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Abstract

We analyze the asymptotic behavior for a system of fully nonlinear parabolic and
elliptic quasi variational inequalities. These equations are related to robust switching
control problems introduced in [6]. We prove that, as time horizon goes to infinity
(resp. discount factor goes to zero) the long run average solution to the parabolic
system (resp. the limiting discounted solution to the elliptic system) is characterized
by a solution of a nonlinear system of ergodic variational inequalities. Our results hold
under a dissipativity condition and without any non degeneracy assumption on the
diffusion term. Our approach uses mainly probabilistic arguments and in particular
a dual randomized game representation for the solution to the system of variational
inequalities.
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1 Introduction
Let us consider the following system of forward parabolic quasi variational inequalities
oV -
min {G_T —inf,ecp [EZ’“V + f(x,1, u)],

V(T,x,i) — max;x; [V(T,x,j) - c(m,z’,j)]} = 0, (T,z,i) € (0,00) x R* x I,,,, (1.1)
V(0,z,i) = g(x,1), (z,1) € R? x I,

where I,,, := {1,...,m}, with m € N\{0}, and £*" is the second-order differential operator
; 1
LYYV = b(x,i,u).D,V + étr(acﬂ(x, i,u)DIV).

Here U is a compact subset of R?, and the assumptions on the measurable functions b, o,
¢, f and g will be made precise in the next section. Equation (II]) turns out to be related
to a certain robust switching control problem studied in [6]:

T
V(T,z,i) = supinfE,; / F(X4, Iy, vp)dt + g( X, I) (1.2)
- Z Tn’ 7— ’ Tn)l{Tn<T}]
neN

where
{Xt = x+ [30(Xp, I, v)dr + [3 o(Xo, Iy 0 ) AW,
Iy = ilfoctcn) + ZnEN inlr <t<rin}:

The piecewise constant process I denotes the regime value at time ¢, whose evolution
is determined by the controller through the switching control o = (7, (y,)n, while the
process v, decided by nature, brings the uncertainty within the dynamics of state process
X and the model. The control process sets in which « and v run over is a key issue when
considering stochastic differential game type problems as in the formulation (L2). In the
robust switching control problem, the switching control « is of feedback form, meaning that
it is chosen by the controller based only on the past and present information coming from
the state and regime processes, while the control v is more generally of open-loop form,
since nature is assumed to be aware of all information at disposal. Precise formulation
of robust switching problem is given in Section Bl Also see [6], where we proved by
developing stochastic Perron’s method (which was introduced in [8] to analyze stochastic
control problems) further that the value function V' in (2] is the unique viscosity solution
to (LI). The corresponding elliptic system of quasi variational inequalities for any 5 > 0
is

min{ﬁVﬁ - 5161{] [ﬁi’“Vﬁ + f(x,z',u)] VA, i) — %17%? [Vﬁ(:n,j) - c(:z:,i,j)]} = 0, (1.3)
for any (x,i) € R? x T,,,. Similar to the parabolic case, this system is related to a robust
switching control problem but this time over an infinite horizon with discount factor (.

Although it is a classical topic in stochastic control, optimal switching problem, in

which a controller implements a discrete set of controls, has attracted a renewed interest



and generated important developments in applied and financial mathematics. They occur
naturally in investment problems with fixed transaction costs, pair trading problems or
in the real options and is a more realistic set-up than assuming that the controller exerts
controls of infinite variation or controls that accumulate local time. The literature on this
topic is quite large and we refer e.g. to the recent papers by [33], [17], [37], [7], [22], [24], [18]
for the analysis of optimal switching problems either by dynamic programming or backward
stochastic differential methods, and to [16], [10], [21], [41], [36] for various applications to
finance and real options in energy markets. Most of this literature has focused on the
situation where the state coefficients are known, while in practice there is uncertainty
about their real value, which motivated us to consider the framework (2)) in line of recent
investigations about robust control problem. On the other hand, an interesting application
of the switching systems that we analyze appears to be key in proving the convergence rate
of numerical schemes for Hamilton-Jacobi-Bellman equations; see e.g. [5].

The chief goal of this paper is to extend the results of [32] and [34], to the fully non-
linear and degenerate case: That is, to investigate the large time asymptotics of the value
function of the robust optimal switching problem V(T,.) as T goes to infinity, which is
closely related to the asymptotic behavior of V7, as 8 goes to zero. We should mention
that the asymptotics for stochastic control and related Hamilton-Jacobi-Bellman (HJB)
equations have been studied in other settings by many authors since the seminal papers
[9] and [I], and has received a renewed interest, see the lectures of P.L. Lions (2014-2015)
at College de France. Recent papers include for instance [27] for the long time behavior
of Hamilton-Jacobi equations in a semi-periodic setting, or [40], which considered large
time behavior of semi-linear HJB equations with quadratic nonlinearity in gradients by
combining PDE and stochastic analysis methods. We mention [23], which proved a rate of
convergence for the solution to the semi-linear HJB equation towards the ergodic equation
under a weak dissipativity condition. We refer also to [3], [4], [25], [28], [35]. The case of
fully nonlinear HJB equation is studied recently in [I3] by means of backward stochastic
differential equation (BSDE) representation for nonlinear parabolic, elliptic and ergodic
equations.

We introduce three novel features to this problem: First, we consider diffusion coeffi-
cients b, and ¢ depending not only on the state process x but also on the regime values i;
second, we incorporate robustness in our model by considering dependence of the diffusion
coefficients on the open loop control v. From a PDE point of view, this makes the prob-
lem fully nonlinear due to the infimum over v € U in (II]). Third, we do not impose a
non-degeneracy condition on the diffusion term.

Our main result is to prove, under natural dissipativity conditions, the existence of a
constant A (not depending on state and regime values x,7) such that

B—0t

V(T,z,i oo .

# =, VA, 28 A, (1.4)
for all (z,i) € R? x I,,. Moreover, A is the solution to the ergodic system of variational
inequalities:

min {A = inf [£0 + (.1, 0)], o(a.9) — max [6(2. ) — ela,i3)] } = 0. (1)



Here the unknown in the ergodic equation (LX) is the pair (A, ¢) with A real number, and
¢ a real-valued function on R? x I,,,. We also show that under suitable conditions \ is the
value to a robust ergodic control problem (see Remark 2.4]). In the proof of the ergodic
convergence (4], a crucial step is the derivation of a uniform (in ) Lipschitz estimate
on V? and so the equicontinuity of the family (V#)z. The main difficulty in our context,
with respect to previous related works, is that we do not in general have any regularity on
the solution V? to (IL3). We also cannot rely on the analog of the robust switching control
representation (L2)) for the infinite horizon problem. Indeed, because of the feedback form
on the switching control «, which may then depend on the initial state value, it is not clear
how to get suitable Lipschitz properties of V?, see Section Bl for a more detailed discussion.
To overcome this issue, we instead provide a dual probabilistic game representation of V5
based on randomization of the controls a and v, following the idea originally developed in
[30] and [31] for stochastic control problem, for which we refer also to [I1], [12], [14]. This
representation then allows us to derive the needed Lipschitz estimate for V5.

The rest of the paper is organized as follows. Section [2]sets the assumptions and formu-
lates the main results. We recall in Section [3] the connection between the parabolic system
of quasi variational inequalities (ILI]) and robust switching control problem as studied in
[6], and shows by a simple probabilistic control representation argument (which seems to
be new to the best of our knowledge) the long run average convergence of the solution to
the parabolic system to a solution of the ergodic system when it exists. Section Ml is the
core of the paper, and is devoted to the existence of a solution to the ergodic system as
well as the convergence of the limiting discounted solution to the elliptic system. The main
point is to state a dual representation for V?. This is achieved by using a randomization
approach and a BSDE representation for the penalized solution V2™ to the elliptic system
of variational inequalities, which then permits to derive a dual representation for V4™, and
consequently for V7, and then to obtain the key estimates for V2. Finally, some technical
results are deferred to the Appendix.

2 Formulation of the problem and main results

2.1 Notation and assumptions

Let U be a compact subset of a Euclidean space R? and I,,, :== {1,...,m}, with m € N\{0}.
We begin imposing the following assumptions on the coefficients of the system of parabolic
and elliptic quasi variational inequalities (L)) and (I3)).

(H1)

(i) b: RY x I, x U — R? and o: R? x I,, x U — R?*? are continuous and satisfy (we
denote by [|A|| = /tr(AAT) the Frobenius norm of any matrix A):

]b(az,z,u) - b(x’,z‘,u)] + HO’(I‘,i,U) - U(.Z'/7i,u)“ < L1’$ - ‘T/’,

Va,2' € R i €1, ue U, for some positive constant L.



(i) f:R¥xI, xU =R, g: RYx 1, - R, and c¢: R? x I,,, x I, = R are continuous and
satisfy

|f(x i, u) — f(2' i, u)| + |e(z,i,5) —c(2',i,5)] < Lolx —2/|,
|g(:17,z)| < M2(1+|l‘|2),

Vo, € R i,j €L, uec U, for some positive constants Ly and M.

(iii) g satisfies the inequality

g($7i) > I?;g{ [.g($7]) - C($7i7j)]7

Ve eR? iel,.

(iv) ¢ is nonnegative and the no free loop property holds: for all iy,...,ix € L, with
k € N\{0, 1,2}, i; =ik, and card{iy,...,ix} = k — 1, we have

c(x,iy,ig) + - +e(x,ig_1,i) > 0, Ve RY
Moreover, we suppose that ¢(x,i,7) =0, V (z,4) € R? x I,,,.

We also impose the following dissipativity condition.

(H2) Forall 7,2’ € R4 i€, ueU,
1
(x —2').(b(zx,i,u) — b i,u)) + §Ha(az,i,u) —o(@ i, w)|)? < —ylz -2 (2.1)
for some constant v > 0.

Remark 2.1 (i) Equation (1) (and similarly (I3])) turns out to be related to a certain
robust switching control problem studied in [6], as explained in Section Bl below (see
also Section [1]). For this reason, the set of assumptions (H1) is the same as in [0],
but for some additional requirements needed to obtain a backward stochastic differential
equation representation (first presented in [31] for the case of a classical stochastic control
problem) and for the polynomial growth condition on g, which in [6] is not necessarily of
second degree. This latter assumption plays an important role since it allows to exploit an
estimate on the second moment of the state process (reported in Lemma below), which
follows from the dissipativity condition (H2).

(i) As an example of coefficients b and o satisfying Assumptions (H1)-(H2), take b(x,i,u) =
b(i,u)x, o(x,i,u) = &(i,u)x", for some continuous and bounded b: I,,, x U — R, &: I, x
U — R? (notice that (i, u)z™ € R and ||o(x,i,u) —o(2',4,u)|| = |6(i,u)||z —2'|). Then,
the dissipative condition (2.II) holds if and only if

Bli,w) + gl Wl < (2.2)

for all (i,u) € I, x U. O



2.2 Main results

Consider the following ergodic system of quasi variational inequalities

min {)\ - 5161{] [ﬁi’“QS(x,z') + fz,i,u)], ¢z, 1) — %17%? [6(z,j) — c(=,1,5)] } = 0. (23)

We begin providing the definition of viscosity solution to system (2.3)).

Definition 2.1 (i) We say that a pair (\,¢), with A € R and ¢: R? x I, — R a lower
(resp. upper) semicontinuous function, is a viscosity supersolution (resp. subsolution) to
the system of variational inequalities (Z3) if

min { X — inf [£%(x) + F(2i,w)], 6(r,8) —max [6(z, ) — e(2.i.9)] | > (resp. <)0,

for any (z,i) € R x I, and any ¢ € C*(R?) such that
Oz,1) —p(r) = min{g(i) — ()} (resp. max{¢(-,1) — v()})-

(i) We say that a pair (X, ¢), with X\ € R and ¢: R? x I, = R a continuous function, is
a viscosity solution to the system of variational inequalities [23) if it is both a wviscosity
supersolution and a viscosity subsolution to (2.3]).

We can now summarize the main results of the paper in the two following theorems.

Theorem 2.1 Suppose that Assumption (H1) holds.
(i) There exists a unique continuous viscosity solution V to system (Ll satisfying the
growth condition: for any T > 0, there exist Cr > 0 and qr > 1 such that

V(t,z,i)] < Cp(l+]z|7),

for all (t,x,i) € [0,T] x R x T,,,.

(ii) If in addition Assumption (H2) holds, then, for any [ > 0, there exists a unique
continuous viscosity solution VP to system ([L3) satisfying the linear growth condition:
there exists Cg > 0 such that

VA(,3)] < Cp(l+lal),
for all (z,4) € R? x I,.
For the next result, we need the following additional assumptions.

(H3)  The cost function c is constant with respect to the variable 2z € R?. By an
abuse of notation, under Assumption (H3), we denote c(i,7) = c(x,1,j), for all (z,i,7) €
R? X Iy, X Ly,.

(HU)  The interior set U of U is connected, and U coincides with the closure of its

o

interior: U = Cl(U).



Remark 2.2 (i) Assumption (H3) is standard in the literature on switching control pro-
blems. In the present paper, it is used in Propositions 3] and [£.4] (and also in Corollary
E2(i)) to establish the crucial uniform Lipschitz property of V/? with respect to .

(ii) Assumption (HU) is employed in obtaining a dual representation formula for V# in
Proposition [£.4] O

Theorem 2.2 Let Assumptions (H1), (H2), (H3), and (HU) hold. Then, there exists
a viscosity solution (X, ¢), with ¢(-,4) Lipschitz, for any i € L,,,, and ¢(0,i9) = 0 for some
fized ig € L, to the ergodic system (2.3), such that

B—0t

BV (x,i) "= A,
for all (x,i) € R? x 1,,, and, for some sequence (By)ren, with Bx N\, 0T, we have

VO (i) — VR (0,i0) 23X (-, 4),
()= V0i0) "5, o)
for alli € 1, where “in C(R%)” stands for uniform convergence on compact subsets of RY.
Moreover, for any viscosity solution (X, ¢) to [23)), with ¢ satisfying

p(x,i)] < Mg(1+|z*),  V(z,i) € R x I, (2.4)
for some constants My > 0, we have

V(T,LU,Z) T—00
—— 7 R

= A, V(z,i) € RY x I,,.

In particular, X\ is uniquely determined for all viscosity solutions (\,¢) to 23), with ¢
satisfying a quadratic growth condition as in ([24]).

Remark 2.3 (i) A question which naturally arises from Theorem [2.2]is the uniqueness of
¢. This problem has been tackled in [13], Theorem 5.2, using probabilistic techniques as in
[26] and assuming some smoothness of ¢ together with the existence of an optimal feedback
control (under which the state process admits a unique invariant measure). This kind
of proof seems, however, designed to deal with ergodic equation associated to stochastic
control problems rather than to stochastic differential games. Let us explain more in detail
this latter issue, recalling the main steps of the proof of Theorem 5.2 in [I3] (translated into
the present framework) and emphasizing where it breaks down for stochastic differential
games. The goal in [I3] consists in proving, for every i € I,,, that there exists a real
constant C; such that

W(T,,i) = V(T,a,i) — AT+ ¢(z,i)) =% Ci,  V(2,0) R xL,.  (25)

We see that if (2.5]) holds for every viscosity solution (A, ¢), with ¢ Lipschitz, to the ergodic
system (2.3]), then, for every i € I,,, ¢(-,) is uniquely determined up to a constant which
depends only on ¢ € I,,. To prove (Z3]), we proceed as follows (we just sketch the main
steps and do not pause on the technicalities, however we use some results from Section



below). For any T,S > 0, from the identity V(T + S,x,i) = V50, x,i,) stated in ([33),
we deduce

T - N
V(T + S,l‘,i) = sup inf E|:/ f(Xg,m,z;a,u’Ig,x,z;a,v’,Us)ds + V(S, X%:E,Z,Oz,u’ I%m,l,Oz,U)
a€Ag,o VEUD,0 0

O,I,i;a,u O,x,i;oc,v O,x,i;a,v
- E C(XTn vy -~ 7’[Tn )1{Tn<T}:| :
neN

On the other hand, from (B.I5) with ¢t = 0, we have

T ) )
¢($’Z) et i IE|:/ (f(Xg’“”v“O‘vU’ [g,x,z;a,v’vs) o )\)ds + ¢(X%m,z;a,u’ I%m,z;a,U)
0

a€Aoo vEUD,0

O,I,i;a,u O,x,i;oc,v O,x,i;a,v
- E C(XTn 71777 7ITn )1{Tn<T}:| :
neN

Now, suppose that there exists an optimal control o* = (7%, v )nen € Ao, independent of
T, such that

T Lk R
¢(33’Z) = E[/ (f(Xg’x’Z;a*’U,Ig’m’“a*vv,vs) o )\)dS + ¢(X%x,2;a ,v,I%x,z,a ,U)
0

vEUp,0

0,z,5;0* v 70,2550, v 70,z,75;0* v
- E C(XT,’; A I )1{7'7’{<T} .

()
neN
As a consequence, we obtain the inequality

W(T +8.2,i) > inf E[W(S, X et mhet vy, (2.6)
vEUp,0
As in [I3] and [26], let us introduce, for any i € I, the set of w-limits of {W (T, -,7)}7r>0
in C(RY):

I = {we € C(RY): W (T}, -,i) — we in C(RY) for some Tj 7 00}

It can be shown that I'; # (. Therefore, (Z5]) follows if we prove that I'; = {we;} is
a singleton, with ws; constant. In [I3], Theorem 5.2, the idea is to pass to the limit in
[26]), using that under o* the state process admits a unique invariant measure. Since,
however, in (2.6 there is also the “inf” operator (due to the game feature of the robust
switching control problem), the same argument does not allow to conclude (indeed, e.g.,
the “invariant measure” would depend on v € Uy ).

(ii) Notice that A appearing in Theorem does not depend on ¢ € 1,,,.

(iii) Assumptions (H3) and (HU) in Theorem 2.2l are not needed to prove the convergence
results of V, but only those of V7.

(iv) Theorem can be interpreted as a Tauberian theorem. Indeed, the convergence
results for V# allows to prove the existence of a viscosity solution (A, ¢) to ([23)), from
which the asymptotic results for V follow (see also Remark 5.3(ii) in [13]). O



Remark 2.4 Suppose that Assumptions (H1), (H2), (H3), and (HU) hold. Suppose
also that there exists a viscosity solution (A, ¢) to (23] with ¢ satisfying (2.4]). Finally,
similarly to (27), suppose that for every € > 0 there exists an e-optimal control (we omit
the dependence on ¢) o* = (7,1, 1) )nen € Ao, (we refer to Section [B.] for all unexplained
notations), independent of 7', such that

vEUp,0

T - -
(b(x’Z) = e IE|:/ (f()(ng,i;(:u*,U7 Ig,m,i;a*,vyvs) o )\)dS + é(Xg,x,z;a 7v,[701’x’7”a ,U)
0

— Y e(XRETY [RT IREE ey | e 27)
neN

Then A can be interpreted as value of a robust ergodic control problem:

A = sup J(z,i;a), V(z,i) € R? x Iy, (2.8)

acAo,0

with

1
J(z,i;) = limsup — inf E[/ f( XOI’Z’O‘U on’l’o‘v ¢ )dt
T—oo 1 vEUo0
o Z C(Xg;bx,i;a,vj I‘(r);,i;a,u’Ig;bx,i;a,v)l{‘rn<T} ’
neN

where 7" stands for T"(X,O’m’i;a’u Iofv’i;a’v), and the state processes X %50 J0.T.500 gatisfy
system ([B.1)) below, with t = 0, (x,i) € R% x L,,, & = (T, tn)nen € Ao -

Let us prove (2.8)). Firstly, observe that the viscosity solution V' to system (L.II), whose

existence is stated in Theorem 2], admits the stochastic control representation (see identity

B3) below):

V(T,z,i) = VI(0,2,i) = sup inf JT(0,z,i;a,v0),

acAo.o veUo,o0

where
JT(O, T, i; a, ’U) — E [/ f(Xt ,x,z,a,v, It ,:B,Z,Ouv’ ’Ut)dt + g(XT,m,z,a,u’ IT,m,z,a,u)
0

O,I,i;a,u 0,:1,‘,7;;057’1} 07"E7Z';CM,U
- § C(XTn ’[T,j 7ITn )1{Tn<T}:|’
neN

Then, by Theorem 22, for any (x,i) € R? x I,,,,

. V(T x,i 1 T ) )
A = lim VT,z,i) = lim sup inf —IE FXmBY [REEOU 4t
T—o00 T T—o00 acAo o vEUp,0 0
07 7'; b 07 7'; b 0 10y 0 Uy 0 10y
g(Xszav’[szav)_Z (X T, 1000 I :czaujITnxzaU)l{Tn<T}:|
neN

1 T 3 3
= lim sup inf —E|:/ f(X1?7x7Z7OC7U,I1?7x727a7v,'l)t)dt
0

T—o0 acAo o vEUp,0



O,LE,i;Cll,’U O,LE,i;CV,’U 07"E7Z';CM,U
_§ o( X7 ’Ir,j A )1{Tn<T} ) (2.9)
neN

where the last equality follows from the fact that

1 0.2 0.2
lim sup inf —E[g(Xz""%Y 179" = 0,
T—o00 OCEAIE)),O veUo,o0 [g( T T )]
which is a consequence of the quadratic growth condition of g and estimate (3:3]). From (23]
we see that A > sup,e 4, , J(x,i; ). To prove the reverse inequality, fix (x,7) € R? x I,
and £ > 0, then by (27 we obtain
1
A< =

vEUD,0

T . ERE Sk P
inf E|:/ f(X?’x’l’a ,ijf,x,z,a ’U,Ut)dt + (b(X%:cmoc ,U7[701,x,1,a 7v) _ ¢(x71)
0

0,x,i;a* v 70,z,5;0% v 70,2000
- § :C(XT;; 7[(77»;)— 7177’; )1{T;§<T} +e.
neN

From the Lipschitz property of ¢ and estimate ([B.3)), we have

1 it o
lim = inf E[@(onw’x’l’a 7U,I%x,z,a 7v) _ (;5(33,2)] = 0,

T—o0 vEU,0

therefore

1 T - -
A < lim = inf E[/ f(XS,x,z,a ,U’Il?,m,z,a ,v’vt)dt
0

T Tooo T veUo,o0

0,z,5;0* v 70,240 v 70,z,7;0% v .
— E (X ,I(T*), o Wirzery| +e < sup J(w,i5a) + €.
neN " a€Aoo

From the arbitrariness of e, we find A\ < sup,e4,, J(,%; @), which, together with (2.3,

yields ([2.8]). O

Remark 2.5 Ezplicit solution to 23] in the two-regime case. We show the validity of
Theorem in a specific example, where we are able to find an explicit solution to the
ergodic system of quasi variational inequalities (Z3]). More precisely, we consider the frame-
work of Section 5.3 in [37], where an infinite horizon two-regime switching control problem
is studied and an explicit solution is determined. We slightly generalize the results in [37]
in order to take into account the robust feature. This allows us to find explicitly V?, 8 > 0.
Then, as expected from Theorem 2.2 letting 3 — 0T, we are able to construct a solution
to (23).

Take d =1 and m = 2. Let b and o be as in Remark [2.1](ii), so that the state process
X can assume only positive values whenever the initial condition is positive. Let also
c(x,i,7) = c(i,7) be independent of z, and f(x,i,u) = 2P, z > 0, for some p € (0,1).

Define the constants k1 and ko as

K = —ig(f] [B(i,u)p + %5(i,u)2p(p - 1)], 1=1,2.

Recalling from condition (Z2) that b is a strictly negative function, we see that s; > 0,
i = 1,2. Proceeding as in Theorem 5.3.4 of [37], we now find the explicit expression of V7,

10



after distinguishing between the two cases: k1 = k2 and k1 # ko (in this latter case we
need to impose an additional assumption on b and & in order to follow the same steps as
in the proof of Theorem 5.3.4).

Case 1: k1 = k9. Consider the function
VA(z,i) = K2, x>0, i=12,

where
8 1 :
K, = , i=1,2.
B+ ki

By direct calculation, we can prove that V7 is a viscosity solution to equation (I3) on
(0,00) x {1,2}. Notice that this latter result is still true when 5 = 0. Then, it is easy to see
that the pair (A, ¢) given by A = limg ,o+ BVP(z,i) = 0 and ¢(-,4i) = limg o+ VP(-,i) =
K?-P, with K? = 1/k;, is a viscosity solution to the ergodic system (Z3]). From the explicit

expression of the pair (A, ¢), proceeding as in Theorem 5.3.4 in [37], we can also determine
an optimal switching control for the robust ergodic control problem (Z8]). Indeed, it is easy
to see that, in this case, it is never optimal to switch.

Case 2: k1 # Kky. In order to reason as in the proof of Theorem 5.3.4 in [37], we impose
the following additional assumption: b(i,u) = b(i)h(u) and &(i,u) = &(i)\/h(u), with
b: {1,2} = R, 6: {1,2} = R, h: U — (0,00) continuous and bounded, satisfying (see
condition (2.2)))

6(i)%h(u) < —7,

for all (i,u) € {1,2} x U. In particular, b is a strictly negative function.
Without loss of generality, we suppose that x1 > ko, the other case can be treated in
an analogous way. Let

1 () 1 b))\’ 28
BT 5T G (0)e +\/<§_&(1)2> t ) ity A(w)

Then, proceeding as in Theorem 5.3.4 of [37], we see that the unique continuous viscosity
solution to equation (3] on (0,00) x {1,2} is given by the function V? defined as follows:

m B
V(1) = Agﬁx B+ KyzP, xe(0,23),
KyaP —c(1,2), € [zg,00),
VA(z,2) = Kgxp, z € (0,00),

with

v < ms  c(1,2) >i7

mg—pK) — K}

p —m
Ag = (Kg—Kf)m—Bx’B) 7

Notice that 3 and Ag are determined by the continuity and smooth-pasting conditions of
VB(-,1) at xp:

A5$?6+Klﬁ$g = Kg:vg—c(l,Z),

11



1 _ _
Agmgxgw —I—Klﬁpx’é - Kgpzng L

Then, it is easy to see that a viscosity solution to the ergodic system (23)) is given by the
pair (A, ¢), with A = limg_,o+ BVP(z,i) = 0 and @(-, i) = limg o+ VP(-,i) defined as

Agz™ + K2, x € (0,70),
ow1) =
K3aP —¢(1,2), x € [xg,00),

¢(72) = Kgxp7 T e (0700)7

where K, K9, mg, o, Ag correspond to Klﬁ, KQB, mg, g, Ag with 8 = 0. Exploiting the
knowledge of (A, ¢), we can also find an optimal switching control for the robust ergodic
control problem (Z.8]). Indeed, proceeding as in Theorem 5.3.4 in [37], it is easy to see that:
when we are in regime 1, it is optimal to switch to regime 2 whenever the state process X
exceeds the threshold xg; while it is never optimal to switch when we are in regime 2. O

The rest of the paper is devoted not only to the proof of Theorems 2.1] and 2.2] but
also to investigate more in detail the properties of the systems (1), (L3)), and (23]), in
particular from a stochastic control point of view, exploring their relation with robust
switching control problems. To sum up, the logical flow of the paper is the following:
Section [3is devoted to the analysis of the parabolic system. The essence of this section are
three propositions: Proposition B states the connection between the parabolic system of
variational inequalities (ILI]) and robust switching control problem. Proposition gives
robust control representation bounds for a solution to the ergodic system, which together
with Proposition B.I] leads to a quite simple argument for proving in Proposition B.3] the
long time convergence of the parabolic system. In Section [, we analyze the elliptic system.
The essence of this section can be summarized as follows. Proposition provides a
Feynman-Kac formula in terms of BSDE for the solution V™ to the penalized system
of elliptic variational inequalities, which is then used for stating in Corollary [Z1] a dual
representation for V2", and then by passing to the limit in n, for getting in Proposition
M3l a dual probabilistic game representation for V. From these dual representations, we
are able to derive key uniform estimates for V2" in Corollary B2 and then for V? in
Propositions and L4l Finally, we can obtain the existence of a solution to the ergodic
system and the convergence result of V and V? in Proposition

3 Long time asymptotics of the parabolic system

We firstly investigate the long time asymptotics of the solution V' to the parabolic system of
variational inequalities (ILT]). To this end, we shall rely on probabilistic arguments, which
are based on a characterization of V' in terms of a finite horizon robust switching control
problem introduced in [6], that we now describe.

3.1 Robust feedback switching control problem

We present the robust switching control problem focusing only on the main issues, in order
to alleviate the presentation and reduce as much as possible the technicalities, for which

12



we refer to [6].

Consider a complete probability space (€2, F,P) and a d-dimensional Brownian motion
W = (W})i>0 defined on it. Denote by F = (F;):>0 the completion of the natural filtration
generated by W. Fix a finite time horizon 7' € (0,00). In the robust switching control
problem we are going to present, the switcher plays against an adverse player, which can
be interpreted as nature and renders the optimization problem robust. We begin recalling
the type of controls adopted by the switcher and by nature, following Definitions 2.1 and
2.2 in [6], to which we refer for more details:

o A, t €[0,T], denotes the family of all feedback switching controls starting at time
t for the switcher. A generic element of A;; is given by a double sequence o =
(Tns tn)nen, where (7,)nen is a nondecreasing sequence of stopping times valued in
[t,T] and ¢, € I, represents the switching action, i.e., the regime from time 7, up
to time 7, 4+1. The random variable ¢, only depends on the information known up to
time 7,. Each « has a feedback form, in the sense that it is chosen by the switcher
based only on the past and present information coming from the state and regime
processes.

o Uiy, t € [0,T], denotes the family of all open-loop controls starting at time ¢ for
nature. A generic element of U;; is an adapted process v: [t,T] x Q — U.

As explained in [6], the reason behind the feedback form of a switching control comes from
the observation that the switcher in general knows only the evolution of the state process
X and regime I. On the other hand, a control v € Uy, is not necessarily of feedback form,
since nature at time ¢ € [0,7] is wise to all information up to time t.

Let us now introduce the controlled dynamics of the state and regime processes. For
any (t,z,i) € [0,T] x R x I,,, & = (Tn, tn)nen € Ay, v € Uyy, the state process X and
regime I evolve on [t,T] according to the following controlled SDEs:

Xs= z+ f: b(X,, I, v.)dr + fts o(Xy, I, v.)dW,, t<s<T,
Is = ilgcscry(x, 120} + 2nen tn(Xo L) (X1 ) <semn(xr)y < s <T,
Ip = Ip-,
(3.1)
with I,— := I;. Notice that 7,, and ¢,, have a feedback form, indeed they depend only on X
and I. We recall the following wellposedness result from [6].

Lemma 3.1 Suppose that Assumption (H1) holds. For any T > 0, (t,x,i) € [0,T] x R? x
Ly, o € Apt, v € Upy, there exists a unique (up to indistinguishability) F-adapted process
(Xbrsev [hatav) — (Xﬁ’x’i;a’v,Iﬁ’x’i;a’v)tgng to equation BI). Moreover, for any p > 2
there exists a positive constant Cp , depending only on p,T, Ly (independent of t,x,i, a,v),
such that

E| sup [Xbr5o0p] < Cor(1+ [af?). (3.2)
t<s<T
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Proof. See Proposition 2.1 in [6]. O

We also have the following result as a consequence of the dissipativity condition.

Lemma 3.2 Suppose that Assumptions (H1) and (H2) hold. There exists a positive con-
stant C, depending only on My, , == SUP (i uyel,, xu (|00, 7, w)[ +[|o(0,4,u)||), L1, and vy, such
that

sup E[|XIm6v2] < O(1+|z]?), (3.3)
set,T], €A1, VEU 1

for any (t,x,i) € [0,T] x R? x I,, and T > 0.

Proof. Fix T > 0, (t,z,i) € [0,T] x R¢ x I,,,, o € Att, v € Upy. The proof can be
done along the lines of Lemma 2.1(i) in [I3]. We simply recall the main steps. We take
s € [t,T] and apply It6’s formula to €78 | X1"*|2 hetween r = t and r = s. Then, we
rearrange the terms in order to exploit the dissipativity condition (H2). Afterwards, using
the uniform linear growth condition of b and o with respect to x, we find that there exists
a constant C, depending only on M, 5, L1, 7, such that

s
|X§,x,z;o¢,v|2 < C’(l + |$|2 + / e—y(r—s) (Xf,’x’i;a’v)TO'(an’x’l;a’U,If,’x’i;a’v,UT)dWT). (3‘4)
t

From estimate ([B:2]) and the linear growth of o, we see that the stochastic integral in (3.4])
is a martingale. Therefore, taking the expectation in ([B.4]), the claim follows. O

We can now introduce the value function of the robust feedback switching control prob-
lem, which is given by:

VI(t,z,i) = sup inf JT(t,z,i;0,0), Y (t,z,i) €[0,T] x REx L,, (3.5)
a€AL vEUL ¢
with
T N N
JT(t,:E,i;a,U) = E[/ f(X;,x,z;a,v’I?:c,z;oc,u’vs)ds + g(Xélm’Z’a’U,Iélx’l’a’v)
¢
H t7 7'; ) y 7‘; )
= D XTI L Ly
neN
where 7" stands for 77%(X>"5%Y [%"5%") " Notice that the presence of the inf,ey,, in

(3] means that we are looking at the worst case scenario for the switcher and makes the
switching control problem robust.

The dynamic programming equation associated to the robust switching control problem
is given by the following system of backward parabolic variational inequalities:

T
min{ — %(t,x,i) — infuey [L5VT(t, 2,0) + f(z,i,u)],
VT (t,2,i) — max; [VT(t,a:,j) — c(w,i,j)]} = 0, (t,2,4) € [0,T) x RY x Hm,(3-6)
VT, z,i) = g(x,1), (z,i) € R? x I,.
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In Corollary 4.1 of [6] it is proved, by means of the stochastic Perron method, that V7 sat-
isfies the dynamic programming principle and it is the unique continuous viscosity solution
to system (B.6]) (see Definition 2.3 in [6] for the definition of viscosity solution to (B.6l)),
satisfying a polynomial growth condition

VI(t,z,i
sup V2 (t,z,9)] o0, (3.7)
(t2,4)€[0,T] xRéxL, 1+ [z

for some ¢ > 1.

We can now present the relation between system (1) and the robust switching control
problem, which also gives a wellposedness result for viscosity solutions to (ILI]) (we do not
recall here the definition of viscosity solution to (III), since it is standard and similar to
the definition of viscosity solution to (3.6]), for which we refer to Definition 2.3 in [6]).

Proposition 3.1 Suppose that Assumption (H1) holds. Then, there exists a unique con-
tinuous viscosity solution V' to system (1) satisfying the growth condition: for any T > 0,
there exist Cp > 0 and qpr > 1 such that

V(tz,d) < Cp(l+]z|"), (3.8)
for all (t,z,7) € [0,T] x R x I,,. The function V is given by
Vit,z,i) == V(T —t,z,i),  Y(t,z,i) €[0,T] x RY x I, (3.9)

for any T > 0, where VT is defined by [B.3).

Remark 3.1 Notice that point (i) of Theorem 2] follows from Proposition Bl O

Proof. Step 1. Existence. We begin noting that
Vs, i) = VI (s+T —T,x,i),  Y(s,2,i) € [0,T] x R x L, (3.10)

for any 0 < T < T' < oo. Indeed, VI'(- +T' — T,-,-) is a viscosity solution to (B8] on
[0,T] x R? x 1, so that identification (ZI0) follows from comparison Theorem 4.1 in [6].
Setting t := T — s in ([B10), we obtain

VT —t,z,i) = V(T —t,3,9),  V(t,,i)€0,T] x R x I,

This implies that the function V' given by ([3.9) is well-defined. Moreover, V is continuous
and satisfies a growth condition as in (B.8]). In addition, from the viscosity properties of
VT it follows that V is a viscosity solution to system (LI) on [0,7] x R? x I,,,, for any
T > 0. From the arbitrariness of T', we have that V is a viscosity solution to (LI]) on
[0,00) x RY x T,,,.

Step II. Uniqueness. Let W: [0,00) X R? x I, — R be a continuous viscosity solution
to (L) satisfying a growth condition as in (B.8]). For any T" > 0 define the function
WT:[0,T] x R x I, — R as follows

Wtt,z,i) == W(T —t,x,i),  V(t,xi)€0,T] xR xI,,.

Then W7 is a continuous viscosity solution to (B.6)) satisfying a polynomial growth condition
as in ([31). From comparison Theorem 4.1 in [6] it follows that W7’ = V7T therefore W = V.
O
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3.2 Long time asymptotics
We present the following stochastic control representation bounds for every viscosity solu-

tion (A, ¢) to (2.3)), with ¢ satisfying a polynomial growth condition.

Proposition 3.2 Suppose that Assumption (H1) holds and consider a viscosity solution
(N, @) to @3). Then, for any T > 0, ¢ is a viscosity supersolution (resp. subsolution) to the
nonlinear backward parabolic system of variational inequalities in the unknown : [0,T] x
R? x I,, = R:
. O N ; . .

mln{ — E(t,azﬂ) — infyueu [ﬁ““w(t,x,z) + f(z,i,u) — )\],

lt,@,0) = maxjs [(t,2,5) —c(@,i )]} = 0, (t,2,0) €0,T) x RY x L, (3:11)

(T, x,i) = minj¢(z,j) (resp. max;P(z,j)), (z,7) € RY x Ly,
Suppose, in addition, that ¢ satisfies

|p(x,i)] < Mg(1+|z|%),  V(z,i) € R x L, (3.12)

for some constants My > 0 and q4 > 1. Then, for any T > 0, ¢ satisfies

sup inf Ja(ﬁ)(t,:n,i;a,v) < ¢(x,i) < sup inf 7(T/\7¢)(t,x,z';oz,v), (3.13)

O!E.At,t Ueut,t OéE.At,t Ueut,t

Y (t,z,i) € [0,T] x R? x L,,, with

T 5
i%;\,(j)) (t7 xz, i; «, U) = E |:/ (f(X;/’m’ua’U’ Ig,w,z;a,v7 Us) - )‘) ds + Hl]ln qb(X;zx’Zyawy ])
t
I |
neN
-7 T . . .
J(A,d)) (t7 xz, 27 Q, U) = E |:/ (f(X?m’Z;a’U? [;,ZB,Z;CM,’U’ US) - )‘) ds + mjax ¢(X;293,Z,Ol7vy ])
t

§ : t,z g, 7hTionv rtmio,u
- C(XT;L T 7‘[7-,; 7I7'jn v )1{7'7L <T}:| .
neN

Remark 3.2 Notice that from the viscosity properties of ¢ we also know that ¢ is a
viscosity solution to the system with terminal condition ¢ itself:

min{ - %—:f(t,:n,i) —infuer [L7Y(t, x,7) + f(z,i,u) — A,
W(t,z,1) — max;z; [t 2, 5) — ez, i, 5)] } = 0, (t,2,4) € [0,T) x R? x L,
Y(T,x,i) = ¢(x,i), (2,i) € RY X Ip,.
Now, suppose that ¢ satisfies (B12]) and condition (H1)(iii), i.e.,
¢(z,i) > max [gb(:n,j) - c(:n,i,j)], VY (x,i) € RY x I,y,. (3.14)

JFi

16



Then, from Corollary 4.1 in [6] it follows that ¢ admits the representation

¢(x,i) = sup inf J(j;\ d))(t,a;,i;a,v), Y (t,x,i) € [0,T] x R x I,,,, (3.15)
Q€A VEUL ’
with
Tt o ia,0) = E[ /t (F(XLmHOY THHH0Y ) — N)ds + (Xm0, Tp™er)

LS et e oy o1
neN
However, since (A, ¢) is only a viscosity solution to (2.3)), it is not obvious that (8.14)) holds.
For this reason, we introduce the two systems in (B.11)) with terminal conditions min; ¢(z, 5)
and max; ¢(x, j), which clearly satisfy condition ([BI4]), since ¢ is nonnegative. 0

Proof. The fact that ¢ is a viscosity super/subsolution to ([BII]) follows obviously from
the viscosity properties of ¢, since ¢ does not depend on time t.

From Corollary 4.1 in [6] we know that there exists a unique continuous and with
polynomial growth viscosity solution v (resp. 1) to the system of variational inequalities
(BII) with terminal condition min; ¢(z, j) (resp. max; ¢(x,j)). From comparison Theorem
4.1 in [6] we have

v <9<
Using again Corollary 4.1 in [6], we see that ¢ and ¢ admit the stochastic control repre-
sentations
— . =T .
t,x,4) = sup inf JL (¢, 2,4 a,0), t,x,i1) = sup inf J t,x, i a,v),
Y(t, 1) aeAI?,t , eut,t_(A’d’)( ), w(t, i) aeAIit ot (o) ( )
Y (t,z,i) € [0,T] x R? x I,,, from which (ZI3) follows. O

From the representation formula for V' and the bounds on a generic viscosity solution
(A, ¢) to [23), we deduce the following result when ¢ satisfies a polynomial growth condition
of second degree.

Proposition 3.3 Suppose that Assumptions (H1)-(H2) hold and consider a viscosity so-
lution (X, @) to [23), with ¢ satisfying

p(z,3)] < Mg(1+ |z},  V(x,i) € R x T, (3.16)
for some constant My > 0. Then

V(T, x, Z) T—00
_— —

= A, V(z,i) € RY x I,y,.

In particular, X\ is uniquely determined for all viscosity solutions (\,¢) to 23)), with ¢
satisfying a polynomial growth condition as in (B.10]).

Remark 3.3 Notice that Proposition gives the uniqueness of A and one of the conver-
gence results claimed in Theorem O
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Proof. From ([B3) we have V (T, x,i) = VT (0,x,i). Therefore, using ([335) we obtain

V(T,z,i) = sup inf JT(0,z,i;0,0).
a€Aoo vEUp,0

On the other hand, taking ¢t = 0 in ([BI3]) we find

-7
su inf JL . (0.z,i:0,0) < é(x,i) < su inf J 0,2,%; c,0).
aE.AI;,o UGMO’O_()\7¢)( mhev) < 9 < aE.AIO),o velo,0 ()\7(;5)( )

Therefore

V(T,2,i) = AT = ¢(z,i)| < sup sup E[|g(Xp™" ", Ip"5")] 4 max [¢(Xp™", j)|].
aGAO,o UEZ//()YO J

From the growth condition on g and ¢, and using estimate ([B.3)), it follows that there exists

some positive constant C, independent of T, z, ¢, such that

\V(T,z,i) — AT — ¢(z,i)| < COA+|z]?),

from which the claim follows. O

4 Asymptotic behavior of the elliptic system

In the present section, we study the elliptic system of variational inequalities (L3]), and in
particular the asymptotic behavior of V? as § tends to zero, which will entail the existence
of a viscosity solution (A, ¢) to the ergodic system (2.3]). Similarly to the parabolic case, we
can derive a stochastic control representation for V? in terms of an infinite horizon robust
feedback switching control problem. However, as we shall emphasize below, it is convenient
to derive also another representation for V2, known as dual representation formula, inspired
by [31] and based on randomization of the controls a and v.

4.1 Motivation for the randomization approach

We begin presenting the representation of V? as value function of an infinite horizon robust
feedback switching control, which reads as follows:

VO(x,i) = sup inf JP(z,4;a,v), VY (z,i) € R? x Iy, (4.1)
with
o0 -, -
JP(x,i;a,0) = E[/ e Bt p(X Doy [REEOY 4 di
0

§ — BT 0,z,i;0,v 70,2,00,v  70,2,3;00,0
_ e nC(XT”; 34y 717_77777 ’ ,IT;L Pzie )1{Tn<oo} ,
neN

where 7" stands for 77 (X 5V [9554Y) and the state processes X 0 miar | [02.500 gatigey
the first two equations in ([B.I]) with ¢ = 0 and for any 7" > 0. Here, we do not pause on
the technicalities, since the formulation of the stochastic control problem is analogous, with
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some obvious modifications, to that of the finite horizon case, already recalled in Section
Bl We just notice that A denotes the family of all feedback switching controls starting at
time 0 for the switcher. A is defined as Agg in Definition 2.1 of [6], with T" replaced by
oo and the property “r,(y,) =T for n large enough along every adaptive sequence (yy )"
is replaced by “m,(yn,) /* oo as m goes to infinity, for every adaptive sequence (y),”.
On the other hand, ¢ denotes the family of all open-loop controls starting at time O for
nature. A generic element of U is an adapted process v: [0,00) x @ — U. It is then easy
to see that, for every T > 0, (z,i) € R? x I,, a € A, v € U, Lemma B still holds for
(xQobow petevy p and for the first two equations in @) on [0, T].

Proposition 4.1 Let Assumptions (H1) and (H2) hold. Then, for any 8 > 0, the func-
tion VP defined by @) is the unique continuous viscosity solution to system (L) satisfying

a linear growth condition

VA (x,i
sup Vo, )| < o0. (4.2)
(0i)eRdxT, 117

We do not report the proof of Proposition @ Ilhere (which provides statement (ii) of Theorem
2.1]), since it can be done proceeding as in the finite horizon case, for which we refer to
Corollary 4.1 in [6]. We just observe that the proof is based on the stochastic Perron
method, which yields, as a by-product, the following dynamic programming principle:

. . T . .
VB(:E, i) = sup inf E [E_BTVB(X%QD’Z;Q’U, I%m,z;a,U) + / e—ﬁtf(Xl?,m,z;a,u’ Ig),m,z;a,u’ vy)dt
acAveU 0

_ Z G_BT"C(XBJLx’i;a’U, Iq(—);‘n';oc,vy [70_7,Lx,i;mv)1{7_n<T}:| 7 v (x7 Z) c Rd % Hm7 (4.3)
neN

for all T'> 0. Identity (@3] implies in particular the inequality

VA (x,i) > max (VP (z,5) — c(z,i,5)],  V(z,i) € R x L. (4.4)
JF

As a matter of fact, fix (z,4) € R? x I, and take & = (7, In)nen, With 7 = 0, 7, = +00
for every n > 1, and z,, = j for every n € N. Then, from (@3] we get
P T P
V(i) > inf E|e T (VX" j) = VE(z,j)) + / eTPF(XPEEY vyt
vE 0
+e TV (2, ) — c(@,i, j). (4.5)

Since V#(-,5) is a continuous function, for every ¢ > 0 there exists 6. > 0 such that
VP (x,7) — VB(a',5)| < e, whenever |z — 2| < 6. Therefore

suBE[e_BT|VB(X%x’i;d’v,j) — Vﬁ(x,j)H

(S

< e T apB|VAKG ) VG )

ey 1{|X%,x,i;a,v_w‘>5€}].

Now, from ([£2]) we see that there exists some positive constant ¢ such that

SupE[e‘ﬁT‘VB(X%m’i;a’u,j) - Vﬁ(fﬂa]') H
veU
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< e e+ ce P sup {E[1+ |2|* + ]X%x’i;&’vﬂ]P’(\X%x’i;&’v — x| >6.)}
veU
_pr,, e T 2 0,,i;0,0/2 0,266,012
<eMet—s suB{E[l—Hx] + | X7 PIE[| X7 —z|*]}. (4.6)
& VE

From estimate ([B.2]), we see that sup,cy E[|X%m’i;5"v|2] is finite. We also notice that the
following standard estimate holds:

sup E[| X35 — z?] < O'T(1 + |z]),
veU

for some positive constant C’. As a consequence, letting 7' | 0 in (6, we get

supE[e_BT|VB(X%x’i;d’v,j) — Vﬁ(x,j)H M 0.
veU

Similarly

r —pBt 0,z,5;a,v - 710
supE e |f(Xt ,j,vt)|dt — 0.
veld 0

In conclusion, letting 7" | 0 in (LX) we obtain
VB(J},Z) > Vﬁ(xh]) - C(.Z',i,j).

From the arbitrariness of j, we deduce that (£4]) holds.

Inequality (£4]) is the only result, derived from the stochastic control representation
(@1)), that we shall exploit. Instead, for all the other results, we shall use the dual repre-
sentation formula for V?. To understand why, we begin noting that, because of the feedback
form of «, from (&I)) it is not clear how to prove some properties of V4, which are crucial
to perform the asymptotic analysis. As an example, for the proof of the uniform Lipschitz
property of V? with respect to 2 we need an estimate of the following type (see estimate
(@I1)): for any t > 0, there exists a constant L; > 0, depending only on ¢, such that

sup  E[|x)eEer - x0T e < Lz —af|, Va2 €RY (4.7)
1€y, ,ae A, veld
It is however not clear how to prove estimate (£7) from representation (., since the
evolution of the process I (which influence the dynamics of X through the coefficients b
and o) depends on the starting point, z or 2/, due to the feedback form of a.

As a possible solution to the issue raised above, one could consider the Elliott-Kalton
version of the infinite horizon robust switching control problem (which can be formulated
in a similar way to the finite horizon case, for which we refer to Section 4.2 in [6]). More
precisely, suppose we are able to prove that V7 is the value function of the Elliott-Kalton
version of our control problem. Since non-anticipative strategies for the switcher take
values in the class of all switching controls (not necessarily of feedback type), estimate
([@7) follows easily from that representation. The drawback of this approach is the proof
that V7? is indeed the value function of the Elliott-Kalton formulation, which in general
relies on delicate measurability issues arising in the proof of the dynamic programming
principle, firstly faced in the seminal paper [19].
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An alternative to the Elliott-Kalton representation of V? is a dual representation for-
mula (in the sense of [3I], Section 2.3) based on randomization of the controls a and v
(see Remarks [4.]] and for some insights on the dual representation formula). This lat-
ter turns out to be easier to derive, since it avoids the proof of a dynamic programming
principle, but it still allows to prove estimates for the process X as (471 above. For this
reason, our aim is now to prove that V? admits a dual representation formula, which can
be deduced starting from an opportune penalized elliptic system of variational inequalities
that we now introduce.

4.2 Penalized elliptic system of variational inequalities

For any n € N and § > 0, consider the following penalized system of variational inequalities
in the unknown VA": R% x I, — R:

BV (w,d) - inf [LV"(@,d) + f (2,6, u)] (4.8)
_”Z VO™, §) = VI (a,i) — c(m,i,j)]+ = 0,
j=1

for any (x,i) € R? x I,,,, where h* = max(h,0) denotes the positive part of the function h.
Our aim is to prove that there exists a continuous viscosity solution V5" to system (&),
converging to V? as n tends to infinity, such that VA" satisfies a linear growth condition
and other opportune estimates uniformly in n, so that they still hold for V? letting n — co.
We postpone the proof of the convergence of VA towards V?, and we begin focusing on the
proof of the estimates for V", for which we adopt a probabilistic approach. In particular,
inspired by the results in [31], we derive Feynman-Kac and dual representation formulae
of VA" by means of a backward stochastic differential equation with partially nonnegative
jumps on infinite horizon.

4.2.1 Feynman-Kac and dual representation formulae of V3"

We begin introducing some notations (to simplify the presentation, we redefine certain
symbols as Q or F, already used in Section B since no confusion should arise).

Let (Q, F,P) be a complete probability space, W = (W;);>0 a d-dimensional Brownian
motion, 7 a Poisson random measure on Ry x I,,, u a Poisson random measure on Ry x U,
such that W, 7, and p are independent. We assume that 7 has intensity measure 9, (di)dt,
where ¥ (di) = > ", 0;(di) and J; denotes the Dirac delta at j € L. We also suppose
that p has intensity measure 9, (du)dt, where 9, is a finite measure on (U,B(U)) (B(U)
denotes the Borel o-field on U) such that:

(i) The support of ¥, is the whole set U, namely 7,(0N U ) > 0 for any open subset O
of RY satisfying O N U # 0.

(ii) The boundary OU = U \ U of U is ¥,-negligible: ¥,(0U) = 0.
We denote by 7(dt,di) = 7w(dt,di) — U(di)dt and fi(dt,du) = p(dt,du) — U,(du)dt the

compensated martingale measures associated with m and u, respectively. We also set F =
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(Ft)t>0 the completion of the natural filtration generated by W, m, and p, and we denote
by P the o-field of F-predictable subsets of £ x [0, c0).

Forward SDE and randomization. For any (z,i,u) € R? x I,,, x U, we introduce the
forward jump-diffusion Markov process (X, I,T'), which evolves on [0, 00) according to the
following system of stochastic differential equations:

t t
Xt—x—i—/ (X,, I, T )ds+/ o(X,, I,,T,)dWs,
0

It—H—// j— I)m(ds, dj), (4.9)
Ft_u—i—//u— dsdu)

Remark 4.1 The process (X, I,T") satisfying system (£9]) will be the forward and driving
process in the Feynman-Kac and dual representation formulae of V2. The expression of

for all t > 0.

(49]) is derived following [31] and it is inspired by the stochastic control representation of
V8. As stated in Proposition @I, V7 is related to an infinite horizon robust switching
control problem, whose state process evolves according to the first two equations in (B.])
(with t = 0 and for any T € [0,00)). Then, ([@J9]) is obtained from (BJ]) by means of a
randomization of the switching and open-loop controls, which is fulfilled introducing the
pure jump Markov processes I and I' driven by independent Poisson random measures.
Hence, compared to ([B1), the pair (X, ) in (£3]) is an uncontrolled process. O

It is well-known that under Assumption (H1), for any (z,4,u) € R?xI,, xU, there exists
a unique solution (X®"% J' T%) = (Xf’i’",lf,Ff)tzo to system (Z9]), and the following
standard estimate holds: for any 7" > 0 and p > 2, there exists some positive constant C, 1
such that

E[ sup \th’i’u\p] < Cpr(1+|zP).
0<t<T

We conclude this paragraph with two important estimates resulting from the dissipativity
condition (H2), which call on a family of probability measures we are going to define.
For any n € N\{0} and k € N, let Z,, be the set of P @ Z(L,,)- measurabll maps valued
n (0,n], Vi be the set of P @ B(U)-measurable maps valued in [1,k + 1], and denote by
E = Upem\{0}Zn, V = UgenVg. We consider for § € =, v € V, the probability measure P&V
equivalent to P on (92, Fr), for any 7" > 0, with Radon-Nikodym density:

]P’ﬁ” 5 ,
= & = ET / (@) - D dtdj ET //yt 1 dt,du)),
T m
(4.10)

where £(-) denotes the Doléans-Dade exponential local martingale. Proceeding as in Lemma

2.4 of [31], we see that (& is a “true” P-martingale (hence defining a probability measure
P& through (EI0)) since &, v are essentially bounded and 9,9, are finite measures on

2 (1,,) denotes the power set of I,.
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I, and U, with C%V € L2(Q, Fr,P) for any T > 0. By Girsanov’s theorem, we recall that
W remains a Brownian motion under P¢¥, and the effect of the probability measure P
is to change the compensator ¥, (di)dt of 7 under P to & (i), (di)dt under PV, and the
compensator ¥, (du)dt of y under P to vy (u)d,(du)dt under P5¥. We denote by 7 (dt, di) =
m(dt,di) — & (i) (di)dt and p¥(dt, du) = p(dt, du) — vy(u)d,(du)dt the compensated mar-
tingale measures associated with 7 and p under P4, Finally, E$* denotes the expectation
with respect to P&.

Lemma 4.1 Let Assumptions (H1) and (H2) hold.
(i) Forallt >0, z,2’ €¢R% icl,, ucU,

sup EE,VUth‘Jm B thl’i’uﬂ < 6_2~/t‘x B a:’\2. (4.11)
EeE,veY
(ii) There exists a positive constant C, depending only on My , = SUP(; u)et,, xv ([6(0, 4, )|
+ [|o(0,4,u)|)), L1, and vy, such that

sup  ESV[IXF] < O(L+[af?), (4.12)
t>0,£€E, veV

for any (z,i,u) € R* x I,, x U.

Proof. (i) Estimate (ZII)). The proof of estimate (@Il can be done proceeding as in
Lemma 2.1(ii) in [I3]. Let us just give an idea of the proof. Firstly, we apply It6 formula
to |X§w - Xfl’i’"|2 between s =0 and s =t > 0, then we take the expectation ESY with
respect to P&¥, and finally we use the dissipativity condition ([Z.I]). In conclusion, we end
up with

. ’ - t . /o
EE,I/ [|X2U,Z,u _ X;B ,Z,U|2] < |l‘ _ $I|2 o 2,7/ E{,V“X:;c,z,u o X:;c 7z,u|2] ds.
0

Then, the claim follows from Gronwall’s inequality.

(ii) Estimate ([AI2]). The result can be proved proceeding as in Lemma [3.2] O

Backward SDE with partially nonnegative jumps on infinite horizon. For any
T € [0,00), we denote by Pr the o-field of F-predictable subsets of € x [0,7] and we
introduce the following spaces of random maps:

° S% the set of real-valued cadlag F-adapted processes Y = (Y;)o<i<7 satisfying

Y12, = E[ swp [WP] < o.
T 0<t<T

We also denote S2 . := NS

° L%(W), p > 1, the set of R valued Pp-measurable processes Z = (Zy)o<t<T satisfy-

ing
p

T 2
1z, = IEK/ |Zt|2dt> } < .
LE(W) 0

We also denote LP (W) := Nps oL (W).

loc
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o LN(7), p > 1, the set of Pr @ P (L,)-measurable maps L: Q x [0,7] x I, - R

satisfying
T ,m g
12
Lp() : [/0 (;wmn) dt}

We also denote L (7) := NpsoLp (7).

e LY.(71) the set of Pr @ B(U)-measurable maps R: Q x [0,7] x U — R satisfying

it = o[ ([ o)) < <

We also denote LE)C(,&) = Nrso L (f).

° K% the set of nondecreasing predictable processes K = (Ky)o<i<T € S2T with Ky =
0, so that
2 2
K2, = Bkl

We also denote K2 1= NpsoK3.

loc -

Let us now consider, for any > 0, n € N, and (z,4,u) € R?x1,, xU, the following backward
stochastic differential equation with partially nonnegative jumps on infinite horizon:

T T
Y;B,n _ Yj@,n_ﬁ/t }/*sﬁ,nds+/t f(ch,z,u7[;7Iwu dS_Z/ Lﬁn

03 [ 1) — e ) s (1~ ) (413
=1

—/ZB"dW //LB"' (ds, dyj) //RB" fu(ds, du'),
t I

forany 0 <t <T,T € [0,00), and
Ry > 0,  dP®dt®9,(du)-ae. (4.14)

Our aim is to prove that the penalized elliptic system (4.8]) is related to the mazimal solution
to the above BSDE with partially nonnegative jumps (£I3))-(#14]), that we now define.

Definition 4.1 For any >0, n € N, and (x,i,u) € R? x I, x U, we say that a quintuple
(yﬁ,nvxvivu, ZBmziu [ Bn.ziu RB,m%Lu,Kﬁm,x,i,U) €S2 xL? (W)Xleoc( yxLZ (i) xK?

loc loc loc\H loc
is a maximal solution to the BSDE with partially nonnegative jumps on infinite horizon

(E.I3)-@.1d) o
(i) Ym0 < (14 | XP5Y), for all t > 0 and for some positive constant C.

(i) For any other solution (Y, ZPn LPm RP™ KP™) € S2  x leoc(W) x L2 () x

L3 () x K, to @I3)-@Id) satisfying IXf"I < C1+ X)), Vit > 0 and for
some positive constant C (possibly depending on B,n,x,i,u), we have

yfrmwie >y Bn o pogs for all t > 0.
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Proposition 4.2 Let Assumptions (H1), (H2), and (HU) hold. Then, for any 8 > 0
and n € N, we have:

(i) For any (x,i,u) € RYx1,, xU, there exists a unique mazximal solution to [EI3)-EI4)
denoted by (YB7n7x7Z7u, ZB7n7x7Z7u, L/B7n7x7z7u’ RB?n7x7Z7u, K/37n7x7z7u) .

B?n7m7i7u
Yo

(i) Given (z,i) € R x1,,, for any u € U the random variable 1s equal P-a.s. to

a constant independent of u € U. Moreover, the function VP™: R% x I,,, — R given
by the Feynman-Kac formula:

VO (2,i) = YR Y (2,i) € RY X Ly,

for any u € U , is a continuous viscosity solution to system (L)) and satisfies the
linear growth condition

(VO (, 1)
sup ——— < oo.
(wi)eRixT, 1+ |7

Proof See Appendix, in particular Proposition [A 7] for (i) and Proposition [A.2] for (ii). O

Corollary 4.1 Let Assumptions (H1), (H2), and (HU) hold. Then, for any 5 > 0 and
n € N\{0}, the following dual representation formula for V5" holds:

VA (z,i) = sup inf Ef”[ / e PLp(XEM T T dt (4.15)
£€En vey

/ / o(XPPU T jym(dt, df) |, Y (x,4) € RE X Ty,

forcmyueﬁ.

Proof. As a preliminary step, the present proof involves the doubly indexed penalized
BSDE (A.J]) introduced in the Appendix. Indeed, we firstly derive a dual representation
formula for Vﬁ’"’k(x,i,u) = Yoﬁ’"’k’x’i’“, then we pass to the limit as k — oo, using that
ymhkmbu Ny s _ (g i) P-as., to derive EIH).

Step 1. Dual representation formula for VP™* Fix n € N\{0}, & € N, and (z,i,u) €
R? x I,,, x U. Our aim is to prove the following dual representation formula

VAT (i u) = sup inf Eg[/ P (X I T de (4.16)

56"' VEVk;
/ / X“’“ I’ ,J)m(dt,dj) | .
I

To this end, take £ € Z,, and v € V. Then, given T' € [0,00), we add and subtract to
(A1), with t = 0, the two terms (we adopt the simplified notation Y?#mF* for y#nkziu
and similarly for the other components)

g T
Bﬁl,k . . . ﬁ’n7k , , )
/o /11 L0 0)dx(d)dt /o /URt (u")ve(u')0,,(du')dt.
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From the integrability conditions on L2™F (resp. RS ’"’k), it follows from Proposition I1.1.28
in [29] that the stochastic integral in (A.J)) with respect to & (resp. ji) can be written as
the difference between the integral with respect to m (resp. p) and that with respect to
its P-compensator ¥, (dj)dt (resp. ¥, (du’)dt). The same remark applies to the stochastic
integral of L#™* (resp. R#™F) with respect to ¢ (resp. fi¥). Then, rearranging the terms
in (AJ), we end up with (recall that ¥ (di) = >_7", d;(di))

T T ) )
Yoﬁ,n,k _ Yj@,n,k_ﬂ/o Y;B’n’kdt—i-/ f(th’Z’uyff,Pt“)dt (4'17)

m T
+nz/ [LO™k () — o(XP0 15 Y] Fdt — k:// LRI (Y] ™0, (do )t

—/0 zPmkqw, — //Lﬁ"’“ §(dt, dj) //RB"’“’ Y(dt, du')
—223 /O P ()t - /O [ ) = 19, .

Now, we apply [t6 formula to e‘ﬁthﬁ "k hetween 0 and T , afterwards we add and subtract

Z / XL )6 dt

Therefore, from ([@I7) we obtam

T ) ) m T ) )
Vg = ey [ et =3 [ et e
j=1

the term

+Z / e P n[LEH () — (X T )]~ 6 [P — e T )] Y

/ / e B[R ()] + () — DR (o)}, (du )dt (4.18)

_/ =Bt 70w, // eBLLIF (V7S (dt, dj) //—BtRBnk ()i (dt, d).
0

Reasoning as in Lemma 2.5 in [31], we can prove that the three stochastic integrals appear-
ing in ([ZIR)), which are P$¥-local martingales, are indeed true P-martingales. Therefore,
taking the expectation ES¥ with respect to P& in ([@IS]), we find

Y = Gre,w) (4.19)

+3 /0 e B n L)) = XTI T = GG) (L0 G) - e I ) Y
j=1

T
_ /0 /U ePEE (R [RI (Y] + (va(u) — DRI ()}, (dud ),

where

T . .
Grlew) = B[ Typnh [F e frphar
0
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=Y [ e g et
j=1

Let us prove the following identities

YOB,an = sup inf Gp(&,v) = inf sup Gr(§,v). (4.20)
¢es, VEVR VEVE ¢eEy,

We begin noting that, for any £ € =,, and v € Vj, we have

n[LP"0G) = e(XPN L D] = GO [EPG) — eXP T )] = 0, (421
k[R)™ ()] ™ + (') = DRY™ (') > 0. (4.22)
Now, for every ¢ > 0, define £° € E,, as follows
n, LP"RG) = (XM T ) > 0,
) = 1 —1 < LPRG) — e XP T 5) <0,

9 Bk - T,5,U 71 .
_ i ' , L 5Ty (]) _ C(X 3 ,IZ,,]) < _1‘
Lf,n,k(j) N C(thn,z,uyjtt’j) t t t

On the other hand, let v* € V. be given by

) =[BT R <0
v, (U =
! 1, RI™F(uy > 0.

Then, from (£19]), using also (£21]) and ([{.22]), we obtain
Gr(&v) < Y™ = Gr(e,v) +e0r(€v7) < Gr(&,w) +eir(€r),  (4.23)

for any ¢ € 2, and v € Vi, where

m. T
— —pt ’ 7‘7 ] o B: 7k - .
or(&,v) = E /0 e’ Eg"[(C(XfwaItZﬂJ) - Ly (]))1{—1§Lf’"’k(j)—c(Xf’““,Iz;,j)<0}
j=1

+ 1{Lf,n,k(j)_c(th,i,u7I;;7 7j)<_1}] dt

Notice that 0 < d7(§,v) <370, fOT e Ptdt < m/p, therefore from ([E23) we have

GT(€7V*) < }/E)B’Mk S GT(é'E,y)_FET

< 5 VéEeE, veV,

which implies

m
inf Gr(&,v) < YP™F < inf Gr(¢, —.
Jnf s r(§v) < Yg < sup inf r(§v) +e 3
Since € is arbitrary and the inequality sup¢cz, infyey, Gr(&,v) <inf ey, SUPges, Gr(&,v)
holds, we deduce identities ([20). We also observe that, from (23] and the boundedness
of o7(&%,v*), we have Yoﬁ’"’k = lim__,o+ Gp(&°,v"), therefore (£5,v*) in an e-saddle point
of Gp(&,v) on 2, X V.
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To obtain the dual representation formula ([@I6), we now pass to the limit in [@20) as
T — oo. Firstly, we notice that, by estimates (A.2) and ([@I2]), it follows from Lebesgue’s
dominated convergence theorem that
sup  ESV [6_5T|Yf’"’k|] =3 . (4.24)
€EE7L7V6VI<:

Similarly, from the uniform linear growth condition of f and ¢ with respect to z, the
boundedness of £ € Z,,, and estimate (£I2]), we have

0o ) '
sup Eg”’[ / e‘m!f(Xf’““,I;,rg)ydt] =0, (4.25)
EEEL, vEVY T
é.,l/ - > —Bt T,1,u 1 . . T—o00
sup B Z e Pe(Xy Y I, g)é(d)dt | —= 0. (4.26)
EEE,, VEV) j=1 T

The above convergence results imply that we can pass to the limit in (£20) as T" — oo,
and we find (we are interested only in the first identity in ([Z20]))

£€E, VEVE

Y& = sup inf Eg”’[ / PP L T dE =Y / e X T & ()
0 . 0
j=1

The second integral in the above identity can be written with respect to =, using the
definition of P&¥-compensator of 7 (see, e.g., Theorem II.1.8(i) in [29]), so that we end up
with the dual representation formula [@I6) for VA™F(z i, u) = Yoﬁ’"’k.

) 57 7k 67 3 7‘7
Step I1. Dual representation formula for V™. From the convergence YN Yy
P-a.s., as k — oo, we obtain
Yoﬁ’n’w’i’u = lim (Sup inf GOO(S,V)> > sup inf G (&, v), (4.27)
k—oo \¢eg, vEVE ¢ez, vev

where
Goltsv) = Ef’”[ / P (XTI T dt — / / e Pre(XTN T fym(dt, dj)|.
0 0 I

On the other hand, from (£23]) we have (recalling that ér(§,v) < m/pB)
m
3
Using the convergence results (L24])-([@25)-(Z£26]), we can pass to the limit as T — oo in
the above inequalities, so that we obtain

Yt < Y < Gr(Er) +e v €V

Yoﬁ,n,x,i,u < Yoﬁm,k < Gm(€€7 V) + 5%7 Yv e Vk,

which implies

i m
YBJL’:E’Z’UJ < 3 f G 67 v e—.
0 = I/lélvk oo(é‘ ) + /8

Since k and e are arbitrary, we end up with

Ybﬁ7n,w,i,u < sup inf Goo(gy V)‘
£€E, vey

The above inequality, together with (£27]), yields the thesis, recalling from Proposition
E2Lii) that VA" (x,1) = YOB’"’:B’Z’“, for any (z,i,u) € R? x I,,, x U. 0
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4.2.2 Estimates

From the dual representation formula ([@I5]), we deduce the following estimates for V5.

Corollary 4.2 Let Assumptions (H1), (H2), (H3), and (HU) hold.
(i) For any B> 0 and n € N\{0}, we have

L
VO (z,0) — V! D) < 7213; — 2, (4.28)

for all z, 2’ € RY, i €1,,.

(ii) There exists a constant C > 0, depending only on Ly, M = SUP(i,u)el, xu | £ (0,4, u)l,
and the constant C' appearing in estimate [@I2), such that, for any 8 > 0 and n €

N\{0}, A
1BVER (2,40)] < C(1+|z), (4.29)

for all (z,i) € RY x I,.
(iii) For any 8 >0, n € N\{0}, and (z,i) € R% x I,,,, we have
VA ez i) < VA (z0). (4.30)

Proof. (i) Estimate @2R). Fix 2,2’ € R%, i € I,,,, and u € U. From the dual representation
formula (@13 and since ¢ = ¢(i, j) does not depend on x under (H3), we have

VO (i) =V 0)] < LS VE@“[ /0 e P F(XEN I T = F(XT I, T | dt |
€Zn, Ve

Then, using the Lipschitz property of f in (H1)(ii), together with estimate (LIII), we
obtain

L
>~ _2‘1' _‘T/’7
Y

. * Lo
VO (5, i) — V(2 i) < Lo|lz — 2’ / e~ BtNtgr = r—2| <
(V2™ (@, i) (@',4)] | | ; 5+7\ |

from which the claim follows.

(ii) Estimate @29). Given (z,4) € R%x I, and u € U, using again the dual representation
formula ([@.I5]) we find (from the nonnegativity of ¢)

BVAM(z i) <  sup RS [/ Be Pt F(xpt", I, Ty |dt | (4.31)
£eg,, vey 0

On the other hand, take € > 0 and define

ep 1

m 1+ max, jer,, c(i, j)’

£ =

We see that, if € is small enough so that £ < n, then £ € =,. Therefore, from ([AI3]) we
obtain (recall that the stochastic integral in (£I5]) with respect to 7w can be written with
respect to its P& -compensator)

V(@ i) > Iyngﬁg’“[ /0 e P F(XP T T dE = /]I e Pe(XPM T §)E8 (j)dt
j=1
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> —supEﬁs’”[ | e It,rt>|dt} .
0

vey

> - sw w| [Tempogt i) o
0

EEER, vEY

By the arbitrariness of € and inequality (£31]), we conclude that

|5vﬁv"(:ﬂ, Z)| < sup EE’V |:/0 ﬁe_ﬁt‘f(X?Luv Ig’ Ftu)‘dt:| :

feEn,VEV
From the inequality f(x,i,u) < Lo|x| + M and estimate (£I2]), we see that there exists
some positive constant C (only depending on Ly, M, C) such that
A co A
BV (w,i)] £ O +lal) [ pe Mt = C(1+ o).
0

(iii) Monotone property ([A30). Inequality (Z30]) follows from the dual representation for-
mula (@IH) for VA" noting that =, C Z,41, Vn € N\{0}. 0
4.2.3 Convergence of V5" towards V?

From Corollary it follows that, for any B > 0, the sequence (V%™),; is monotone
nondecreasing and satisfies the following linear growth condition:

. C L2
VB ) < — 4.32
(x,1) 57 — ||, (4.32)

for all n € N\{0} and (z,i) € R? x I,,,. As a consequence, we have the following result.

Proposition 4.3 Let Assumptions (H1), (H2), (H3), and (HU) hold. Then, for any
B >0, there exists a function v®: R x I, — R given by v°(x,i) = lim, oo VA" (z,1), for
all (z,i) € R? x 1,,,, which admits the dual representation formula

v?(z,i) = sup inf Eg”[/ “Btp(XEh I TR dt
cezveV

/ / Vet dj)|,  ¥(zi) € REx I,
for any u € U. Moreover, vP has the following properties:
|’U6(l‘,i) - ’Uﬁ(ﬂj‘,,i” é _|$ - l‘,|,
807 (1)) < C(1+ |z]),

for all z,2' € R and i € 1,,,, where the constant C' is the same as in Corollary [J-3(ii).

Proof. The existence of v? follows from the monotone property of (V7)1 (which is
a consequence of ([A30)) and from the uniform linear growth condition ([@32]). The dual
representation formula holds since VA gatisfies EID) and =, C Epq1 C -+ - CUp>1E, =2
Finally, the two stated properties of v? are implied by estimates (28] and @29). O
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Proposition 4.4 Let Assumptions (H1), (H2), (H3), and (HU) hold. Then, the func-
tion vP is the unique continuous viscosity solution to system (L3) satisfying a linear growth
condition
0% (2, 1)
sup ——=

(0,0)eRdxL, 1+ |Z]

In particular, v° coincides with the function VP defined by @1). Moreover, we have

[ (2,3) —vP(@, j)| < ¢ = max c(i,j), (4.33)
2,7€0m

for all x € R and i,7 € 1,,.

Remark 4.2 We refer to the function v? introduced in Proposition @3 as dual value func-
tion of the dual robust switching control problem. On the other hand, we say that V7 is the
primal value function and the associated infinite horizon robust feedback switching control,
recalled in Section M1 is the primal robust switching control problem. Then, Propositions
A3l and (4] state that these two value functions coincide. Notice that the dual control
problem is a two-player zero-sum stochastic differential game of the type control vs control.
In general, the lower and upper value functions of a control vs control (more precisely,
open-loop control vs open-loop control) game do not coincide with those associated to the
Elliott-Kalton version of the game, where the strategy vs control formulation is adopted
(see, e.g., Exercise 2.1(ii), Chapter VIIL, in [2]). However, we observe that our dual control
problem is in weak form as in [38], therefore, as emphasized in [38], it might be interpreted
as a feedback control vs feedback control game. O

Proof (of Proposition @4]). Recall that V" satisfies (28] and v is the pointwise
limit of the sequence (V#™),,~1. Then, we have

L
VO i) — 0P (2,0)| < Zlo— 2|+ VP, i) — 0P (x, i) — 0 (4.34)
" e
Therefore, for all (z,i) € R? x I,,,,
B . o . 6771 /- BT . an . o . * an .
v (x,i) = é/l_ll%v (i) = hnnigf*v (x,1) = 117131_>SOl<l>p VPr(x, i), (4.35)
where
liminf, V7" (z,4) := liminf VA" (2, 1), limsup* VA" (x,4) = limsup V7" (2, 7).
n—00 ”T)OO n—00 n—o00
T =T ' =

Step 1. Viscosity supersolution property of v® to (IL3). Let (x,i) € R? x I,,, and (p, M) €
J?>~vB(x,4) (the second-order subjet of v* at (z,1), see, e.g., Section 2 in [I5]). From (@35)
and Lemma 6.1 (see also Remark 6.2) in [I5], it follows that we can find the following
sequences

Nk ki)O 0, XL € Rd, (pk,Mk) S J2’_Vﬁ’nk(xk,i),
satisfying
(e, VA" (1), pi, My) =5 (2,07 (1), p, M). (4.36)
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For any j € I,,,, we also have the convergence V5" (xy,, j) — v”(z,7), which can be proved
proceeding as in ({@34) with j in place of i. From the supersolution property of V57 to
(41]) stated in Proposition [£.2((ii), we have

BV (a1 ) — inf (b, ) pi+ St (00" (g, i, u) M) + F i w)| (4.37)
ue

m
—np > [V (g, §) = VO (g, d) — (i, )] > 0.
j=1
Let us prove that

vP(x, 1) — max [v®(x, j) — (i, j . .
(1) #i[ (z,7) =@, j)] >0 (4.38)

On the contrary, suppose that there exists some jo € I, jo # 4, such that

vﬁ(x,i)—vﬁ(a;,jo)—i—c(i,jo) < 0.

From the convergences VA7 (xy,1) — 0P (x,4), VA (21, 50) — v2(x,j0), it follows that
there exist € > 0 and k. € N such that

VO (2, 1) — VO™ (2, jo) + (i, jo) < —e,  Vk> k..

As a consequence, we have

SO [VPmang) = VO (i) — i )] T 2 e Yk ke

m
J=1

Letting & — oo into ([{3T), we find a contradiction, so that (£38]) holds. On the other
hand, from ([37) we have

1
BVO (i, i) = inf [baksi, ) pr + 5tr(007 (op 1, u) M) + flan,iyw)] = 0.
Sending k — oo, using ([@30]) and the continuity of b, o, f, we conclude that
1
BuP (i) — 11615 [b(:n,i,u).p+ §tr(00’T(x,z’,u)M) + f(:n,i,u)} > 0.

Step II. Viscosity subsolution property of v® to (3. Let (z,i) € R? x I, and (p, M) €
J?>FvB(x,4) (the second-order superjet of v° at (z,4), see Section 2 in [I5]) such that

oo (z,4) — HJI;ZX [vﬁ(:n,j) —c(i,j)] > o. (4.39)

From (A35) and Lemma 6.1 in [I5], we see that we can find the following sequences

ng kj;’ o, T € Rd7 (pk7Mk) € J2’+Vﬁ7nk ($k7i)7
satisfying
(xkvvﬁﬂk(xkvi)vpkka) kj}o ($7U6($7i)7p7M)‘
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Moreover, for any j € I,,,, we also have the convergence V2" (zy, j) — v%(x, j). Using the
subsolution property of V57 to ([EF), we find

BVE (g, i) — inf [b(:vk,i,u).pk + %tr(ao—T(xk,i,u)Mk) + f($k’i,u):| (4.40)
ue
—ng > [V (g, §) = VO (g, d) — (i, )] < o.
=1

From ([#39) and the convergence V27 (zy,7) — v?(x, ), ¥Vj € I,,,, we see that there exist
€ > 0 and k. € N such that

VA (2,,7) — max (VO™ (zy, §) = (i, )] > e, Vk> ke
JF1

Therefore, for all £ > k., we have
Y VO, g) = VO @, i) — i )] = 0.
j=1

Hence, letting k — oo into (40, we end up with

BuP (i) — 5161{] [b(:n,i,u).p+ %tr(UJT(x,z’,u)M) + f(:n,i,u)} < 0.

Step III. Identification v® = V. From Proposition Bl we know that V? is the unique
continuous viscosity solution to system ([3]) satisfying a linear growth condition, so that
the claim follows.

Step IV. Estimate ([@33]). Finally, to prove estimate ([£33)), we notice that from the
identification v = V? and inequality ([#4), we have

VA(x,i) > max (VP (x,5) — e, )] > VP(x,5) —cli,j), V(x,i,j) € RTxIZ, j#i.
j 1

This implies that

Z,]Gm

from which estimate (£.33)) follows. O

4.3 Convergence results for V"

We are now in a position to study the asymptotic behavior of V2. More precisely, we have
the following result, which proves all the statements of Theorem concerning V? and the
existence of a viscosity solution to the ergodic system (Z3)).

Proposition 4.5 Let Assumptions (H1), (H2), (H3), and (HU) hold. Then, there exists
a viscosity solution (X, ¢), with ¢(-,i) Lipschitz, for any i € L, and ¢(0,i9) = 0 for some
fized ig € L, to the ergodic system ([2.3), such that

B—0Tt

BVP(x,i) "5 A V(x,i) € R? x I,
VO i) = VO (0,i0) =X (i), Vi€l
in C(RY)

for some sequence (Bi)ken, with By N\ 0.
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Proof. Fix ig € [,,, and, for any 8 > 0, set

for all (z,i) € R? x I,,. From Proposition E3] estimate (33]), and the identification
v? = VP stated in Proposition @4 we have

A . L .
sup [ \| < €, supleP(x,i)| < Za| +é
B>0 B>0 Y

As a consequence, by classical arguments based on the Bolzano-Weierstrass Theorem and
the Ascoli-Arzela Theorem, see e.g. [20], we can find a sequence (8 )ren, with B, \ 0T s.t.

)\Bk ki)o )\ia Pr y ) koo '7‘7
: W) 2, )

for some )\; € R and ¢: R? x I,, — R satisfying |¢(z,4)| < La|z|/y + &, |¢(z,i) — p(z',4)| <
Lo|z — 2’| /v, and ¢(0,49) = 0. Notice that, from estimate (£33]) we obtain

INE =A% = B VO (0,0) — VO (0,5)] < Bre X0,
therefore X := \; = A, for all ¢, j € I,,. More generally, we have
8 . B 8 . 8 . L2 ~ k—o

which implies that
BV (z,i) "2 A, V(2,i) €RI x L.

We now prove that (A, ¢) is a viscosity solution to the ergodic system (2.3]). To this end,
we begin noting that, from the viscosity properties of V? stated in Proposition 4] (see
also Proposition E), it follows that, for any i € I,,,, ¢°(-,4) is a viscosity solution to the
following elliptic equation:

min {A?O + 897 (@) — inf [£76° (@,0) + f(,i,u)],
¢B($,i) — n]az( [gbﬁ(x,j) — c(i,j)] } = 0, Ve R
Then, we define
Fy(z,i,7,p, M) := min {)\i’“ + Brr — uuealfj [b(x,z’,u).p + %tr(aaT(x,z’,u)M) + f(:L",z',u)],
r—max [6%(z,5) — (i, )] |
for all k € N, and
Fyo(x,i,7,p, M) := min {)\ — in(f} [b(x,i,u).p + %tr(aaT(a:,i,u)M) + flz,i,u)],

ue

r —max [¢(z, j) - c(i.j)] }

JF#i
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for any (x,i,7,p, M) € R? x I,, x R x R? x R™*? We see that
lim Fy(z,i,r,p, M) = Fus(x,i,r,p, M).
k—o00

Then, from stability results of viscosity solutions (see, e.g., Lemma 6.1 and Remark 6.3
in [I5]), we deduce that, for any i € I,,,, the function ¢(-,7) is a viscosity solution to the
elliptic equation

Foo(,i, ¢(x,1), Dyd(x,i), D2p(x,i)) = 0, VazeRL

As a consequence, we conclude that (A, ¢) is a viscosity solution to the ergodic system (2.3]).
Finally, we notice that the all family (8V7(z,4))s>0 converges to A as 8 — 07, since, as
stated in Proposition B3] A is uniquely determined. O

Appendix

A Feynman-Kac formula

The present appendix is devoted to the proof of Proposition Unfortunately, we did not
find a reference for it in the literature. Indeed, even though Proposition 3.3 and Theorem
3.1 in [I3] do almost the job, they do not apply to system (L)) due to the presence of the
nonlocal term. For this reason, in the present appendix we state the results, recalling only
the main steps of their proofs, since they are very similar to those of Proposition 3.3 and
Theorem 3.1 in [13].

A.1 Maximal solution to BSDE (&I3)-(ZT14)

We begin addressing the problem of existence and uniqueness of the maximal solution (see
Definition [A.J]) to the BSDE with partially nonnegative jumps on infinite horizon (ZI3])-
(#14]). Concerning uniqueness, we have the following result.

Lemma A.1 Suppose that Assumption (H1) holds. Then, for any 8 > 0, n € N, (z,i,u) €
RY x 1,,, x U, there exists at most one maximal solution to equation ([EI3))-EI).

Proof. The uniqueness of the Y component follows by definition. Now, consider two
maximal solutions (Y, Z, L, R, K), (Y,Z',L',R',K') in S2 _x L2 (W) x L2 (7) x L2 () x

loc loc loc loc

K2 to (LI3)-(@Id). Taking their difference, and identifying the Brownian and finite
variation parts, we see that Z = Z’. Afterwards, recalling that the marked point processes
associated to m and p have disjoint (due to the independence of 7 and ) totally inaccessible
jumps, while K and K’ have predictable jumps, we conclude that L = L' and R = R/, so

that K = K'. For more details, we refer to Remark 3.1 in [13]. O

The existence of the maximal solution to (£.13])- (£14]) is based on a penalization method.
More precisely, for any 8> 0, n,k € N, and (x,4,u) € R? x I, x U, consider the following
doubly indexed penalized backward stochastic differential equation on infinite horizon:

T T m T
vork vt [yt [ g e =30 [ kG (A
j=1
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T
—i—nZ/ LE™R(G) — e(XPH I ) +ds—/<;/t /U[Rf’"’k(u’)]_ﬁu(du’)ds

—/Zﬁnde //Lﬁn’f' (ds, dj) //RBM fi(ds, du'),
t

forany 0 <t < T, T € [0,00), where h~ = —min(h,0) denotes the negative part of the
function h. Then, we have the following result.

Lemma A.2 Let Assumptions (H1) and (H2) hold. Then, for any 8 > 0, n,k € N,
(z,i,u) € R x T, x U, there exists a solution (YPmk@iu zbnkziu [pnkziuv pbnkziu)
€S2 xLZ (W) xL2 (7) x L2 (fi) to (&) such that

loc loc loc

|thﬁ,n,k,x,i,u‘ Olj@df (1 + |Xx7z’u

where Cy o ¢ 15 a positive constant, depending only on b,o, f. This latter solution is unique
among all quadruplets (Y, Z,L,R) € S2 . x L2 (W) x L2 (%) x L2 (i) such that, for some
constant C > 0 (possibly depending on 3,0, k, i, 1), we have |Yy| < C(1+|X""|), for all

t>0.

), Vt>0, (A.2)

Proof. The result follows from the same arguments as in the proof of Proposition 3.1 in
[13]. Here, we give simply a sketch of the proof.

Uniqueness. Consider two solutions (Y, Z, L, R), (Y', Z', L', R') to (A, satisfying a linear
growth condition as stated in Lemmal[A.2], and apply It6 formula to the difference e=2%|Y, —
Y/|? between s =t > 0 and s = T > t. Then, from the resulting expression we see that
there exists ¢ € =, such that, taking the expectation E with respect to P14 (we denote
by P1€ the probability measure P*¢ with v = 1), we obtain

El,f |:|}/t o }/t/|2j| é 6—25(T—t)E1,5 [|YT _ Yj/"|2] )

Then, using the growth condition of Y7,Y] together with estimate ([I2]), we see that
Y — Y’ = 0. Finally, since Y = Y’, the identities Z = Z’, L = L', R = R’ can be proved
proceeding as in Lemma [A.T]

Ezistence. The proof consists in approximating equation (AJ]) through a sequence of
BSDEs with finite time horizon and zero terminal condition. More precisely, for any 7" > 0
and (z,i,u) € R? x I,, x U, we consider the following backward stochastic differential
equation on [0, T:

y LAk — / YTB”kds+/ F(XZHY T T ds—Z/ LTk (A.3)
+nz / [LLAnk () — (X4 T0 )] Tds — k / / [REZ™E(u)] 79, (du')ds
t U

T
~ / ZTBnkqyy, / / LT8R ()7 (ds, df) — / / RTAmk (0 i(ds, dud),
t t I t U
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for any 0 < t < T. From Lemma 2.4 in [42] we know that there exists a unique solution
(YT,B,n,k,x,i,u’ ZT,B,n,k,:c,i,u’LT,B,n,k,x,i,u’RT,B,n,k,x,i,u) c S’zI‘ % L%(W) % L%(ﬁ') % err(ﬂ) to
equation ([A.3]). Proceeding as in Proposition 3.1 in [13], we then exploit Girsanov’s theorem
to investigate the differences Y7 — Y7T' zT — zT' [T — 7' UT — UT". In particular, we
are able to determine opportune estimates for those differences, which allow to pass to the
limit as 7" — oo in equation (A.3)) and to end up with the solution to (A.T). O

We can now state the following existence and uniqueness result for the BSDE with
partially nonnegative jumps on infinite horizon (@I3])-(ZI4]), which in particular proves
statement (i) of Proposition [1.2]

Proposition A.1 Let Assumptions (H1) and (H2) hold. Then, for any 8 > 0, n € N,
(x,i,u) € R x1,, x U, there exists a unique mazimal solution (Yﬁ’”’m’i’“, ZBmziu [ Bm.ziu
RO gBnwiuy ¢ §2 « 12 (W) x L2 (7) x L2 (1) x K2 _ to [@I3)-@Id) such that:

loc loc loc loc loc

(i) For allt >0, Y;ﬁnk““ N Y;ﬁn:““ P-a.s., as k — oo.

(ii) For all T > 0, (ZﬁO"T]]”’u,LﬁO"TI?“u,RﬁO"T]?“u)k strongly (resp. weakly) converges

to (ZIB[O"TTW, Lﬁ&ﬁj’l’u, RﬁO"Tﬁw) in LE(W) x LE(7) x LE(i2), for any p € [1,2) (resp.

in L3(W) x L3,(7) x L3 (7).
(iii) For allt >0, (Ktﬁnk““)k weakly converges to Kf"““ in L2(Q, 7, P).

Proof. The proof can be done proceeding as in Proposition 3.3 in [I3]. We just recall the
main steps. Firstly, for all £ > 0, the nonincreasing property of the sequence (Ytﬁ "k““) k
follows from the comparison theorem for BSDEs with jumps, see, e.g., Theorem 4.2 in [39].
The monotonicity property provides the existence of a limiting adapted process YA
satisfying estimate (A.2)). Afterwards, for any 7' > 0, we consider equation (LI3])-(ZL.I4])
on [0, 7] with terminal condition Y;2™""". Then, from Theorem 2.1 in [31] it follows that
there exists a unique maximal solution to ([ALI3)-(@I4)) (Theorem 2.1 in [31] applies to
minimal solutions; however, simply notice that if ¥ is a maximal solution to (EI3])-(@I4),
then —Y is a minimal solution to a certain BSDE with partially nonpositive jumps to which
Theorem 2.1 can be applied), for which the convergence results (i)-(ii)-(iii) of Proposition
[Adlhold on [0,7]. Even though the maximal solution to (ZI3))-(EI4]) on [0, 7] can a priori
depends on T', this is not the case due to the convergences (i)-(ii)-(iii) on [0, 7], which call
in the penalized BSDE (A.Tl), whose solution does not depend on T. As a consequence,
we can past together all these maximal solutions on [0, 7], for any 7" > 0, and we end up
with a maximal solution to equation (ZI3)-([@I4) on [0,00). Finally, the uniqueness of the
maximal solution follows from Lemma [AT] O

A.2 Feynman-Kac formula for V5"

We now derive, by means of the doubly indexed penalized BSDE (A.Il), the Feynman-Kac
formula for V™ and study its viscosity properties. To this end, for any 8 > 0, n,k € N,
we define the function V&™%: R4 x I,, x U — R as follows

Vﬁ,n,k($’i, u) — Y'Oﬁynykymyiyu’ \v/(x’ Z,U‘) 6 Rd X Hm X U (A4)
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Then, VA™* is associated to the following elliptic integro-PDE:

BUBME (g i ) — Ly Bnk(y ) /U (VAR (i) — VO™, i, )] 9, (dud)

—f(x,i,u) —n f: [Vﬁ’"’k(x,j, u) — VB’”’k(a:, i,u) — c(x, z',j)] * (A.5)
j=1

+/<;/ [Vﬁ’”’k(az,i,u/) - VB’”’k(x,i,u)] T, (du’) = 0,
U
for any (x,i,u) € R x I, x U. More precisely, we have the following result.

Lemma A.3 Let Assumptions (H1) and (H2) hold. Then, for any B > 0, n,k € N, the
function VP™E defined in ([(AA) is a continuous viscosity solution to [AB) satisfying

VO k(i u)| < Cl’gfw ), V(@iw eRIxTaxU,  (AS)

where Cy, 5 ¢ is the same constant as in estimate (A.2).

Proof. The proof is standard and can be done along the same lines as in the proof of
Proposition 3.2 in [13]. O

We can finally state the main result of this appendix, namely the Feynman-Kac formula
for VA" which proves statement (ii) of Proposition

Proposition A.2 Let Assumptzons (H1), (H2), and (HU) hold. Then, for any 8 > 0,
n €N, (z,i) € R? x I, u e U, the random variable Y™™"" is equal P-a.s. to a constant
independent of u € U. Moreover, the function V™. }Rd x I, = R given by

VO (z,0) = YO Y (x,0) € RY X Ly,
for any u € U , is a continuous viscosity solution to system ([A8) and satisfies

VB (g
sup V2 (z, i) < 0. (A.7)
(,)eRixL, 1|7
Proof. The proof can be done as in [I3], Theorem 3.1. Here, we recall the main steps.
Firstly, for any T"> 0, 5 > 0, n, k € N, we consider the following parabolic integro-PDE on
[0, 7] x R™ x I,, x U in the unknown w: [0,7] x R? x I,,, x U — R:

pw — 85_1: Lhty — / [w(t, @i, u") — w(t,z,i,u)] 0, (du)
U

m

f(zyi,u) — nz (t,z,j,u) —w(t,x,i,u) — c(x,z',j)]+ (A.8)

—H<;/ [w(t,m,z',u')—w(t,m,z’,u)]_ﬁu(du') = 0,
U

with terminal condition w(T,z,4,u) = V&™*(z i u), V (z,i,u) € R? x I, x U. Since the
coefficients of system (A.8) are constant with respect to time ¢, we see that V5™ solves
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(A8) in the viscosity sense. Then, we can apply Theorem 3.1 in [3I] to conclude that

Yoﬁ’"’k’x’z’u = Y(]B’"’x’z’u does not depend on u in

the limit limy_oo VP™F(2, 0, u) = limy_o
the interior U of U. Notice that Theorem 3.1 in [31] applies to equations with “sup,c;”
instead of “inf,cyy” as in ([@J); however, simply observe that if V™ is a viscosity solution

7 in place of “inf,cr;”, for which

to system [&J), then —V57" solves a system with “sup,cp
we can use the results of Theorem 3.1 in [31].

The continuity of the function V7™ is a consequence of estimate (28], which can be
proved without relying on the (not yet proven) viscosity properties of VA7 but proceeding
as in Corollary [4.2] where we used the dual representation formula (4I5]). Moreover, from
the monotone convergence of (V7™*), towards VA" as k — oo, together with estimate
([(A8), we deduce the linear growth condition (A7) of VFm.

Finally, thanks again to Theorem 3.1 in [31], we have that, for any 7" > 0, the function
VFPm is a viscosity solution to the system of parabolic PDEs on [0,7T] x R? x I, in the

unknown w: [0, 7] x R? x I, — R:

8 m

ﬁw—a—lf—mf [ﬁ”uH—fxzu nz w(t,x,j) — (t,x,i)—c(:n,i,j)]+ =0, (A9)
7j=1

with terminal condition w(7T, x,7) = VA" (x,i), V (2,i) € R? x I,. Since system ([A9]) holds

for every T > 0, and V2" is constant with respect to time, it follows that VA" is indeed a

viscosity solution to (LS]). O
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