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Abstract

We analyze the asymptotic behavior for a system of fully nonlinear parabolic and

elliptic quasi variational inequalities. These equations are related to robust switching

control problems introduced in [6]. We prove that, as time horizon goes to infinity

(resp. discount factor goes to zero) the long run average solution to the parabolic

system (resp. the limiting discounted solution to the elliptic system) is characterized

by a solution of a nonlinear system of ergodic variational inequalities. Our results hold

under a dissipativity condition and without any non degeneracy assumption on the

diffusion term. Our approach uses mainly probabilistic arguments and in particular

a dual randomized game representation for the solution to the system of variational

inequalities.
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1 Introduction

Let us consider the following system of forward parabolic quasi variational inequalities


















min
{∂V

∂T
− infu∈U

[

Li,uV + f(x, i, u)
]

,

V (T, x, i)−maxj 6=i

[

V (T, x, j) − c(x, i, j)
]

}

= 0, (T, x, i) ∈ (0,∞) ×R
d × Im,

V (0, x, i) = g(x, i), (x, i) ∈ R
d × Im,

(1.1)

where Im := {1, . . . ,m}, with m ∈ N\{0}, and Li,u is the second-order differential operator

Li,uV = b(x, i, u).DxV +
1

2
tr
(

σσ⊺(x, i, u)D2
xV

)

.

Here U is a compact subset of Rq, and the assumptions on the measurable functions b, σ,

c, f and g will be made precise in the next section. Equation (1.1) turns out to be related

to a certain robust switching control problem studied in [6]:

V (T, x, i) := sup
α

inf
υ

Ex,i

[

∫ T

0
f(Xt, It, υt)dt+ g(XT , IT ) (1.2)

−
∑

n∈N

c(Xτn , Iτ−n , Iτn)1{τn<T}

]

,

where
{

Xt = x+
∫ t

0 b(Xr, Ir, υr)dr +
∫ t

0 σ(Xr, Ir, υr)dWr,

It = i1{0≤t<τ0} +
∑

n∈N ιn1{τn≤t<τn+1}.

The piecewise constant process I denotes the regime value at time t, whose evolution

is determined by the controller through the switching control α = (τn, ιn)n, while the

process υ, decided by nature, brings the uncertainty within the dynamics of state process

X and the model. The control process sets in which α and υ run over is a key issue when

considering stochastic differential game type problems as in the formulation (1.2). In the

robust switching control problem, the switching control α is of feedback form, meaning that

it is chosen by the controller based only on the past and present information coming from

the state and regime processes, while the control υ is more generally of open-loop form,

since nature is assumed to be aware of all information at disposal. Precise formulation

of robust switching problem is given in Section 3.1. Also see [6], where we proved by

developing stochastic Perron’s method (which was introduced in [8] to analyze stochastic

control problems) further that the value function V in (1.2) is the unique viscosity solution

to (1.1). The corresponding elliptic system of quasi variational inequalities for any β > 0

is

min
{

βV β − inf
u∈U

[

Li,uV β + f(x, i, u)
]

, V β(x, i) −max
j 6=i

[

V β(x, j) − c(x, i, j)
]

}

= 0, (1.3)

for any (x, i) ∈ R
d × Im. Similar to the parabolic case, this system is related to a robust

switching control problem but this time over an infinite horizon with discount factor β.

Although it is a classical topic in stochastic control, optimal switching problem, in

which a controller implements a discrete set of controls, has attracted a renewed interest
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and generated important developments in applied and financial mathematics. They occur

naturally in investment problems with fixed transaction costs, pair trading problems or

in the real options and is a more realistic set-up than assuming that the controller exerts

controls of infinite variation or controls that accumulate local time. The literature on this

topic is quite large and we refer e.g. to the recent papers by [33], [17], [37], [7], [22], [24], [18]

for the analysis of optimal switching problems either by dynamic programming or backward

stochastic differential methods, and to [16], [10], [21], [41], [36] for various applications to

finance and real options in energy markets. Most of this literature has focused on the

situation where the state coefficients are known, while in practice there is uncertainty

about their real value, which motivated us to consider the framework (1.2) in line of recent

investigations about robust control problem. On the other hand, an interesting application

of the switching systems that we analyze appears to be key in proving the convergence rate

of numerical schemes for Hamilton-Jacobi-Bellman equations; see e.g. [5].

The chief goal of this paper is to extend the results of [32] and [34], to the fully non-

linear and degenerate case: That is, to investigate the large time asymptotics of the value

function of the robust optimal switching problem V (T, .) as T goes to infinity, which is

closely related to the asymptotic behavior of V β, as β goes to zero. We should mention

that the asymptotics for stochastic control and related Hamilton-Jacobi-Bellman (HJB)

equations have been studied in other settings by many authors since the seminal papers

[9] and [1], and has received a renewed interest, see the lectures of P.L. Lions (2014-2015)

at Collège de France. Recent papers include for instance [27] for the long time behavior

of Hamilton-Jacobi equations in a semi-periodic setting, or [40], which considered large

time behavior of semi-linear HJB equations with quadratic nonlinearity in gradients by

combining PDE and stochastic analysis methods. We mention [23], which proved a rate of

convergence for the solution to the semi-linear HJB equation towards the ergodic equation

under a weak dissipativity condition. We refer also to [3], [4], [25], [28], [35]. The case of

fully nonlinear HJB equation is studied recently in [13] by means of backward stochastic

differential equation (BSDE) representation for nonlinear parabolic, elliptic and ergodic

equations.

We introduce three novel features to this problem: First, we consider diffusion coeffi-

cients b, and σ depending not only on the state process x but also on the regime values i;

second, we incorporate robustness in our model by considering dependence of the diffusion

coefficients on the open loop control υ. From a PDE point of view, this makes the prob-

lem fully nonlinear due to the infimum over u ∈ U in (1.1). Third, we do not impose a

non-degeneracy condition on the diffusion term.

Our main result is to prove, under natural dissipativity conditions, the existence of a

constant λ (not depending on state and regime values x, i) such that

V (T, x, i)

T

T→∞
−→ λ, βV β(x, i)

β→0+
−→ λ, (1.4)

for all (x, i) ∈ R
d × Im. Moreover, λ is the solution to the ergodic system of variational

inequalities:

min
{

λ− inf
u∈U

[

Li,uφ+ f(x, i, u)
]

, φ(x, i) −max
j 6=i

[

φ(x, j) − c(x, i, j)
]

}

= 0. (1.5)
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Here the unknown in the ergodic equation (1.5) is the pair (λ, φ) with λ real number, and

φ a real-valued function on R
d × Im. We also show that under suitable conditions λ is the

value to a robust ergodic control problem (see Remark 2.4). In the proof of the ergodic

convergence (1.4), a crucial step is the derivation of a uniform (in β) Lipschitz estimate

on V β , and so the equicontinuity of the family (V β)β . The main difficulty in our context,

with respect to previous related works, is that we do not in general have any regularity on

the solution V β to (1.3). We also cannot rely on the analog of the robust switching control

representation (1.2) for the infinite horizon problem. Indeed, because of the feedback form

on the switching control α, which may then depend on the initial state value, it is not clear

how to get suitable Lipschitz properties of V β, see Section 4.1 for a more detailed discussion.

To overcome this issue, we instead provide a dual probabilistic game representation of V β

based on randomization of the controls α and υ, following the idea originally developed in

[30] and [31] for stochastic control problem, for which we refer also to [11], [12], [14]. This

representation then allows us to derive the needed Lipschitz estimate for V β.

The rest of the paper is organized as follows. Section 2 sets the assumptions and formu-

lates the main results. We recall in Section 3 the connection between the parabolic system

of quasi variational inequalities (1.1) and robust switching control problem as studied in

[6], and shows by a simple probabilistic control representation argument (which seems to

be new to the best of our knowledge) the long run average convergence of the solution to

the parabolic system to a solution of the ergodic system when it exists. Section 4 is the

core of the paper, and is devoted to the existence of a solution to the ergodic system as

well as the convergence of the limiting discounted solution to the elliptic system. The main

point is to state a dual representation for V β . This is achieved by using a randomization

approach and a BSDE representation for the penalized solution V β,n to the elliptic system

of variational inequalities, which then permits to derive a dual representation for V β,n, and

consequently for V β, and then to obtain the key estimates for V β. Finally, some technical

results are deferred to the Appendix.

2 Formulation of the problem and main results

2.1 Notation and assumptions

Let U be a compact subset of a Euclidean space Rq and Im := {1, . . . ,m}, with m ∈ N\{0}.

We begin imposing the following assumptions on the coefficients of the system of parabolic

and elliptic quasi variational inequalities (1.1) and (1.3).

(H1)

(i) b : Rd × Im × U → R
d and σ : Rd × Im × U → R

d×d are continuous and satisfy (we

denote by ‖A‖ =
√

tr(AA⊺) the Frobenius norm of any matrix A):

|b(x, i, u) − b(x′, i, u)| + ‖σ(x, i, u) − σ(x′, i, u)‖ ≤ L1|x− x′|,

∀x, x′ ∈ R
d, i ∈ Im, u ∈ U , for some positive constant L1.
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(ii) f : Rd × Im ×U → R, g : Rd × Im → R, and c : Rd × Im × Im → R are continuous and

satisfy

|f(x, i, u)− f(x′, i, u)| + |c(x, i, j) − c(x′, i, j)| ≤ L2|x− x′|,

|g(x, i)| ≤ M2(1 + |x|2),

∀x, x′ ∈ R
d, i, j ∈ Im, u ∈ U , for some positive constants L2 and M2.

(iii) g satisfies the inequality

g(x, i) ≥ max
j 6=i

[

g(x, j) − c(x, i, j)
]

,

∀x ∈ R
d, i ∈ Im.

(iv) c is nonnegative and the no free loop property holds: for all i1, . . . , ik ∈ Im, with

k ∈ N\{0, 1, 2}, i1 = ik, and card{i1, . . . , ik} = k − 1, we have

c(x, i1, i2) + · · ·+ c(x, ik−1, ik) > 0, ∀x ∈ R
d.

Moreover, we suppose that c(x, i, i) = 0, ∀ (x, i) ∈ R
d × Im.

We also impose the following dissipativity condition.

(H2) For all x, x′ ∈ R
d, i ∈ Im, u ∈ U ,

(x− x′).(b(x, i, u) − b(x′, i, u)) +
1

2
‖σ(x, i, u) − σ(x′, i, u)‖2 ≤ −γ |x− x′|2, (2.1)

for some constant γ > 0.

Remark 2.1 (i) Equation (1.1) (and similarly (1.3)) turns out to be related to a certain

robust switching control problem studied in [6], as explained in Section 3.1 below (see

also Section 4.1). For this reason, the set of assumptions (H1) is the same as in [6],

but for some additional requirements needed to obtain a backward stochastic differential

equation representation (first presented in [31] for the case of a classical stochastic control

problem) and for the polynomial growth condition on g, which in [6] is not necessarily of

second degree. This latter assumption plays an important role since it allows to exploit an

estimate on the second moment of the state process (reported in Lemma 3.2 below), which

follows from the dissipativity condition (H2).

(ii) As an example of coefficients b and σ satisfying Assumptions (H1)-(H2), take b(x, i, u) =

b̄(i, u)x, σ(x, i, u) = σ̄(i, u)x⊺, for some continuous and bounded b̄ : Im × U → R, σ̄ : Im ×

U → R
d (notice that σ̄(i, u)x⊺ ∈ R

d×d and ‖σ(x, i, u)−σ(x′, i, u)‖ = |σ̄(i, u)||x−x′|). Then,

the dissipative condition (2.1) holds if and only if

b̄(i, u) +
1

2
|σ̄(i, u)|2 ≤ −γ, (2.2)

for all (i, u) ∈ Im × U . ✷
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2.2 Main results

Consider the following ergodic system of quasi variational inequalities

min
{

λ− inf
u∈U

[

Li,uφ(x, i) + f(x, i, u)
]

, φ(x, i) −max
j 6=i

[

φ(x, j) − c(x, i, j)
]

}

= 0. (2.3)

We begin providing the definition of viscosity solution to system (2.3).

Definition 2.1 (i) We say that a pair (λ, φ), with λ ∈ R and φ : Rd × Im → R a lower

(resp. upper) semicontinuous function, is a viscosity supersolution (resp. subsolution) to

the system of variational inequalities (2.3) if

min
{

λ− inf
u∈U

[

Li,uϕ(x) + f(x, i, u)
]

, φ(x, i) −max
j 6=i

[

φ(x, j) − c(x, i, j)
]

}

≥ (resp. ≤) 0,

for any (x, i) ∈ R
d × Im and any ϕ ∈ C2(Rd) such that

φ(x, i) − ϕ(x) = min
Rd

{φ(·, i) − ϕ(·)}
(

resp. max
Rd

{φ(·, i) − ϕ(·)}
)

.

(ii) We say that a pair (λ, φ), with λ ∈ R and φ : Rd × Im → R a continuous function, is

a viscosity solution to the system of variational inequalities (2.3) if it is both a viscosity

supersolution and a viscosity subsolution to (2.3).

We can now summarize the main results of the paper in the two following theorems.

Theorem 2.1 Suppose that Assumption (H1) holds.

(i) There exists a unique continuous viscosity solution V to system (1.1) satisfying the

growth condition: for any T > 0, there exist CT ≥ 0 and qT ≥ 1 such that

|V (t, x, i)| ≤ CT

(

1 + |x|qT
)

,

for all (t, x, i) ∈ [0, T ] × R
d × Im.

(ii) If in addition Assumption (H2) holds, then, for any β > 0, there exists a unique

continuous viscosity solution V β to system (1.3) satisfying the linear growth condition:

there exists Cβ ≥ 0 such that

|V β(x, i)| ≤ Cβ

(

1 + |x|
)

,

for all (x, i) ∈ R
d × Im.

For the next result, we need the following additional assumptions.

(H3) The cost function c is constant with respect to the variable x ∈ R
d. By an

abuse of notation, under Assumption (H3), we denote c(i, j) = c(x, i, j), for all (x, i, j) ∈

R
d × Im × Im.

(HU) The interior set Ů of U is connected, and U coincides with the closure of its

interior: U = Cl(Ů).
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Remark 2.2 (i) Assumption (H3) is standard in the literature on switching control pro-

blems. In the present paper, it is used in Propositions 4.3 and 4.4 (and also in Corollary

4.2(i)) to establish the crucial uniform Lipschitz property of V β with respect to x.

(ii) Assumption (HU) is employed in obtaining a dual representation formula for V β in

Proposition 4.4. ✷

Theorem 2.2 Let Assumptions (H1), (H2), (H3), and (HU) hold. Then, there exists

a viscosity solution (λ, φ), with φ(·, i) Lipschitz, for any i ∈ Im, and φ(0, i0) = 0 for some

fixed i0 ∈ Im, to the ergodic system (2.3), such that

βV β(x, i)
β→0+
−→ λ,

for all (x, i) ∈ R
d × Im, and, for some sequence (βk)k∈N, with βk ց 0+, we have

V βk(·, i)− V βk(0, i0)
k→∞
−→

in C(Rd)
φ(·, i),

for all i ∈ Im, where “ in C(Rd)” stands for uniform convergence on compact subsets of Rd.

Moreover, for any viscosity solution (λ, φ) to (2.3), with φ satisfying

|φ(x, i)| ≤ Mφ(1 + |x|2), ∀ (x, i) ∈ R
d × Im, (2.4)

for some constants Mφ ≥ 0, we have

V (T, x, i)

T

T→∞
−→ λ, ∀ (x, i) ∈ R

d × Im.

In particular, λ is uniquely determined for all viscosity solutions (λ, φ) to (2.3), with φ

satisfying a quadratic growth condition as in (2.4).

Remark 2.3 (i) A question which naturally arises from Theorem 2.2 is the uniqueness of

φ. This problem has been tackled in [13], Theorem 5.2, using probabilistic techniques as in

[26] and assuming some smoothness of φ together with the existence of an optimal feedback

control (under which the state process admits a unique invariant measure). This kind

of proof seems, however, designed to deal with ergodic equation associated to stochastic

control problems rather than to stochastic differential games. Let us explain more in detail

this latter issue, recalling the main steps of the proof of Theorem 5.2 in [13] (translated into

the present framework) and emphasizing where it breaks down for stochastic differential

games. The goal in [13] consists in proving, for every i ∈ Im, that there exists a real

constant Ci such that

W (T, x, i) := V (T, x, i) −
(

λT + φ(x, i)
) T→∞

−→ Ci, ∀ (x, i) ∈ R
d × Im. (2.5)

We see that if (2.5) holds for every viscosity solution (λ, φ), with φ Lipschitz, to the ergodic

system (2.3), then, for every i ∈ Im, φ(·, i) is uniquely determined up to a constant which

depends only on i ∈ Im. To prove (2.5), we proceed as follows (we just sketch the main

steps and do not pause on the technicalities, however we use some results from Section 3
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below). For any T, S ≥ 0, from the identity V (T + S, x, i) = V T+S(0, x, i, ) stated in (3.9),

we deduce

V (T + S, x, i) = sup
α∈A0,0

inf
υ∈U0,0

E

[
∫ T

0
f(X0,x,i;α,υ

s , I0,x,i;α,υs , υs)ds + V (S,X0,x,i;α,υ
T , I0,x,i;α,υT )

−
∑

n∈N

c(X0,x,i;α,υ
τn

, I0,x,i;α,υ
τ−n

, I0,x,i;α,υτn
)1{τn<T}

]

.

On the other hand, from (3.15) with t = 0, we have

φ(x, i) = sup
α∈A0,0

inf
υ∈U0,0

E

[
∫ T

0

(

f(X0,x,i;α,υ
s , I0,x,i;α,υs , υs)− λ

)

ds+ φ(X0,x,i;α,υ
T , I0,x,i;α,υT )

−
∑

n∈N

c(X0,x,i;α,υ
τn , I0,x,i;α,υ

τ−n
, I0,x,i;α,υτn )1{τn<T}

]

.

Now, suppose that there exists an optimal control α∗ = (τ∗n, ι
∗
n)n∈N ∈ A0,0, independent of

T , such that

φ(x, i) = inf
υ∈U0,0

E

[
∫ T

0

(

f(X0,x,i;α∗,υ
s , I0,x,i;α

∗,υ
s , υs)− λ

)

ds+ φ(X0,x,i;α∗,υ
T , I0,x,i;α

∗,υ
T )

−
∑

n∈N

c(X0,x,i;α∗,υ
τ∗n

, I0,x,i;α
∗,υ

(τ∗n)
− , I0,x,i;α

∗,υ
τ∗n

)1{τ∗n<T}

]

.

As a consequence, we obtain the inequality

W (T + S, x, i) ≥ inf
υ∈U0,0

E
[

W (S,X0,x,i;α∗,υ
T , I0,x,i;α

∗,υ
T )

]

. (2.6)

As in [13] and [26], let us introduce, for any i ∈ Im, the set of ω-limits of {W (T, ·, i)}T≥0

in C(Rd):

Γi :=
{

w∞ ∈ C(Rd) : W (Tj, ·, i) → w∞ in C(Rd) for some Tj ր ∞
}

.

It can be shown that Γi 6= ∅. Therefore, (2.5) follows if we prove that Γi = {w∞,i} is

a singleton, with w∞,i constant. In [13], Theorem 5.2, the idea is to pass to the limit in

(2.6), using that under α∗ the state process admits a unique invariant measure. Since,

however, in (2.6) there is also the “inf” operator (due to the game feature of the robust

switching control problem), the same argument does not allow to conclude (indeed, e.g.,

the “invariant measure” would depend on υ ∈ U0,0).

(ii) Notice that λ appearing in Theorem 2.2 does not depend on i ∈ Im.

(iii) Assumptions (H3) and (HU) in Theorem 2.2 are not needed to prove the convergence

results of V , but only those of V β.

(iv) Theorem 2.2 can be interpreted as a Tauberian theorem. Indeed, the convergence

results for V β allows to prove the existence of a viscosity solution (λ, φ) to (2.3), from

which the asymptotic results for V follow (see also Remark 5.3(ii) in [13]). ✷
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Remark 2.4 Suppose that Assumptions (H1), (H2), (H3), and (HU) hold. Suppose

also that there exists a viscosity solution (λ, φ) to (2.3) with φ satisfying (2.4). Finally,

similarly to (2.7), suppose that for every ε > 0 there exists an ε-optimal control (we omit

the dependence on ε) α∗ = (τ∗n, ι
∗
n)n∈N ∈ A0,0 (we refer to Section 3.1 for all unexplained

notations), independent of T , such that

φ(x, i) ≤ inf
υ∈U0,0

E

[
∫ T

0

(

f(X0,x,i;α∗,υ
s , I0,x,i;α

∗,υ
s , υs)− λ

)

ds+ φ(X0,x,i;α∗,υ
T , I0,x,i;α

∗,υ
T )

−
∑

n∈N

c(X0,x,i;α∗,υ
τ∗n

, I0,x,i;α
∗,υ

(τ∗n)
− , I0,x,i;α

∗,υ
τ∗n

)1{τ∗n<T}

]

+ ε. (2.7)

Then λ can be interpreted as value of a robust ergodic control problem:

λ = sup
α∈A0,0

J(x, i;α), ∀ (x, i) ∈ R
d × Im, (2.8)

with

J(x, i;α) := lim sup
T→∞

1

T
inf

υ∈U0,0

E

[
∫ T

0
f(X0,x,i;α,υ

t , I0,x,i;α,υt , υt)dt

−
∑

n∈N

c(X0,x,i;α,υ
τn

, I0,x,i;α,υ
τ−n

, I0,x,i;α,υτn
)1{τn<T}

]

,

where τn stands for τn(X0,x,i;α,υ
· , I0,x,i;α,υ

·−
), and the state processesX0,x,i;α,υ, I0,x,i;α,υ satisfy

system (3.1) below, with t = 0, (x, i) ∈ R
d × Im, α = (τn, ιn)n∈N ∈ A0,0.

Let us prove (2.8). Firstly, observe that the viscosity solution V to system (1.1), whose

existence is stated in Theorem 2.1, admits the stochastic control representation (see identity

(3.9) below):

V (T, x, i) = V T (0, x, i) = sup
α∈A0,0

inf
υ∈U0,0

JT (0, x, i;α, υ),

where

JT (0, x, i;α, υ) = E

[
∫ T

0
f(X0,x,i;α,υ

t , I0,x,i;α,υt , υt)dt+ g(X0,x,i;α,υ
T , I0,x,i;α,υT )

−
∑

n∈N

c(X0,x,i;α,υ
τn

, I0,x,i;α,υ
τ−n

, I0,x,i;α,υτn
)1{τn<T}

]

.

Then, by Theorem 2.2, for any (x, i) ∈ R
d × Im,

λ = lim
T→∞

V (T, x, i)

T
= lim

T→∞
sup

α∈A0,0

inf
υ∈U0,0

1

T
E

[
∫ T

0
f(X0,x,i;α,υ

t , I0,x,i;α,υt , υt)dt

+ g(X0,x,i;α,υ
T , I0,x,i;α,υT )−

∑

n∈N

c(X0,x,i;α,υ
τn , I0,x,i;α,υ

τ−n
, I0,x,i;α,υτn )1{τn<T}

]

= lim
T→∞

sup
α∈A0,0

inf
υ∈U0,0

1

T
E

[
∫ T

0
f(X0,x,i;α,υ

t , I0,x,i;α,υt , υt)dt
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−
∑

n∈N

c(X0,x,i;α,υ
τn , I0,x,i;α,υ

τ−n
, I0,x,i;α,υτn )1{τn<T}

]

, (2.9)

where the last equality follows from the fact that

lim
T→∞

sup
α∈A0,0

inf
υ∈U0,0

1

T
E
[

g(X0,x,i;α,υ
T , I0,x,i;α,υT )

]

= 0,

which is a consequence of the quadratic growth condition of g and estimate (3.3). From (2.9)

we see that λ ≥ supα∈A0,0
J(x, i;α). To prove the reverse inequality, fix (x, i) ∈ R

d × Im
and ε > 0, then by (2.7) we obtain

λ ≤
1

T
inf

υ∈U0,0

E

[
∫ T

0
f(X0,x,i;α∗,υ

t , I0,x,i;α
∗,υ

t , υt)dt+ φ(X0,x,i;α∗,υ
T , I0,x,i;α

∗,υ
T )− φ(x, i)

−
∑

n∈N

c(X0,x,i;α∗,υ
τ∗n

, I0,x,i;α
∗,υ

(τ∗n)
− , I0,x,i;α

∗,υ
τ∗n

)1{τ∗n<T}

]

+ ε.

From the Lipschitz property of φ and estimate (3.3), we have

lim
T→∞

1

T
inf

υ∈U0,0

E
[

φ(X0,x,i;α∗,υ
T , I0,x,i;α

∗,υ
T )− φ(x, i)

]

= 0,

therefore

λ ≤ lim
T→∞

1

T
inf

υ∈U0,0

E

[
∫ T

0
f(X0,x,i;α∗,υ

t , I0,x,i;α
∗,υ

t , υt)dt

−
∑

n∈N

c(X0,x,i;α∗,υ
τ∗n

, I0,x,i;α
∗,υ

(τ∗n)
− , I0,x,i;α

∗,υ
τ∗n

)1{τ∗n<T}

]

+ ε ≤ sup
α∈A0,0

J(x, i;α) + ε.

From the arbitrariness of ε, we find λ ≤ supα∈A0,0
J(x, i;α), which, together with (2.9),

yields (2.8). ✷

Remark 2.5 Explicit solution to (2.3) in the two-regime case. We show the validity of

Theorem 2.2 in a specific example, where we are able to find an explicit solution to the

ergodic system of quasi variational inequalities (2.3). More precisely, we consider the frame-

work of Section 5.3 in [37], where an infinite horizon two-regime switching control problem

is studied and an explicit solution is determined. We slightly generalize the results in [37]

in order to take into account the robust feature. This allows us to find explicitly V β, β > 0.

Then, as expected from Theorem 2.2, letting β → 0+, we are able to construct a solution

to (2.3).

Take d = 1 and m = 2. Let b and σ be as in Remark 2.1.(ii), so that the state process

X can assume only positive values whenever the initial condition is positive. Let also

c(x, i, j) = c(i, j) be independent of x, and f(x, i, u) = xp, x > 0, for some p ∈ (0, 1).

Define the constants κ1 and κ2 as

κi = − inf
u∈U

[

b̄(i, u)p + 1
2 σ̄(i, u)

2p(p− 1)
]

, i = 1, 2.

Recalling from condition (2.2) that b̄ is a strictly negative function, we see that κi > 0,

i = 1, 2. Proceeding as in Theorem 5.3.4 of [37], we now find the explicit expression of V β,
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after distinguishing between the two cases: κ1 = κ2 and κ1 6= κ2 (in this latter case we

need to impose an additional assumption on b̄ and σ̄ in order to follow the same steps as

in the proof of Theorem 5.3.4).

Case 1: κ1 = κ2. Consider the function

V β(x, i) = Kβ
i x

p, x > 0, i = 1, 2,

where

Kβ
i =

1

β + κi
, i = 1, 2.

By direct calculation, we can prove that V β is a viscosity solution to equation (1.3) on

(0,∞)×{1, 2}. Notice that this latter result is still true when β = 0. Then, it is easy to see

that the pair (λ, φ) given by λ = limβ→0+ βV
β(x, i) = 0 and φ(·, i) = limβ→0+ V

β(·, i) =

K0
i ·

p, with K0
i = 1/κi, is a viscosity solution to the ergodic system (2.3). From the explicit

expression of the pair (λ, φ), proceeding as in Theorem 5.3.4 in [37], we can also determine

an optimal switching control for the robust ergodic control problem (2.8). Indeed, it is easy

to see that, in this case, it is never optimal to switch.

Case 2: κ1 6= κ2. In order to reason as in the proof of Theorem 5.3.4 in [37], we impose

the following additional assumption: b̄(i, u) = b̂(i)h(u) and σ̄(i, u) = σ̂(i)
√

h(u), with

b̂ : {1, 2} → R, σ̂ : {1, 2} → R, h : U → (0,∞) continuous and bounded, satisfying (see

condition (2.2))

b̂(i)h(u) +
1

2
σ̂(i)2h(u) ≤ −γ,

for all (i, u) ∈ {1, 2} × U . In particular, b̂ is a strictly negative function.

Without loss of generality, we suppose that κ1 > κ2, the other case can be treated in

an analogous way. Let

mβ =
1

2
−

b̂(1)

σ̂(1)2
+

√

(

1

2
−

b̂(1)

σ̂(1)2

)2

+
2β

σ̂(1)2 infu∈U h(u)
> 1.

Then, proceeding as in Theorem 5.3.4 of [37], we see that the unique continuous viscosity

solution to equation (1.3) on (0,∞)×{1, 2} is given by the function V β defined as follows:

V β(x, 1) =

{

Aβx
mβ +Kβ

1 x
p, x ∈ (0, xβ),

Kβ
2 x

p − c(1, 2), x ∈ [xβ,∞),

V β(x, 2) = Kβ
2 x

p, x ∈ (0,∞),

with

xβ =

(

mβ

mβ − p

c(1, 2)

Kβ
2 −Kβ

1

)
1
p

,

Aβ =
(

Kβ
2 −Kβ

1

) p

mβ

x
p−mβ

β .

Notice that xβ and Aβ are determined by the continuity and smooth-pasting conditions of

V β(·, 1) at xβ:

Aβx
mβ

β +Kβ
1 x

p
β = Kβ

2 x
p
β − c(1, 2),
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Aβmβx
mβ−1
β +Kβ

1 px
p−1
β = Kβ

2 px
p−1
β .

Then, it is easy to see that a viscosity solution to the ergodic system (2.3) is given by the

pair (λ, φ), with λ = limβ→0+ βV
β(x, i) = 0 and φ(·, i) = limβ→0+ V

β(·, i) defined as

φ(x, 1) =

{

A0x
m0 +K0

1x
p, x ∈ (0, x0),

K0
2x

p − c(1, 2), x ∈ [x0,∞),

φ(·, 2) = K0
2x

p, x ∈ (0,∞),

where K0
1 , K

0
2 , m0, x0, A0 correspond to Kβ

1 , K
β
2 , mβ, xβ, Aβ with β = 0. Exploiting the

knowledge of (λ, φ), we can also find an optimal switching control for the robust ergodic

control problem (2.8). Indeed, proceeding as in Theorem 5.3.4 in [37], it is easy to see that:

when we are in regime 1, it is optimal to switch to regime 2 whenever the state process X

exceeds the threshold x0; while it is never optimal to switch when we are in regime 2. ✷

The rest of the paper is devoted not only to the proof of Theorems 2.1 and 2.2, but

also to investigate more in detail the properties of the systems (1.1), (1.3), and (2.3), in

particular from a stochastic control point of view, exploring their relation with robust

switching control problems. To sum up, the logical flow of the paper is the following:

Section 3 is devoted to the analysis of the parabolic system. The essence of this section are

three propositions: Proposition 3.1 states the connection between the parabolic system of

variational inequalities (1.1) and robust switching control problem. Proposition 3.2 gives

robust control representation bounds for a solution to the ergodic system, which together

with Proposition 3.1 leads to a quite simple argument for proving in Proposition 3.3 the

long time convergence of the parabolic system. In Section 4, we analyze the elliptic system.

The essence of this section can be summarized as follows. Proposition 4.2 provides a

Feynman-Kac formula in terms of BSDE for the solution V β,n to the penalized system

of elliptic variational inequalities, which is then used for stating in Corollary 4.1, a dual

representation for V β,n, and then by passing to the limit in n, for getting in Proposition

4.3 a dual probabilistic game representation for V β. From these dual representations, we

are able to derive key uniform estimates for V β,n in Corollary 4.2, and then for V β in

Propositions 4.3 and 4.4. Finally, we can obtain the existence of a solution to the ergodic

system and the convergence result of V and V β in Proposition 4.5.

3 Long time asymptotics of the parabolic system

We firstly investigate the long time asymptotics of the solution V to the parabolic system of

variational inequalities (1.1). To this end, we shall rely on probabilistic arguments, which

are based on a characterization of V in terms of a finite horizon robust switching control

problem introduced in [6], that we now describe.

3.1 Robust feedback switching control problem

We present the robust switching control problem focusing only on the main issues, in order

to alleviate the presentation and reduce as much as possible the technicalities, for which

12



we refer to [6].

Consider a complete probability space (Ω,F ,P) and a d-dimensional Brownian motion

W = (Wt)t≥0 defined on it. Denote by F = (Ft)t≥0 the completion of the natural filtration

generated by W . Fix a finite time horizon T ∈ (0,∞). In the robust switching control

problem we are going to present, the switcher plays against an adverse player, which can

be interpreted as nature and renders the optimization problem robust. We begin recalling

the type of controls adopted by the switcher and by nature, following Definitions 2.1 and

2.2 in [6], to which we refer for more details:

• At,t, t ∈ [0, T ], denotes the family of all feedback switching controls starting at time

t for the switcher. A generic element of At,t is given by a double sequence α =

(τn, ιn)n∈N, where (τn)n∈N is a nondecreasing sequence of stopping times valued in

[t, T ] and ιn ∈ Im represents the switching action, i.e., the regime from time τn up

to time τn+1. The random variable ιn only depends on the information known up to

time τn. Each α has a feedback form, in the sense that it is chosen by the switcher

based only on the past and present information coming from the state and regime

processes.

• Ut,t, t ∈ [0, T ], denotes the family of all open-loop controls starting at time t for

nature. A generic element of Ut,t is an adapted process υ : [t, T ]× Ω → U .

As explained in [6], the reason behind the feedback form of a switching control comes from

the observation that the switcher in general knows only the evolution of the state process

X and regime I. On the other hand, a control υ ∈ Ut,t is not necessarily of feedback form,

since nature at time t ∈ [0, T ] is wise to all information up to time t.

Let us now introduce the controlled dynamics of the state and regime processes. For

any (t, x, i) ∈ [0, T ] × R
d × Im, α = (τn, ιn)n∈N ∈ At,t, υ ∈ Ut,t, the state process X and

regime I evolve on [t, T ] according to the following controlled SDEs:















Xs = x+
∫ s

t
b(Xr, Ir, υr)dr +

∫ s

t
σ(Xr, Ir, υr)dWr, t ≤ s ≤ T,

Is = i1{t≤s<τ0(X·,I·−)} +
∑

n∈N ιn(X·, I·−)1{τn(X·,I·−)≤s<τn+1(X·,I·−)}, t ≤ s < T,

IT = IT− ,

(3.1)

with It− := It. Notice that τn and ιn have a feedback form, indeed they depend only on X

and I. We recall the following wellposedness result from [6].

Lemma 3.1 Suppose that Assumption (H1) holds. For any T > 0, (t, x, i) ∈ [0, T ]×R
d×

Im, α ∈ At,t, υ ∈ Ut,t, there exists a unique (up to indistinguishability) F-adapted process

(Xt,x,i;α,υ, It,x,i;α,υ) = (Xt,x,i;α,υ
s , It,x,i;α,υs )t≤s≤T to equation (3.1). Moreover, for any p ≥ 2

there exists a positive constant Cp,T , depending only on p, T, L1 (independent of t, x, i, α, υ),

such that

E

[

sup
t≤s≤T

|Xt,x,i;α,υ
s |p

]

≤ Cp,T (1 + |x|p). (3.2)
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Proof. See Proposition 2.1 in [6]. ✷

We also have the following result as a consequence of the dissipativity condition.

Lemma 3.2 Suppose that Assumptions (H1) and (H2) hold. There exists a positive con-

stant C̄, depending only on Mb,σ := sup(i,u)∈Im×U (|b(0, i, u)|+‖σ(0, i, u)‖), L1, and γ, such

that

sup
s∈[t,T ], α∈At,t, υ∈Ut,t

E
[

|Xt,x,i;α,υ
s |2

]

≤ C̄(1 + |x|2), (3.3)

for any (t, x, i) ∈ [0, T ]× R
d × Im and T > 0.

Proof. Fix T > 0, (t, x, i) ∈ [0, T ] × Rd × Im, α ∈ At,t, υ ∈ Ut,t. The proof can be

done along the lines of Lemma 2.1(i) in [13]. We simply recall the main steps. We take

s ∈ [t, T ] and apply Itô’s formula to eγ(r−t)|Xt,x,i;α,υ
r |2 between r = t and r = s. Then, we

rearrange the terms in order to exploit the dissipativity condition (H2). Afterwards, using

the uniform linear growth condition of b and σ with respect to x, we find that there exists

a constant C̄, depending only on Mb,σ, L1, γ, such that

|Xt,x,i;α,υ
s |2 ≤ C̄

(

1 + |x|2 +

∫ s

t

eγ(r−s)(Xt,x,i;α,υ
r )⊺σ(Xt,x,i;α,υ

r , It,x,i;α,υr , υr)dWr

)

. (3.4)

From estimate (3.2) and the linear growth of σ, we see that the stochastic integral in (3.4)

is a martingale. Therefore, taking the expectation in (3.4), the claim follows. ✷

We can now introduce the value function of the robust feedback switching control prob-

lem, which is given by:

V T (t, x, i) := sup
α∈At,t

inf
υ∈Ut,t

JT (t, x, i;α, υ), ∀ (t, x, i) ∈ [0, T ]× R
d × Im, (3.5)

with

JT (t, x, i;α, υ) := E

[
∫ T

t

f(Xt,x,i;α,υ
s , It,x,i;α,υs , υs)ds+ g(Xt,x,i;α,υ

T , It,x,i;α,υT )

−
∑

n∈N

c(Xt,x,i;α,υ
τn , It,x,i;α,υ

τ−n
, It,x,i;α,υτn )1{τn<T}

]

,

where τn stands for τn(Xs,x,i;α,υ
· , Is,x,i;α,υ

·−
). Notice that the presence of the infυ∈Ut,t in

(3.5) means that we are looking at the worst case scenario for the switcher and makes the

switching control problem robust.

The dynamic programming equation associated to the robust switching control problem

is given by the following system of backward parabolic variational inequalities:



















min
{

−
∂V T

∂t
(t, x, i)− infu∈U

[

Li,uV T (t, x, i) + f(x, i, u)
]

,

V T (t, x, i) −maxj 6=i

[

V T (t, x, j) − c(x, i, j)
]

}

= 0, (t, x, i) ∈ [0, T )× R
d × Im,

V T (T, x, i) = g(x, i), (x, i) ∈ R
d × Im.

(3.6)
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In Corollary 4.1 of [6] it is proved, by means of the stochastic Perron method, that V T sat-

isfies the dynamic programming principle and it is the unique continuous viscosity solution

to system (3.6) (see Definition 2.3 in [6] for the definition of viscosity solution to (3.6)),

satisfying a polynomial growth condition

sup
(t,x,i)∈[0,T ]×Rd×Im

|V T (t, x, i)|

1 + |x|q
< ∞, (3.7)

for some q ≥ 1.

We can now present the relation between system (1.1) and the robust switching control

problem, which also gives a wellposedness result for viscosity solutions to (1.1) (we do not

recall here the definition of viscosity solution to (1.1), since it is standard and similar to

the definition of viscosity solution to (3.6), for which we refer to Definition 2.3 in [6]).

Proposition 3.1 Suppose that Assumption (H1) holds. Then, there exists a unique con-

tinuous viscosity solution V to system (1.1) satisfying the growth condition: for any T > 0,

there exist CT ≥ 0 and qT ≥ 1 such that

|V (t, x, i)| ≤ CT

(

1 + |x|qT
)

, (3.8)

for all (t, x, i) ∈ [0, T ] × R
d × Im. The function V is given by

V (t, x, i) := V T (T − t, x, i), ∀ (t, x, i) ∈ [0, T ]× R
d × Im, (3.9)

for any T > 0, where V T is defined by (3.5).

Remark 3.1 Notice that point (i) of Theorem 2.1 follows from Proposition 3.1. ✷

Proof. Step I. Existence. We begin noting that

V T (s, x, i) = V T ′

(s+ T ′ − T, x, i), ∀ (s, x, i) ∈ [0, T ]× R
d × Im, (3.10)

for any 0 ≤ T ≤ T ′ < ∞. Indeed, V T ′
(· + T ′ − T, ·, ·) is a viscosity solution to (3.6) on

[0, T ] × R
d × Im, so that identification (3.10) follows from comparison Theorem 4.1 in [6].

Setting t := T − s in (3.10), we obtain

V T (T − t, x, i) = V T ′

(T ′ − t, x, i), ∀ (t, x, i) ∈ [0, T ]× R
d × Im.

This implies that the function V given by (3.9) is well-defined. Moreover, V is continuous

and satisfies a growth condition as in (3.8). In addition, from the viscosity properties of

V T it follows that V is a viscosity solution to system (1.1) on [0, T ] × R
d × Im, for any

T > 0. From the arbitrariness of T , we have that V is a viscosity solution to (1.1) on

[0,∞) × R
d × Im.

Step II. Uniqueness. Let W : [0,∞) × R
d × Im → R be a continuous viscosity solution

to (1.1) satisfying a growth condition as in (3.8). For any T > 0 define the function

W T : [0, T ]× R
d × Im → R as follows

W T (t, x, i) := W (T − t, x, i), ∀ (t, x, i) ∈ [0, T ]× R
d × Im.

ThenW T is a continuous viscosity solution to (3.6) satisfying a polynomial growth condition

as in (3.7). From comparison Theorem 4.1 in [6] it follows thatW T ≡ V T , thereforeW ≡ V .

✷
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3.2 Long time asymptotics

We present the following stochastic control representation bounds for every viscosity solu-

tion (λ, φ) to (2.3), with φ satisfying a polynomial growth condition.

Proposition 3.2 Suppose that Assumption (H1) holds and consider a viscosity solution

(λ, φ) to (2.3). Then, for any T > 0, φ is a viscosity supersolution (resp. subsolution) to the

nonlinear backward parabolic system of variational inequalities in the unknown ψ : [0, T ] ×

R
d × Im → R:



















min
{

−
∂ψ

∂t
(t, x, i) − infu∈U

[

Li,uψ(t, x, i) + f(x, i, u)− λ
]

,

ψ(t, x, i) −maxj 6=i

[

ψ(t, x, j) − c(x, i, j)
]

}

= 0, (t, x, i) ∈ [0, T )× R
d × Im,

ψ(T, x, i) = minj φ(x, j) (resp. maxj φ(x, j)), (x, i) ∈ R
d × Im.

(3.11)

Suppose, in addition, that φ satisfies

|φ(x, i)| ≤ Mφ(1 + |x|qφ), ∀ (x, i) ∈ R
d × Im, (3.12)

for some constants Mφ ≥ 0 and qφ ≥ 1. Then, for any T > 0, φ satisfies

sup
α∈At,t

inf
υ∈Ut,t

JT
(λ,φ)(t, x, i;α, υ) ≤ φ(x, i) ≤ sup

α∈At,t

inf
υ∈Ut,t

J
T
(λ,φ)(t, x, i;α, υ), (3.13)

∀ (t, x, i) ∈ [0, T ]× R
d × Im, with

JT
(λ,φ)(t, x, i;α, υ) := E

[
∫ T

t

(

f(Xt,x,i;α,υ
s , It,x,i;α,υs , υs)− λ

)

ds+min
j
φ(Xt,x,i;α,υ

T , j)

−
∑

n∈N

c(Xt,x,i;α,υ
τn , It,x,i;α,υ

τ−n
, It,x,i;α,υτn )1{τn<T}

]

,

J
T
(λ,φ)(t, x, i;α, υ) := E

[
∫ T

t

(

f(Xt,x,i;α,υ
s , It,x,i;α,υs , υs)− λ

)

ds+max
j
φ(Xt,x,i;α,υ

T , j)

−
∑

n∈N

c(Xt,x,i;α,υ
τn , It,x,i;α,υ

τ−n
, It,x,i;α,υτn )1{τn<T}

]

.

Remark 3.2 Notice that from the viscosity properties of φ we also know that φ is a

viscosity solution to the system with terminal condition φ itself:



















min
{

−
∂ψ

∂t
(t, x, i)− infu∈U

[

Li,uψ(t, x, i) + f(x, i, u) − λ
]

,

ψ(t, x, i) −maxj 6=i

[

ψ(t, x, j) − c(x, i, j)
]

}

= 0, (t, x, i) ∈ [0, T )× R
d × Im,

ψ(T, x, i) = φ(x, i), (x, i) ∈ R
d × Im.

Now, suppose that φ satisfies (3.12) and condition (H1)(iii), i.e.,

φ(x, i) ≥ max
j 6=i

[

φ(x, j) − c(x, i, j)
]

, ∀ (x, i) ∈ R
d × Im. (3.14)
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Then, from Corollary 4.1 in [6] it follows that φ admits the representation

φ(x, i) = sup
α∈At,t

inf
υ∈Ut,t

JT
(λ,φ)(t, x, i;α, υ), ∀ (t, x, i) ∈ [0, T ]× R

d × Im, (3.15)

with

JT
(λ,φ)(t, x, i;α, υ) := E

[
∫ T

t

(

f(Xt,x,i;α,υ
s , It,x,i;α,υs , υs)− λ

)

ds+ φ(Xt,x,i;α,υ
T , It,x,i;α,υT )

−
∑

n∈N

c(Xt,x,i;α,υ
τn

, It,x,i;α,υ
τ−n

, It,x,i;α,υτn
)1{τn<T}

]

.

However, since (λ, φ) is only a viscosity solution to (2.3), it is not obvious that (3.14) holds.

For this reason, we introduce the two systems in (3.11) with terminal conditions minj φ(x, j)

and maxj φ(x, j), which clearly satisfy condition (3.14), since c is nonnegative. ✷

Proof. The fact that φ is a viscosity super/subsolution to (3.11) follows obviously from

the viscosity properties of φ, since φ does not depend on time t.

From Corollary 4.1 in [6] we know that there exists a unique continuous and with

polynomial growth viscosity solution ψ (resp. ψ) to the system of variational inequalities

(3.11) with terminal condition minj φ(x, j) (resp. maxj φ(x, j)). From comparison Theorem

4.1 in [6] we have

ψ ≤ φ ≤ ψ.

Using again Corollary 4.1 in [6], we see that ψ and ψ admit the stochastic control repre-

sentations

ψ(t, x, i) = sup
α∈At,t

inf
υ∈Ut,t

JT
(λ,φ)(t, x, i;α, υ), ψ(t, x, i) = sup

α∈At,t

inf
υ∈Ut,t

J
T
(λ,φ)(t, x, i;α, υ),

∀ (t, x, i) ∈ [0, T ]× R
d × Im, from which (3.13) follows. ✷

From the representation formula for V and the bounds on a generic viscosity solution

(λ, φ) to (2.3), we deduce the following result when φ satisfies a polynomial growth condition

of second degree.

Proposition 3.3 Suppose that Assumptions (H1)-(H2) hold and consider a viscosity so-

lution (λ, φ) to (2.3), with φ satisfying

|φ(x, i)| ≤ Mφ(1 + |x|2), ∀ (x, i) ∈ R
d × Im, (3.16)

for some constant Mφ ≥ 0. Then

V (T, x, i)

T

T→∞
−→ λ, ∀ (x, i) ∈ R

d × Im.

In particular, λ is uniquely determined for all viscosity solutions (λ, φ) to (2.3), with φ

satisfying a polynomial growth condition as in (3.16).

Remark 3.3 Notice that Proposition 3.3 gives the uniqueness of λ and one of the conver-

gence results claimed in Theorem 2.2. ✷
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Proof. From (3.9) we have V (T, x, i) = V T (0, x, i). Therefore, using (3.5) we obtain

V (T, x, i) = sup
α∈A0,0

inf
υ∈U0,0

JT (0, x, i;α, υ).

On the other hand, taking t = 0 in (3.13) we find

sup
α∈A0,0

inf
υ∈U0,0

JT
(λ,φ)(0, x, i;α, υ) ≤ φ(x, i) ≤ sup

α∈A0,0

inf
υ∈U0,0

J
T
(λ,φ)(0, x, i;α, υ).

Therefore

|V (T, x, i) − λT − φ(x, i)| ≤ sup
α∈A0,0

sup
υ∈U0,0

E
[
∣

∣g(X0,x,i;α,υ
T , I0,x,i;α,υT )

∣

∣+max
j

∣

∣φ(X0,x,i;α,υ
T , j)

∣

∣

]

.

From the growth condition on g and φ, and using estimate (3.3), it follows that there exists

some positive constant C, independent of T, x, i, such that

|V (T, x, i) − λT − φ(x, i)| ≤ C(1 + |x|2),

from which the claim follows. ✷

4 Asymptotic behavior of the elliptic system

In the present section, we study the elliptic system of variational inequalities (1.3), and in

particular the asymptotic behavior of V β as β tends to zero, which will entail the existence

of a viscosity solution (λ, φ) to the ergodic system (2.3). Similarly to the parabolic case, we

can derive a stochastic control representation for V β in terms of an infinite horizon robust

feedback switching control problem. However, as we shall emphasize below, it is convenient

to derive also another representation for V β , known as dual representation formula, inspired

by [31] and based on randomization of the controls α and υ.

4.1 Motivation for the randomization approach

We begin presenting the representation of V β as value function of an infinite horizon robust

feedback switching control, which reads as follows:

V β(x, i) := sup
α∈A

inf
υ∈U

Jβ(x, i;α, υ), ∀ (x, i) ∈ R
d × Im, (4.1)

with

Jβ(x, i;α, υ) := E

[
∫ ∞

0
e−βtf(X0,x,i;α,υ

t , I0,x,i;α,υt , υt)dt

−
∑

n∈N

e−βτnc(X0,x,i;α,υ
τn , I0,x,i;α,υ

τ−n
, I0,x,i;α,υτn )1{τn<∞}

]

,

where τn stands for τn(X0,x,i;α,υ
· , I0,x,i;α,υ

·−
), and the state processesX0,x,i;α,υ, I0,x,i;α,υ satisfy

the first two equations in (3.1) with t = 0 and for any T ≥ 0. Here, we do not pause on

the technicalities, since the formulation of the stochastic control problem is analogous, with
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some obvious modifications, to that of the finite horizon case, already recalled in Section

3.1. We just notice that A denotes the family of all feedback switching controls starting at

time 0 for the switcher. A is defined as A0,0 in Definition 2.1 of [6], with T replaced by

∞ and the property “τn(yn) = T for n large enough along every adaptive sequence (yn)n”

is replaced by “τn(yn) ր ∞ as n goes to infinity, for every adaptive sequence (yn)n”.

On the other hand, U denotes the family of all open-loop controls starting at time 0 for

nature. A generic element of U is an adapted process υ : [0,∞) × Ω → U . It is then easy

to see that, for every T > 0, (x, i) ∈ R
d × Im, α ∈ A, υ ∈ U , Lemma 3.1 still holds for

(X0,x,i;α,υ
s , I0,x,i;α,υs )0≤s≤T and for the first two equations in (3.1) on [0, T ].

Proposition 4.1 Let Assumptions (H1) and (H2) hold. Then, for any β > 0, the func-

tion V β defined by (4.1) is the unique continuous viscosity solution to system (1.3) satisfying

a linear growth condition

sup
(x,i)∈Rd×Im

|V β(x, i)|

1 + |x|
< ∞. (4.2)

We do not report the proof of Proposition 4.1 here (which provides statement (ii) of Theorem

2.1), since it can be done proceeding as in the finite horizon case, for which we refer to

Corollary 4.1 in [6]. We just observe that the proof is based on the stochastic Perron

method, which yields, as a by-product, the following dynamic programming principle:

V β(x, i) = sup
α∈A

inf
υ∈U

E

[

e−βTV β(X0,x,i;α,υ
T , I0,x,i;α,υT ) +

∫ T

0
e−βtf(X0,x,i;α,υ

t , I0,x,i;α,υt , υt)dt

−
∑

n∈N

e−βτnc(X0,x,i;α,υ
τn , I0,x,i;α,υ

τ−n
, I0,x,i;α,υτn )1{τn≤T}

]

, ∀ (x, i) ∈ R
d × Im, (4.3)

for all T ≥ 0. Identity (4.3) implies in particular the inequality

V β(x, i) ≥ max
j 6=i

[

V β(x, j) − c(x, i, j)
]

, ∀ (x, i) ∈ R
d × Im. (4.4)

As a matter of fact, fix (x, i) ∈ R
d × Im and take ᾱ = (τ̄n, ῑn)n∈N, with τ̄0 ≡ 0, τ̄n ≡ +∞

for every n ≥ 1, and ῑn ≡ j for every n ∈ N. Then, from (4.3) we get

V β(x, i) ≥ inf
υ∈U

E

[

e−βT
(

V β(X0,x,i;ᾱ,υ
T , j)− V β(x, j)

)

+

∫ T

0
e−βtf(X0,x,i;ᾱ,υ

t , j, υt)dt

]

+ e−βTV β(x, j) − c(x, i, j). (4.5)

Since V β(·, j) is a continuous function, for every ε > 0 there exists δε > 0 such that

|V β(x, j) − V β(x′, j)| ≤ ε, whenever |x− x′| ≤ δε. Therefore

sup
υ∈U

E
[

e−βT
∣

∣V β(X0,x,i;ᾱ,υ
T , j) − V β(x, j)

∣

∣

]

≤ e−βT ε+ e−βT sup
υ∈U

E
[
∣

∣V β(X0,x,i;ᾱ,υ
T , j) − V β(x, j)

∣

∣1
{|X0,x,i;ᾱ,υ

T
−x|>δε}

]

.

Now, from (4.2) we see that there exists some positive constant c such that

sup
υ∈U

E
[

e−βT
∣

∣V β(X0,x,i;ᾱ,υ
T , j) − V β(x, j)

∣

∣

]
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≤ e−βT ε+ ce−βT sup
υ∈U

{

E
[

1 + |x|2 + |X0,x,i;ᾱ,υ
T |2

]

P
(

|X0,x,i;ᾱ,υ
T − x| > δε

)}

≤ e−βT ε+
ce−βT

δ2ε
sup
υ∈U

{

E
[

1 + |x|2 + |X0,x,i;ᾱ,υ
T |2

]

E
[

|X0,x,i;ᾱ,υ
T − x|2

]}

. (4.6)

From estimate (3.2), we see that supυ∈U E[|X0,x,i;ᾱ,υ
T |2] is finite. We also notice that the

following standard estimate holds:

sup
υ∈U

E
[

|X0,x,i;ᾱ,υ
T − x|2

]

≤ C ′T (1 + |x|2),

for some positive constant C ′. As a consequence, letting T ↓ 0 in (4.6), we get

sup
υ∈U

E
[

e−βT
∣

∣V β(X0,x,i;ᾱ,υ
T , j) − V β(x, j)

∣

∣

] T↓0
−→ 0.

Similarly

sup
υ∈U

E

[
∫ T

0
e−βt

∣

∣f(X0,x,i;ᾱ,υ
t , j, υt)

∣

∣dt

]

T↓0
−→ 0.

In conclusion, letting T ↓ 0 in (4.5) we obtain

V β(x, i) ≥ V β(x, j) − c(x, i, j).

From the arbitrariness of j, we deduce that (4.4) holds.

Inequality (4.4) is the only result, derived from the stochastic control representation

(4.1), that we shall exploit. Instead, for all the other results, we shall use the dual repre-

sentation formula for V β. To understand why, we begin noting that, because of the feedback

form of α, from (4.1) it is not clear how to prove some properties of V β, which are crucial

to perform the asymptotic analysis. As an example, for the proof of the uniform Lipschitz

property of V β with respect to x we need an estimate of the following type (see estimate

(4.11)): for any t ≥ 0, there exists a constant Lt ≥ 0, depending only on t, such that

sup
i∈Im,α∈A,υ∈U

E
[

|X0,x,i;α,υ
t −X0,x′,i;α,υ

t |
]

≤ Lt|x− x′|, ∀x, x′ ∈ R
d. (4.7)

It is however not clear how to prove estimate (4.7) from representation (4.1), since the

evolution of the process I (which influence the dynamics of X through the coefficients b

and σ) depends on the starting point, x or x′, due to the feedback form of α.

As a possible solution to the issue raised above, one could consider the Elliott-Kalton

version of the infinite horizon robust switching control problem (which can be formulated

in a similar way to the finite horizon case, for which we refer to Section 4.2 in [6]). More

precisely, suppose we are able to prove that V β is the value function of the Elliott-Kalton

version of our control problem. Since non-anticipative strategies for the switcher take

values in the class of all switching controls (not necessarily of feedback type), estimate

(4.7) follows easily from that representation. The drawback of this approach is the proof

that V β is indeed the value function of the Elliott-Kalton formulation, which in general

relies on delicate measurability issues arising in the proof of the dynamic programming

principle, firstly faced in the seminal paper [19].
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An alternative to the Elliott-Kalton representation of V β is a dual representation for-

mula (in the sense of [31], Section 2.3) based on randomization of the controls α and υ

(see Remarks 4.1 and 4.2 for some insights on the dual representation formula). This lat-

ter turns out to be easier to derive, since it avoids the proof of a dynamic programming

principle, but it still allows to prove estimates for the process X as (4.7) above. For this

reason, our aim is now to prove that V β admits a dual representation formula, which can

be deduced starting from an opportune penalized elliptic system of variational inequalities

that we now introduce.

4.2 Penalized elliptic system of variational inequalities

For any n ∈ N and β > 0, consider the following penalized system of variational inequalities

in the unknown V β,n : Rd × Im → R:

βV β,n(x, i) − inf
u∈U

[

Li,uV β,n(x, i) + f(x, i, u)
]

(4.8)

−n
m
∑

j=1

[

V β,n(x, j) − V β,n(x, i)− c(x, i, j)
]+

= 0,

for any (x, i) ∈ R
d × Im, where h+ = max(h, 0) denotes the positive part of the function h.

Our aim is to prove that there exists a continuous viscosity solution V β,n to system (4.8),

converging to V β as n tends to infinity, such that V β,n satisfies a linear growth condition

and other opportune estimates uniformly in n, so that they still hold for V β letting n→ ∞.

We postpone the proof of the convergence of V β,n towards V β, and we begin focusing on the

proof of the estimates for V β,n, for which we adopt a probabilistic approach. In particular,

inspired by the results in [31], we derive Feynman-Kac and dual representation formulae

of V β,n by means of a backward stochastic differential equation with partially nonnegative

jumps on infinite horizon.

4.2.1 Feynman-Kac and dual representation formulae of V β,n

We begin introducing some notations (to simplify the presentation, we redefine certain

symbols as Ω or F, already used in Section 3, since no confusion should arise).

Let (Ω,F ,P) be a complete probability space, W = (Wt)t≥0 a d-dimensional Brownian

motion, π a Poisson random measure on R+× Im, µ a Poisson random measure on R+×U ,

such that W , π, and µ are independent. We assume that π has intensity measure ϑπ(di)dt,

where ϑπ(di) =
∑m

j=1 δj(di) and δj denotes the Dirac delta at j ∈ Im. We also suppose

that µ has intensity measure ϑµ(du)dt, where ϑµ is a finite measure on (U,B(U)) (B(U)

denotes the Borel σ-field on U) such that:

(i) The support of ϑµ is the whole set Ů , namely ϑµ(O ∩ Ů) > 0 for any open subset O

of Rq satisfying O ∩ Ů 6= ∅.

(ii) The boundary ∂U = U \ Ů of U is ϑµ-negligible: ϑµ(∂U) = 0.

We denote by π̃(dt, di) = π(dt, di) − ϑπ(di)dt and µ̃(dt, du) = µ(dt, du) − ϑµ(du)dt the

compensated martingale measures associated with π and µ, respectively. We also set F =
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(Ft)t≥0 the completion of the natural filtration generated by W , π, and µ, and we denote

by P the σ-field of F-predictable subsets of Ω× [0,∞).

Forward SDE and randomization. For any (x, i, u) ∈ R
d × Im × U , we introduce the

forward jump-diffusion Markov process (X, I,Γ), which evolves on [0,∞) according to the

following system of stochastic differential equations:































Xt = x+

∫ t

0
b(Xs, Is,Γs)ds +

∫ t

0
σ(Xs, Is,Γs)dWs,

It = i+

∫ t

0

∫

Im

(j − Is−)π(ds, dj),

Γt = u+

∫ t

0

∫

U

(u′ − Γs−)µ(ds, du
′),

(4.9)

for all t ≥ 0.

Remark 4.1 The process (X, I,Γ) satisfying system (4.9) will be the forward and driving

process in the Feynman-Kac and dual representation formulae of V β,n. The expression of

(4.9) is derived following [31] and it is inspired by the stochastic control representation of

V β. As stated in Proposition 4.1, V β is related to an infinite horizon robust switching

control problem, whose state process evolves according to the first two equations in (3.1)

(with t = 0 and for any T ∈ [0,∞)). Then, (4.9) is obtained from (3.1) by means of a

randomization of the switching and open-loop controls, which is fulfilled introducing the

pure jump Markov processes I and Γ driven by independent Poisson random measures.

Hence, compared to (3.1), the pair (X, I) in (4.9) is an uncontrolled process. ✷

It is well-known that under Assumption (H1), for any (x, i, u) ∈ R
d×Im×U , there exists

a unique solution (Xx,i,u, Ii,Γu) = (Xx,i,u
t , Iit ,Γ

u
t )t≥0 to system (4.9), and the following

standard estimate holds: for any T ≥ 0 and p ≥ 2, there exists some positive constant Cp,T

such that

E

[

sup
0≤t≤T

|Xx,i,u
t |p

]

≤ Cp,T

(

1 + |x|p
)

.

We conclude this paragraph with two important estimates resulting from the dissipativity

condition (H2), which call on a family of probability measures we are going to define.

For any n ∈ N\{0} and k ∈ N, let Ξn be the set of P ⊗ P(Im)-measurable1 maps valued

in (0, n], Vk be the set of P ⊗ B(U)-measurable maps valued in [1, k + 1], and denote by

Ξ = ∪n∈N\{0}Ξn, V = ∪k∈NVk. We consider for ξ ∈ Ξ, ν ∈ V, the probability measure P
ξ,ν

equivalent to P on (Ω,FT ), for any T > 0, with Radon-Nikodym density:

dPξ,ν

dP

∣

∣

∣

FT

= ζξ,νT := ET
(

∫ .

0

∫

Im

(ξt(j) − 1)π̃(dt, dj)
)

· ET
(

∫ .

0

∫

U

(νt(u
′)− 1)µ̃(dt, du′)

)

,

(4.10)

where E(·) denotes the Doléans-Dade exponential local martingale. Proceeding as in Lemma

2.4 of [31], we see that ζξ,ν is a “true” P-martingale (hence defining a probability measure

P
ξ,ν through (4.10)) since ξ, ν are essentially bounded and ϑπ, ϑµ are finite measures on

1
P(Im) denotes the power set of Im.
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Im and U , with ζξ,νT ∈ L2(Ω,FT ,P) for any T > 0. By Girsanov’s theorem, we recall that

W remains a Brownian motion under P
ξ,ν, and the effect of the probability measure P

ξ,ν

is to change the compensator ϑπ(di)dt of π under P to ξt(i)ϑπ(di)dt under P
ξ,ν, and the

compensator ϑµ(du)dt of µ under P to νt(u)ϑµ(du)dt under P
ξ,ν. We denote by π̃ξ(dt, di) =

π(dt, di) − ξt(i)ϑπ(di)dt and µ̃
ν(dt, du) = µ(dt, du) − νt(u)ϑµ(du)dt the compensated mar-

tingale measures associated with π and µ under Pξ,ν. Finally, Eξ,ν denotes the expectation

with respect to P
ξ,ν.

Lemma 4.1 Let Assumptions (H1) and (H2) hold.

(i) For all t ≥ 0, x, x′ ∈ R
d, i ∈ Im, u ∈ U ,

sup
ξ∈Ξ, ν∈V

E
ξ,ν

[

|Xx,i,u
t −Xx′,i,u

t |2
]

≤ e−2γt|x− x′|2. (4.11)

(ii) There exists a positive constant C̄, depending only on Mb,σ = sup(i,u)∈Im×U (|b(0, i, u)|

+ ‖σ(0, i, u)‖), L1, and γ, such that

sup
t≥0, ξ∈Ξ, ν∈V

E
ξ,ν

[

|Xx,i,u
t |2

]

≤ C̄(1 + |x|2), (4.12)

for any (x, i, u) ∈ R
d × Im × U .

Proof. (i) Estimate (4.11). The proof of estimate (4.11) can be done proceeding as in

Lemma 2.1(ii) in [13]. Let us just give an idea of the proof. Firstly, we apply Itô formula

to |Xx,i,u
s −Xx′,i,u

s |2 between s = 0 and s = t ≥ 0, then we take the expectation E
ξ,ν with

respect to P
ξ,ν, and finally we use the dissipativity condition (2.1). In conclusion, we end

up with

E
ξ,ν

[

|Xx,i,u
t −Xx′,i,u

t |2
]

≤ |x− x′|2 − 2γ

∫ t

0
E
ξ,ν

[

|Xx,i,u
s −Xx′,i,u

s |2
]

ds.

Then, the claim follows from Gronwall’s inequality.

(ii) Estimate (4.12). The result can be proved proceeding as in Lemma 3.2. ✷

Backward SDE with partially nonnegative jumps on infinite horizon. For any

T ∈ [0,∞), we denote by PT the σ-field of F-predictable subsets of Ω × [0, T ] and we

introduce the following spaces of random maps:

• S2
T the set of real-valued càdlàg F-adapted processes Y = (Yt)0≤t≤T satisfying

‖Y ‖2
S2
T

:= E

[

sup
0≤t≤T

|Yt|
2
]

< ∞.

We also denote S2
loc := ∩T>0S

2
T.

• Lp

T
(W), p ≥ 1, the set of Rd-valued PT -measurable processes Z = (Zt)0≤t≤T satisfy-

ing

‖Z‖p
L
p
T

(W)
:= E

[(
∫ T

0
|Zt|

2dt

)
p
2
]

< ∞.

We also denote Lp

loc(W) := ∩T>0L
p

T
(W).

23



• Lp

T
(π̃), p ≥ 1, the set of PT ⊗ P(Im)-measurable maps L : Ω × [0, T ] × Im → R

satisfying

‖L‖p
L
p
T

(π̃)
:= E

[
∫ T

0

( m
∑

i=1

|Lt(i)|
2

)
p
2

dt

]

< ∞.

We also denote Lp

loc(π̃) := ∩T>0L
p

T(π̃).

• Lp

T(µ̃) the set of PT ⊗ B(U)-measurable maps R : Ω× [0, T ]× U → R satisfying

‖R‖p
L
p
T

(µ̃)
:= E

[
∫ T

0

(
∫

U

|Rt(u)|
2ϑµ(du)

)
p
2

dt

]

< ∞.

We also denote Lp

loc(µ̃) := ∩T>0L
p

T
(µ̃).

• K2
T the set of nondecreasing predictable processes K = (Kt)0≤t≤T ∈ S2

T with K0 =

0, so that

‖K‖2
S2
T

= E|KT |
2.

We also denote K2
loc := ∩T>0K

2
T.

Let us now consider, for any β > 0, n ∈ N, and (x, i, u) ∈ R
d×Im×U , the following backward

stochastic differential equation with partially nonnegative jumps on infinite horizon:

Y β,n
t = Y β,n

T − β

∫ T

t

Y β,n
s ds+

∫ T

t

f(Xx,i,u
s , Iis,Γ

u
s )ds−

m
∑

j=1

∫ T

t

Lβ,n
s (j)ds

+ n

m
∑

j=1

∫ T

t

[

Lβ,n
s (j) − c(Xx,i,u

s , Iis− , j)
]+
ds−

(

Kβ,n
T −Kβ,n

t

)

(4.13)

−

∫ T

t

Zβ,n
s dWs −

∫ T

t

∫

Im

Lβ,n
s (j)π̃(ds, dj) −

∫ T

t

∫

U

Rβ,n
s (u′)µ̃(ds, du′),

for any 0 ≤ t ≤ T , T ∈ [0,∞), and

Rβ,n
t (u′) ≥ 0, dP⊗ dt⊗ ϑµ(du

′)-a.e. (4.14)

Our aim is to prove that the penalized elliptic system (4.8) is related to themaximal solution

to the above BSDE with partially nonnegative jumps (4.13)-(4.14), that we now define.

Definition 4.1 For any β > 0, n ∈ N, and (x, i, u) ∈ R
d× Im×U , we say that a quintuple

(Y β,n,x,i,u, Zβ,n,x,i,u, Lβ,n,x,i,u, Rβ,n,x,i,u,Kβ,n,x,i,u) ∈ S2
loc×L2

loc(W)×L2
loc(π̃)×L2

loc(µ̃)×K2
loc

is a maximal solution to the BSDE with partially nonnegative jumps on infinite horizon

(4.13)-(4.14) if:

(i) |Y β,n,x,i,u
t | ≤ C(1 + |Xx,i,u

t |), for all t ≥ 0 and for some positive constant C.

(ii) For any other solution (Y β,n, Zβ,n, Lβ,n, Rβ,n,Kβ,n) ∈ S2
loc × L2

loc(W) × L2
loc(π̃) ×

L2
loc(µ̃) × K2

loc to (4.13)-(4.14) satisfying |Y β,n
t | ≤ C(1 + |Xx,i,u

t |), ∀ t ≥ 0 and for

some positive constant C (possibly depending on β, n, x, i, u), we have

Y β,n,x,i,u
t ≥ Y β,n

t , P-a.s., for all t ≥ 0.
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Proposition 4.2 Let Assumptions (H1), (H2), and (HU) hold. Then, for any β > 0

and n ∈ N, we have:

(i) For any (x, i, u) ∈ R
d×Im×U , there exists a unique maximal solution to (4.13)-(4.14)

denoted by (Y β,n,x,i,u, Zβ,n,x,i,u, Lβ,n,x,i,u, Rβ,n,x,i,u,Kβ,n,x,i,u).

(ii) Given (x, i) ∈ R
d× Im, for any u ∈ Ů the random variable Y β,n,x,i,u

0 is equal P-a.s. to

a constant independent of u ∈ Ů . Moreover, the function V β,n : Rd × Im → R given

by the Feynman-Kac formula:

V β,n(x, i) = Y β,n,x,i,u
0 , ∀ (x, i) ∈ R

d × Im,

for any u ∈ Ů , is a continuous viscosity solution to system (4.8) and satisfies the

linear growth condition

sup
(x,i)∈Rd×Im

|V β,n(x, i)|

1 + |x|
< ∞.

Proof See Appendix, in particular Proposition A.1 for (i) and Proposition A.2 for (ii). ✷

Corollary 4.1 Let Assumptions (H1), (H2), and (HU) hold. Then, for any β > 0 and

n ∈ N\{0}, the following dual representation formula for V β,n holds:

V β,n(x, i) = sup
ξ∈Ξn

inf
ν∈V

E
ξ,ν

[
∫ ∞

0
e−βtf(Xx,i,u

t , Iit ,Γ
u
t )dt (4.15)

−

∫ ∞

0

∫

Im

e−βtc(Xx,i,u
t , Iit− , j)π(dt, dj)

]

, ∀ (x, i) ∈ R
d × Im,

for any u ∈ Ů .

Proof. As a preliminary step, the present proof involves the doubly indexed penalized

BSDE (A.1) introduced in the Appendix. Indeed, we firstly derive a dual representation

formula for V β,n,k(x, i, u) = Y β,n,k,x,i,u
0 , then we pass to the limit as k → ∞, using that

Y β,n,k,x,i,u
0 ց Y β,n,x,i,u

0 = V β,n(x, i) P-a.s., to derive (4.15).

Step I. Dual representation formula for V β,n,k. Fix n ∈ N\{0}, k ∈ N, and (x, i, u) ∈

R
d × Im × U . Our aim is to prove the following dual representation formula

V β,n,k(x, i, u) = sup
ξ∈Ξn

inf
ν∈Vk

E
ξ,ν

[
∫ ∞

0
e−βtf(Xx,i,u

t , Iit ,Γ
u
t )dt (4.16)

−

∫ ∞

0

∫

Im

e−βtc(Xx,i,u
t , Iit− , j)π(dt, dj)

]

.

To this end, take ξ ∈ Ξn and ν ∈ Vk. Then, given T ∈ [0,∞), we add and subtract to

(A.1), with t = 0, the two terms (we adopt the simplified notation Y β,n,k for Y β,n,k,x,i,u,

and similarly for the other components)

∫ T

0

∫

Im

Lβ,n,k
t (j)ξt(j)ϑπ(dj)dt,

∫ T

0

∫

U

Rβ,n,k
t (u′)νt(u

′)ϑµ(du
′)dt.
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From the integrability conditions on Lβ,n,k (resp. Rβ,n,k), it follows from Proposition II.1.28

in [29] that the stochastic integral in (A.1) with respect to π̃ (resp. µ̃) can be written as

the difference between the integral with respect to π (resp. µ) and that with respect to

its P-compensator ϑπ(dj)dt (resp. ϑµ(du
′)dt). The same remark applies to the stochastic

integral of Lβ,n,k (resp. Rβ,n,k) with respect to π̃ξ (resp. µ̃ν). Then, rearranging the terms

in (A.1), we end up with (recall that ϑπ(di) =
∑m

j=1 δj(di))

Y β,n,k
0 = Y β,n,k

T − β

∫ T

0
Y β,n,k
t dt+

∫ T

0
f(Xx,i,u

t , Iit ,Γ
u
t )dt (4.17)

+ n

m
∑

j=1

∫ T

0

[

Lβ,n,k
t (j) − c(Xx,i,u

t , Iit− , j)
]+
dt− k

∫ T

0

∫

U

[

Rβ,n,k
t (u′)

]−
ϑµ(du

′)dt

−

∫ T

0
Zβ,n,k
t dWt −

∫ T

0

∫

Im

Lβ,n,k
t (j)π̃ξ(dt, dj) −

∫ T

0

∫

U

Rβ,n,k
t (u′)µ̃ν(dt, du′)

−
m
∑

j=1

∫ T

0
Lβ,n,k
t (j)ξt(j)dt −

∫ T

0

∫

U

Rβ,n,k
t (u′)(νt(u

′)− 1)ϑµ(du
′)dt.

Now, we apply Itô formula to e−βtY β,n,k
t between 0 and T , afterwards we add and subtract

the term
m
∑

j=1

∫ T

0
e−βtc(Xx,i,u

t , Iit− , j)ξt(j)dt.

Therefore, from (4.17) we obtain

Y β,n,k
0 = e−βTY β,n,k

T +

∫ T

0
e−βtf(Xx,i,u

t , Iit ,Γ
u
t )dt−

m
∑

j=1

∫ T

0
e−βtc(Xx,i,u

t , Iit− , j)ξt(j)dt

+
m
∑

j=1

∫ T

0
e−βt

{

n
[

Lβ,n,k
t (j) − c(Xx,i,u

t , Iit− , j)
]+

− ξt(j)
[

Lβ,n,k
t (j)− c(Xx,i,u

t , Iit− , j)
]}

dt

−

∫ T

0

∫

U

e−βt
{

k
[

Rβ,n,k
t (u′)

]−
+ (νt(u

′)− 1)Rβ,n,k
t (u′)

}

ϑµ(du
′)dt (4.18)

−

∫ T

0
e−βtZβ,n,k

t dWt −

∫ T

0

∫

Im

e−βtLβ,n,k
t (j)π̃ξ(dt, dj) −

∫ T

0

∫

U

e−βtRβ,n,k
t (u′)µ̃ν(dt, du′).

Reasoning as in Lemma 2.5 in [31], we can prove that the three stochastic integrals appear-

ing in (4.18), which are Pξ,ν-local martingales, are indeed true Pξ,ν-martingales. Therefore,

taking the expectation E
ξ,ν with respect to P

ξ,ν in (4.18), we find

Y β,n,k
0 = GT (ξ, ν) (4.19)

+
m
∑

j=1

∫ T

0
e−βt

E
ξ,ν

{

n
[

Lβ,n,k
t (j)− c(Xx,i,u

t , Iit− , j)
]+

− ξt(j)
[

Lβ,n,k
t (j) − c(Xx,i,u

t , Iit− , j)
]}

dt

−

∫ T

0

∫

U

e−βt
E
ξ,ν

{

k
[

Rβ,n,k
t (u′)

]−
+ (νt(u

′)− 1)Rβ,n,k
t (u′)

}

ϑµ(du
′)dt,

where

GT (ξ, ν) = E
ξ,ν

[

e−βTY β,n,k
T +

∫ T

0
e−βtf(Xx,i,u

t , Iit ,Γ
u
t )dt
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−
m
∑

j=1

∫ T

0
e−βtc(Xx,i,u

t , Iit− , j)ξt(j)dt

]

.

Let us prove the following identities

Y β,n,k
0 = sup

ξ∈Ξn

inf
ν∈Vk

GT (ξ, ν) = inf
ν∈Vk

sup
ξ∈Ξn

GT (ξ, ν). (4.20)

We begin noting that, for any ξ ∈ Ξn and ν ∈ Vk, we have

n
[

Lβ,n,k
t (j) − c(Xx,i,u

t , Iit− , j)
]+

− ξt(j)
[

Lβ,n,k
t (j) − c(Xx,i,u

t , Iit− , j)
]

≥ 0, (4.21)

k
[

Rβ,n,k
t (u′)

]−
+ (νt(u

′)− 1)Rβ,n,k
t (u′) ≥ 0. (4.22)

Now, for every ε > 0, define ξε ∈ Ξn as follows

ξεt (j) =



















n, Lβ,n,k
t (j)− c(Xx,i,u

t , Ii
t−
, j) ≥ 0,

ε, −1 ≤ Lβ,n,k
t (j) − c(Xx,i,u

t , Ii
t−
, j) < 0,

−
ε

Lβ,n,k
t (j) − c(Xx,i,u

t , Ii
t−
, j)

, Lβ,n,k
t (j)− c(Xx,i,u

t , Ii
t−
, j) < −1.

On the other hand, let ν∗ ∈ Vk be given by

ν∗t (u
′) =

{

k + 1, Rβ,n,k
t (u′) ≤ 0,

1, Rβ,n,k
t (u′) > 0.

Then, from (4.19), using also (4.21) and (4.22), we obtain

GT (ξ, ν
∗) ≤ Y β,n,k

0 = GT (ξ
ε, ν∗) + εδT (ξ

ε, ν∗) ≤ GT (ξ
ε, ν) + εδT (ξ

ε, ν), (4.23)

for any ξ ∈ Ξn and ν ∈ Vk, where

δT (ξ, ν) =
m
∑

j=1

∫ T

0
e−βt

E
ξ,ν

[

(

c(Xx,i,u
t , Iit− , j) − Lβ,n,k

t (j)
)

1
{−1≤L

β,n,k
t (j)−c(Xx,i,u

t ,Ii
t−

,j)<0}

+ 1
{Lβ,n,k

t (j)−c(Xx,i,u
t ,Ii

t−
,j)<−1}

]

dt.

Notice that 0 ≤ δT (ξ, ν) ≤
∑m

j=1

∫ T

0 e−βtdt ≤ m/β, therefore from (4.23) we have

GT (ξ, ν
∗) ≤ Y β,n,k

0 ≤ GT (ξ
ε, ν) + ε

m

β
, ∀ ξ ∈ Ξn, ν ∈ Vk,

which implies

inf
ν∈Vk

sup
ξ∈Ξn

GT (ξ, ν) ≤ Y β,n,k
0 ≤ sup

ξ∈Ξn

inf
ν∈Vk

GT (ξ, ν) + ε
m

β
.

Since ε is arbitrary and the inequality supξ∈Ξn
infν∈Vk

GT (ξ, ν) ≤ infν∈Vk
supξ∈Ξn

GT (ξ, ν)

holds, we deduce identities (4.20). We also observe that, from (4.23) and the boundedness

of δT (ξ
ε, ν∗), we have Y β,n,k

0 = limε→0+ GT (ξ
ε, ν∗), therefore (ξε, ν∗) in an ε-saddle point

of GT (ξ, ν) on Ξn × Vk.
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To obtain the dual representation formula (4.16), we now pass to the limit in (4.20) as

T → ∞. Firstly, we notice that, by estimates (A.2) and (4.12), it follows from Lebesgue’s

dominated convergence theorem that

sup
ξ∈Ξn, ν∈Vk

E
ξ,ν

[

e−βT |Y β,n,k
T |

] T→∞
−→ 0. (4.24)

Similarly, from the uniform linear growth condition of f and c with respect to x, the

boundedness of ξ ∈ Ξn, and estimate (4.12), we have

sup
ξ∈Ξn, ν∈Vk

E
ξ,ν

[
∫ ∞

T

e−βt|f(Xx,i,u
t , Iit ,Γ

u
t )|dt

]

T→∞
−→ 0, (4.25)

sup
ξ∈Ξn, ν∈Vk

E
ξ,ν

[ m
∑

j=1

∫ ∞

T

e−βtc(Xx,i,u
t , Iit− , j)ξt(j)dt

]

T→∞
−→ 0. (4.26)

The above convergence results imply that we can pass to the limit in (4.20) as T → ∞,

and we find (we are interested only in the first identity in (4.20))

Y β,n,k
0 = sup

ξ∈Ξn

inf
ν∈Vk

E
ξ,ν

[
∫ ∞

0
e−βtf(Xx,i,u

t , Iit ,Γ
u
t )dt−

m
∑

j=1

∫ ∞

0
e−βtc(Xx,i,u

t , Iit− , j)ξt(j)dt

]

.

The second integral in the above identity can be written with respect to π, using the

definition of Pξ,ν-compensator of π (see, e.g., Theorem II.1.8(i) in [29]), so that we end up

with the dual representation formula (4.16) for V β,n,k(x, i, u) = Y β,n,k
0 .

Step II. Dual representation formula for V β,n. From the convergence Y β,n,k
0 ց Y β,n,x,i,u

0

P-a.s., as k → ∞, we obtain

Y β,n,x,i,u
0 = lim

k→∞

(

sup
ξ∈Ξn

inf
ν∈Vk

G∞(ξ, ν)
)

≥ sup
ξ∈Ξn

inf
ν∈V

G∞(ξ, ν), (4.27)

where

G∞(ξ, ν) = E
ξ,ν

[
∫ ∞

0
e−βtf(Xx,i,u

t , Iit ,Γ
u
t )dt−

∫ ∞

0

∫

Im

e−βtc(Xx,i,u
t , Iit− , j)π(dt, dj)

]

.

On the other hand, from (4.23) we have (recalling that δT (ξ, ν) ≤ m/β)

Y β,n,x,i,u
0 ≤ Y β,n,k

0 ≤ GT (ξ
ε, ν) + ε

m

β
, ∀ ν ∈ Vk.

Using the convergence results (4.24)-(4.25)-(4.26), we can pass to the limit as T → ∞ in

the above inequalities, so that we obtain

Y β,n,x,i,u
0 ≤ Y β,n,k

0 ≤ G∞(ξε, ν) + ε
m

β
, ∀ ν ∈ Vk,

which implies

Y β,n,x,i,u
0 ≤ inf

ν∈Vk

G∞(ξε, ν) + ε
m

β
.

Since k and ε are arbitrary, we end up with

Y β,n,x,i,u
0 ≤ sup

ξ∈Ξn

inf
ν∈V

G∞(ξ, ν).

The above inequality, together with (4.27), yields the thesis, recalling from Proposition

4.2(ii) that V β,n(x, i) = Y β,n,x,i,u
0 , for any (x, i, u) ∈ R

d × Im × Ů . ✷
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4.2.2 Estimates

From the dual representation formula (4.15), we deduce the following estimates for V β,n.

Corollary 4.2 Let Assumptions (H1), (H2), (H3), and (HU) hold.

(i) For any β > 0 and n ∈ N\{0}, we have

|V β,n(x, i) − V β,n(x′, i)| ≤
L2

γ
|x− x′|, (4.28)

for all x, x′ ∈ R
d, i ∈ Im.

(ii) There exists a constant Ĉ ≥ 0, depending only on L2, M := sup(i,u)∈Im×U |f(0, i, u)|,

and the constant C̄ appearing in estimate (4.12), such that, for any β > 0 and n ∈

N\{0},

|βV β,n(x, i)| ≤ Ĉ(1 + |x|), (4.29)

for all (x, i) ∈ R
d × Im.

(iii) For any β > 0, n ∈ N\{0}, and (x, i) ∈ R
d × Im, we have

V β,n(x, i) ≤ V β,n+1(x, i). (4.30)

Proof. (i) Estimate (4.28). Fix x, x′ ∈ R
d, i ∈ Im, and u ∈ Ů . From the dual representation

formula (4.15) and since c = c(i, j) does not depend on x under (H3), we have

|V β,n(x, i)−V β,n(x′, i)| ≤ sup
ξ∈Ξn, ν∈V

E
ξ,ν

[
∫ ∞

0
e−βt

∣

∣f(Xx,i,u
t , Iit ,Γ

u
t )− f(X

x′,i,u
t , Iit ,Γ

u
t )
∣

∣dt

]

.

Then, using the Lipschitz property of f in (H1)(ii), together with estimate (4.11), we

obtain

|V β,n(x, i)− V β,n(x′, i)| ≤ L2|x− x′|

∫ ∞

0
e−(β+γ)tdt =

L2

β + γ
|x− x′| ≤

L2

γ
|x− x′|,

from which the claim follows.

(ii) Estimate (4.29). Given (x, i) ∈ R
d× Im and u ∈ Ů , using again the dual representation

formula (4.15) we find (from the nonnegativity of c)

βV β,n(x, i) ≤ sup
ξ∈Ξn, ν∈V

E
ξ,ν

[
∫ ∞

0
βe−βt

∣

∣f(Xx,i,u
t , Iit ,Γ

u
t )
∣

∣dt

]

. (4.31)

On the other hand, take ε > 0 and define

ξε ≡
εβ

m

1

1 + maxi,j∈Im c(i, j)
.

We see that, if ε is small enough so that ξε ≤ n, then ξε ∈ Ξn. Therefore, from (4.15) we

obtain (recall that the stochastic integral in (4.15) with respect to π can be written with

respect to its Pξε,ν-compensator)

V β,n(x, i) ≥ inf
ν∈V

E
ξε,ν

[
∫ ∞

0
e−βtf(Xx,i,u

t , Iit ,Γ
u
t )dt−

m
∑

j=1

∫

Im

e−βtc(Xx,i,u
t , Iit− , j)ξ

ε(j)dt

]
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≥ − sup
ν∈V

E
ξε,ν

[
∫ ∞

0
e−βt|f(Xx,i,u

t , Iit ,Γ
u
t )|dt

]

− ε

≥ − sup
ξ∈Ξn, ν∈V

E
ξ,ν

[
∫ ∞

0
e−βt|f(Xx,i,u

t , Iit ,Γ
u
t )|dt

]

− ε.

By the arbitrariness of ε and inequality (4.31), we conclude that

|βV β,n(x, i)| ≤ sup
ξ∈Ξn, ν∈V

E
ξ,ν

[
∫ ∞

0
βe−βt

∣

∣f(Xx,i,u
t , Iit ,Γ

u
t )
∣

∣dt

]

.

From the inequality f(x, i, u) ≤ L2|x| +M and estimate (4.12), we see that there exists

some positive constant Ĉ (only depending on L2, M , C̄) such that

|βV β,n(x, i)| ≤ Ĉ(1 + |x|)

∫ ∞

0
βe−βtdt = Ĉ(1 + |x|).

(iii) Monotone property (4.30). Inequality (4.30) follows from the dual representation for-

mula (4.15) for V β,n, noting that Ξn ⊂ Ξn+1, ∀n ∈ N\{0}. ✷

4.2.3 Convergence of V β,n towards V β

From Corollary 4.2 it follows that, for any β > 0, the sequence (V β,n)n≥1 is monotone

nondecreasing and satisfies the following linear growth condition:

V β,n(x, i) ≤
Ĉ

β
+
L2

γ
|x|, (4.32)

for all n ∈ N\{0} and (x, i) ∈ R
d × Im. As a consequence, we have the following result.

Proposition 4.3 Let Assumptions (H1), (H2), (H3), and (HU) hold. Then, for any

β > 0, there exists a function vβ : Rd × Im → R given by vβ(x, i) = limn→∞ V β,n(x, i), for

all (x, i) ∈ R
d × Im, which admits the dual representation formula

vβ(x, i) = sup
ξ∈Ξ

inf
ν∈V

E
ξ,ν

[
∫ ∞

0
e−βtf(Xx,i,u

t , Iit ,Γ
u
t )dt

−

∫ ∞

0

∫

Im

e−βtc(Iit− , j)π(dt, dj)

]

, ∀ (x, i) ∈ R
d × Im,

for any u ∈ Ů . Moreover, vβ has the following properties:

|vβ(x, i) − vβ(x′, i)| ≤
L2

γ
|x− x′|,

|βvβ(x, i)| ≤ Ĉ(1 + |x|),

for all x, x′ ∈ R
d and i ∈ Im, where the constant Ĉ is the same as in Corollary 4.2(ii).

Proof. The existence of vβ follows from the monotone property of (V β,n)n≥1 (which is

a consequence of (4.30)) and from the uniform linear growth condition (4.32). The dual

representation formula holds since V β,n satisfies (4.15) and Ξn ⊂ Ξn+1 ⊂ · · · ⊂ ∪n≥1Ξn = Ξ.

Finally, the two stated properties of vβ are implied by estimates (4.28) and (4.29). ✷
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Proposition 4.4 Let Assumptions (H1), (H2), (H3), and (HU) hold. Then, the func-

tion vβ is the unique continuous viscosity solution to system (1.3) satisfying a linear growth

condition

sup
(x,i)∈Rd×Im

|vβ(x, i)|

1 + |x|
< ∞.

In particular, vβ coincides with the function V β defined by (4.1). Moreover, we have

|vβ(x, i) − vβ(x, j)| ≤ ĉ := max
i,j∈Im

c(i, j), (4.33)

for all x ∈ R
d and i, j ∈ Im.

Remark 4.2 We refer to the function vβ introduced in Proposition 4.3 as dual value func-

tion of the dual robust switching control problem. On the other hand, we say that V β is the

primal value function and the associated infinite horizon robust feedback switching control,

recalled in Section 4.1, is the primal robust switching control problem. Then, Propositions

4.3 and 4.4 state that these two value functions coincide. Notice that the dual control

problem is a two-player zero-sum stochastic differential game of the type control vs control.

In general, the lower and upper value functions of a control vs control (more precisely,

open-loop control vs open-loop control) game do not coincide with those associated to the

Elliott-Kalton version of the game, where the strategy vs control formulation is adopted

(see, e.g., Exercise 2.1(ii), Chapter VIII, in [2]). However, we observe that our dual control

problem is in weak form as in [38], therefore, as emphasized in [38], it might be interpreted

as a feedback control vs feedback control game. ✷

Proof (of Proposition 4.4). Recall that V β,n satisfies (4.28) and vβ is the pointwise

limit of the sequence (V β,n)n≥1. Then, we have

|V β,n(x′, i)− vβ(x, i)| ≤
L2

γ
|x− x′|+ |V β,n(x, i) − vβ(x, i)| −→

n→∞
x′→x

0 (4.34)

Therefore, for all (x, i) ∈ R
d × Im,

vβ(x, i) = lim
n→∞
x′→x

V β,n(x′, i) = lim inf
n→∞

∗ V
β,n(x, i) = lim sup

n→∞

∗ V β,n(x, i), (4.35)

where

lim inf
n→∞

∗ V
β,n(x, i) := lim inf

n→∞
x′→x

V β,n(x′, i), lim sup
n→∞

∗ V β,n(x, i) := lim sup
n→∞
x′→x

V β,n(x′, i).

Step I. Viscosity supersolution property of vβ to (1.3). Let (x, i) ∈ R
d × Im and (p,M) ∈

J2,−vβ(x, i) (the second-order subjet of vβ at (x, i), see, e.g., Section 2 in [15]). From (4.35)

and Lemma 6.1 (see also Remark 6.2) in [15], it follows that we can find the following

sequences

nk
k→∞
−→ ∞, xk ∈ R

d, (pk,Mk) ∈ J2,−V β,nk(xk, i),

satisfying

(xk, V
β,nk(xk, i), pk,Mk)

k→∞
−→ (x, vβ(x, i), p,M). (4.36)
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For any j ∈ Im, we also have the convergence V β,nk(xk, j) → vβ(x, j), which can be proved

proceeding as in (4.34) with j in place of i. From the supersolution property of V β,nk to

(4.8) stated in Proposition 4.2(ii), we have

βV β,nk(xk, i) − inf
u∈U

[

b(xk, i, u).pk +
1

2
tr
(

σσ⊺(xk, i, u)Mk

)

+ f(xk, i, u)
]

(4.37)

−nk

m
∑

j=1

[

V β,nk(xk, j) − V β,nk(xk, i) − c(i, j)
]+

≥ 0.

Let us prove that

vβ(x, i) −max
j 6=i

[

vβ(x, j) − c(i, j)
]

≥ 0. (4.38)

On the contrary, suppose that there exists some j0 ∈ Im, j0 6= i, such that

vβ(x, i)− vβ(x, j0) + c(i, j0) < 0.

From the convergences V β,nk(xk, i) → vβ(x, i), V β,nk(xk, j0) → vβ(x, j0), it follows that

there exist ε > 0 and kε ∈ N such that

V β,nk(xk, i)− V β,nk(xk, j0) + c(i, j0) ≤ −ε, ∀ k ≥ kε.

As a consequence, we have

m
∑

j=1

[

V β,nk(xk, j) − V β,nk(xk, i) − c(i, j)
]+

≥ ε, ∀ k ≥ kε.

Letting k → ∞ into (4.37), we find a contradiction, so that (4.38) holds. On the other

hand, from (4.37) we have

βV β,nk(xk, i)− inf
u∈U

[

b(xk, i, u).pk +
1

2
tr
(

σσ⊺(xk, i, u)Mk

)

+ f(xk, i, u)
]

≥ 0.

Sending k → ∞, using (4.36) and the continuity of b, σ, f , we conclude that

βvβ(x, i) − inf
u∈U

[

b(x, i, u).p +
1

2
tr
(

σσ⊺(x, i, u)M
)

+ f(x, i, u)
]

≥ 0.

Step II. Viscosity subsolution property of vβ to (1.3). Let (x, i) ∈ R
d × Im and (p,M) ∈

J2,+vβ(x, i) (the second-order superjet of vβ at (x, i), see Section 2 in [15]) such that

vβ(x, i) −max
j 6=i

[

vβ(x, j) − c(i, j)
]

> 0. (4.39)

From (4.35) and Lemma 6.1 in [15], we see that we can find the following sequences

nk
k→∞
−→ ∞, xk ∈ R

d, (pk,Mk) ∈ J2,+V β,nk(xk, i),

satisfying

(xk, V
β,nk(xk, i), pk,Mk)

k→∞
−→ (x, vβ(x, i), p,M).
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Moreover, for any j ∈ Im, we also have the convergence V β,nk(xk, j) → vβ(x, j). Using the

subsolution property of V β,nk to (4.8), we find

βV β,nk(xk, i) − inf
u∈U

[

b(xk, i, u).pk +
1

2
tr
(

σσ⊺(xk, i, u)Mk

)

+ f(xk, i, u)
]

(4.40)

−nk

m
∑

j=1

[

V β,nk(xk, j) − V β,nk(xk, i) − c(i, j)
]+

≤ 0.

From (4.39) and the convergence V β,nk(xk, j) → vβ(x, j), ∀ j ∈ Im, we see that there exist

ε > 0 and kε ∈ N such that

V β,nk(xk, i)−max
j 6=i

[

V β,nk(xk, j) − c(i, j)
]

≥ ε, ∀ k ≥ kε.

Therefore, for all k ≥ kε, we have

m
∑

j=1

[

V β,nk(xk, j) − V β,nk(xk, i) − c(i, j)
]+

= 0.

Hence, letting k → ∞ into (4.40), we end up with

βvβ(x, i) − inf
u∈U

[

b(x, i, u).p +
1

2
tr
(

σσ⊺(x, i, u)M
)

+ f(x, i, u)
]

≤ 0.

Step III. Identification vβ ≡ V β. From Proposition 4.1 we know that V β is the unique

continuous viscosity solution to system (1.3) satisfying a linear growth condition, so that

the claim follows.

Step IV. Estimate (4.33). Finally, to prove estimate (4.33), we notice that from the

identification vβ ≡ V β and inequality (4.4), we have

V β(x, i) ≥ max
j 6=i

[

V β(x, j) − c(i, j)
]

≥ V β(x, j) − c(i, j), ∀ (x, i, j) ∈ R
d × I

2
m, j 6= i.

This implies that

V β(x, j) − V β(x, i) ≤ c(i, j) ≤ max
i,j∈Im

c(i, j),

from which estimate (4.33) follows. ✷

4.3 Convergence results for V
β

We are now in a position to study the asymptotic behavior of V β. More precisely, we have

the following result, which proves all the statements of Theorem 2.2 concerning V β and the

existence of a viscosity solution to the ergodic system (2.3).

Proposition 4.5 Let Assumptions (H1), (H2), (H3), and (HU) hold. Then, there exists

a viscosity solution (λ, φ), with φ(·, i) Lipschitz, for any i ∈ Im, and φ(0, i0) = 0 for some

fixed i0 ∈ Im, to the ergodic system (2.3), such that

βV β(x, i)
β→0+
−→ λ, ∀ (x, i) ∈ R

d × Im,

V βk(·, i) − V βk(0, i0)
k→∞
−→

in C(Rd)
φ(·, i), ∀ i ∈ Im,

for some sequence (βk)k∈N, with βk ց 0+.
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Proof. Fix i0 ∈ Im and, for any β > 0, set

λβi := βV β(0, i), φβ(x, i) := V β(x, i) − V β(0, i0),

for all (x, i) ∈ R
d × Im. From Proposition 4.3, estimate (4.33), and the identification

vβ ≡ V β stated in Proposition 4.4, we have

sup
β>0

|λβi | ≤ Ĉ, sup
β>0

|φβ(x, i)| ≤
L2

γ
|x|+ ĉ.

As a consequence, by classical arguments based on the Bolzano-Weierstrass Theorem and

the Ascoli-Arzelà Theorem, see e.g. [20], we can find a sequence (βk)k∈N, with βk ց 0+ s.t.

λβk

i

k→∞
−→ λi, φβk(·, i)

k→∞
−→

in C(Rd)
φ(·, i),

for some λi ∈ R and φ : Rd × Im → R satisfying |φ(x, i)| ≤ L2|x|/γ + ĉ, |φ(x, i)− φ(x′, i)| ≤

L2|x− x′|/γ, and φ(0, i0) = 0. Notice that, from estimate (4.33) we obtain

∣

∣λβk

i − λβk

j

∣

∣ = βk
∣

∣V βk(0, i) − V βk(0, j)
∣

∣ ≤ βk ĉ
k→∞
−→ 0,

therefore λ := λi = λj , for all i, j ∈ Im. More generally, we have

∣

∣βkV
βk(x, i)− λβk

j

∣

∣ = βk
∣

∣V βk(x, i)− V βk(0, j)
∣

∣ ≤ βk
L2

γ
|x|+ βk ĉ

k→∞
−→ 0,

which implies that

βkV
βk(x, i)

k→∞
−→ λ, ∀ (x, i) ∈ R

d × Im.

We now prove that (λ, φ) is a viscosity solution to the ergodic system (2.3). To this end,

we begin noting that, from the viscosity properties of V β stated in Proposition 4.4 (see

also Proposition 4.1), it follows that, for any i ∈ Im, φβ(·, i) is a viscosity solution to the

following elliptic equation:

min
{

λβi0 + βφβ(x, i) − inf
u∈U

[

Li,uφβ(x, i) + f(x, i, u)
]

,

φβ(x, i)−max
j 6=i

[

φβ(x, j) − c(i, j)
]

}

= 0, ∀x ∈ R
d.

Then, we define

Fk(x, i, r, p,M) := min
{

λβk

i0
+ βkr − inf

u∈U

[

b(x, i, u).p +
1

2
tr
(

σσ⊺(x, i, u)M
)

+ f(x, i, u)
]

,

r −max
j 6=i

[

φβk(x, j) − c(i, j)
]

}

,

for all k ∈ N, and

F∞(x, i, r, p,M) := min
{

λ− inf
u∈U

[

b(x, i, u).p +
1

2
tr
(

σσ⊺(x, i, u)M
)

+ f(x, i, u)
]

,

r −max
j 6=i

[

φ(x, j) − c(i, j)
]

}

,
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for any (x, i, r, p,M) ∈ R
d × Im × R× R

d × R
d×d. We see that

lim
k→∞

Fk(x, i, r, p,M) = F∞(x, i, r, p,M).

Then, from stability results of viscosity solutions (see, e.g., Lemma 6.1 and Remark 6.3

in [15]), we deduce that, for any i ∈ Im, the function φ(·, i) is a viscosity solution to the

elliptic equation

F∞(x, i, φ(x, i),Dxφ(x, i),D
2
xφ(x, i)) = 0, ∀x ∈ R

d.

As a consequence, we conclude that (λ, φ) is a viscosity solution to the ergodic system (2.3).

Finally, we notice that the all family (βV β(x, i))β>0 converges to λ as β → 0+, since, as

stated in Proposition 3.3, λ is uniquely determined. ✷

Appendix

A Feynman-Kac formula

The present appendix is devoted to the proof of Proposition 4.2. Unfortunately, we did not

find a reference for it in the literature. Indeed, even though Proposition 3.3 and Theorem

3.1 in [13] do almost the job, they do not apply to system (4.8) due to the presence of the

nonlocal term. For this reason, in the present appendix we state the results, recalling only

the main steps of their proofs, since they are very similar to those of Proposition 3.3 and

Theorem 3.1 in [13].

A.1 Maximal solution to BSDE (4.13)-(4.14)

We begin addressing the problem of existence and uniqueness of the maximal solution (see

Definition 4.1) to the BSDE with partially nonnegative jumps on infinite horizon (4.13)-

(4.14). Concerning uniqueness, we have the following result.

Lemma A.1 Suppose that Assumption (H1) holds. Then, for any β > 0, n ∈ N, (x, i, u) ∈

R
d × Im × U , there exists at most one maximal solution to equation (4.13)-(4.14).

Proof. The uniqueness of the Y component follows by definition. Now, consider two

maximal solutions (Y,Z,L,R,K), (Y,Z ′, L′, R′,K ′) in S2
loc×L2

loc(W)×L2
loc(π̃)×L2

loc(µ̃)×

K2
loc to (4.13)-(4.14). Taking their difference, and identifying the Brownian and finite

variation parts, we see that Z = Z ′. Afterwards, recalling that the marked point processes

associated to π and µ have disjoint (due to the independence of π and µ) totally inaccessible

jumps, while K and K ′ have predictable jumps, we conclude that L = L′ and R = R′, so

that K = K ′. For more details, we refer to Remark 3.1 in [13]. ✷

The existence of the maximal solution to (4.13)-(4.14) is based on a penalization method.

More precisely, for any β > 0, n, k ∈ N, and (x, i, u) ∈ R
d × Im × U , consider the following

doubly indexed penalized backward stochastic differential equation on infinite horizon:

Y β,n,k
t = Y β,n,k

T − β

∫ T

t

Y β,n,k
s ds+

∫ T

t

f(Xx,i,u
s , Iis,Γ

u
s )ds−

m
∑

j=1

∫ T

t

Lβ,n,k
s (j)ds (A.1)
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+ n
m
∑

j=1

∫ T

t

[

Lβ,n,k
s (j)− c(Xx,i,u

s , Iis− , j)
]+
ds− k

∫ T

t

∫

U

[

Rβ,n,k
s (u′)

]−
ϑµ(du

′)ds

−

∫ T

t

Zβ,n,k
s dWs −

∫ T

t

∫

Im

Lβ,n,k
s (j)π̃(ds, dj) −

∫ T

t

∫

U

Rβ,n,k
s (u′)µ̃(ds, du′),

for any 0 ≤ t ≤ T , T ∈ [0,∞), where h− = −min(h, 0) denotes the negative part of the

function h. Then, we have the following result.

Lemma A.2 Let Assumptions (H1) and (H2) hold. Then, for any β > 0, n, k ∈ N,

(x, i, u) ∈ R
d×Im×U , there exists a solution (Y β,n,k,x,i,u, Zβ,n,k,x,i,u, Lβ,n,k,x,i,u, Rβ,n,k,x,i,u)

∈ S2
loc × L2

loc(W) × L2
loc(π̃)× L2

loc(µ̃) to (A.1) such that

∣

∣Y β,n,k,x,i,u
t

∣

∣ ≤
Cb,σ,f

β

(

1 +
∣

∣Xx,i,u
t

∣

∣

)

, ∀ t ≥ 0, (A.2)

where Cb,σ,f is a positive constant, depending only on b, σ, f . This latter solution is unique

among all quadruplets (Y,Z,L,R) ∈ S2
loc×L2

loc(W)×L2
loc(π̃)×L2

loc(µ̃) such that, for some

constant C ≥ 0 (possibly depending on β, n, k, x, i, u), we have |Yt| ≤ C(1+ |Xx,i,u
t |), for all

t ≥ 0.

Proof. The result follows from the same arguments as in the proof of Proposition 3.1 in

[13]. Here, we give simply a sketch of the proof.

Uniqueness. Consider two solutions (Y,Z,L,R), (Y ′, Z ′, L′, R′) to (A.1), satisfying a linear

growth condition as stated in Lemma A.2, and apply Itô formula to the difference e−2βs|Ys−

Y ′
s |

2 between s = t ≥ 0 and s = T ≥ t. Then, from the resulting expression we see that

there exists ξ ∈ Ξk such that, taking the expectation E
1,ξ with respect to P

1,ξ (we denote

by P
1,ξ the probability measure P

ν,ξ with ν ≡ 1), we obtain

E
1,ξ

[

|Yt − Y ′
t |

2
]

≤ e−2β(T−t)
E
1,ξ

[

|YT − Y ′
T |

2
]

.

Then, using the growth condition of YT , Y
′
T together with estimate (4.12), we see that

Y − Y ′ = 0. Finally, since Y = Y ′, the identities Z = Z ′, L = L′, R = R′ can be proved

proceeding as in Lemma A.1.

Existence. The proof consists in approximating equation (A.1) through a sequence of

BSDEs with finite time horizon and zero terminal condition. More precisely, for any T > 0

and (x, i, u) ∈ R
d × Im × U , we consider the following backward stochastic differential

equation on [0, T ]:

Y T,β,n,k
t = −β

∫ T

t

Y T,β,n,k
s ds +

∫ T

t

f(Xx,i,u
s , Iis,Γ

u
s )ds−

m
∑

j=1

∫ T

t

LT,β,n,k
s (j)ds (A.3)

+ n
m
∑

j=1

∫ T

t

[

LT,β,n,k
s (j) − c(Xx,i,u

s , Iis− , j)
]+
ds− k

∫ T

t

∫

U

[

RT,β,n,k
s (u′)

]−
ϑµ(du

′)ds

−

∫ T

t

ZT,β,n,k
s dWs −

∫ T

t

∫

Im

LT,β,n,k
s (j)π̃(ds, dj) −

∫ T

t

∫

U

RT,β,n,k
s (u′)µ̃(ds, du′),
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for any 0 ≤ t ≤ T . From Lemma 2.4 in [42] we know that there exists a unique solution

(Y T,β,n,k,x,i,u, ZT,β,n,k,x,i,u, LT,β,n,k,x,i,u, RT,β,n,k,x,i,u) ∈ S2
T × L2

T(W) × L2
T(π̃) × L2

T(µ̃) to

equation (A.3). Proceeding as in Proposition 3.1 in [13], we then exploit Girsanov’s theorem

to investigate the differences Y T − Y T ′
, ZT − ZT ′

, LT − LT ′
, UT − UT ′

. In particular, we

are able to determine opportune estimates for those differences, which allow to pass to the

limit as T → ∞ in equation (A.3) and to end up with the solution to (A.1). ✷

We can now state the following existence and uniqueness result for the BSDE with

partially nonnegative jumps on infinite horizon (4.13)-(4.14), which in particular proves

statement (i) of Proposition 4.2.

Proposition A.1 Let Assumptions (H1) and (H2) hold. Then, for any β > 0, n ∈ N,

(x, i, u) ∈ R
d×Im×U , there exists a unique maximal solution (Y β,n,x,i,u, Zβ,n,x,i,u, Lβ,n,x,i,u,

Rβ,n,x,i,u,Kβ,n,x,i,u) ∈ S2
loc ×L2

loc(W)×L2
loc(π̃)×L2

loc(µ̃)×K2
loc to (4.13)-(4.14) such that:

(i) For all t ≥ 0, Y β,n,k,x,i,u
t ց Y β,n,x,i,u

t P-a.s., as k → ∞.

(ii) For all T > 0, (Zβ,n,k,x,i,u
|[0,T ] , Lβ,n,k,x,i,u

|[0,T ] , Rβ,n,k,x,i,u
|[0,T ] )k strongly (resp. weakly) converges

to (Zβ,n,x,i,u

|[0,T ] , Lβ,n,x,i,u

|[0,T ] , Rβ,n,x,i,u

|[0,T ] ) in Lp

T(W)×Lp

T(π̃)×Lp

T(µ̃), for any p ∈ [1, 2) (resp.

in L2
T(W)× L2

T(π̃)× L2
T(µ̃)).

(iii) For all t ≥ 0, (Kβ,n,k,x,i,u
t )k weakly converges to Kβ,n,x,i,u

t in L2(Ω,Ft,P).

Proof. The proof can be done proceeding as in Proposition 3.3 in [13]. We just recall the

main steps. Firstly, for all t ≥ 0, the nonincreasing property of the sequence (Y β,n,k,x,i,u
t )k

follows from the comparison theorem for BSDEs with jumps, see, e.g., Theorem 4.2 in [39].

The monotonicity property provides the existence of a limiting adapted process Y β,n,x,i,u

satisfying estimate (A.2). Afterwards, for any T > 0, we consider equation (4.13)-(4.14)

on [0, T ] with terminal condition Y β,n,x,i,u
T . Then, from Theorem 2.1 in [31] it follows that

there exists a unique maximal solution to (4.13)-(4.14) (Theorem 2.1 in [31] applies to

minimal solutions; however, simply notice that if Y is a maximal solution to (4.13)-(4.14),

then −Y is a minimal solution to a certain BSDE with partially nonpositive jumps to which

Theorem 2.1 can be applied), for which the convergence results (i)-(ii)-(iii) of Proposition

A.1 hold on [0, T ]. Even though the maximal solution to (4.13)-(4.14) on [0, T ] can a priori

depends on T , this is not the case due to the convergences (i)-(ii)-(iii) on [0, T ], which call

in the penalized BSDE (A.1), whose solution does not depend on T . As a consequence,

we can past together all these maximal solutions on [0, T ], for any T > 0, and we end up

with a maximal solution to equation (4.13)-(4.14) on [0,∞). Finally, the uniqueness of the

maximal solution follows from Lemma A.1. ✷

A.2 Feynman-Kac formula for V β,n

We now derive, by means of the doubly indexed penalized BSDE (A.1), the Feynman-Kac

formula for V β,n and study its viscosity properties. To this end, for any β > 0, n, k ∈ N,

we define the function V β,n,k : Rd × Im × U → R as follows

V β,n,k(x, i, u) = Y β,n,k,x,i,u
0 , ∀ (x, i, u) ∈ R

d × Im × U. (A.4)
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Then, V β,n,k is associated to the following elliptic integro-PDE:

βV β,n,k(x, i, u) − Li,uV β,n,k(x, i, u) −

∫

U

[

V β,n,k(x, i, u′)− V β,n,k(x, i, u)
]

ϑµ(du
′)

−f(x, i, u)− n
m
∑

j=1

[

V β,n,k(x, j, u) − V β,n,k(x, i, u) − c(x, i, j)
]+

(A.5)

+k

∫

U

[

V β,n,k(x, i, u′)− V β,n,k(x, i, u)
]−
ϑµ(du

′) = 0,

for any (x, i, u) ∈ R
d × Im × U . More precisely, we have the following result.

Lemma A.3 Let Assumptions (H1) and (H2) hold. Then, for any β > 0, n, k ∈ N, the

function V β,n,k defined in (A.4) is a continuous viscosity solution to (A.5) satisfying

∣

∣V β,n,k(x, i, u)
∣

∣ ≤
Cb,σ,f

β

(

1 + |x|
)

, ∀ (x, i, u) ∈ R
d × Im × U, (A.6)

where Cb,σ,f is the same constant as in estimate (A.2).

Proof. The proof is standard and can be done along the same lines as in the proof of

Proposition 3.2 in [13]. ✷

We can finally state the main result of this appendix, namely the Feynman-Kac formula

for V β,n, which proves statement (ii) of Proposition 4.2.

Proposition A.2 Let Assumptions (H1), (H2), and (HU) hold. Then, for any β > 0,

n ∈ N, (x, i) ∈ R
d × Im, u ∈ Ů , the random variable Y β,n,x,i,u

0 is equal P-a.s. to a constant

independent of u ∈ Ů . Moreover, the function V β,n : Rd × Im → R given by

V β,n(x, i) = Y β,n,x,i,u
0 , ∀ (x, i) ∈ R

d × Im,

for any u ∈ Ů , is a continuous viscosity solution to system (4.8) and satisfies

sup
(x,i)∈Rd×Im

|V β,n(x, i)|

1 + |x|
< ∞. (A.7)

Proof. The proof can be done as in [13], Theorem 3.1. Here, we recall the main steps.

Firstly, for any T > 0, β > 0, n, k ∈ N, we consider the following parabolic integro-PDE on

[0, T ] × R
m × Im × U in the unknown w : [0, T ]× R

d × Im × U → R:

βw −
∂w

∂t
− Li,uw −

∫

U

[

w(t, x, i, u′)−w(t, x, i, u)
]

ϑµ(du
′)

−f(x, i, u)− n

m
∑

j=1

[

w(t, x, j, u) − w(t, x, i, u) − c(x, i, j)
]+

(A.8)

+k

∫

U

[

w(t, x, i, u′)− w(t, x, i, u)
]−
ϑµ(du

′) = 0,

with terminal condition w(T, x, i, u) = V β,n,k(x, i, u), ∀ (x, i, u) ∈ R
d × Im × U . Since the

coefficients of system (A.8) are constant with respect to time t, we see that V β,n,k solves
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(A.8) in the viscosity sense. Then, we can apply Theorem 3.1 in [31] to conclude that

the limit limk→∞ V β,n,k(x, i, u) = limk→∞ Y β,n,k,x,i,u
0 = Y β,n,x,i,u

0 does not depend on u in

the interior Ů of U . Notice that Theorem 3.1 in [31] applies to equations with “supu∈U”

instead of “infu∈U” as in (4.8); however, simply observe that if V β,n is a viscosity solution

to system (4.8), then −V β,n solves a system with “supu∈U” in place of “infu∈U”, for which

we can use the results of Theorem 3.1 in [31].

The continuity of the function V β,n is a consequence of estimate (4.28), which can be

proved without relying on the (not yet proven) viscosity properties of V β,n, but proceeding

as in Corollary 4.2, where we used the dual representation formula (4.15). Moreover, from

the monotone convergence of (V β,n,k)k towards V β,n as k → ∞, together with estimate

(A.6), we deduce the linear growth condition (A.7) of V β,n.

Finally, thanks again to Theorem 3.1 in [31], we have that, for any T > 0, the function

V β,n is a viscosity solution to the system of parabolic PDEs on [0, T ] × R
d × Im in the

unknown w : [0, T ] × R
d × Im → R:

βw−
∂w

∂t
− inf

u∈U

[

Li,uw+ f(x, i, u)
]

−n

m
∑

j=1

[

w(t, x, j)−w(t, x, i)− c(x, i, j)
]+

= 0, (A.9)

with terminal condition w(T, x, i) = V β,n(x, i), ∀ (x, i) ∈ R
d× Im. Since system (A.9) holds

for every T > 0, and V β,n is constant with respect to time, it follows that V β,n is indeed a

viscosity solution to (4.8). ✷
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