5.1. There exist a neighborhood U of zy and a single-valued holomorphic function
o : U — C such that ps(z) # 0 for all z € U and

G(2) = (2 = 20)" 2pa(2),
satisfies G'(z) = g(z), for all z € U (where g is defined by (62)) .

Proof. Let us assume that such a function ¢, exists. We then have:

G(x) = [z )" (=)
= (04 )z~ ) () + (= — ) ()

Since we want G/(z) = g(z) = (z — 20)""2¢1(2), the function ¢, must satisfies the
following complex ordinary differential equation:

(63) (n+ g)(z — 20)" 20a(2) + (2 — 202 (2) = (2 — 20)" 21 (2).
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In a neighborhood of z5 we can expand ¢, in power series
+00
1(2) = Z ar(z — 2)".
k=0

Thanks to an expansion in power series we have: po(2) = 3,70 by (2 — 20)*. Using
we find that the coefficient by must satisfy

3 +o0 +o0 +o0o
(64) (n+3) D bz —20) > kb(z— 20)F = ap(z — 20)".
k=0 k=1 k=0
Thus we must have
*for k= 0: by = 2%
n+y
*forkzl:bk:ﬁ%’“%.
+00 a
We can check that if we set ¢o(2) = ;H?)—M(z — 20)" then G(2) = (2 —
%) 2y(2) is a primitive of g. furthermore because ©z0) # 0 we have ay # 0 and
hence pa(zg) # 0. Thus ¢2(z) # 0 in a neighborhood of z; denoted by U. O
We then set
Hy(z) = Re(G(2))
and
(65) H(z) = |Hi(z)| for all z in U.

Note that H; is a multi-valued function which is single-valued up to a sign. The proof
of the next claim is very similar to an analogous result for harmonic function (see e.g.

[12)).

Claim 5.2. There exist a neighborhood W of zy, a number r > 0 and an analytic
diffeomorphism ® : B(0,r) — W such that ®(0) = 2y and

Hyo®(z) = Re(2"7),
for all z € B(0,r).
Proof. We have H,(z) = Re(G(z)) = Re[(z — 20)" 22 (2)], for all z € U and @s(zg) # 0

(where U and @ are given by Lemma . This last property allow us to find a
neighborhood of zy, denoted by W, and a (single-valued) function ¢3 : U — C such

that (3(z)""2 = py(2) for all = € W. We thus obtain that

G(2) = [(= = 20)ps(2)]" 2.
Note also that p3(z) # 0. We let k(z) = (2 — 20)p3(2). We have that k is holomorphic,
k(zo) = 0 and k'(zp) # 0. We can thus apply an analytic version of the local inverse the-
orem to obtain that there exists a neighborhood of zy, still denoted by W and a number
r > 0 such that k : W — B(0,r) is an analytic diffeomorphism (or biholomorphism).
Now we set ® = k=, we have that ko ®(z) = 2z € B(0,r), ®(0) = 2z, and

Go®(z) = [k(D(2))]"2 = 23,
We then deduce that
Hy 0 ®(2) = Re(G o ®(2)) = Re(z"*2)
for all z € B(0,r) and the claim is proved. O
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One can check that
(0.H —i0,H)* = (0.H, —i0,H,)* = g(2)* = f(2).
We thus deduce that there exists a function 6 : W — {£1} such that
(66) (Oxh — i0yh) = 0(0,H —i0,H) in W.

We then set
Wt={zeW;0(z)=+1}, W ={zeW;0(z) =—1}.

Note that the function 6 does not play the same role as in the previous section. This
is because the function H is not harmonic here. Furthermore H is only lipschitz and
not smooth thus we can not use the same argument as in the previous section to prove
that 0 is in BV,.(W \ {20}). Indeed to prove this we used the fact that

Oph — i0,h

) = G —ia,

Ve W {z)

and we differentiated this expression in the sense of distributions, using the Leibniz
rule. We can not do the same here since 0, H — i0,H is not a smooth function.

For this reason we work in W \ {z € U; H(z) = 0}. Thanks to Proposition we
know that this set is an union of 2n + 3 connected disjoint open sets (where n is defined

in . We have

2n+3

(67) W\{zeW;H(z) =0} = | ] W

with W}, connected and open and such that W, N W; = () if K # j. In each W}, H
does not vanish and (0, H —i0,H) does not vanish either. We can then find a harmonic
single valued function Hj such that

|H| = Hy, in W.

{H =0}

FIGURE 6. Partition of W in disjoint open connected subsets.

In particular |H| € C*(Wy,) for all 1 < k < 2n+3. We are now in position to state that
Claim 5.3. The function 0 is in BV,e(Wy \ {20}) for all 1 <k < 2n+ 3.
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The proof of this fact is the same as the proofs of Lemma [3.2] and [£.2] in the previous
sections. For 1 < k < 2n + 3 we set

Wir ={z € W 0(z) = +1}.

These sets are sets of locally finite perimeter in Wj. As in the previous sections (see

Lemma [3.3]) we can obtain

Claim 5.4. The generalized outer normal vy+ is collinear to Vh and VH, 10U, |-
almost everywhere in Uy.

We have all the ingredients to repeat the arguments of Sections 3 and 4 in each
sub-domains W), and obtain

Claim 5.5. For all 1 < k < 2n + 3, there exist N, € N, and N, simple connected
rectifiable curves Ff, 1 <5 <2n+ 3 such that

N
oW\ ow = JT%.

=1

Furthermore there exist cf real numbers such that F? 15 exactly a connected component

of {ze U;H(z) = c}}.

Proof of Theorem[I.]. Let h which satisfies (40)), (41)), (42)). Let W, 6, H be defined by
in Lemma . As before we set

2n+3

W\{zeW;H(z) =0} = | | Wi

with T} open and connected and Wy, N W; = 0 if k # j. We also set W, = {z €
Wi; 0(z) = +1}. We use the previous Claim[5.5]and we obtain that for all 1 < k < 2n+3,
since there are only a finite number of curves F? such that 9,W,F \ oW = Ujvjl F?, with
the I’ ? which are connected component of level curves of H then we can find 7 such
that

B(zo,m) NOW,;F\ OW C {z € W; H(z) = 0}.

We then set 1 := minj<x<on13mk and V := B(zp,n). We have that 6 is constant in each
V N W, since @ is constant in each B(zg, ;) N Wy, from the definition of 7.

We claim that V't = {z € V;0(z) = +1} is a set of finite perimeter in V. Indeed we
have that OV \ 0V C {z € V; H(z) = 0} (here we use the topological boundary oV*)
and H'({z € V;H(z) = 0}) < +oc from the last point of Lemma [5.1] Then applying
Proposition 3.62 of [2] we deduce that VT is a set of finite perimeter.

Note that in V' the function #H is continuous since H = 0 at the discontinuity
points of §. Then 0H is in H'(V) since H is in H'. Computing V(#H) in the sense of
distributions we obtain that V(0H) = 6V H and it comes

V(h—6H)=0in V.
this proves that h — 6 H is constant in V', but evaluating this constant in z; we find that

h=0H inV.
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6. APPENDIX: ON THE STATIONARY HARMONIC FUNCTIONS

This appendix is devoted to elementary results on stationary harmonic functions.
These results are stated without proof in the introduction of this paper. The original
definition of stationary harmonic function is the following:

Definition 6.1. A function h in H*(Q) is stationary harmonic if for any family of
diffeomorphisms ¢; of 2 such that ¢g = Id we have

d
%|t:OE(h o) =0,
where E(h) = 3 [, [Vh|*dz is the Dirichlet energy.

As shown by the following proposition we used an equivalent characterization.

Proposition 6.1. A function h is stationary harmonic if and only if divTy, = 0 in the
sense of distributions, where

% a,h 2 (9,h)? —0,hdyh
n= (G ™ e )

Proof. We first note that div(7}) = 0 in the sense of distributions if and only if
[ @i =0 wmecro.r),
Q

where Dn denotes the differential of n (which is a 2 x 2 matrix) and (A, B) = tr(*AB)
denotes the inner product of two matrices. Let ¢(x) = x + tn(z) with n € C°(Q, R?),
if ¢ is small enough ¢, is a diffeomorphism. Let h; := h o ¢;, we have

Vhi(z) = (I +tDn(x)).Vh(z + tn(zx))
[Vhe(2)|* = [Vh(x + tn(2))* + 2L(Vh(z + tn(x)), [Dn(x).Vh(z + ty(2))]) + oft)
Then

1 1
—/|Vht(:c)|2da: = —/ [Vh(z + tn(x))|*de +
2 Q 2 Q

+ /Q(Vh(x + tn(x)), [Dn(z).Vh(z + tn(z))])dz + o(t).

We can make the following change of variables y = z + tn(x) @z =y — tn(x) = = =
y —tn(y) + o(t) (the last implication holds because n(z) = n(y) + o(1) when t goes to
0). We also have

det [D(y — tn(y) + o(t))] = det(I — Dn+ o(t)) =1 — ttr Dn+ o(t)
because det( +tA) =1+ ttr(A) + o(t). Then

B = 5 [ (hwPds—3 [ [P tr Drly)ay +

o / (Vhy). [Dn(y) Vh(y))dy + oft).

Hence p
=0 B (he) =0

is equivalent to

/Q[—%\Vh(y)mr Dn(y) + (Vh(y), [Dn(y).Vh(y)])dy = 0.
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But
SIVR)I? tr Da(y) = {5 Vh(w)PT, Do(y)

and

(Vh(y), Dn(y)Vh(y)) = (Vh(y)'Vh(y), Dn(y))

2
with Vh(y)'Vh(y) = ((th) 0,hd,h

Oyho,h  (9,h)? > We can then conclude that
Yy x Yy

d
Eht:oE(ht) =0« / <Ty,Dn>=0
Q

which is equivalent to div(7},) = 0 with T}, = VA'Vh — 1|Vh[*]. O
The equation (5]) can also be interpreted in terms of holomorphic functions

Proposition 6.2. The condition div(T},) = 0 is equivalent to wy, = |0h|* — [0,h|* —
210, hoyh is holomorphic in €.

Proof.

0y (0zh* — O,h*) = 0,(—20,0,h)

d,(0.h* — 0,h*) —0,(—20,0,h).

These are the Cauchy-Riemann equations for wy, written in the sense of distributions.
We can rewrite them as 0;w;, = 0 where 0; = %(81, +i0,). The operator 0; is elliptic
and hence the elliptic regularity theory shows that wy is smooth and then holomorphic
because it satisfies the Cauchy-Riemann equations. O

div(Ty) =0 < {

Proposition 6.3. If h is harmonic in €2 then h is stationary harmonic in €.

Proof. Assume that Ah = 0 in . Recall that Av = 40:0,v and let us compute
aga)h = 46;[8Zh]2 = 8azhagazh
= 80,hAh = 0.

Hence 0swy,(z) = 0, that is wy, is holomorphic.
O]

The converse of the previous proposition is not true. However if A is a stationary
harmonic functions which statisfies the hypothesis , , with p € LP, p > 1,
then, using the same methods as in [I1] Chapter 13, one can show that & is harmonic.

Proposition 6.4. If u is in LP(Q) for some p > 1 and satisfies (B]),(d) then p= 0.
Proof. Let p be in LP(Q2) for some p > 1 and such that div(7),) = 0 and Ah, = p. Let

pn be a regularizing kernel, we set i, := p * pp, hy, := hy, * p, and

e _ 1 Oyh2 — 0.h2  —20,h,0,hy,

" 2\ —20:hn Oy, OyhZ — O,h2
One has p, — p in LP(Q2), and because Vh,, is in Lj5.(€2) one also has Vh, — Vh, in
L} (Q), for all ¢ € [1,+00[. Then
11V hy — uVh,, in L, (Q)
and
T — Ty, in L, ().

The last equation implies that div(7,) — div(7,) = 0 and w,Vh, — uVh, in

the sense of distributions. However div(7,,) = —Ah,Vh, = p,Vh, thus uVh, =

lim,, 1o div(7},) = 0 in L}, (©2) and almost everywhere. From a property of Sobolev
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functions we have Ah, = 0 a.e. on the set F' = {Vh, = 0}, thus 4 = 0 a.e. on F' and
p="0onQ\ F hence pr =0 on . O
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