1607.04722v1 [math.NA] 16 Jul 2016

arXiv

NOVEL MULTILEVEL PRECONDITIONERS FOR THE SYSTEMS ARISING
FROM PLANE WAVE DISCRETIZATION OF HELMHOLTZ EQUATIONS
WITH LARGE WAVE NUMBERS

QIYA HU AND XUAN LI

AsstracT. In this paper we are concerned with fast algorithms for ty&esns arising
from the plane wave discretizations for two-dimensionalntt®ltz equations with large
wave numbers. We consider the plane wave weighted leastesj(RWLS) method and
the plane wave discontinuous Galerkin (PWDG) method. Thieigaal of this paper is
to construct multilevel parallel preconditioners for soly the resulting Helmholtz sys-
tems. To this end, we first build a multilevel overlapping cgaecomposition for the
plane wave discretization space based on a multilevel apping domain decomposition
method. Then, corresponding to the space decompositiospngruct an additive multi-
level preconditioner for the underlying Helmholtz systerRarther, we design both addi-
tive and multiplicative multilevel preconditioners witmsothers, which are fferent from
the standard multigrid preconditioners. We apply the psegomultilevel preconditioners
with a constantcoarsest mesh size to solve two dimensional Helmholtz systenerated
by PWLS method or PWDG method, and we find that the new pretiondis possess
nearly stable convergence, i.e., the iteration countseopticonditioned iterative methods
(PCG or PGMRES) with the preconditioners increase very lglawhen the wave number
increases (and the fine mesh size decreases).
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1. INTRODUCTION

The plane wave method, which falls into the class offffzenethods[[38], dfers from
the traditional finite element method and the boundary etgénmreethod in the sense that
the basis functions are chosen as exact solutions of thergjagedifferential equation
without boundary conditions. This type of numerical metlas first introduced to solve
Helmholtz equations. Examples of this approach includdite Weak Variational For-
mulation (UWVF) (seel[9, 15]), the weighted plane wave lesigtares (PWLS) method
(seel[23.3b]), the plane wave discontinuous Galerkin nu=tliBWDG) (se€ [17, 20]), the
plane wave Lagrangian multiplier (PWLM) methad[L4] 37] dhe Variational Theory of
Complex Rays (VTCR) introduced in[29,128]36]. This kind aftimod can generate higher
accuracy approximations than the other methods for Heltnlegjuations with large wave
numbers. The plane wave discretization methods have beended to discretization of
Maxwell's equations recently (see [21]24] 26]). The PWLShud has an advantage over
the other plane wave methods: thefsgss matrix associated with the PWLS method is
Hermitian positive definite, so the resulting system can dieesl by the PCG method.
Like the other discretization methods, the Helmholtz systarising from the plane wave
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discretization are also highly ill-conditioned when thevwanumber is large. Comparing
with many works on the plane wave discretizations, thereoahg a few articles (refer to
[14,[23]37]) to study fast solver for the resulting Helmhaalystems.

It is well known that multilevel methods are powerful alghms for solving the sys-
tems generated by finite element discretization of elliptjge partial diferential equations
(see, for example[ 1] Bl [7.119]). However, the standautlilevel methods (and do-
main decomposition methods) arefigetive for Helmholtz equations (and time-harmonic
Maxwell’s equations) with large wave numbers, unless thessof coarse meshes are cho-
sen a0(1/w) (see, for examplel 2] 8, 11,113,127 16] 18,[30,[33, 39]),r@hedenotes
the fixed wave number. It is clear that the restriction on th&se mesh sizes is limiting
in applications. How to construct affective parallel preconditioner for Helmholtz equa-
tions (and time-harmonic Maxwell's equations) with largawe numbers seems an open
problem. The wave-ray multigrid method for Helmholtz edoras was proposed in[6, 32]
(a further development of this method was madé_in [31]), inciihe approximations of
oscillatory error components were transformed into the@amations of smooth ray en-
velope functions by using the exponential interpolatiofise wave-ray multigrid method
can improve the performance of the standard multigrid nmeitHor Helmholtz equations
with large wave numbers. Recently, a kind of successiveom@itioner based on a decom-
position of the domain into strips was proposed_inl [10, 1Xdtve Helmholtz equations
with large wave numbers. The preconditioners can be viewgdhgsically-based approxi-
mations of direct solvers. It has been shown that such kiqutexfonditioner possesses the
optimal convergence independent of the mesh sizés [10Ewikia very important result
in the solution method for Helmholtz equations with largezevaumbers.

In the present paper, we consider the PWLS method and the Piv&fsod for the dis-
cretization of Helmholtz equations in two dimensions, axpl@e a new way to construct
multilevel preconditioners for the resulting Helmholtzstms. At first we design a multi-
level overlapping domain decomposition method to build difeuel space decomposition
for the plane wave discretization space. Then, based orpdeesiecomposition, we con-
struct an additive multilevel overlapping preconditiof@rthe underlying Helmholtz sys-
tems. Finally, we replace the solvers in the previous préitimmer by block Jacobi-type
smoothers to get cheaper (both additive and multiplicativaltilevel overlapping precon-
ditioners. The multilevel overlapping preconditionershasmoothers are fierent from
the standard multigrid preconditioners, since the spacerdposition defining such new
preconditioners has fierent overlapping structure from the one correspondinigestan-
dard multigrid preconditioners. We apply the proposed @néliioners to solve Helmholtz
systems generated by PWLS method or PWDG method. Numeesalts indicate that
the new preconditioners possess nearly stable convergeagehe iteration counts of
the corresponding iterative methods (PCG or PGMRES) isereary slowly when the
wave number increases (and the mesh size decreases), ititbdimiting condition men-
tioned in the last paragraph. In particular, the multilewetrlapping preconditioners with
smoothers possess almost optimal convergence.

The paper is organized as follows: In Section 2, we recalRW4_S method and the
PWDG method for Helmholtz equations. In section 3, we deaigmltilevel space decom-
position of the solution space and describe the correspgratiditive multilevel precon-
ditioner. An additive multilevel overlapping preconditier with smoothers is introduced
in Section 4. In Section 5, we define several multiplicatiagiants of the additive mul-
tilevel overlapping preconditioner with smoothers. In 8at6, we apply the proposed
preconditioners to solve several Helmholtz systems anortepme numerical results.
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2. PLANE WAVE METHODS FOR HELMHOLTZ EQUATIONS

For convenience, we only consider the two-dimensional oTatf@s paper. In this sec-
tion, we briefly review the plane wave methods for Helmhotimations. At first the orig-
inal problem to be solved is defined. Then the variationahidations are given out in
detail.

2.1. The reference problem. Firstly, we present the mathematical model of Helmholtz
equations. Lef2 be a bounded and connected Lipschitz domain in two dimessid/e
consider Helmholtz equations with Robin boundary condgio

-AU-w?u=0 in Q,
{ (Oh+iwu=g on y=090Q, (2.1)
whered,, andw denote the outer normal derivative and the angular frequenc
Let Q be divided into a partition as follows:
N
Q= UEK, EkﬂEj =0 fork=# J
k=1
We assume that the subdomalfiisEy, - - - , Ey are geometrical conforming, i.e., the inter-

section of any two adjoining subdomains is just the commatexer the common edge of
them. Here, we do not require that the intersection of twoiad)g elements is a straight
line segment. In practice, the partition is a mesh of domeamgEy, - - - , Ey are the ele-
ments. As usual, we assume tligt} is quasi-uniform and regular. L&%, denote the set
of the element&y, - - - , En, Whereh is the size of the elements. Define

Ykj = 0Ex N OE; (whenEy andE; are adjoining)

and
vk = 0Ex N 0Q (if Ex closesoQ).

Let V(Ex) denote the space of the functions which verify Helmholtmsnogeneous
equation[(Z11) on the elemeBi:

V(Ex) = {w € H'(EW); AV + w’Vi = 0}. (2.2)
Define

N
V(Th) = l_[V(Ek),
k=1

with the natural scalar product
N
(u,v)y = Zf Uk - Vi dx, Yu,v e V(Th).
k=1 VE«

2.2. The PWLS method. In this subsection, we review the PWLS method introduced in
[35] and [23].

Setulg, = u (k = 1,---,N). Then the reference problem to be solved consists in
finding the local acoustic pressungse H1(Ex) such that

—Auk—wzuk = 0 in Ex, (2 3)
(Onh+iwu = g on g (if yx#0), '
and
w—-u; = 0 over vy, L
{ OnUk+0nujp = 0 over y; k#jikj=12-.N) (24)
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Let @ andp be two given positive real numbers to be specified later. €monding to
the boundary condition i {2.3) and the interface continagndition [Z.4), we define the
functional

N

NUEDY f (80 + iw)vic — gi°ds
k=l =k (2.5)
+ Z (af Vi = Vil2ds+ 8 | [0nVk + anjVj|2dS), v e V(Th).
7k YK YK

Itis clear thatJ(v) > 0. Consider the minimization problem: finde V(77) such that
J(u) = Vervgph) J(v) (2.6)

If uis the solution of the probleni(2.1), i.a1,e V(7}) satisfies the boundary condition
in (2.3) and the interface continuity conditidn (2.4), thea havel(u) = 0, which implies
thatu is also the solution of the minimization problem (2.6).

Define the sesquilinear foraf-, -) by

N
auV) = > [ (9n+iw)u) - @ + iw)vids
k=1 Y
+ Z (af (U — u;) - (v — vj)ds
j2k Yki
8 f (Ony Uk + 9, U;) - Omevic + 6nivj)ds), WV e V(Th), 2.7)
Ykij
and define the functional(-) by
N
L(V) = Zf g- (0 +iw)wds YveV(Ty). (2.8)
k=1 Y

The variational problem associated with the minimizatisobtem [2.6) can be ex-
pressed as:

Find ue V(77), st. 2.9)

a(u,v) = L(v), VYveV(Th). '

The reference problei(2.3) and([2.4) is equivalent to thewagiational problen(219)
(seel[28] Theorem 3.1). In applications, we usually choheewo parameters i (2.5) as

a=w?andg = 1.

2.3. The PWDG method. In this subsection, we review the PWDG method introduced
in [20].

Letu ando be a piecewise smooth function and vector field/amespectively. O,
we define

the averages:  {u} = 2(u+uj), {0} = 3(ow+0y),
the jumps: i = wne +ujnj, [o]l =0 -nk+o-nj.
Set

N
7:h| = Uykj and 7:hB = U Yk
K= k=1
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With these definitions, we can write the PWDG method as fadtow

Findue V(7y), st

{ a(ULY) = £(v). YV e VTR, (2.10)

where (se€[20])

) = [ (1T - 2[99 - (vufe + - i6{u[7)ds
B - I |a) a - lw
i 5 (2.11)
+ f ((1 —fuvv-n— EVU -nVv-n-6Vu-nv+ (1 - 6)iwuv)ds
7B
and

LW) = fﬁ(— %ng-n+(1—6)g\7)ds (2.12)

Herea, g ands are given positive parameters. The simplest choice of thenpeters in the
above two expressionsdis= =6 = %

2.4. Discretization of the variational formulations. Before building discrete variational
problems, we need to approximate the spd¢g;,) by a suitable finite dimensional sub-
space, which is spanned by some plane wave basis functienssaélutions of homoge-
neous Helmholtz equation without boundary condition.

For convenience, we assume that the number of plane wave foasitions equals a
same positive integay for every element€). Lety, be the wave shape functions, which
satisfy

ap o = 1, (213)
| #s— o) # as,

{ yi(x) = €4, x e Q,

whereay (I = 1,---, p) are unit wave propagation directions to be specified laiée
plane wave basis functions can be defined as
ey = § MO XEB6 g N2
R R (S RNV R R} (2.14)
Thus the spac¥(74) is discretized by the subspace
Vp(Th) = Spar{cpf") tk=1--,N;l=1,--, p}. (2.15)

During numerical simulations, the directions of the wavetoes of these wave func-
tions, for two-dimensional problems, are uniformly distried as follows:

(cog2x(I-1)/P)\ ;y _ 1 ..
(sin(zn(l —ypy) (=1

Let Vp(71) be the plane wave space defined above. Then the discrestioaal prob-
lems associated with (Z.10) aid {2.9) can be described lasvfol

{ Find uh € Vp(Th), st.
a(Un, Vh) = L(Vh), YVh € Vp(Th).

Let A : Vp(Th) — Vp(7h) be the discrete operator defined by the sesquilinear form
a(-,-). The discrete variational problein (2116) can be writtethimoperator form

Au, = fh, Unh € Vp(Th). (2.17)

Let A be the stifness matrix generated by the sesquilinear fam) on the space
Vp(7h), and letb denote the vector associated wiffv,). Namely, the entries of the matrix

o) =

(2.16)
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A are computed b;a:(r]” = a(¢§,j]), ¢|(k)); and the complements of the vectmare defined as
by = L(qﬁfk)). The discretized problerh (Z116) leads to the algebraitesybelow:

AX = b, (2.18)

whereX = (X11, X12, * + , X1p, Xo1, -+ » Xzps =+ » Xnt, -+ » Xnp)' € CPN is the unknown vec-
tor.

In general the systerf (2]16) is solved by an iterative metfascexample, the precon-
ditioned GMRES method or the PCG method. In this paper, weedhle system arising
from the PWDG method by preconditioned GMRES method, angegble system arising
from the PWLS method by PCG method since the system of the PivétBod is Her-
mitian positive definite. Notice that implementation of &rative step in PCG method is
cheaper than that in the preconditioned GMRES method. W toesonstruct anfécient
preconditione for the matrixA, and solve the equivalent system

B7taxX = 87'b. (2.19)

The main goal of this paper is to construffiégent multilevel preconditioner8, espe-
cially multilevel preconditioners with overlapping smbets. In order to make the ideas
easily understood, we first construct a basic preconditidimectly from multilevel over-
lapping domain decompositions, and then we define mullifgnexonditioners with over-
lapping smoothers based on the basic preconditioner. Faecience, we shall describe
the preconditioners in operator forms, instead of matriri®

3. A PRECONDITIONER BASED ON MULTILEVEL OVERLAPPING DOMAIN DECOMPOSITION

In this section, we construct an additive multilevel preditioner B for the operatoA
based on overlapping domain decompositions.

3.1. A multilevel overlapping space decomposition.Let Ny be a fixed positive integer,
which is independent ab, h and p. For simplicity of exposition, we usP to denote a
generic domain that is the union of some elementg;jnwhereD can be the domait
itself or a subdomain af.

Let D be decomposed into the union of non-overlapping subdoniind,, - - - , Dy,
such that: (1) each subdomdin is just the union of several elementsin; (2) the sub-
domainsD1, Dy, - - - , Dy, are quasi-uniform, regular and geometrical conforminte(reo
Subsection 2.1). Here, we do not require that the inteisecii two adjoining subdomains
is a straight line segment. Thé,-- -, Dy, can be viewed as coarse element®adnd
they constitute a (coarse) finite element partirﬁ(ﬁ of D, whered denotes the size of
these elements.

Based on the partitioWdD, we can define an overlapping domain decompositidd aé
usual. For a consta#fg € [%, 1], we enlarge each coarse elemBntby the thicknesgyd,
and generate a larger doman satisfying: (1)D; c D, c D; (2) Dy is just the union of
some (fine) elements iy,; (3) the distance between the internal bounda?i@g,dD and
0D \dD is aboutdgd. Then

o-[ b

r=1
constitutes an overlapping domain decompositioofith “large overlap”. For conve-
nience, we call the paramet@y as “overlapping degree”. Whefy = 1 (rep. 6p = %),
each subdomaiB; is the union ofD; itself and all the neighboring coarse elements (rep.
the half of every neighboring coarse elements) with it. Thhs case wittgy = 1 (rep.
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0o = %) is called “complete overlap” (rep. “half overlap”). We pobut that the case with
a smalldy, i.e., small overlap (for exampléy = g) is not considered in this paper, since
the numerical results for this case are not satisfactoy Tabld’ in Section 6).

For convenience, the above process to generate the coansergfD,} and the over-
lapping subdomaing, } from D is called a “decomposition operation” 8 The subdo-
mainD; is called the “enlarged subdomain” Bbf.

WhenD is just Q itself, we Iet‘i’Q denote the set of the resulting coarse elements

Q1,- -+, Qn,, Wheredy is the size of the eIemean, -, Qn,. Moreover, we us&s to
denote the set of the “enlarged subdomaifg’Qy, - - szO.

For each subdomaib € Sg, let ‘T? be the set of the coarse elemefts - - - , Dy,
defined by the “decomposmon operation” Of whered; denote the size dD4, - - - , Dy,.

LetD = UNO D; denote the overlapping domain decomposmorDr,)fWhereDr is the
“enlarged subdomain” ob,. With all the “enlarged subdomains” at 1th-level, define the
set

Si={D;:r=1---,Ng; foreveryD € So}.

We can repeat the above process. lLet 1. For an integej satisfying 1< j < J, we
assume that the sé&%_; consisting of overlapping subdomains@has been defined. For
each subdomaib € Sj_;, we usei’d to denote the set of the coarse eleméhts - - , Dy,
defined by the “decomposmon operat|on bf with d; being the size of the subdomains
Dy,---,Dy,. Let D, be the “enlarged subdomain” ﬁ)‘r, and letD = U Dr denote the
resultmg overlapping domain decomposition®@f Define the set oith Ievel “enlarged
subdomains” as

Sj={Dr:r=1,---,Ny; foreveryDe Sj.1}  (j=1,---,J).

We would like to point out that the numbers of the coarse etémgenerated by “de-
composition operation” of two dierent subdomains may befldirent in applications, here
the choice of the same numbidg of coarse elements is only to simplify the description.
When choosindNy properly, we havely > d; > --- > d; > h. Then the number dine
elements contained in eakhe S; decreases rapidly wherincreases.

Corresponding to a “decomposition operation” of a subdomae can build a local
space decomposition on the subdomain.

As in Section 2, le;(x) denote the plane wave shape funct@®™ (I = 1,---, p).
Let@, be the space consisting of theplane wave shape functions, i.e.,

Qp=spary;: I=1,---,p}.
Define thecoarsesplane wave space dn as
Vp(TQ) = {ve LA(Q) : Vik € Qp foreveryK € 7).
Similarly, for eachD € Sj_1 with j > 1, define thecoarseplane wave space db by
Vp(‘i’d[j’) = {ve L3(Q) : supp vc D; Vik € Q, for everyK e Td?} (j=1,---,J),

namerVp(‘TdD) is the plane wave finite element space associated with #wrsegartition

Td'? Notice that the space,(7 ) ande(T )(j = 1,---,J) have the dimensiohlyp
and possess the same structure with the or|g|nal pIane waite dlement spacey(7n)
defined in Subsection 2.4.

For a subdomaiik that is the union of some fine elementsjip, we always us@hK
to denote the restriction of the original partiti@GR on K, and define théine plane wave
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space orK by
Vp(TH) = {ve Vp(Th) : supp vc KJ.

As in the standard overlapping domain decomposition metivedcan obtain the ini-
tial space decomposition da (here we can easily define weight functions satisfying the
partition of unity, since we do not require the continuityfohctions in the considered
spaces)

No -
Va(Th) = Vo(TE) + > Vol(Ty") = V(T + Y. V(D). (3.1)
r=1 DeSo
Similarly, for eachD € Sj_; with j > 1, we can build the local space decompositioron

No .
Va(Ti0) = Va(T2) + D Vo(T). (3.2)
r=1
Setj = 1in (3:2), and substituting the resulting decompositida §8.1), yields

No 3
Vo(TQ) + D Va(TE) + D\ > Vp(T)

DeSo DeSp r=1

Vp(TE) + Z Vp(TD) + Z Vo(TP).
DeSo DeS;

Combining the above decomposition wikh {3.2) fot 2, -- -, J, and using the relation

No i
3 NV = S VrP) (= 2),

DeS;q r=1 DeS;

Vp(Th)

we recursively obtain the multilevel space decomposition
J
Vo(T) = Va(T@) + > D\ VT2 + > V(). (3.3)

j:l DESJ’,l KeS;

For ease of notation, we would like to give a terser expressidhe above space de-
composition.
For convenience, we writb’p(‘i’jg) asVy(Tq,). Forj = 1,---,J, define thesetof
jth-levelcoarseelements
_ D
7o =) 73

DeSj-1
andjth-levelcoarsespace
Vo(Ta) = D) Va(T3)
DeSj-1
Notice that, forj > 1, the se7y; does not constitute a (coarse) finite element partitia of
since the elements iﬁd'? may be overlapping with the elementsﬂ”@ whenD is different
fromD’.
Moreover, we define the set dth-levelfineelements

7~L|:|] = U ThK
KeS;
andJth-levelfinespace

Vo(Ti) = D Vol(T).
KeS;
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Also, the setfhJ is not a (fine) finite element partition ©f.
Therefore, the space decompositibn(3.3) can be simplified a

J
Vo(T7) = Vp(Ti) + " VolTa). (3.4)
=0
In the rest of this paper, we construct several multilevetpnditioners foA based on
the above multilevel space decomposition.

3.2. A multilevel overlapping preconditioner. In this subsection, we construct a basic
preconditioner ofA by the multilevel space decompositién (3.4).

Let Ao : Vp(T4,) = Vp(74,) be the restriction of the discrete operafoon the coarsest
spaceVp(74,), namely,

(AoVo, Wo) = a(Vo,Wo), Vo € Vp(Tq,). YWo € Vp(Tq,).

As usual A is called thecoarsessolver.

Letj=1,---,J. ForD € Sj_1, Ieth(TdEj’) be the local coarse spaces defined in the last
subsection. Defingth-level local coarse solve@i ; Vp(Td'J?) - Vp(‘i’d'?) by

(A, W) = a(v,w), Ve Vy(TP), Ywe Vyp(Tg)  (1<j<J; DeSja)
Then we definénexactsolverB; : Vp(7q4) — Vp(74;) at jth-level coarse space as:
Bi'= > (AR (=1-.9),
DESj,l

WhereQ('jDi : Vp(Tq,) — Vp(‘Td'J?) denote theL.? projectors. Notice that the operaty can
be viewed as a “block-diagonal” preconditioner for theniegon of A on jth-level coarse
subspac#/,(7¢,), where the order of each “block” equalgp.

Similarly, for eachK e Sj, defineJth-levellocal solverAX : V(7<) — Vy(7K) by

(Av,w) = a(v,w), Ve Vp(T), Ywe Vp(7T,)  (KeSy),
and definelth-level fineinexactsolverB; : Vy(72) — V(7)) as
Byt = ) (A5G,
KeS;
where QK : Vp(7})) — Vp(7K) denote thel? projectors. It is clear thai; is also a
“block-diagonal” preconditioner for the restriction Afon the fine subspaOép(‘Trf).

Finally, corresponding to the multilevel space decompmsif3.4), an additive multi-
level preconditioneB : Vp(71h) — Vp(7h) is naturally defined as

J
B = A'Qo+ ) B'Q; + B;'Qy, (3.5)
-1

whereQ;j (j =0,---,J) andQ; denote the_, projectors intdvp(74,) ande(‘ch), respec-
tively.
The action of8~! can be described by the following algorithm.

Algorithm 3.1. For¢ € Vy(7n), the functionu, = B ¢ € V(71) can be obtained as
follows:
Step 1. Computingg € V,(74,) by

(AOUO, VO) = (E’ VO)’ VVO € VP(Tdo);
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Step 2. Foij = 1,---,J, computingug, € Vp(74,) in parallel by
(Bjug.V) = (£.V). YV e Vy(Tq)
Step 3. Computing?™e Vp(7})) by
Byt vh) = (€. W), Yk € Vp(T7);

Set

J

Ug = u0+Zudj + 0.
=1

By the definitions of the solver8; (j = 1,--- , J) andB;, Step 2-Step 3 ilgorithm
3.1can be implemented in smaller spaces (otherwisggrithm 3.1 has no significance).

The action ofBJT1 (j=1,---,J) appeared in Step 2 éflgorithm 3.1 can be described
by the following algorithm

Algorithm 3.2. Forn € Vp(7q,), the functionw, = ijln € Vp(74;) can be obtained by
two steps:
Step 1. FoD € Sj_1, computing\/v('j)j € Vp(‘Td'J?) in parallel by
a(W(Ij)j’ V) = (’7, V)’ Yve VP(TdI?)!

Step 2. Set

W, = Z wg -

DESj,l

Similarly, the action 01@31 appeared in Step 3 dflgorithm 3.1 can be described by
the following algorithm

Algorithm 3.3. Fory € Vy(77), the functionw;, = B3y € V5(7,Y) can be obtained by
two steps: )
Step 1. FoK € S;, computinga € Vp(7X) in parallel by

a(Wk, Vi) = (. V), Yk € Vp(T1);

5o 7K
w= 3w

KeS;

Step 2. Set

In applications, the action d8~! is implemented in parallel by Step 1 &igorithm
3.1-Algorithm 3.3.

Remark 3.1. Notice that the dimension of the coarsest sp¥gé/q,) and each local
“coarse” spacevp(‘i’d?) equalsNgp. Moreover, the number of fine elements contained
in K € 8; monotonically decreases whdrincreases (assume thidg is chosen in a suit-
able rule). Therefore, in order to guarantee that everyllgpgace has almost the same
dimension, we should choogdo be large enough such that each doniaia S; contains
almostNy fine elements iv,. Then each subproblem needed to be solved in Step 1 of
Algorithm 3.2-Algorithm 3.3 has nearlyNop unknowns only.
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3.3. Further discussions on the proposed multilevel methodIn this subsection we first
give some comparisons between the proposed multilevelodethd two existing multigrid
methods, and then investigate more details on the propasedmditioneiB.

e Comparisons with the standard multigrid method with oy@slag Schwarz smoothers

The preconditioneB defined in the previous two subsection looks like the stathdar
multigrid preconditioner with overlapping Schwarz smat) but the two preconditioners
have essential @ierences. In order to explain theffdirences in details, we first describe
this standard preconditioner for the current situation.

As in Subsection 3.1, l&€2 be decomposed into the union of several quasi-uniform and
regular coarse elements with the stzg where each coarse element is just the union of
some fine elements if,. Let 7h, denote the resulting partition, i.e., the set of all the
coarse elements. For every elemenfi), we continue such decomposition and obtain
several quasi-uniform and regular coarse elements witlsittesh; < hy. The resulting
partition is denoted bgf'hl. As usual, we repeat the above decomposition process and we
can build refining finite element partitiongs,, ‘fhl, e ,‘ch with the sizesdg, hy, -+, hj
satisfyingh < hy < --- < hy <hg. Forj=1,---,J, let Vp(‘f’hj) denote the plane wave
finite element space associated with the finite elementt'mmsti‘fhj. Then we obtain the
multilevel space decomposition

J
Vo(Th) = Vp(Tho) + ) V(7). (3.6)
j=1

In order to define overlapping Schwarz smoothers, we deceentie spacé'p(‘fhj)
(j = 1) into the sum of smaller subspaces. For eBclk f'hj, we enlargeD with the
thickness of one (coarse) element to a larger dorbeine., D is the union ofD and the
coarse elements adjoinirig, where the added elements belgngfm. ThenD and the
added elements constitute a coarse finite element partfidd , which is denoted by
‘fh'?. Let Vp(‘fh'?) denote the plane wave finite element space associated hetfirtite
element partitior‘fh?, i.e., the restriction of/p(‘fhj) on the subdomaib. Then we have
the “overlapping” space decomposition of tjte-level coarse space

Vo) = Y. Ve@m) (1= 1) (3.7)

Deﬁj
Combing this decomposition witfi (3.6), gives the new mel@l decomposition of the

original space
J

Vo) = Vo(Tho) + 3 > Vp(TPD). (3.8)

j=1 D€7A~hj

As in Su~bsection 32 led be the coarsest solver as§ociated My(rf ho). We define
Aﬁi : }/p(‘Th'J?) — Vp(‘Th'J?) as the restriction oA on Vp(‘Th'?), and usd}ﬁj D Vp(Th) =
Vp(‘Th'J?) to denote thé.? projector. Then we defingh-level solver

Bll= D A (as<j<))

Deﬁj
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and the preconditioner
J
B1= A Qo+ Z B'Q;. (3.9)
=1

Forj > 1, the operatij‘1 is called the overlapping Schwarz smootherjtit-level,

and the preconditionds is called the multigrid preconditioner with overlapping8a@rz
smoothers (MG-Schwarz). For each coarse elenierd 7, if we do not enlargeD

into the larger subdomaib and replace the subspa\tg(‘f’r?) in (3:9) bpr(7A'h'J?) itself,

then the corresponding preconditiorigis just the multigrid preconditioner with Jacobi
smoothers (MG-Jacobi). In applications, the action of thnemherélfl may be repeated
several times by Richardson iterations. Notice that we mateonsidered the more gen-
eral situation, in which the subdomaihcontains more elements for eabhe T, since
the implementation of the resulting smoothers has greatdr ¢

Now we give some comparisons between the preconditiBrfined in[[3.b) and the
preconditionerB defined in [3:P). We need only to compare the two multilevelcsp
decompositiong (313) and (3.8).

Similarity : for both multilevel space decompositions, the subspateach level (except
the coarsest level) are overlapping each other.
Differences

(1) the two space decompositions are constructedfferéint ways. For the space de-
composition [3.B), we first have the multilevel decomposit(3.6), and then construct
independently the overlapping decompositionl(3.7) fohdaeel coarse space. However,
for the space decompositiofis (3.3), we first construct tleelapping decompositio (3.2)
on each “enlarged subdomain”, and then use all these loealapping decompositions to
derive recursively the global multilevel space decompasif3.3).

(2) the two space decompositions havBatent structures. The design of the overlap-
ping decompositior (3 7) only changes the structurgiofevel space itself, but does not
improve the relation of the coarse spaces fiedent levels. This means that the structure
of the space decomposition (B.8) has no essentitdréince from that in the multilevel
preconditioner with Jacobi smoothers. From the conswaaiif the space decomposition
(3:3), we know that the space decompositionl(3.3) locallyspsses the structure of the
space decomposition in the overlapping domain decompasitiethod, and so the over-
lapping subspaca%p(TdEj’) at different levels have inherent connections. It is easy to see
that the space decompositidn {3.3) is independent of theespiecomposition in the stan-
dard multigrid preconditioners. Some comparison resoltsifem will be given in Table
[10 of Section 6.

e Comparisons with the wave-ray multigrid methods
The wave-ray multigrid methods (s€e[32] and [31]) weregiesil for solving Helmholtz
system generated by the discretization with finitéedtence or the nodal finite elements.
As in the first part of this subsection, lef denote the size of the coarse elements at
j-th level. It is well known that, wheh,; is relatively large comparing the value ofd,
the oscillatory error components jth level can not beféciently reduced by the standard
multigrid methods. The basic idea of the wave-ray multigniéthods is to approximate
such oscillatory error componentsjath level by the following functions

Lj
W) = ) al(xele,
=1
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Wherea1J (x) are smooth functions, which are calley envelope functiona [32]]; the wave
direction vectorgo; } may be diterent from that given in Subsection 2.4. The numbger
of the wave directions increases when the valbgincreases.

Since the original error components can not be directly esged as the form of the
functionwl!(x), some exponential interpolations need to be construsieel[31]). These
exponential interpolations were defined by the Fourier comepts (ray elements, plane
wave functionsg“(@)  and were used to achieve a transformation between thenarigi
error components and the ray envelope functions. In the snayenultigrid methods, the
approximation of oscillatory error components was tramsfed into the approximation of
smooth ray envelope functions by using the exponentiatpolations. While the smooth
ray envelope functions can be approximated by the standatibnid methods. Then the
oscillatory error components can be reduced on relativedyse girds. The implementa-
tion of the wave-ray multigrid methods involves many teclahdetails, for example, how
to choose suitable wave direction vectfng}. The cost in the wave-ray multigrid meth-
ods depends on the value of the wave nurrbeand the calculation of the exponential
interpolations.

Notice that both the wave-ray multigrid method and the rfeyél method introduced
in this paper are based on the plane wave functémg:™, in essence, use the “good”
approximate property of the plane wave functions for ostwlly solutions. However, the
roles of the plane wave functions aréfdrent in the two kinds of methods: the plane wave
functions are used to define discretization basis functiorkis paper; while, the plane
wave functions are only auxiliarweightfunctions in the wave-ray multigrid methods.
As to the multilevel methods themselves, the multilevellmdtdescribed in the previous
two subsections has no relation with the wave-ray multigrethods, since the wave-ray
multigrid methods still use the standard multigrid framekvio approximate the smooth
ray envelope functions.

¢ On the dficiency of the proposed multilevel method.

In Section 6, we will test several examples to illustrate efiiwiency of the proposed
multilevel preconditioners (including some variantsR)fsee Sections 4-5). Besides, we
will give numerical comparisons among the proposed mukilgoreconditionerB, the
multigrid preconditioneB with overlapping Schwarz smoothers and the multigrid preco
ditioner with Jacobi smoothers. As we will see, the mulglepreconditioneB designed
in the previous two subsections is robust even for lasgelowever, the multilevel precon-
ditioner B with overlapping Schwarz smoothers can only slightly inverthe convergence
rate of the multilevel preconditioner with Jacobi smooghén this part,we try to give some
explanations to theffectiveness of the precondition@r

The first reason is that the plane wave functions can appteithe oscillatory solution
of the Helmholtz equation very well (which is just the motivkethe wave-ray multigrid
methods), but it is not the unique reason of tifie@iveness. In fact, if we decrease the
thickness of the overlap to be one fine element in the oveirgpgpace decomposition
(3:3), then the resulting multilevel preconditioner ham@sét the same convergence rate
with the multigrid preconditioneB with Schwarz smoothers (see the results reported in
Table[® of Section 6). The second reason is that the spacengesition [3.B) possesses
“good” structure, as explained in the first part of this suftiea. We would like to explain
this point more clearly. It is known that an overlapping dam@decomposition precondi-
tioner with several subdomains only is always stable evethfoHelmholtz equations with
large wave numbers (see the results listed in Table 8 of @e6)i Thus, since the number
N of overlapping subdomains is fixed and not large, the ovpitapdecompositiorf (312)
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(and [31)) is stable for eadh € Sj_1 even for largev. This means that the global space
decomposition[(3]3), which is defined by the local space epositions[(3.11) and (3.2),
should be also stable even for large Notice that each local spatg(7 ") has too high
dimension unles$ is large, so we have to make multilevel decomposition.

e Computational cost for the implementation of the proposed@nditioneB.

In applications, the action @&~ is implementedn parallel. Thus we should not inves-
tigate the computational complexity for the implementatéB* as successive algorithm.
But, for completeness, we still estimate the computationaiplexity in the usual way.

As in Section 2, lelN denote the number of the fine elementgin It is easy to see that
the numbers of dierent subproblems needed to be solvealgorithm 3.2 andAlgorithm
3.3are not greaterthamnin{N(‘)_l, N} (j =1,---,J)andmin{NJ, N}, respectively. If we
require that the number of the fine elements contained in &eh S; almost equals
No (refer to Remark 3.1), we can verify that the level numbeshould beco(logy, N),
wherecy is a positive constant depending Npandd,. Notice that each subproblem to be
solved hafNop unknowns, so its solution has the computational @{gNop)3). Then the
computational complexity for the implementation®f' can be estimated as follows

Neost < C(Nop)*I min{Ny, N} < CNgp*(logy, N)N = CNSp?(logy, N)(pN).
Then we have
Neost < CNSPZUOQNO N)Naof,

whereNgot = pN denotes the dimension of the original fine grid systeEm (2.8hce
No is a constant, the computational cost is estimatedviy: = O(pz(logNO N)Ngot). This
means that, even if we implement the actionBof in successivenanner, the resulting
computational complexity is almost the optimal. Since tbkitson of each subproblem
has very small cosD((pNo)?), the preconditioneB implemented in parallel should be
much cheaper than the direct solvers.

4. A MULTILEVEL OVERLAPPING PRECONDITIONER WITH SMOOTHERS

In this section, we design an improvement of the preconuiti to further reduce the
cost for implementing the soIveB{l (j =1,---,J) andB;j! described imAlgorithm 3.2

andAlgorithm 3.3. The basic idea is to replace the soIngé (j=1,---,J3and le by
Jacobi-type smoothers. To this end, we first give exact diefivs of the smoothers.
Forj=1,---,JandD € Sj_, let Vp(‘i’d[i’) denote the local coarse space defined in

Subsection 3.1. We want to further decompose each Sg;(ti“(g?) into the sum of several
smaller spaces. Notice that the support set of the funct'r0|v§(7'd':j’) is D, which is the

union of Ng coarse elementdy, - - - , Dy, in Td?. Thus we need only to define subspaces
on the coarse elements.

As in Subsection 3.1, leR, denote the space @f plane wave shape functions. For a
coarse elemerid, in Td':j’, define

Vp(Dr) = spariv e L%(Q) : Vip, € Qp; suppvc Dy} = {ve Vp(‘i’d?) : supp vc Dy}

(j=1---.%DeSj;r=1---,Np)
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In other wordsVp(Dy) is the restriction space otp(‘fd']?) onD, c D. ltis clear that the
spaceVp(D;) has the dimensiop (but the dimension o‘f/p(TdEj’) equals\gp). Then

No
Vp(Td?) = va(Dr),
r=1
and so
No
Vo(Ta) = D D V(D).
DeSj1 r=1
Similarly, for eactfineelemente € 7~'hK, define
Vp(E) = (Ve Vp(7,) : suppvc E} (K eSy EeT/).
It is clear that the dimension &f,(E) equalsp and we have

Vo(Th) = D" Vp(E).

EeT <

Vo) = > > Ve(B)
KeS; EeT

Based on the above space decompositions, we can define-dggelsimoothers in the
natural manner.

Let mg be a given positive integer. The desired smootﬁ#’i’@ (j=1,---,J andﬁg”b)
are defined by the following algorithms.

Algorithm 4.1. Forn € Vp(7q,), the functionw;, = (R(j”b))*ln € Vp(7q,) can be obtained
as follows:

Step 1. Let? € Vp(74,) be an initial guess. Assume that* (I = 1,- -+, mg) has been
gotten. FoD € Sj_; and element®, Td?, computing/\i'Dr € Vp(Dy) in parallel by

Then

a(Wp,.v) = (7.v) —a(W™,v), VYve Vy(Dy),
and set

w=w1+ Z iw’m (I=1-,m);

DeSj r=1
Step 2. Definav, = w™.

Algorithm 4.2. Forn € Vp(7;), the functionw, = (R{™)~1; € V,(7,?) can be obtained
as follows: B

Step 1. Let® € V(7)) be an initial guess. Assume thalt™ (I = 1,--- ,m) has been
gotten. FoK € S; andfineelementsE € 7K, computing\/\fE € Vp(E) in parallel by

a(W,v) = (7,v) —aW1,v), Vve Vy(E),
and set

wW=wte Y 3 W (=1, my);

KeS; Ee’7~”hK
Step 2. Definav, = w™.

Next we define a new multilevel preconditioner.
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Let my be a given positive integer, and IeFt(j’(b))*l and R(J”b))*l denote the smoothers
defined byAlgorithm 4.1 andAlgorithm 4.2, respectively. Define the additive precondi-
tioner

J
(BI)™ = Ag'Qo + D (R™)1Q; + (RI™) Q.
j=1

In applications, we can choose the positive integgrasmy = 2,3. The action of
(B(S”b))‘1 can be implemented as iklgorithm 3.1, provided that the solverB; (j =
1,---,J) andB; are replaced witrR(j”b) (j =1---,3) andR{™ defined byAlgorithm

4.1 and Algorithm 4.2. Since the actions ofFﬁmO))*l (j=1---,3and ™) are
implemented in smaller spaces, one of which is defined on aarge or fine) element
and has onlyp degree of freedoms, the preconditiorBé,’P") is cheaper than the precondi-
tioner B. Numerical experiments in Section 6 will indicate that tlesvrvariant has faster
convergence than the preconditiomier

Remark 4.1. According to the discussions in Subsection 3.3, the preitiondr BI™ s
different from the standard multigrid preconditioners sineesiiace decomposition defin-
ing Bg“’) possesses fierent structure from the one corresponding to the standaltiymd
preconditioners. The fferences betweeB(S"b) and the multigrid preconditione® with
overlapping Schwarz smoothers are more obvious: each colepn (except the coarsest
problem) to be solved iB{m) hasp unknowns only, but each subproblem to be solved in
B hasng x p unknowns, wher@g denotes the number of the (coarse) elements contained
in a subdomai. The proposed method is not called as multigrid methodesihe sets
T, and‘fhJ defining the multilevel spaces do not constitute grid<bget. For conve-
nience, we called the preconditiorﬁg’b) asmultilevel overlapping preconditioners with
smoothergMOPS).

Remark 4.2. Notice that the dimension of the coarsest sp\a(p(ﬁjs) equalsNyp, with

No being a constant independentwfh andp. Thus, it is cheap to realize the action of
A51 appearing in the preconditiontTb) by the direct method (the values N§ andp are

not large). Of course, the action Agl can be also replaced by implementing a cheaper
preconditioner ofy. It is easy to construct such a cheaper preconditioneif@ince the
spaceVp(7, 53) is defined o\ coarsest elements with fixed sidg

5. MULTIPLICATIVE VARIANTS OF THE PRECONDITIONER B(Snb)

In this section, we design several multiplicative multdegreconditioners to accelerate
the convergence of the additive preconditioBé’?").

5.1. A basic multiplicative preconditioner. In this subsection, we introduce a simple
multiplicative preconditioner.
Define the operator

Po = Ay QoA
ThenPy is the energy projector fro(71) into the coarsest spadé,(7q,). Let Rg"b)
(j=21,---,J andlig"b) be the smoothers defined in the last section, and set

7™ = RM)1QA (j=1---,9) and T{™ = (RM) QA
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Let | denote the identity operator of,(71). Associated with the space decomposition
(3-3), a multiplicative variant oB™ is defined by

(M) = (1= (1 =PI = T{™)--- (1 =TI (1 = T))A™
The error propagation operatorm‘l”b) is
| = (MM™Y A= (1 = Po)(1 = T ... (1 = T - T,

The action of #1{™)~! can be described by the following algorithm.

Algorithm 5.1. Foré& € Vp(7h), the functionu, = (M(l”b))*lg-‘ € Vy(7h) can be obtained
as follows: .
Step 1. Computing;~e V,(7;)) by
(REVE, i) = (), VW € Vp(T7);
Step 2. Computingq, € Vp(7q,) by
(RI™ug,,v) = (EV) —a(@.v), YV e Vp(Ta,).

and seu; = U7 + ug,;

Step 3. Letj = J,---,2. If we have obtained;; € Vp(7h), then computely , €
VP(TdH) by

(R(jrig)udjfl, V) = (& V) —a(uj,V),  YveVp(Ty.,),
and set
U-1=Uj+Ug, (j=3--,2);
Step 4. Computingo € Vp(74,) by
(AoUo, V) = (§,V) —a(ur, V), YVe Vp(Tq);
Step 5. Set
Ug = Uz + Uo.

5.2. The standardly symmetrized multiplicative preconditioner. In this subsection we
consider the case of PWLS method. Then the operatisr Hermitian positive definite
with respect to the inner produd(-). Thus, we need to define a symmetrization of the
preconditioneM ™.

The standardly symmetrized preconditionerth) is defined as
(MS®) = (=1 =TF)(A-TF) - (=TI =Po)(1=T{™) - (=TT (=TT A
The error propagation operator BE™ is
I =(MI) A = (1 =TI =TI (1 =TI (1 = Po) (1 =T . (1 =TI () - T,

For the case of PWLS method, the operai’iflf@) andfg”b) are Hermitian positive definite

with respect to the inner produd<( -). As aresult, the operatolk/ém“))*l is also Hermitian
and positive definite with respect to the same inner product.
The action of Mg“’))‘1 can be described by the following algorithm.

Algorithm 5.2. Foré € Vp(7h), the functionu; = (Mg""))*lg-‘ € Vp(7h) can be obtained
as follows:
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Step 1. Computings’ e Vy(7,) by
(R, i) = (€. W), YV € V(T );
Step 2. Computingvy, € Vp(74q,) by
(RI™Wq,,V) = (6:V) — alfR, V), YV € Vp(Tg,).

and setvy = W + wg;;
Step 3. Letj = J,---,2. If we have obtainedav; € Vp(7h), then computeny, , €
Vp(de—l) by
(RMwg, ,,V) = (6:V) - aWwj, V), Vv e Vp(Ta,),
and set
Wjisa=Wj+Wy, (j=J---,2);
Step 4. Computingg, € Vp(74,) by
(AQUdO, V) = (é:’ V) - a(Wl’ V)’ Vv e Vp(Tdo)’
and setg = Wy + Ug,;
Step 5. Let = 1,---, J. If we have obtained;_; € V,(71), then computey, € Vp(7¢,)
by
(R™ug V) = (£.v) - a(uj-1,V), YV e Vp(Ta),
and set
uj = u,-,1+udj (j =1--- ,J).
Step 6. Computing;™e Vp(7})) by
(R, i) = (G Vi) — alUs. Vi), Yvh € Vp(7R);
Step 7. Set
Ug = Uy + .
5.3. A non-standard symmetrized multiplicative preconditioner. In this subsection,
we still consider the case of PWLS method. Define the opefdst : Vo(7h) — Vp(7Th)
by
T = | — (1 =T =T =T - Ty - T,
ThenT(™) js Hermitian positive definite with respect to the inner prodA-, -). A non-
standard symmetrized preconditionerl\tbf") can be defined as (refer {0 ]22])

(M) = (1 = (1 = Po)(I = T™)A  (thePWLSmethod)

It can be verified that the restriction Mg”b) on (Vp(74,))* is Hermitian positive definite
with respect to the inner producA{-) (refer to [22]). The error propagation operator of
M{™ s

| — (MM)ZIA = (1 = Po)(I = T).
The action of {\/Ig“’))*l can be described by the following algorithm.

Algorithm 5.3. Foré e Vp(7), the functionu; = (M{™)¢ € V,(71) can be obtained
as follows:
Step 1. Computingv, € Vp(74q,) by

(R™w,v) = (£,V), W€ Vp(Ta);
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Step 2. Letj = 2,---,J. If we have obtaineav;_; € Vp(7h), then computevy, €
Vp(Tq;) by
R™wy,v) = (6,V) - aWj-1,V), YV e Vy(Tq),
and set
Wj =W +Wy (j=2---,J);
Step 3. Computings” e V(7)) by
(RN, vh) = (€, Vh) — a(Wo, Vi), Vv € Vp(T3),

and set = wy + W;
Step 4. Computingq, € Vp(74,) by
(R™ug,, V) = (€:V) — &g, V), ¥V e Vp(T,),
and seuy = Wy + Ug,;
Step 5. Letj = J,---,2. If we have obtained; € Vp(7h), then computely , €
V(Tq;..) by
(R(j'I‘i)udjfl, V) = (& V) —a(uj,V),  YveVp(Ty.,),
and set
U1=Uj+Ug, (j=J---,2);
Step 6. Computingo € V,(74,) by

(AOUOvV) = (é:’ V) - a(ul, V)’ Yve Vp(Tdo);

Step 7. Set
Ug = Uz + Uo.

Remark 5.1. The actions of R™)* (j = 1,---, J) and ") used inAlgorithm 5.1
-Algorithm 5.3 are implemented bplgorithm 4.1 andAlgorithm 4.2, respectively. No-
tice that the solverf{(;“’))*l is implemented only one time iAlgorithm 5.3 (such solver

needs to be implemented for two timesAtgorithm 5.2), so the preconditionek/lé”b)
is cheaper tham/lg”b). It is interesting that the numerical results reported icti®a 6

indicate thatMé”b) has faster convergence thMg”b) (some explanations to the kind of
phenomenon have been givenl[inl[22]).

6. NUMERICAL EXPERIMENTS

In this section we report numerical results to illustratat tthe new preconditioners are
effective for solving Helmholtz equations with large wave nensh

In the examples tested in this part, we cho@sas the rectangle [@] x [0, 1], and
we adopt a uniform partitiofy, for the domainQ as follows: Q is divided into some
small rectangles with the same size, whiedenotes the length of the longest edge of the
elements. Leh, denote the number of elements generated by the parfitipand letp
denote the number of plane wave basis functions in one eleriiden the dimension of
the original fine grid systeni (2.118) Myot = Ny X p.

We choose the mesh siteand the numbep of plane wave basis functions in one
element according to the following rule: when the wave nursliecrease, the scale of
the discrete problem is increased (eithatecreases gp increases) in a suitable manner
such that accepted relati& errors of the approximation can be kept. In the numerical
experiments below, we chooker 2/w and slightly increas@ whenw increases.
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We need to give a rule for the multilevel overlapping domadeamposition. For con-
venience, we consider only an easily implemented rule, the. overlap degreé, = 1,
for the main experiments. L& be divided into 2 x 2" (n > 3) rectangle elements with
the same size. We divid@ into 4 parts in each directiorx{coordinate axis direction or
y-coordinate axis direction) to build the coarsest paritig,, with dy being a constant
independent of the wave numherand the fine mesh size This means that the coarsest
partition contains 4« 4 (coarse) rectangular elements with the same size, ahig s016.
Define the enlarged subdomain of each (coarse) element amitie of the (coarse) el-
ement itself and its neighboring (coarse) elements, wHeredéfinition of the enlarged
subdomain was given in Subsection 3.1. We repeat the aboee$s to decompose each
enlarged subdomain intoxd4 rectangles, but the rectangles may havkedent sizes since
the number of the elements contained in a enlarged rectammyebe not divisible by 16.
For this case, we still divide the enlarged rectangle intaetsin each direction such that
the number of elements in each part is almost the same. Wenuerthe above process,
and the decomposition stops when the number of elementscin esdarged subdomain
associated with the current level is less than®

Throughout this section, we always uBeBg“O) and MI(”") (I = 1,2,3) to denote the
proposed multilevel preconditioners with the above deaositjpn rule.

For the PWLS method, we set = w? ands = 1; for the PWDG method, we set
a=B=6= % Since the sffness matrix of PWLS method is Hermitian positive definite,
we can solve the system by PCG method. While théngtss matrix of PWDG is not
Hermitian, we solve it by PGMRES method. For one iteratiep SPCG method is cheaper
than PGMRES method. The stopping criterion in the iteralgerithms is that the relative
L2-norme of the residual of the iterative approximation satisties1.0e — 6 .

Let Nier represent the iteration count for solving the algebraitesys When the wave
numberw increases (and the mesh sizdecreases), the iteration colNt, also increases.
In order to describe the growth rate of the iteration coNjgt with respect to the wave
numberw, we introduce a new notatign Let w; andw, be two wave numbers, and let
Ni(é)r and Ni(é)r denote the corresponding iteration counts, respectivéign we define the
positive numbep by

@)
(ﬂ)p _ |tfr )
w1 Ni(te)r

For example, whep = 1, the growth is linear; ib — 0%, then the preconditioner possesses
the optimal convergence. For a preconditioner, the pasitivmberp defined above is
called as “relative growth rate” of the iteration count. @ticse, we hope that the relative
growth ratep is suficiently small. In particular, a preconditioner is almost thptimal if
the relative growth ratg is much less than 1.

6.1. An example with known analytic solution. The first model problem is the problem
with the Robin boundary condition (refer {0 [25]):

AU+w?u=0 in Q,
6.1)

%ku:g on 90Q,

whereQ = [0, 2] x [0, 1], andg = (£ + iw)Uex.
The analytic solution of the problem can be given in the adsem as

Uex(X, Y) = COS{ry)(Are™ ™ + Aye“)
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wherewy = /w? — (kr)?2, and cofficientsA; andA, satisfy the equation

( (w—:::;e‘zwx ( ;Ji;eziwx )( 2: )=( _Oi ) (6.2)

In applications, the parametkmay has dferent values. According to our numerical
experiments, dierent values ok do not dfect the diciency of the preconditioners (refer
to Table 4 and Table 5 i [23]). Thus, in order to shorten tingile of the paper, we only
choose&k = 10 in the experiments for the example.

Let u, denote the approximate solution generated by an iteratatbad, we introduce
the following relative error:

_ [lUex— Unll2(0)
lUexdlL2(oy)

We use the above relative error to measure the accuracy of the approximate solutjon

6.1.1. Results on the PWDG methoth this part, we apply the PWDG method to the
discretzation of this example and solve the resulting algielsystem by PGMRES method,
with the preconditioners, B™ andM{™. In Table[1, Tabl€]2 and Tahlé 3, we list the
iteration counts and thie? errors of the resulting approximations.

TaBLE 1
PWDG discretization and PGMRES iteration
(with the preconditioneB)

w p Nh Niter P err.
207 | 10| 322 38 8.13e-4
407 [ 11] 64% | 47 | 0.3067| 7.69e-4
80r | 12| 128 | 58 | 0.3034| 6.57e-4
1607 | 15| 256° | 71 | 0.2918| 6.02e-4
3207 | 16 | 512 | 87 | 0.2932| 5.98e-4

TABLE 2
PWDG discretization and PGMRES iteration
(with the preconditioneB{™)

mp =2 mp =3

w p Nh Niter P EIrr. Niter P err.
20r | 10| 322 44 4.13e-4| 42 4.23e-4
407 | 11| 64° 53 | 0.2685| 6.27e-4| 50 | 0.2515| 6.21e-4
80r | 12| 12& | 64 | 0.2721] 5.21e-4| 59 | 0.2388] 3.97e-4
1607 | 15| 256° | 77 | 0.2668| 3.87e-4| 69 | 0.2259]| 4.27e-4
3207 | 16| 512 | 92 | 0.2568| 3.96e-4| 80 | 0.2134| 4.12e-4

TaBLE 3
PWDG discretization and PGMRES iteration
(with the preconditioneM{™)
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mp =2 mp =3

w p Nh Niter P EIrr. Niter P err.
20r | 10| 322 39 6.52e-4| 36 6.38e-4
407 | 11| 642 44 | 0.1740| 5.87e-4| 40 | 0.1520| 5.06e-4
80r | 12| 12& | 50 | 0.1844] 6.28e-4| 44 | 0.1375]| 5.3%e-4
1607 | 15| 256" | 56 | 0.1635| 6.14e-4| 48 | 0.1255]| 5.22e-4
3207 | 16| 5122 | 63 | 0.1699| 6.29e-4] 52 | 0.1155| 7.81e-4

The results in the above tables indicate that the proposecbpditioners are robust
for Helmholtz equation with large wave numbers (some dadadiomments will be given

later).

6.1.2. Results on the PWLS methadd. this part, we apply the PWLS method to the dis-
cretzation of this example and solve the resulting systeyrB®G method, with the pre-
conditionersB, B™, Mgm) andM{™. We report the iteration counts and th&errors of
the resulting approximations in the following four tables.

TABLE 4
PWLS discretization and PCG iteration
(with the preconditioneB)

w p Nh | Niter e err.

20r [ 10| 322 | 41 9.25e-4
407 [ 11] 642 | 51 | 0.3149| 3.60e-3
80r | 14| 12& | 63 | 0.3049] 3.88e-4
1607 | 15| 256° | 78 | 0.3081| 2.31e-4
3207 | 16 | 512 | 96 | 0.2996| 3.27e-4

TABLE 5
PWLS discretization and PCG iteration
(with the preconditioneB{™)

my =2 my =3

w p Nh | Niter o err. Niter e err.
207 | 10| 322 | 47 3.64e-4| 45 3.67e-4
407 | 11| 64 | 57 | 0.2783] 1.79e-3| 53 | 0.2361] 1.78e-3
80r | 14| 12& | 69 | 0.2756] 2.63e-4| 62 | 0.2263] 3.8%¢e-4
1607 | 15| 256" | 83 | 0.2665| 3.91e-4| 72 | 0.2157| 2.67e-4
3207 | 16 | 512° | 100 | 0.2688| 4.37e-4| 84 | 0.2224| 4.63e-4

TABLE 6
PWLS discretization and PCG iteration
(with the preconditioneM{™)
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mp =2 mp =3

w p Nh Niter P EIrr. Niter P err.
20r | 10| 322 28 6.97e-4| 26 6.23e-4
407 | 11| 642 32 | 0.1926| 2.37e-3| 29 | 0.1575| 2.13e-3
80r | 14| 12& | 36 | 0.1699] 4.07e-4| 32 | 0.1420]| 6.94e-4
1607 | 15| 256" | 41 | 0.1876]| 6.24e-4| 35 | 0.1293] 7.83e-4
3207 | 16| 5122 | 46 | 0.1660| 4.51e-4] 38 | 0.1186| 5.68e-4

TABLE 7
PWLS discretization and PCG iteration
(with the preconditioneMé”"))

my =2 my =3

w p Nh | Niter o err. Niter e err.
207 [ 10| 322 | 23 8.24e-4| 22 8.29e-4
407 | 11| 64° | 26 | 0.1769] 2.69e-3| 24 | 0.1255] 2.70e-3
80r | 14| 12& | 29 | 0.1575] 3.91e-4| 26 | 0.1155]| 3.90e-4
1607 | 15| 256" | 33 | 0.1864| 2.61e-4| 28 | 0.1069]| 2.34e-4
3207 | 16| 5122 | 37 | 0.1651| 2.97e-4| 30 | 0.0995| 2.28e-4

It can be seen, from the above tables, that the proposedewsltpreconditioners for
Helmholtz equation with large wave numbers have relatigéfple convergence. Namely,
the iteration counts of the corresponding iterative mesh@CG or PGMRES) increase
slowly when the wave numberincreases (and the mesh sizeasss). In particular, for the
multiplicative multilevel overlapping preconditionerstivsmoothers, the relative growth
ratesop of the iteration counts with respect to the wave numbers angsmall. In fact, the
rates are about.D when the smoothing stapy = 3. This means that the multiplicative
multilevel overlapping preconditioners with smoothers almost optimal. We also notice
that, for the PWLS method, the non-standard symmetrizedoprda’tioneng”b) is more
effective than the standardly symmetrized precondititMié’F). We would like to empha-
size that all the results are obtained without the limitirmgdition on the coarsest mesh
sizedy (see Section 1 for the details), which can be chosen as aactmstiependent ab
and the mesh size

In the next part, we report some results to explain why the@sed preconditioners
are robust for the considered model, and illustrate tliedinces between the proposed
preconditioners and several existing preconditioners.

6.1.3. Results on some other related preconditiondrsthis part, we only apply the PWLS
method to the discretzation of this example and solve thétieg systems by PCG method
with the considered preconditioners.

At first we consider the preconditioners generated by theawamnlapping domain de-
composition method, the domain decomposition method withelement overlap and the
domain decomposition method with complete overlap, respdy. Here we consider only
the usual one-level domain decomposition (Je=, 1), in whichQ is decomposed into>¢4
rectangles with the same size. The resulting preconditioaie denoted b¥lhon, Msmal
andMqge. We give the iteration counts of the PCG methods with thestpreconditioners
in Table8.
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TaBLE 8
PWLS discretization and PCG iteration
(with the preconditioner®non, Msmai andMiarge)

Mhnon Msmall Mlarge
w p Nh | Niter P Niter P Niter P
207 | 10| 32% | 108 82 20
407 | 11| 647 | 139 0.3641| 101 | 0.3007| 21 | 0.0704
80r | 14| 128 | 178 | 0.3568] 125 | 0.3076| 22 | 0.0671
1607 | 15| 256° | 229 | 0.3635| 154 | 0.3010[ 23 | 0.0641

The above results indicate that, when we decomgbs®o several subdomains only,
all the standard domain decomposition preconditionere btable convergence (of course,
the preconditioner with large overlap converges more tgpidBut, for this one-level
decomposition, each subdomain still contains too many flaments wherh is small
(i.e.,w is large). Because of this, we have to design multilevel dordacomposition in
Section 3, such that each considered domain is decompdsashily several subdomains,
and every subdomain at the final level contains several fiem@&hts. Then each local
space decomposition (3.2) is stable, and so the global sfemmenposition(313) should be
stable too. This can intuitively explains why the proposedtitevel preconditioners are
effective for Helmholtz equations with large wave numbers.

Then we investigate the influence of the overlapping degy &ethe dfectiveness of the
multilevel preconditioner defined by (3.5). When decregsire thickness of the overlap
to be one fine element (i.e = g), the resulting multilevel preconditioner is denoted by
Bsmail (the preconditioner with small overlap). LB+ denote the multilevel precondi-
tioner withdp = % (half overlap). In the table below, we list the iteration otaiof the PCG
methods with the two preconditioners and the errors of theltieg approximations.

TaBLE 9
PWLS discretization and PCG iteration
(with the preconditionerBsma andBhaif)

Bsmall Bhait

w p Nh | Niter o err. Niter e err.
20r [10] 322 | 71 3.86e-4| 49 4.91e-4
407 | 11| 64% | 99 | 0.4796] 5.34e-4| 61 | 0.3160]| 6.35e-4
80r | 14| 12& | 138 | 0.4792] 2.74e-4| 76 | 0.3172] 2.71e-4
1607 | 15| 2567 | 193 | 0.4839] 1.67e-4| 95 | 0.3219] 1.66e-4

The above results tell us that the multilevel preconditiaviéh small overlap is not sat-
isfactory. Fortunately, the multilevel preconditionettwhalf overlap possesses almost the
same convergence rate as the multilevel preconditiBnveith complete overlap (compar-
ing the results in Tablg 4). Notice that the overlap degrek@fmall overlap case depends
on h, but the overlap degree for the case of complete overlap lboherlap is indepen-
dent ofh. This means that the convergence rate of the proposed pliticoer is mainly
determined by the overlap degree, as in the standard opan@plomain decomposition
method for dffusion equations.

In the following we compare the proposed preconditidBevith two standard multi-
level preconditioners. LeB (MG-Schwarz) be the multilevel preconditioner defined by
(3.9), and let MG-Jacobi denote the multilevel precondigiowith Jacobi smoothers (see
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the first part in Subsection 3.3). For the comparison, we usd definement for all cases,
i.e., choosind\p = 4 x 4 in Subsection 3.1 and settifg = h;j_;/4 in Subsection 3.3. We
report the iteration counts of the PCG methods with the threeonditioners in Tab[e 10

TasLe 10
PWLS discretization and PCG iteration
(with the preconditioners MG-Jacobi, MG-Schwarz &)d

MG-Jacobi | MG-Schwarz B
w P Ny Niter P Niter Y Niter P
207 | 10| 322 78 62 41

407 | 11| 647 | 113]0.5348| 86 | 0.4721| 51 | 0.3124
80r | 14| 128 | 163 | 0.5285| 119 | 0.4686| 63 | 0.3049
160r | 15| 256¢° | 235 | 0.5278| 164 | 0.4627| 78 | 0.3081

The results given in the above table indicate that the pregphpseconditioneB is essen-
tially different from the standard multilevel preconditioners andbisausly more &ective
than the considered two preconditioners (see Subsectdoithe detailed explanations).
We point out that, when settinly; = hj_1/2 in Subsection 3.3 or implementing more
smoothing steps of the smootheB’§1 andB:?, this conclusion still holds.

Now we compare three preconditioners, in which each sulgmlo be solved has
p unknowns. When setting; = h;_1/2 and implementingn, smoothing steps for the
Jacobi smoothers, the resulting multigrid preconditiomigin Jacobi smoothers is denoted
by MG-Jacobi™. If the smoothing stepy in the preconditionelB‘s”b) described in Section
4 is not fixed, but it is determined by Krylov method (se€ [2Midh the control accuracy
n, the resulting preconditioner is denoted By,. As an example, we choose = 3 and
n= % for which the average time for implementing smootherBdpis about 27. In table
(17, we list the iteration counts of the PCG methods with theelpreconditioners.

TasLe 11
PWLS discretization and PCG iteration
(with the preconditioners MG-JacdB?, B, andBI™, wheremy = 3,7 = 1/5)

MG-Jacobf™) Bs,, B
w p Nh Niter P Niter 14 Niter 1%
207 | 10| 322 61 48 45

407 | 11| 64° | 83 | 0.4443| 58 [ 0.2730| 53 | 0.2361
80r | 14| 128 | 112 | 0.4323| 70 | 0.2713| 62 | 0.2263
1607 | 15| 256° | 151 | 0.4310| 84 | 0.2630| 72 | 0.2157

It can be seen from the above results that the proposed p]"mk:xmrB(S”") is obviously
more dfective than the multigrid preconditioner withy Jacobi smoothing steps, and it is
so dfective as the precondition&,. As pointed out in[[I11], the use of Krylov methods
often plays an important role in other methods, but the agich is not true in the current
multilevel method.

Notice that we have not reported the errors of the approxamain Tabld™8, TablE710
and Tablé Il because of the limitation of the space in thédegtaln fact, all the errors are
less than 10 and have not large fierence.
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6.2. An example whose analytic solution is unknown.The example tested in the last
subsection is too special. In this subsection, we considentodel with an arbitrary func-
tion g, which is not determined by an analytic solution. The exangan be described
as

AU+0?u=0 in Q,
6.3)

ou .
— +iwu= on 90Q,
an+ wi=g

whereQ = [0,2] x [0, 1], andg = X = .

In this example, since we do not know its analytic solutioe, an only compute an
approximate solution for the comparison with the iteratiotution. Letuy be the approxi-
mate solution obtained by the direct method for the dissgstem, i.e.,

Oh = Al fh.

To measure the accuracy of the approximate solutjogenerated by an iterative method,
we introduce the following relative error:

[10n = UnllL20)

[10nllL2()

6.2.1. Results on the PWDG methoth this part we apply the PWDG method to the
discretzation of this example and solve the resulting algielsystem by PGMRES method,
with the preconditionerB, B™ and Mgm‘)). In TableI2, TablE13 and Talilel14, we report
the iteration counts and the? errors of the resulting approximations.

TasLE 12
PWDG discretization and PGMRES iteration
(with the preconditioneB)

w p Nh | Niter e err.

207 | 10| 322 | 44 7.21e-4
407 | 11] 642 | 54 | 0.2955| 7.39e-4
80r | 12| 12& | 66 | 0.2895] 6.33e-4
1607 | 15| 256° | 80 | 0.2775| 6.19e-4
3207 | 16 | 512 | 98 | 0.2928| 5.63e-4

TasLE 13
PWDG discretization and PGMRES iteration
(with the preconditioneB{™)

my =2 my =3

w p Nh | Niter o err. Niter e err.
207 [ 10| 32° | 51 8.71le-4| 48 6.22e-4
407 | 11| 64 | 61 | 0.2583] 5.46e-4| 57 | 0.2479] 5.83e-4
80r | 12| 12& | 73 | 0.2591] 6.74e-4| 67 | 0.2332] 5.91e-4
1607 | 15| 2567 | 87 | 0.2531| 7.93e-4| 78 | 0.2193] 6.08e-4
3207 | 16 | 512° | 104 | 0.2575| 6.28e-4| 91 | 0.2224| 5.69e-4
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TaBLE 14
PWDG discretization and PGMRES iteration
(with the preconditioneM&"b) )

mp =2 mp =3
w p Nh Niter P EIrr. Niter P err.
207 | 10| 322 47 7.08e-4| 41 8.26e-4
407 | 11| 642 53 | 0.1733| 6.13e-4| 45 | 0.1343| 7.93e-4
80r | 12| 12& | 60 | 0.1790] 6.29e-4| 49 | 0.1229] 6.15e-4
1607 | 15| 256" | 68 | 0.1806| 6.37e-4| 53 | 0.1132] 7.04e-4
3207 | 16| 5122 | 77 | 0.1793| 7.24e-4] 57 | 0.1050| 6.87e-4

27

The above results indicate that the proposed precondiscare also robust for this

example.

6.2.2. Results on the PWLS methdad. this part we apply the PWLS method to the dis-
cretzation of this example and solve the resulting systeyrB®G method, with the pre-
conditioners, B{", Mé”") and Mé”"). We list the iteration counts and thé errors of the
resulting approximations in the following four tables.

TaBLE 15
PWLS discretization and PCG iteration
(with the preconditioneB)

w p Nh | Niter e err.

207 [ 10| 322 | 49 6.27e-4

407 | 11] 647 | 60 | 0.2922] 9.19e-3

80r | 14| 12& | 73 | 0.2829] 4.70e-4

1607 | 15| 256° | 89 | 0.2859]| 3.08e-4

3207 | 16 | 512 | 109 | 0.2925| 5.81e-4
TaBLE 16

PWLS discretization and PCG iteration
(with the preconditioneB{™)

mp =2 mp =3
w p Nh Niter P EIrr. Niter P err.
20r | 10| 322 56 7.89e-4| 53 7.61e-4
407 | 11| 64 67 | 0.2587| 2.96e-3| 63 | 0.2494| 2.37e-3
80r | 14| 12& | 80 | 0.2558] 3.27e-4| 74 | 0.2322] 3.82e-4
1607 | 15| 256" | 96 | 0.2630| 5.14e-4| 86 | 0.2168] 6.35e-4
3207 | 16| 5122 | 115 | 0.2605| 6.27e-4] 100 | 0.2176| 5.23e-4

TaBLE 17
PWLS discretization and PCG iteration
(with the preconditioneM{™ )
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mp =2 mp =3

w p Nh Niter P EIrr. Niter P err.
20r | 10| 322 35 5.81e-4| 33 6.14e-4
407 | 11| 642 40 | 0.1926| 3.19e-3| 36 | 0.1651| 3.25e-3
80r | 14| 12& | 45 | 0.1699] 6.34e-4| 40 | 0.1520] 5.12e-4
1607 | 15| 256° | 51 | 0.1806]| 4.88e-4| 44 | 0.1375]| 3.09e-4
3207 | 16| 5122 | 57 | 0.1605| 5.33e-4| 48 | 0.1225| 5.87e-4

TaBLE 18
PWLS discretization and PCG iteration
(with the preconditioneM{™ )

mp =2 mp =3

w p Nh Niter P EIrr. Niter P err.
20r | 10| 322 31 4.76e-4| 29 4.91e-4
407 | 11| 642 35 | 0.1751]| 8.68e-3| 32 | 0.1420| 9.01e-3
80r | 14| 12& | 39 | 0.1561] 4.71e-4| 35 | 0.1293] 4.70e-4
1607 | 15| 256" | 44 | 0.1740| 3.92e-4| 38 | 0.1186] 3.91e-4
3207 | 16| 5122 | 49 | 0.1553| 6.13e-4] 41 | 0.1096| 6.19e-4

From the above results, we know that the proposed multileredtonditioners are also
very dfective for the Helmholtz equation considered in this sutisec

7. CONCLUSION

In this paper we have constructed several multilevel préitmmers for the Helmholtz
systems generated by the plane wave discretization (PWIESAMiDG), based on a mul-
tilevel overlapping domain decomposition method. In arar, we have designed mul-
tilevel overlapping preconditioners with smoothers, whare almost the optimal. The
numerical results have illustrated that the proposed pidiioners possess nearly sta-
ble convergence for the two-dimensional Helmholtz equatioith large wave numbers,
without the limiting condition on the coarse mesh size. k& tiext work we shall extend
the proposed methods (with some modifications) to solvingettdimensional Helmholtz
equations with large wave numbers.
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