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EXPONENTIAL INTEGRATORS PRESERVING FIRST

INTEGRALS OR LYAPUNOV FUNCTIONS FOR

CONSERVATIVE OR DISSIPATIVE SYSTEMS

YU-WEN LI AND XINYUAN WU

Abstract. In this paper, combining the ideas of exponential integrators and
discrete gradients, we propose and analyze a new structure-preserving expo-
nential scheme for the conservative or dissipative system ẏ = Q(My+∇U(y)),
where Q is a d × d skew-symmetric or negative semidefinite real matrix, M

is a d × d symmetric real matrix, and U : R
d → R is a differentiable func-

tion. We present two properties of the new scheme. The paper is accompanied
by numerical results that demonstrate the remarkable superiority of our new
scheme in comparison with other structure-preserving schemes in the scientific
literature.

1. Introduction

The IVP

(1) ˙y(t) = Ay(t) + f(y(t)), y(t0) = y0,

arises most frequently in a variety of applications such as mechanics, molecular
dynamics, quantum physics, circuit simulations and engineering, where f : Rd → R

d

and · denotes the derivative operator d
dt
. An algorithm for (1) is an exponential

integrator if it involves the computation of matrix exponential (or related matrix
functions) and integrates the linear system

˙y(t)−Ay(t) = 0

exactly. In general, exponential integrators permit larger stepsizes and achieve
higher accuracy than non-exponential ones when (1) is a very stiff differential
equation such as highly oscillatory ODEs and semi-discrete time-dependent PDEs.
Therefore, numerous exponential algorithms have been proposed for first-order (see,
e.g. [1, 10, 20, 22, 23, 24, 25, 26, 30]) and second-order (see e.g. [11, 12, 14, 18, 33])
ODEs. On the other hand, (1) might inherit many important geometrical/physical
structures. For example, the canonical Hamiltonian system

(2) ˙y(t) = J−1∇H(y(t)), y(t0) = y0,

is a special case of (1), with

J =

(
Od1×d1

Id1×d1

−Id1×d1
Od1×d1

)
.
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And the flow of (2) preserves the symplectic 2-form dy ∧ Jdy and the function
H(y). In the sense of geometric integration, it is a natural idea to design nu-
merical schemes that preserve the two structures. As far as we know, most of
research papers dealing with exponential integrators up to now focus on the con-
structions of high-order explicit schemes and fail to be structure-preserving except
for symmetric/symplectic/energy-preserving methods for first-order ODEs in [5, 7]
and oscillatory second-order ODEs (see, e.g. [18, 31, 32]). To combine ideas of ex-
ponential integrators and energy-preserving methods, we address ourselves to the
system:

(3) ẏ = Q(My +∇U(y)), y(t0) = y0,

where Q is a d×d real matrix, M is a d×d symmetric real matrix and U : Rd → R

is a differentiable function. Clearly, (3) could be considered as a special class of (1)
or the generalization of (2). However, (3) concentratively exhibits some important
structures which should be respected by a structure-preserving scheme. Since M
is symmetric, My +∇U(y) is the gradient of the function H(y) = 1

2y
⊺My + U(y).

If Q is skew-symmetric, then (3) is a conservative system with the first integral
H , i.e. H(y(t)) is constant; If Q is negative semi-definite (denoted by Q ≤ 0),
then (3) is a dissipative system with the Lyapunov function H , i.e. H(y(t)) is
monotonically decreasing. In these two cases, H is also called ‘energy’. It should
be noted that the choice for A in (1) or M in (3) is not unique. General speak-
ing, exponential integrators deal with systems having a major linear term and a
comparably small nonlinear term, i.e. ||A|| ≫ ||∂f

∂y
||. Thus, in order to take advan-

tage of exponential integrators, the matrix M in (3) should be chosen such that
||QM || ≫ ||QHess(U)||, where Hess(U) is the Hessian matrix of U . For example,
highly oscillatory Hamiltonian systems can be characterized by (3) with a dominant
linear part, where M implicitly contain the large frequency component. Up to now,
many energy-preserving or energy-decaying methods have been proposed in the case
of M = 0 (see, e.g. [3, 4, 15, 17, 19, 29]). However, these general-purpose methods
are not suitable for dealing with (3) when ||QM || is very large. Firstly, numerical
solutions generated by them are far from accurate. They are generally implicit
and iterative solutions are required at each step. But the fixed-point iterations for
them are not convergent unless the stepsize is tiny enough. As mentioned at the
beginning, the two obstacles are hopeful of overcoming by introducing exponential
integrators. In [31], the authors proposed an energy-preserving AAVF integrator
(a Trigonometric method) dealing with the second-order Hamiltonian system:

{
q̈(t) + M̃q(t) = ∇V (q(t)), M̃ is a symmetric matrix,

q(t0) = q0, q̇(t0) = q̇0,

which falls into the class of (3) by introducing q̇ = p. In this paper, we present and
analyse a new exponential integrator for (3) which can preserve the first integral or
the Lyapunov function.

The plan of this paper is as follows. In Section 2, we construct a general
structure-preserving scheme for (3). In Section 3, we discuss two important prop-
erties of the scheme. Then we present a list of problems which can be solved by
this scheme in Section 4. Numerical results including the comparison between our
new scheme and other structure-preserving schemes in the literature are shown in
section 5. The last Section is concerned with the conclusion.
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2. Construction of the structure-preserving scheme for

conservative and dissipative systems

Preliminaries 2.1. Throughout this paper, given a holomorphic function f in the
neighborhood of zero (f(0) := lim

z→0
f(z) if 0 is a removable singularity ):

f(z) =

∞∑

i=0

f (i)(0)

i!
zi,

and a matrix A, the matrix-valued function f(A) is defined by :

f(A) =

∞∑

i=0

f (i)(0)

i!
Ai.

I and O always denote identity and zero matrices of appropriate dimensions respec-
tively. A

1

2 is a square root (not necessarily principal) of a symmetric matrix A. If

f (i)(0) = 0 for odd i, then f(A
1

2 ) is well-defined for every symmetric A (indepen-

dent of the choice of A
1

2 ). Readers are referred to [21] for details about functions
of matrices.

It is well known that the discrete gradient (DG) method is a popular tool for
constructing energy-preserving schemes. Broadly speaking, ∇H(y, ŷ) is said to be
a discrete gradient of function H if

(4)

{
∇H(y, ŷ)⊺(y − ŷ) = H(y)−H(ŷ),

∇H(y, y) = ∇H(y).

Accordingly,

(5) y1 = y0 + hJ−1∇H(y1, y0)

is called a DG method for the system (2). Multiplying ∇H(y1, y0)⊺ on both sides
of (5) and using the first identity of (4), we obtain H(y1) = H(y0), i.e. the scheme
(5) is energy-preserving. For more details on the DG method, readers are referred
to [15, 28].

On the other hand, most of exponential integrators can be derived from the
variation-of-constants formula for the problem (3):

(6) y(t0 + h) = exp(hQM)y(t0) + h

∫ 1

0

exp((1− ξ)hQM)Q∇U(y(t0 + ξh))dξ.

Replacing ∇U(y(t0+ ξh)) with the discrete gradient ∇U(y1, y0), the integral in (6)
can be approximated by :

∫ 1

0

exp((1− ξ)hQM)Q∇U(y(t0 + ξh))dξ

≈ (

∫ 1

0

exp((1− ξ)hQM)dξ)Q∇U(y1, y0) = ϕ(hQM)Q∇U(y1, y0),

where the scalar function is given by

ϕ(z) = (exp(z)− 1)/z.

Then we obtain the new scheme:

(7) y1 = exp(V )y0 + hϕ(V )Q∇U(y1, y0),
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where V = hQM and y1 ≈ y(t0 + h).
Due to the energy-preserving property of the DG method, we are hopeful of

preserving the first integral by (7) when Q is skew. For convenience, we denote
∇U(y1, y0) by ∇U sometimes. To begin with, we give the following preliminary
lemma.

Lemma 2.2. For any symmetric matrix M and scalar h ≥ 0, the matrix

B = exp(hQM)⊺M exp(hQM)−M

satisfies:

B =

{
= 0, if Q is skew-symmetric,

≤ 0, if Q ≤ 0.

Proof. Consider the linear ODE:

(8) ẏ(t) = QMy(t).

When Q is skew, (8) is a conservative equation with the first integral 1
2y

⊺My, and

its exact solution starting from the initial value y(0) = y0 is y(t) = exp(tQM)y0.
From 1

2y(h)
⊺My(h) = 1

2y
0⊺My0, we have

1

2
y0⊺ exp(hQM)⊺M exp(hQM)y0 =

1

2
y0⊺My0

for any vector y0. Therefore, B = exp(hQM)⊺M exp(hQM)−M is skew-symmetric.
Since it is also symmetric, B = 0. The case that Q ≤ 0 can be proved in a similar
way. �

Theorem 2.3. If Q is skew-symmetric, then the scheme (7) preserves the first
integral H in (3) exactly :

H(y0) = H(y1),

where H(y) = 1
2y

⊺My + U(y).

Proof. Here we firstly assume that the matrix M is not singular. We next calculate
1
2y

1⊺My1. Let M−1∇U = ∇̃U . Replacing y1 by exp(V )y0 + hϕ(V )Q∇U(y1, y0)
leads to
(9)
1

2
y1⊺My1

=
1

2
(y0⊺ exp(V )⊺ + h∇U⊺Q⊺ϕ(V )⊺)M(exp(V )y0 + hϕ(V )Q∇U)

=
1

2
y0⊺ exp(V )⊺M exp(V )y0 + hy0⊺ exp(V )⊺Mϕ(V )Q∇U +

h2

2
∇U⊺Q⊺ϕ(V )⊺Mϕ(V )Q∇U

=
1

2
y0⊺ exp(V )⊺M exp(V )y0 + y0⊺ exp(V )⊺Mϕ(V )V ∇̃U +

1

2
∇̃U⊺V ⊺ϕ(V )⊺Mϕ(V )V ∇̃U (using V = hQM)

=
1

2
y0⊺ exp(V )⊺M exp(V )y0 + y0⊺ exp(V )⊺M(exp(V )− I)∇̃U

+
1

2
∇̃U⊺(exp(V )⊺ − I)M(exp(V )− I)∇̃U (using ϕ(V )V = exp(V )− I)

=
1

2
y0⊺ exp(V )⊺M exp(V )y0 + y0⊺(exp(V )⊺M exp(V )− exp(V )⊺M)∇̃U

+
1

2
∇̃U⊺(exp(V )⊺M exp(V )− exp(V )⊺M −M exp(V ) +M)∇̃U.



ENERGY PRESERVING EXPONENTIAL INTEGRATORS 5

On the other hand, it follows from the property of the discrete gradient (4) that

(10)

U(y1)− U(y0)

= (y1⊺ − y0⊺)∇U(y1, y0)

= y0⊺(exp(V )⊺ − I)∇U + h∇U⊺Q⊺ϕ(V )⊺∇U

= y0⊺(exp(V )⊺M −M)∇̃U + ∇̃U⊺V ⊺ϕ(V )⊺M∇̃U

= y0⊺(exp(V )⊺M −M)∇̃U + ∇̃U⊺(exp(V )⊺M −M)∇̃U.

Combining (9), (10) and collecting terms by types ‘y0⊺ ∗ y0’, ‘y0⊺ ∗ ∇̃U ’, ‘∇̃U⊺ ∗

∇̃U ’ leads to
(11)

H(y1)−H(y0)

=
1

2
y1⊺My1 −

1

2
y0⊺My0 + U(y1)− U(y0)

=
1

2
y0⊺(exp(V )⊺M exp(V )−M)y0 + y0⊺(exp(V )⊺M exp(V )−M)∇̃U

+
1

2
∇̃U⊺(exp(V )⊺M exp(V )−M)∇̃U +

1

2
∇̃U⊺(exp(V )⊺M −M exp(V ))∇̃U

=
1

2
(y0 + ∇̃U)⊺B(y0 + ∇̃U) +

1

2
∇̃U⊺C∇̃U = 0,

where B = exp(V )⊺M exp(V )−M and C = exp(V )⊺M −M exp(V ). The last step
is from the skew-symmetry of the matrix B (according to Lemma 2.2) and C.

If M is singular, it is easy to find a series of symmetric and nonsingular matrices
{Mε} which converge to M when ε → 0. Thus, according to the result stated above,
it still holds that

(12) Hε(y
1
ε) = Hε(y

0)

for all ε, whereHε(y) =
1
2y

⊺Mεy+U(y) is the first integral of the perturbed problem

ẏ = Q(Mεy +∇U(y)), y(t0) = y0,

and

y1ε = exp(Vε)y
0 + hϕ(Vε)Q∇U(y1ε , y

0), Vε = hQMε.

Therefore, when ε → 0, y1ε → y1 and (12) leads to

H(y1) = H(y0).

This completes the proof. �

�

Moreover, the scheme (7) can also model the decay of the Lyapunov function
once Q ≤ 0 in (3). The next theorem shows this point.

Theorem 2.4. If Q is negative semi-definite (not necessary to be symmetric), then
the scheme (7) preserves the Lyapunov function H in (3):

H(y1) ≤ H(y0),

where H(y) = 1
2y

⊺My + U(y).
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Proof. If M is nonsingular, the equation in (11)

H(y1)−H(y0) =
1

2
(y0 + ∇̃U)⊺B(y0 + ∇̃U)

still holds, since the derivation does not depend on the skew-symmetry of Q. By
Lemma 2.2, B is negative semi-definite. Thus H(y1) ≤ H(y0). In the case that M
is singular, this theorem can be easily proved by replacing the equalities

Hε(y
1
ε) = Hε(y

0), H(y1) = H(y0)

in the proof of Theorem 2.3 with the inequalities

Hε(y
1
ε) ≤ Hε(y

0), H(y1) ≤ H(y0).

�

We here skip the details. �

In this paper, we choose the average vector field (AVF) as the discrete gradient
in (7). The corresponding scheme for (3) now is

(13) y1 = exp(V )y0 + hϕ(V )Q

∫ 1

0

∇U((1− τ)y0 + τy1)dτ,

where V = hQM and y1 ≈ y(t0 + h). (13) is called an exponential AVF integrator
and denoted by EAVF.

3. Properties of EAVF

In this section, we present two properties of EAVF as follows.

Theorem 3.1. The EAVF integrator (13) is symmetric.

Proof. Exchanging y0 ↔ y1 and replacing h by −h in (13), we obtain

(14) y0 = exp(−V )y1 − hϕ(−V )Q

∫ 1

0

∇U((1− τ)y1 + τy0)dτ.

Rewrite (14) as:

(15) y1 = exp(V )y0 + h exp(V )ϕ(−V )Q

∫ 1

0

∇U((1− τ)y0 + τy1)dτ.

Since exp(V )ϕ(−V ) = ϕ(V ), (15) is the same as (13) exactly, which means that
EAVF is symmetric. �

�

It should be noted that the scheme (13) is implicit in general, and thus iteration
solutions are required. Next, we discuss the convergence of the fixed-point iteration
for the EAVF integrator.

Theorem 3.2. Suppose that ||ϕ(V )||2 ≤ C, ∇U(u) satisfies the Lipschitz condition,
i. e. there exists a constant L such that

||∇U(v)−∇U(w)||2 ≤ L||v − w||2.

If

(16) 0 < h ≤ ĥ <
2

CL||Q||2
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then the iteration

Ψ : z 7→ exp(V )yn + hϕ(V )Q

∫ 1

0

∇U((1− τ)yn + τz)dτ

for the EAVF integrator (13) is convergent.

Proof. Since

||Ψ(z1)−Ψ(z2)||2

= ||hϕ(V )Q

∫ 1

0

(∇U((1 − τ)yn + τz1)−∇U((1− τ)yn + τz2))dτ ||2

≤
h

2
CL||Q||2||z1 − z2||2 ≤

ĥ

2
CL||Q||2||z1 − z2||2 = ρ||z1 − z2||2,

where

ρ =
ĥ

2
CL||Q||2 < 1,

the iteration Ψ converges by (16) and Contraction Mapping Theorem. �

�

Remark 3.3. We note two special and important cases in practical applications.
If QM is skew-symmetric or symmetric negative semi-definite, then the spectrum
of V lies in the left half-plane. Since QM is unitarily diagonalizable and |ϕ(z)| ≤ 1
for any z satisfying real(z) ≤ 0, we have ||ϕ(V )||2 ≤ 1.

In many cases, the matrix M has extremely large norm (e.g., M incorporates
high frequency components in oscillatory problems orM is the differential matrix in
semi-discrete PDEs), thus, Theorem 3.2 ensures the possibility of choosing relatively
large stepsize regardless of M .

In practice, the integral in (13) usually cannot be easily calculated. Therefore,
we can evaluate it using the s-point Gauss-Legendre (GLs) formula (bi, ci)

s
i=1:

∫ 1

0

∇U((1 − τ)y0 + τy1)dτ ≈
s∑

i=1

bi∇U((1− ci)y
0 + ciy

1)).

The corresponding scheme is denoted by EAVFGLs. Since the s-point GL quadra-
ture formula is symmetric, EAVFGLs is also symmetric. According to

∑s
i=1 bici =

1/2, the corresponding iteration for EAVFGLs is convergent provided (16) holds.

4. Problems suitable for the EAVF

4.1. Highly oscillatory nonseparable Hamiltonian system. Consider the Hamil-
tonian

H(p, q) =
1

2
p⊺1M

−1
1 p1 +

1

2ε2
q⊺1A1q1 + S(p, q),

where

p =

(
p0
p1

)
, q =

(
q0
q1

)

are both d-length vectors, M1, A1 are symmetric positive definite matrices, and
0 < ε ≪ 1. This Hamiltonian governs oscillatory mechanical systems in 2 or 3
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space dimensions such as the stiff spring pendulum and the dynamics of the multi-
atomic molecule (see, e.g. [8, 9]). After an appropriate canonical transformation
(see, e.g. [18]), this Hamiltonian becomes:

(17) H(p, q) =
1

2

l∑

j=1

(p21,j +
λ2
j

ε2
q21,j) + S(p, q),

where p1 = (p1,1, . . . , p1,l)
⊺, q1 = (q1,1, . . . , q1,l)

⊺. The corresponding equation is
given by

(18)





ṗ0 = −∇q0S(p, q),

ṗ1 = −ω2⊺q1 −∇q1S(p, q),

q̇0 = p0 + (∇p0
S(p, q)− p0),

q̇1 = p1 +∇p1
S(p, q),

where ω = (ω1, . . . , ωl)
⊺, ωj = λj/ε for j = 1, . . . , l. (18) is of the form (3) :

y =

(
p
q

)
, Q =

(
O −Id×d

Id×d O

)
, M =

(
Id×d O
O Ωd×d

)
,

and

U(p, q) = S(p, q)−
1

2
p⊺0p0, Ω = diag(0, . . . , 0, ω2

1, . . . , ω
2
l ).

Since q11, . . . , q1l and p11, . . . , p1l are fast variables, it is favorable to integrate the
linear part of them exactly by the scheme (13). Note that

ϕ(V ) =

(
sinc(hΩ

1

2 ) h−1g2(hΩ
1

2 )

hg1(hΩ
1

2 ) sinc(hΩ
1

2 )

)
,

where sinc(z) = sin(z)/z, g1(z) = (1 − cos(z))/z2, g2(z) = cos(z) − 1. Unfortu-

nately, the block h−1g2(hΩ
1

2 ) is not uniformly bounded. In the first experiment,
the iteration still works well, perhaps due to the small Lipshitz constant of ∇S.

4.2. Second-order (damped) highly oscillatory system. Consider

(19) q̈ −Nq̇ +Ωq = −∇U1(q),

where q is a d-length vector variable, U1 : Rd → R is a differential function, N is
a symmetric negative semi-definite matrix, Ω is a symmetric positive semi-definite
matrix, ||Ω|| or ||N || ≫ 1. (19) stands for highly oscillatory problems such as the
dissipative molecular dynamics, the (damped) Duffing and semi-discrete nonlinear
wave equations. By introducing p = q̇, we write (19) as a first-order system of
ODEs :

(20)

(
q̇
ṗ

)
=

(
O I
−Ω N

)(
q
p

)
+

(
0

−∇U1(q)

)
,

which falls into the class (3), where

y =

(
q
p

)
, Q =

(
O I
−I N

)
,M =

(
Ω O
O I

)
, U(y) =

(
U1(q)
O

)
.

Clearly, Q ≤ 0 and (20) is a dissipative system with the Lyapunov function H =
1
2p

⊺p+ 1
2q

⊺Ωq + U1(q). In the particular case N = 0, (20) becomes a conservative
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Hamiltonian system. Let

A = QM =

(
O I
−Ω N

)
.

Applying the EAVF integrator (13) to the equation (20) yields the scheme:

(21)






q1 = exp11 q
0 + exp12 p

0 − hϕ12

∫ 1

0

∇U1((1− τ)q0 + τq1)dτ,

p1 = exp21 q
0 + exp22 p

0 − hϕ22

∫ 1

0

∇U1((1− τ)q0 + τq1)dτ,

where exp(hA) and ϕ(hA) are partitioned into
(

exp11 exp12
exp21 exp22

)
and

(
ϕ11 ϕ12

ϕ21 ϕ22

)
,

respectively.
It should be noted that only the first equation in the scheme (21) need to be

solved by iterations. From the proof procedure of Theorem 3.2, one can find that
the convergence of the fixed-point iteration for (21) is irrelevant to ||A|| provided
ϕ12 is uniformly bounded.

Theorem 4.1. Assume that Ω commutes with N , ||∇U1(v)−∇U1(w)||2 ≤ L||v −
w||2, then the iteration

Φ : z 7→ exp11 q
0 + exp12 p

0 − hϕ12

∫ 1

0

∇U1((1− τ)q0 + τz)dτ

for the scheme (21) is convergent provided

0 < h ≤ ĥ <
2

L
1

2

.

Proof. The crucial point here is to find a uniform upper bound of ||ϕ12||. Since Ω
commutes with N , they can be simultaneously diagonalized:

Ω = F ⊺ΛF, N = F ⊺ΣF,

where F is an orthogonal matrix, Λ = diag(λ1, . . . , λd),Σ = diag(σ1, . . . , σd) and
λi ≥ 0, σi ≤ 0 for i = 1, 2, . . . , d. It now follows from

A =

(
F ⊺ O
O F ⊺

)(
O I
−Λ Σ

)(
F O
O F

)

that

exp(hA) =

(
F ⊺ O
O F ⊺

)
exp

{(
O hI

−hΛ hΣ

)}(
F O
O F

)
.

To show that exp12 and ϕ12 depends on h, we denote them by exph12 and ϕh
12,

respectively. After some calculations, we have

exph12 = F ⊺
2 sinh(h(Σ2 − 4Λ)

1

2 /2)

(Σ2 − 4Λ)
1

2

exp

(
hΣ

2

)
F.

Then we have
(22)

|| exph12 ||2 = ||
2 sinh(h(Σ2 − 4Λ)

1

2 /2)

(Σ2 − 4Λ)
1

2

exp

(
hΣ

2

)
||2 = hmax

i
|
sinh((h2σ2

i /4− λi)
1

2 )

(h2σ2
i /4− λi)

1

2

exp

(
hσi

2

)
|.
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In order to estimate || exph12 ||2, the bound of the function

g(λ, σ) =
sinh((σ2 − 4λ)

1

2 )

(σ2 − 4λ)
1

2

exp (σ) ,

should be considered for σ ≤ 0, λ ≥ 0. If σ2 − 4λ < 0, we set (σ2 − 4λ)
1

2 = ia,
where i is the imaginary unit and a is a real number. Then we have

|g| = |
sin(a)

a
exp (σ) | ≤ |

sin(a)

a
| ≤ 1.

If σ2 − 4λ ≥ 0, then a = (σ2 − 4λ)
1

2 ≤ −σ,

|g| = |
sinh(a)

a
exp (σ) | ≤ |

sinh(a)

a
exp(−a)| = |

1− exp(−2a)

2a
| ≤ 1.

Thus

(23) |g(λ, σ)| ≤ 1 for σ ≤ 0, λ ≥ 0.

It follows from (22) and (23) that

(24) || exph12 ||2 = hmax
i

|g(
hσi

2
, λi)| ≤ h.

Therefore, using ϕ(hA) =
∫ 1

0 exp((1 − ξ)hA)dξ and (24), we obtain

||ϕh
12||2 = ||

∫ 1

0

exp
(1−ξ)h
12 dξ||2 ≤

∫ 1

0

|| exp
(1−ξ)h
12 ||2dξ ≤

∫ 1

0

(1− ξ)hdξ =
1

2
h.

Since the rest of the proof is very similar to that of Theorem 3.2, we omit it here. �

�

It can be observed that in the particular case that N = 0, the scheme (21)
reduces to the AAVF integrator in [31].

4.3. Semi-discrete conservative and dissipative PDEs. Many time-dependent
PDEs are of the form :

(25) ∂ty(x, t) = Q
δH

δy
,

where y(·, t) ∈ X for every t ≥ 0, X is a Hilbert space such as L2(Ω),L2(Ω) ×
L2(Ω), . . ., Ω is a domain in R

d, and Q is a linear operator on X . H[y] =∫
Ω
H(y, ∂αy)dx (H is smooth, x = (x1, . . . , xd), dx = dx1 . . . dxd and ∂αy denotes

the partial derivatives of y with respect to spatial variables xi, 1 ≤ i ≤ d). Under
suitable boundary condition (BC), the variational derivative δH

δy
is defined by :

〈
δH

δy
, z〉 =

d

dε
|ε=0H[y + εz]

for any smooth z ∈ X satisfying the same BC, where 〈·, ·〉 is the inner product
of X . If Q is a skew or negative semi-definite operator with respect to 〈·, ·〉, then
the equation (25) is conservative (e.g., the nonlinear wave, nonlinear Schrödinger,
Korteweg–de Vries and Maxwell equations) or dissipative (e.g., the Allen–Cahn,
Cahn–Hilliard, Ginzburg–Landau and heat equations), i.e., H[y] is constant or
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monotonically decreasing (see, e.g. [6, 13]). In general, after the spatial discretiza-
tion, (25) becomes a conservative or dissipative system of ODEs in the form (3).
Here we exemplify conservative ones by the nonlinear Schrödinger equation:

(26) iyt + yxx + V
′

(|y|2)y = 0

under the periodic BC y(0, t) = y(L, t), where y = p + iq is a complex-valued
function, p, q are both real, i is the imaginary unit. The equation (26) is of the
form (25) :

(27) ∂t

(
p
q

)
=

(
0 −1
1 0

)(
pxx + V

′

(p2 + q2)p

qxx + V
′

(p2 + q2)q

)
,

where X = L2([0, L])× L2([0, L]),H[y] = 1
2

∫ L

0
(V (p2 + q2) − p2x − q2x)dx. Assume

that the spatial domain is equally partitioned into N intervals: 0 = x0 < x1 <
. . . < xN = L. Discretizing the spatial derivatives of (27) by the central difference
arrives at

(28)

(
˙̃p
˙̃q

)
=

(
O −I
I O

)(
Dp̃+ V

′

(p̃2 + q̃2)p̃

Dq̃ + V
′

(p̃2 + q̃2)q̃

)
,

where

D =




−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2




,

is anN×N symmetric differential matrix, p̃ = (p0, . . . , pN−1)
⊺, q̃ = (q0, . . . , qN−1)

⊺, pi(t) ≈
p(xi, t) and qi(t) ≈ q(xi, t) for i = 0, . . . , N − 1.

An example of dissipative PDEs is the Allen-Cahn equation:

(29) yt = dyxx + y − y3, d ≥ 0

under the the Neumann BC yx(0, t) = yx(L, t). X = L2([0, L]),Q = −1,H[y] =∫
(12dy

2
x − 1

2y
2 + 1

4y
4)dx. The spatial grids are chosen in the same way as NLS.

Discretizing the spatial derivative by the central difference, we obtain

(30) ˙̃y = dD̂ỹ + ỹ − ỹ3,

where

D̂ =




−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1




,

is the (N − 1)× (N − 1) symmetric differential matrix, ỹ = (y1, . . . , yN−1)
⊺, yi(t) ≈

y(xi, t).
Both the semi-discrete NLS equation (28) and AC equation (30) are of the form

(3). For the NLS and the AC equations, we have

Q =

(
O −I
I O

)
, M =

(
D O
O D

)
, U =

1

2

N−1∑

i=0

V (p2i + q2i ),



12 YU-WEN LI AND XINYUAN WU

and

Q = −I, M = −dD̂, U =

N−1∑

i=1

(−
1

2
y2i +

1

4
y4i ).

respectively. Therefore, the scheme (13) can be applied to solve them. Since the
matrixQM is skew or symmetric negative semi-definite in these two cases, according
to the Remark 3.3, the convergence of fixed-point iterations for them is independent
of the differential matrix.

5. Numerical experiments

In this section, we compare the EAVF method (13) with the well-known implicit
midpoint method which is denoted by MID:

(31) y1 = y0 + hQ∇Ũ(
y0 + y1

2
),

and the traditional AVF method for the equation (3) is given by

(32) y1 = y0 + hQ

∫ 1

0

∇Ũ((1 − τ)y0 + τy1)dτ,

where Ũ(y) = U(y) + 1
2y

⊺My. The authors in [28] showed that (32) preserves the

first integral or the Lyapunov function Ũ . Our comparison also includes another
energy-preserving method of order four for (3) :

(33)






y
1

2 = y0 + hQ

∫ 1

0

(
5

4
−

3

2
τ)∇Ũ (yτ )dτ,

y1 = y0 + hQ

∫ 1

0

∇Ũ(yτ )dτ,

where

yτ = (2τ − 1)(τ − 1)y0 − 4τ(τ − 1)y
1

2 + (2τ − 1)τy1.

This method is denoted by CRK since it can be written as a continuous Runge–
Kutta method. For details, readers are referred to [17].

Throughout the experiment, the ‘reference solution’ is computed by high-order
methods with a sufficiently small stepsize. We always start to calculate from t0 = 0.
yn ≈ y(tn) is obtained by the time-stepping way y0 → y1 → · · · → yn → · · · for
n = 1, 2, . . . and tn = nh. The error tolerance for iteration solutions of the four
methods is set as 10−14. The maximum global error (GE) over the total time
interval is defined by:

GE = max
n≥0

||yn − y(tn)||∞.

The maximum global error of H (EH) on the interval is:

EH = max
n≥0

|Hn −H(y(tn))|.

In our numerical experiments, the computational cost of each method is measured
by the number of function evaluations (FE).

Problem 5.1. The motion of a triatomic molecule can be modeled by a Hamiltonian
system with the Hamiltonian of the form (17) (see, e.g. [8]):

(34) H(p, q) = S(p, q) +
1

2
(p21,1 + p21,2 + p21,3) +

ω2

2
(q21,1 + q21,2 + q21,3),
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where

S(p, q) =
1

2
p20+

1

4
(q0− q1,3)

2−
1

4

2q1,2 + q21,2
(1 + q1,2)2

(p0−p1,3)
2−

1

4

2q1,1 + q21,1
(1 + q1,1)2

(p0+p1,3)
2.

The initial values are given by :





p0(0) = p1,1(0) = p1,2(0) = p1,3(0) = 1,

q0(0) = 0.4, q1,1(0) = q1,2(0) =
1

ω
, q1,3 =

1

2
1

2ω
.

Setting h = 1/2i, i = 6, . . . , 10, ω = 50 and h = 1/100× 1/2i, i = 0, . . . , 4, ω = 100,
we integrate the problem (18) with the Hamiltonian (34) over the interval [0, 50].
Since the nonlinear term ∇S(p, q) is complicated to be integrated, we evaluate the
integrals in EAVF, AVF and CRK by the 3-point Gauss–Legendre (GL) quadrature
formula (bi, ci)

3
i=1:

b1 =
5

18
, b2 =

4

9
, b3 =

5

18
; c1 =

1

2
−

15
1

2

10
, c2 =

1

2
, c3 =

1

2
+

15
1

2

10
.

Corresponding schemes are denoted by EAVFGL3, AVFGL3 and CRKGL3 respec-
tively. Numerical results are presented in Figs. 1.

Figs. 1(a) and 1(c) show that MID and AVFGL3 lost basic accuracy. It can be
observed from 1(b) and 1(d) that AVFGL3, EAVFGL3, CRKGL3 are much more
efficient in preserving energy than MID. In the aspects of both energy preservation
and algebraic accuracy, EAVF is the most efficient among the four methods.

Problem 5.2. The equation

(35)

ẋ1 = −ζx1 − λx2 + x1x2,

ẋ2 = λx1 − ζx2 +
1

2
(x2

1 − x2
2),

is an averaged system in wind-induced oscillation, where ζ ≥ 0 is a damping
factor and λ is a detuning parameter (see, e.g. [16]). For convenience, setting
ζ = rcos(θ), λ = rsin(θ), r ≥ 0, 0 ≤ θ ≤ π/2, (see [29]) we write (35) as
(36)(

ẋ1

ẋ2

)
=

(
−cos(θ) −sin(θ)
sin(θ) −cos(θ)

)(
rx1 −

1
2sin(θ)(x

2
2 − x2

1)− cos(θ)x1x2

rx2 − sin(θ)x1x2 +
1
2cos(θ)(x

2
2 − x2

1)

)
,

which is of the form (3), where
(37)

Q =

(
−cos(θ) −sin(θ)
sin(θ) −cos(θ)

)
, M =

(
r 0
0 r

)
, U = −

1

2
sin(θ)(x1x

2
2−

1

3
x3
1)+

1

2
cos(θ)(

1

3
x3
2−x2

1x2).

Its Lyapunov function (dissipative case, when θ < π/2) or the first integral (con-
servative case, when θ = π/2) is:

H =
1

2
r(x2

1 + x2
2)−

1

2
sin(θ)(x1x

2
2 −

1

3
x3
1) +

1

2
cos(θ)(

1

3
x3
2 − x2

1x2).

The matrix exponential of the EAVF scheme (13) for (36) are calculated by:

exp(V ) =

(
exp(−hcr)cos(hsr) − exp(−hcr)sin(hsr)
exp(−hcr)sin(hsr) exp(−hcr)cos(hsr)

)
,

where c = cos(θ), s = sin(θ), and ϕ(V ) can be obtained by (exp(V )−I)V −1. Given
the initial values:

x1(0) = 0, x2(0) = 1,
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Figure 1. Efficiency curves.

we first integrate the conservative system (36) with the parameters θ = π/2, r = 20
and stepsizes h = 1/20 × 1/2i, i = −1, . . . , 4 over the interval [0, 200]. Setting
θ = π/2 − 10−4, r = 20, we then integrate the dissipative (36) with the stepsizes
h = 1/20 × 1/2i, i = −1, . . . , 4 over the interval [0, 100]. Numerical errors are
presented in Figs. 2, 3. It is noted that the integrands appearing in AVF, EAVF
are polynomials of degree two and the integrands in CRK are polynomials of degree
five. We evaluate the integrals in AVF, EAVF by the 2-point GL quadrature:

b1 =
1

2
, b2 =

1

2
, c1 =

1

2
−

3
1

2

6
, c2 =

1

2
+

3
1

2

6
,
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Figure 2. Efficiency curves.

and the integrals appearing in CRK by the 3-point GL quadrature. Then there is
no quadrature error.

The efficiency curves of AVF and MID consist of only five points in Figs. 2
(a), 2 (b), 3 (a) (two points overlap in Figs. 2 (a), 3 (a)), since the fixed-point
iterations of MID and AVF are not convergent when h = 1/10. Note that QM
is skew-symmetric or negative semi-definite, the convergence of iterations for the
EAVF method is independent of r by Theorem 3.2 and Remark 3.3. Thus larger
stepsizes are allowed for EAVF. The experiment shows that the iterations of EAVF
uniformly work for h = 1/20×1/2i, i = −1, . . . , 4. Moreover, it can be observed from
Fig. 2(d) that MID cannot strictly preserve the decay of the Lyapunov function.

Problem 5.3. The PDE:

(38)
∂2u

∂t2
= β

∂3u

∂t∂x2
+

∂2u

∂x2

(
1 + ε

(
∂u

∂x

)p)
− γ

∂u

∂t
−m2u,

where ε > 0, β, γ ≥ 0, is a continuous generalization of α-FPU (Fermi-Pasta-Ulam)
system (see, e.g. [27]). Taking ∂tu = v and the homogeneous Dirichlet BC u(0, t) =
u(L, t) = 0, the equation (38) is of the type (25), where X = L2([0, L])×L2([0, L])
and

y =

(
u
v

)
, Q =

(
0 1
−1 β∂2

x − γ

)
, H[y] =

∫ L

0

(
1

2
u2
x +

m2

2
u2 +

v2

2
+

εup+2
x

(p+ 2)(p+ 1)

)
dx.

It is easy to verify that Q is a negative semi-definite operator, and thus (38) is
dissipative. The spatial discretization yields a dissipative system of ODEs:

üj(t)−c2(uj−1−2uj+uj+1)+m2uj−β
′

(u̇j−1−2u̇j+u̇j+1)+γu̇j(t) = ε
′

(V
′

(uj+1−uj)−V
′

(uj−uj−1)),

where c = 1/∆x, β
′

= c2β, ε
′

= cp+2ε, V (u) = up+2/[(p + 2)(p + 1)], uj(t) ≈
u(xj , t), xj = j/∆x for j = 1, . . . , N − 1 and u0(t) = uN (t) = 0. Note that the
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Figure 3. (a) Efficiency curves. (b) The Lyapunov function
against time t.

nonlinear term uxxu
p
x is approximated by :

∂2u

∂x2

(
∂u

∂x

)p

|x=xj
=

1

p+ 1
∂x

(
∂u

∂x

)p+1

|x=xj
≈

1

p+ 1

((
uj+1 − uj

∆x

)p+1

−

(
uj − uj−1

∆x

)p+1
)
/∆x.

We now write it in the compact form (19):

q̈ −Nq̇ +Ωq = −∇U1(q),

where q = (u1, . . . , uN−1)
⊺, N = β

′

D−γI,Ω = −c2D+m2I, U1(q) = ε
′ ∑N−1

j=0 V (uj+1−

uj) and

D =




−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2




.

In this experiment, we set p = 1,m = 0, c = 1, ε = 3
4 , and γ = 0.005. Consider the

initial conditions in [27]:

φj(t) = B ln

{(
1 + exp[2(κ(j − 97) + t sinh(κ))]

1 + exp[2(κ(j − 96) + t sinh(κ))]

)(
1 + exp[2(κ(j − 32) + t sinh(κ))]

1 + exp[2(κ(j − 33) + t sinh(κ))]

)}

with B = 5, κ = 0.1, that is, {
uj(0) = φj(0),

vj(0) = φ̇j(0).

for j = 1, . . . , N − 1. Let N = 128, β = 0, 2. We compute the numerical solution by
MID, AVF and EAVF with the stepsizes h = 1/2i, i = 1, . . . , 5 over the time interval
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Figure 4. (a) (b) Efficiency curves. (c) The decay of Lyapunov
function obtained by EAVF.

[0, 100]. Similarly to EAVF (21), the nonlinear systems resulting from MID (31)
and AVF (32) can be reduced to:

q1 = q0 + hp0 +
h

2
N(q1 − q0)−

h2

4
Ω(q1 + q0)−

h2

2
∇U1(

q0 + q1

2
),

and

q1 = q0 + hp0 +
h

2
N(q1 − q0)−

h2

4
Ω(q1 + q0)−

h2

2

∫ 1

0

∇U1((1− τ)q0 + τq1)dτ

respectively. Both the velocity p1 of MID and AVF can be recovered by

q1 − q0

h
=

p1 + p0

2
.

The integrals in AVF and EAVF are exactly evaluated by the 2-point GL quadrature.
Since exp(hA), ϕ(hA) in (21) have no explicit expressions, they are calculated by
the Matlab package in [2]. The basic idea is evaluating exp(hA), ϕ(hA) by their
Padé approximations. Numerical results are plotted in Figs. 4. Alternatively, there
are other popular algorithms such as contour integral method and Krylov subspace
method for matrix exponentials and ϕ-functions. Readers are referred to [23] for a
summary of algorithms and well-established mathematical software.

According to Theorem 4.1, the convergence of iterations in the EAVF scheme
is independent of Ω and N . Iterations of MID and AVF are not convergent when
β = 2, h = 1/2. Thus the efficiency curves of MID and AVF in Fig. 4(b) consist
of only 4 points. From Fig. 4(c), it can be observed that the EAVF method can
preserve dissipation even using the relatively large stepsize h = 1/2.
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6. Conclusions

Exponential integrators can be traced back to the original paper by Hersch [20].
The term ‘exponential integrators’ was coined in the seminal paper by Hochbruck,
Lubich and Selhofer [22]. It turns out that exponential integrators have constituted
an important class of schemes for the numerical simulation of differential equations.
In this paper, combining the ideas of the exponential integrator with the average
vector field, we derived and analyzed a new exponential scheme EAVF preserving
the first integral or the Lyapunov function for the conservative or dissipative system
(3), which includes numerous important mathematical models in applications. The
symmetry of EAVF ensures the prominent long-term numerical behavior. Due to
the implicity of EAVF requires iteration solutions, we analysed the convergence of
the fixed-point iteration and showed that the convergence is free from the influence
of a wide range of coefficient matricesM . In the dynamics of the triatomic molecule,
the wind-induced oscillation and the damped FPU problem, we compared the new
EAVF method with the MID, AVF and CRK methods. The three problems are
modeled by the system (3) having a dominant linear term and small nonlinear term.
In the aspects of algebraic accuracy as well as preserving energy and dissipation,
EAVF is very efficient among the four methods. In general, energy-preserving and
energy-decaying methods are implicit, and then iteration solutions are required.
With a relatively large stepsize, the iterations of EAVF are convergent, whereas
AVF and MID do not work in experiments. Therefore, EAVF is expected to be a
promising method solving the system (3) with ||QM || ≫ ||QHess(U)||.

Acknowledgments. The authors are sincerely thankful to two anonymous referees for
their valuable suggestions, which help improve the presentation of the manuscript.
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